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IEEE Floating-Point Standard 754

• The standard defines three formats:

– single precision (32 bits),
– double precision (64 bits), and
– extended precision (80 bits).

• Both the single- and double precision formats
use radix 2 for fractions and excess notation
for exponents .

• Both formats start with a sign bit, 0 being
positive and 1 being negative.

• The exponent is defined using excess 127 for
single precision and excess 1023 for double
precision.

• The minimum (0) and maximum (255 and
2047) exponents are not used for normalized
numbers – they have special uses.

• The fractions have 23 and 52 bits, respectively.
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IEEE floating-point formats
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Figure B-4. IEEE floating-point formats. (a)
Single precision. (b) Double precision.
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The Significand

• A normalized fraction begins with a 1 bit,
followed by a binary point, and then the rest of
the fraction.

• The leading 1 bit in the fraction does not have
to be stored, since it can just be assumed to be
present.

• Consequently, the standard defines the fraction
in a slightly different way than usual.

• It consists of an implied 1 bit, an implied binary
point, and then either 23 or 52 arbitrary bits.

• To avoid confusion with a conventional fraction,
the combination of the implied 1, the implied
binary point, and the 23 or 52 explicit bits is
called a significand instead of a fraction or
mantissa.

• All normalized numbers have a significand, s,
in the range 1 ≤ s < 2.
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An Example Conversion

• Example: Show the IEEE 754 binary
representatoin of the number 0.510 in single
precision.

• This is equivalent to 1.0 × 2−1 in normalised
binary scientific notation

• Thus, the fraction is 00000 . . . 000 (i.e. we
ignore the “1.” in the significand)

• The sign is positive, which is 0

• The exponent is

−1 + 127 = 12610 = 011111102

• We can now put it all together
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An Example Conversion

• Thus the IEEE floating-point formatted number
for 0.510 is

00111111000000000000000000000000

which, formatted differently, is

0011 1111 0000 0000 0000 0000 0000 0000

• We can also express this as

3F00000016

• Also, 0.5, 1.0 and 1.5 are represented
in hexadecimal as 3F000000, 3F800000,
3FC00000, respectively.
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Another Example Conversion

• Example: Convert the IEEE single-precision
floating-point number 3FC0000016 from hex to
decimal.

• In binary this is:

0011 1111 1100 0000 0000 0000 0000 0000

• The sign is 0 - it’s a positive number

• The exponent is

01111111 = 12710 = 12710 − 12710 = 0
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Another Example Conversion

• The fraction is

10000000000000000000000

giving a significand of 0.1.

• Thus, the number is

(1 + fraction) × 2exponent

giving

(1 + 0.1) × 20 = 1.1 × 20 = 1.5
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Error Handling

• One of the traditional problems with floating-
point numbers is how to deal with underflow,
overflow, and uninitialized numbers.

• In addition to normalized numbers, the
standard has four other numerical types:

– Normalized
– Denormalized
– Zero
– Infinity
– Not a number
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Denormalized Numbers

• A problem arises when the result of a
calculation has a magnitude smaller than the
smallest normalized floating-point number that
can be represented in this system.

• To handle this sort of situation the IEEE
invented denormalized numbers .

• These numbers have an exponent of 0.

• Normalized numbers are not permitted to have
an exponent of 0.
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Denormalized Numbers

• The smallest nonzero denormalized number
consists of a 1 in the rightmost bit, with the rest
being 0.

• The exponent represents 2−127 and the fraction
represents 2−23 so the value is 2−150.

• This scheme provides for a graceful underflow
by giving up significance instead of jumping to
0 when the result cannot be expressed as a
normalized number.
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Zero

• Two zeros are present in this scheme, positive
and negative, determined by the sign bit.

• Both zeros have an exponent of 0 and a fraction
of 0.

• Here too, the bit to the left of the binary point is
implicitly 0 rather than 1.
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Overflow

• Overflow cannot be handled gracefully.

• There are no bit combinations left.

• Infinity is represented by an exponent with all
1s (not allowed for normalized numbers), and a
fraction of 0.

• This number can be used as an operand and
behaves according to the usual mathematical
rules for infinity.

• For example infinity plus anything is infinity, and
any finite number divided by infinity is zero.
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Overflow

• Similarly, any finite number divided by zero
yields infinity.

• Infinity divided by infinity is undefined.

• To handle this case, another special format is
provided, called NaN (Not a Number) .

• NaN can be used as an operand with
predictable results.
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