
CS1101: Lecture 10
Contemporary Multilevel

Machines (Part 2)

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• A Six-Level Computer (continued)

• Computer Architecture

• Multilevel Machines: Hardware

• Multilevel Machines: Software

• The Hardware/Software Boundary

• Finite Precision Numbers

• Reading : Tanenbaum, Chapter 1 & Appendix
A.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

A Six-Level Computer

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Microarchitecture level

Partial interpretation (operating system)

Instruction set architecture level

Hardware

Digital logic level

Interpretation (microprogram) or direct execution

Figure 1.2 A six-level computer

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

Computer Architecture

• Thus, computers are designed as a series of
levels, each one built on its predecessors;

• Each level represents a distinct abstraction,
with different operations and objects present;

• This view allows us to handle the complexity of
computer design;

• The set of data types, operations and features
of each level is called its architecture ;

• Implementation aspects, such as what kind
of chip technology is used to implement the
memory, are not part of the architecture;

• The study of how to design those parts of
a computer system that are visible to the
programmers are called computer architecture ;

Department of Computer Science, University College Cork 3



Multilevel Machines: Hardware

• Programs written in a computer’s true machine
language (level 1) can be directly executed
by the computer’s electronic circuits (level
0), without any intervening interpreters or
translators.

• These electronic circuits, along with the
memory and input/output devices, form the
computer’s hardware.

• Hardware consists of tangible objects:

– integrated circuits
– printed circuit boards
– cables
– power supplies
– memories
– printers

• Hardware is not abstract ideas, algorithms, or
instructions.

Department of Computer Science, University College Cork 4

Multilevel Machines: Software

• Software consists of algorithms (detailed
instructions telling how to do something)
and their computer representations-namely,
programs

• Programs can be stored on hard disk, floppy
disk, CD-ROM, or other media but the essence
of software is the set of instructions that makes
up the programs, not the physical media on
which they are recorded.

• In the very first computers, the boundary
between hardware and software was crystal
clear.

• Over time, however, it has blurred considerably,
primarily due to the addition, removal, and
merging of levels as computers have evolved.

• Hardware and software are logically equivalent

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

The Hardware/Software Boundary

• Any operation performed by software can also
be built directly into the hardware;

• “Hardware is just petrified software”

• Also, any instruction executed by the hardware
can also be simulated in software;

• The decision to put certain functions in
hardware and others in software is based on
such factors as:

– cost
– speed
– reliability and
– frequency of expected changes

• There are few hard and fast rules to the effect
that X must go into the hardware and Y must
be programmed explicitly. These decisions
change with trends in technology and computer
usage.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

Finite-Precision Numbers

• On most computers, the amount of memory
available for storing a number is fixed at the
time that the computer is designed.

• This forces us to deal only with numbers
that can be represented in a fixed number of
digits. We call such numbers finite-precision
numbers .

• Consider the set of positive integers representable
by three decimal digits, with no decimal point
and no sign. This set has exactly 1000
members: 000, 001, 002, 003, ..., 999.

• With this restriction, it is impossible to express
certain kinds of numbers, such as:

– Numbers larger than 999.
– Negative numbers.
– Fractions.
– Irrational numbers.
– Complex numbers.

Department of Computer Science, University College Cork 7



Arithmetic using Integers

• One important property of arithmetic on the
set of all integers is closure with respect to
the operations of addition, subtraction, and
multiplication.

• In other words, for every pair of integers i and
j, i + j, i − j and i ∗ j are also integers.

• The set of integers is not closed with respect
to division, because there exist values of i and
j for which i/j is not expressible as an integer
(e.g., 7/2 and 1/0).

• Finite-precision numbers are not closed with
respect to any of these four basic operations,
as shown below, using three-digit decimal
numbers as an example:

– 600 + 600 = 1200 (too large)
– 003 - 005 = -2 (negative)
– 050 x 050 = 2500 (too large)
– 007 / 002 = 3.5 (not an integer)

Department of Computer Science, University College Cork 8

Overflow and Underflow

• The violations can be divided into two mutually
exclusive classes;

• Operations whose result is larger than the
largest number in the set (overflow error) or
smaller than the smallest number in the set
(underfiow error), and operations whose result
is neither too large nor too small but is simply
not a member of the set.

• Of the four violations earlier, the first three are
examples of the former, and the fourth is an
example of the latter.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

Radix Number Systems

• An ordinary decimal number consists of a
string of decimal digits and, possibly, a decimal
point.

• The choice of 10 as the base for exponentiation,
called the radix , is made because we are using
decimal, or base 10, numbers.

• When dealing with computers, it is frequently
convenient to use radices other than 10.

• The most important radices are 2, 8, and 16.
The number systems based on these radices
are called binary, octal, and hexadecimal,
respectively.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation Contemporary Multilevel Machines (Part 2)

The General Form of a Decimal Number

100's
place

10's
place

1's
place

.1's
place

.01's
place

.001's
place

dn d2 d1 d0 d–1 d–2 d–3

Number = 

n

i = –k
di    10i

… .

 ×  Σ

Figure A.1 The general form of a decimal number

Department of Computer Science, University College Cork 11


