
CS1101: Lecture 37
Introduction to Assembly

Language

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Introduction

• What is Translation?

• Types of Translator

• What is an Assembly Language?

– Assembly versus Machine Language
– Why Use Assembly Language?
– Performance & Machine Access

• Format of Assembly Language Statements

– Register Lengths
– Data Words
– Operands Field
– The Comments Field

• Pseudoinstructions

• Reading : Tanenbaum, Chapter 7, Section 1.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

Introduction

• The assembly language level differs in a
significant respect from the microarchitecture,
ISA, and operating system machine levels – it
is implemented by translation rather than by
interpretation .

• Programs that convert a user’s program written
in some language to another language are
called translators.

• The language in which the original program is
written is called the source language

• The language to which it is converted is called
the target language .

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Assembly Language Level

What is Translation?

• In translation, the original program in the
source language is not directly executed.

• Instead, it is converted to an equivalent
program called an object program or executable
binary program whose execution is carried out
only after the translation has been completed.

• In translation, there are two distinct steps:
Generation of an equivalent program in the
target language. Execution of the newly
generated program.

• In translation, these two steps do not occur
simultaneously.

• The second step does not begin until the first
has been completed.

• In interpretation, there is only one step:
executing the original source program.

Department of Computer Science, University College Cork 3



Types of Translator

• Translators can be roughly divided into two
groups, depending on the relation between the
source language and the target language.

• When the source language is essentially
a symbolic representation for a numerical
machine language, the translator is called an
assembler and the source language is called
an assembly language .

• When the source language is a high-level
language such as Java or C and the target
language is either a numerical machine
language or a symbolic representation for one,
the translator is called a compiler .

Department of Computer Science, University College Cork 4

What is an Assembly Language?

• A pure assembly language is a language in
which each statement produces exactly one
machine instruction.

• There is a one-to-one correspondence between
machine instructions and statements in the
assembly program.

• If each line in the assembly language program
contains exactly one statement and each
machine word contains exactly one machine
instruction, then an n-line assembly program
will produce an n-word machine language
program.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level

Assembly versus Machine Language

• Assembly language is easier to use than
machine language (hexadecimal)

• The use of symbolic names and symbolic
addresses instead of binary or octal ones
makes an enormous difference.

• Most people can remember that the abbreviations
for add, subtract, multiply, and divide are ADD,
SUB, MUL, and DIV, but few can remember the
corresponding numerical values the machine
uses.

• The assembly language programmer need only
remember the symbolic names because the
assembler translates them to the machine
instructions.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Assembly Language Level

Assembly versus Machine Language

• The same remarks apply to addresses.

• The assembly language programmer can give
symbolic names to memory locations and
have the assembler worry about supplying the
correct numerical values.

• The machine language programmer must
always work with the numerical values of the
addresses.

• As a consequence, no one programs in
machine language today, although people did
so decades ago, before assemblers had been
invented.

Department of Computer Science, University College Cork 7



Assembly versus Machine Language

• The assembly programmer has access to all
the features and instructions available on the
target machine.

• The high-level language programmer does not.

• Everything that can be done in machine
language can be done in assembly language,
but many instructions, registers, and similar
features are not available for the high-level
language programmer to use.

• One final difference that is worth making
explicit is that an assembly language program
can only run on one family of machines,
whereas a program written in a high-level
language can potentially run on many machines.

• For many applications, this ability to move
software from one machine to another is of
great practical importance.

Department of Computer Science, University College Cork 8

Why Use Assembly Language?

• Assembly language programming is difficult.

• Writing a program in assembly language takes
much longer than writing the same program in
a high-level language.

• It also takes much longer to debug and is much
harder to maintain.

• However, there are two reasons for using
assembly language: performance and access
to the machine

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Assembly Language Level

Performance & Machine Access

• Performance

– An expert assembly language programmer
can often produce code that is much smaller
and much faster than a high-level language
programmer can.

– For some applications, speed and size are
critical.

– For example, smart cards, embedded
applications, device drivers etc.

• Access to the machine:

– Some procedures need complete access to
the hardware, something usually impossible
in high-level languages.

