
CS1101: Lecture 38
Macros and

Pass One of an Assembler

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Macros

– Macro Definition
– Macro Call and Expansion
– Macros versus Procedures
– Macros with Parameters

• Two-Pass Assemblers

– Forward Reference Problem
– Pass One
– Data used during Pass One
– The Symbol Table
– The Opcode Table

• Reading : Tanenbaum, Chapter 7, Section 2/3.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

Macros

• A macro definition is a way to give a name to a
piece of text.

• After a macro has been defined, the programmer
can write the macro name instead of the piece
of program.

• A macro is, in effect, an abbreviation for a piece
of text.

• See Figure 7-4.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Assembly Language Level

Macro Definition

• Although different assemblers have slightly
different notations for defining macros, all
require the same basic parts in a macro
definition:

1. A macro header giving the name of the
macro being defined.

2. The text comprising the body of the macro.
3. A pseudoinstruction marking the end of the

definition (e.g., ENDM).

Department of Computer Science, University College Cork 3



Macro Call and Expansion

• When the assembler encounters a macro
definition, it saves it definition table for
subsequent use.

• From that point on, whenever the macro
appears as an opcode, the assembler replaces
it by the macro body.

• The use of a macro name as an opcode is
known as a macro call and its replacement by
the macro body is called macro expansion .

Department of Computer Science, University College Cork 4

Macro Call and Expansion

• Macro expansion occurs during the assembly
process and not during execution of the
program.

• Both programs we have seen will produce
precisely the same machine language code.

• Looking only at the machine language program,
it is impossible to tell whether or not any
macros were involved in its generation.

• The reason is that once macro expansion
has been completed the macro definitions are
discarded by the assembler.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level

Macros versus Procedures

• Macro calls should not be confused with
procedure calls.

• The basic difference is that a macro call is
an instruction to the assembler to replace the
macro name with the macro body.

• A procedure call is a machine instruction that is
inserted into the object program and that will
later be executed to call the procedure.

• See Figure 7-5

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Assembly Language Level

Macros with Parameters

• Frequently, however, a program contains
several sequences of instructions that are
almost but not quite identical.

• Macro assemblers handle the case of nearly
identical sequences by allowing macro definitions
to provide formal parameters and by allowing
macro calls to supply actual parameters .

• When a macro is expanded, each formal
parameter appearing in the macro body
is replaced by the corresponding actual
parameter.

• The actual parameters are placed in the
operand field of the macro call.

• See Figure 7-6

Department of Computer Science, University College Cork 7



Two-Pass Assemblers

• An assembly language program consists of a
series of one-line statements.

• Reading the program one line at a time and
generating machine code for each line does not
work!

• Why not?

• Forward Reference Problem

Department of Computer Science, University College Cork 8

Forward Reference Problem

• Consider the situation where the first statement
is a branchto L;

• The assembler needs to know the address of
statement L before it can assemble it.

• Statement L could be anywhere in the
programme.

• This is a forward reference problem since L

can be used before it has been defined – a
reference has been made to a symbol whose
definition will only occur later.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Assembly Language Level

Resolving Forward References

• We can resolve the problem in two ways:

• Approach 1: The assembler may read the
source program twice – two passes . On
pass one , the definitions of symbols, including
statement labels, are collected and stored in a
table. When pass two starts, the definitions of
symbols are known.

• Approach 2: On the first reading of the
assembly program convert it to an intermediate
form stored in memory. The second pass is
made over this intermediate form. This saves
on I/O time.

• Another task of pass one is to save all macro
definitions and expand the calls as they are
encountered.

• Therefore, pass one performs two tasks:
defining the symbols and expanding macros.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation The Assembly Language Level

Pass One

• The principal function of pass one is to build up
a table called the symbol table , containing the
values of all symbols.

• A symbol is either a label or a value that is
assigned a symbolic name, for example:

BUFSIZE EQU 8192

• During pass one the assembler “remembers”
the address of each instruction as it is read.

• This is done using a variable called the ILC
(Instruction Location Counter) .

• This variable is set to 0 at the beginning of pass
one and incremented by the instruction length
for each instruction processed.

Department of Computer Science, University College Cork 11



Data used during Pass One

• Pass one of most assemblers uses at least
three tables:

– the symbol table
– the pseudoinstruction table
– the opcode table

• Some details of these follow.

Department of Computer Science, University College Cork 12

The Symbol Table

• The symbol table has one entry for each
symbol.

• Symbols are defined by using them as labels or
through the EQU pseudo-instruction.

• Each symbol table entry contains the symbol
itself, its numerical value, and sometimes
additional information such as:

– The length of the data field associated with
the symbol.

– The relocation bits (does the symbol change
value if the program is loaded at a different
address than the assember assumed?)

– Whether or not the symbol is to be
accessible outside the procedure.

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation The Assembly Language Level

The Opcode Table

• The opcode table contains at least one entry
for each symbolic opcode in the assembly
language.

• Each entry contains:

– the symbolic opcode
– two operands
– the opcode’s numerical value
– the instruction length
– a type number that separates the opcodes

into groups depending on the number and
kind of operands.

Department of Computer Science, University College Cork 14