– For example, the low-level interrupt and trap
handlers in an operating system, and the
device controllers in many embedded real-
time systems fall into this category.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation The Assembly Language Level

Format of Assembly Language Statements

• See Figure 7-2

• Assembly language statements have four
parts:

– a label field,
– an operation (opcode) field,
– an operands field,
– a comments field.

• Labels, which are used to provide symbolic
names for memory addresses, are needed on
executable statements so that the statements
can be branched to.

• They are also needed for data words to permit
the data stored there to be accessible by
symbolic name.

• If a statement is labeled, the label (usually)
begins in column 1.

Department of Computer Science, University College Cork 11



Format of Assembly Language Statements

• Each of the three parts of Fig. 7-2 has four
labels: FORMULA, I, J, and N.

• Note that sometimes colons are used and
sometimes not.

• Each of the machines has some registers , but
they have been given very different names.

• The Pentium II registers have names like EAX,
EBX, ECX, and so on.

• The Motorola registers are called DO, D1, D2,
among others.

• The SPARC registers have multiple names –
here we have used

Department of Computer Science, University College Cork 12

Format of Assembly Language Statements

• The opcode field contains either a symbolic
abbreviation for the opcode – if the statement
is a symbolic representation for a machine
instruction – or a command to the assembler
itself.

• The Pentium family, 680x0, and SPARC all
allow byte, word, and long operands.

• How does the assembler know which length to
use?

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation The Assembly Language Level

Register Lengths

• On the Pentium II, different length registers
have different names, so EAX is used to move
32-bit items, AX is 16-bit items, and AL and AH
are used to move 8-bit items.

• The Motorola assembler uses a suffix .L for
long, .W for word, or .B for byte to each opcode
rather than giving subsets of DO, etc., different
names.

• The SPARC uses different opcodes for the
different lengths (e.g., LDSB, LDSH, and
LDSW to load signed bytes, halfwords, and
words into a 64-bit register, respectively).

Department of Computer Science, University College Cork 14

CS1101: Systems Organisation The Assembly Language Level

Data Words

• The three assemblers also differ in how they
reserve space for data.

• The Intel assembly language designers chose
DW (Define Word), although WORD was added
as an alternative later.

• The Motorola ones liked DC (Define Constant).

• The SPARC folks preferred WORD from the
beginning.

Department of Computer Science, University College Cork 15



Operands Field

• The operands field of an assembly language
statement is used to specify the addresses and
registers used as operands by the machine
instruction.

• The operands field of an integer addition
instruction tells what is to be added to what.

• The operands field of a branch instruction tells
where to branch to.

• Operands can be registers, constants, memory
locations, and so on.

Department of Computer Science, University College Cork 16

The Comments Field

• The comments field provides a place for
programmers to put helpful explanations of how
the program works for the benefit of other
programmers.

• An assembly language program without such
documentation is nearly incomprehensible to
all programmers.

• The comments field is solely for human
consumption – it has no effect on the assembly
process or on the generated program.

Department of Computer Science, University College Cork 17

CS1101: Systems Organisation The Assembly Language Level

Pseudoinstructions

• In addition to specifying which machine
instructions to execute, an assembly language
program can also contain commands to the
assembler itself.

• For example, asking it to allocate some storage
or to eject to a new page on the listing.

• Commands to the assembler itself are called
pseudoinstructions or sometimes assembler
directives .

• We have already seen a typical pseudoinstruction:
DW.

• Some other from the Microsoft MASM assembler
for the Intel family are shown on the next slide.

Department of Computer Science, University College Cork 18

CS1101: Systems Organisation The Assembly Language Level

Examples: Pseudoinstructions

• The SEGMENT pseudoinstruction starts a new
segment, and ENDS terminates one.

• It is allowed to start a text segment, with code,
then start a data segment, then go back to the
text segment, and so on.

• EQU is used to give a symbolic name to an
expression.

• For example, after the pseudoinstruction

BASE EQU 1000

the symbol BASE can be used everywhere
instead of 1000.

Department of Computer Science, University College Cork 19



Examples: Pseudoinstructions

• See Figure 7-3

• The expression that follows the EQU can
involve multiple defined symbols combined with
arithmetic and other operators, as in

LIMIT EQU 4 * BASE + 2000

• Most assemblers, including MASM, require that
a symbol be defined before it is used in an
expression like this.

Department of Computer Science, University College Cork 20


