
Metrics for Project Planning:
COCOMO Models

CS 6406

R.L. Probert 1

Overview

• Software project planning

• Role of metrics and planning models

• Model example

– COCOMO

2

Learning Outcomes

• Most widely-used software planning tool: COCOMO

• Gain experience with how to use this tool

• Details

– You are NOT expected to memorise the model

– You will need to be able to perform computations given a

model

– Only simple models will be expected in exam situations

3

Software Cost Estimation

4

R.L. Probert

Types of Planning Models

• Size-based models

– COCOMO: based on lines of code

– Uses statistical parameter estimation

• Function-point based

– Use notion of significant software “function”

• Input, output, function estimation

• Structure-based

– Examine structure of code

– Must have code already written/planned

5

Project Management and Mr. Murphy

1. Logic is a systematic method of coming to the wrong

conclusion with confidence.

2. Technology is dominated by those who manage what

they do not understand.

3. Nothing ever gets built on schedule or within budget.

4. If mathematically you end up with the incorrect

answer, try multiplying by the page number.

6

R.L. Probert

7

Motivation

Software cost estimation provides:

• vital link between the general concepts and techniques

of economic analysis and the particular world of

software engineering.

• Essential part of the foundation for good software

management.

8

R.L. Probert

Cost of a project

• The cost in a project is due to:

– the requirements for software, hardware and human resources

– the cost of software development is due to the human

resources needed

– most cost estimates are measured in person-months (PM)

9

R.L. Probert

Cost of a project (.)

• the cost of the project depends on

– the nature and characteristics of the project

• the accuracy of the estimate depends on the amount of

reliable information we have about the final product

– Good model (?)

– Good project plan (?)

10

R.L. Probert

Introduction to COCOMO models

• The COstructive COst Model (COCOMO) is the most

widely used software estimation model in the world

• The COCOMO model predicts the effort and duration of

a project based on

– inputs relating to the size of the resulting systems

– a number of "cost drivers" that affect productivity.

11

R.L. Probert

Overview of COCOMO

• Predictive model of man-hours for a project

• Statistical model

– Based on statistical analysis of prior projects

12

Typical Effort Vs Project Size Curve

T. E. Potok - University of Tennessee

Typical Log-linear Effort Curve

0

2000

4000

6000

8000

10000

12000

14000

0 100000 200000 300000 400000 500000 600000

Lines of code

E
ff

o
rt

Constructive Cost Model (COCOMO)

• Developed by Barry Boehm

• Statistical model of software development
effort and time.

• Base on results from 63 projects completed at
TRW.

• Basic model is a log-linear regression model
that fits the 63 projects

• Productivity ranges:
– 20 - 1250 LOC/PM

T. E. Potok - University of
Tennessee

Basic COCOMO

• Organic - small to medium size, familiar
projects
– Person-months=2.4(KLOC)1.05

– Development-time = 2.5(PM).38

• Semidetached - intermediate
– Person-months=3.0(KLOC)1.12

– Development-time = 2.5(PM).35

• Embedded - ambitious, tightly constrained
– Person-months=3.6(KLOC)1.20

– Development-time = 2.5(PM).32

T. E. Potok - University of
Tennessee

COCOMO Models

T. E. Potok - University of Tennessee

COCOMO Models

0

1000

2000

3000

4000

5000

6000

7000

0 100 200 300 400 500 600

Thousands of lines of code

P
e
rs

o
n

-m
o

n
th

s

Organic

Semidetached

Embedded

Cost Drivers

• Product Attributes

– Required Reliability

– Database Size

– Product Complexity

• Computer Attributes

– Execution Time Constraints

– Main storage constraints

– Virtual Machine Volatility

– Computer turnaround time

T. E. Potok - University of
Tennessee

More Cost Drivers

• Personnel Attributes
– Analyst Capability

– Application Experience

– Programmer Capability

– Virtual Machine Experience

– Programming Language Experience

• Project Attributes
– Modern Programming Practices

– Use of Software Tools

– Required Development Schedule

T. E. Potok - University of
Tennessee

Example

• Need to produce 10,000 LOC (10 KLOC).

• Small project, familiar development

• Use organic model:

– Person-months=2.4(10)1.05 =26.9 Person-months

– Development-time = 2.5(26.9).38 =8.7 Months

– Average People = 26.9 PM/8.7 Months = 3 People

• Linear model
– 3 people would take 16.5 months, at 50 person-months

T. E. Potok - University of
Tennessee

Example

• We also know that the design experience is low

– Analyst, - 1.19

– application, - 1.13

– programmer experience is low. - 1.17

• Yet the programming experience is high - .95

• Adjustment factor 1.19*1.13*1.17*.95 = 1.49

• PM = 26.9*1.49 = 40 Person-months

• Development time = 10.2 Months

• People = 3.9 People

T. E. Potok - University of
Tennessee

Drawbacks

• COCOMO has to be calibrated to your environment.

• Very sensitive to change.

– Over a person-year difference in a 10 KLOC project with minor

adjustments

• Broad brush model that can generate significant errors

T. E. Potok - University of
Tennessee

COCOMO 2.0

• Includes

– COTS and reusable software

– Degree of understanding of requirements and architectures

– Schedule constraints

– Project size

– Required reliability

• Three Types of models

– Application Composition – Prototyping/Bidding

– Early Design - Alternative evaluation

– Post-architecture - Detailed estimates

T. E. Potok - University of
Tennessee

COCOMO 2 Models

• COCOMO is defined in terms of three different models:

– the Basic model,

– the Intermediate model, and

– the Detailed model.

• The more complex models account for more factors

that influence software projects, and make more

accurate estimates.

23

R.L. Probert

Effort

• Effort Equation

– PM = C * (KDSI)n (person-months)

• where PM = number of person-month (=152 working hours),

• C = a constant,

• KDSI = thousands of "delivered source instructions" (DSI) and

• n = a constant.

24

R.L. Probert

Productivity

• Productivity equation

– (DSI) / (PM)

• where PM = number of person-month (=152 working hours),

• DSI = "delivered source instructions"

25

R.L. Probert

Schedule

• Schedule equation

– TDEV = C * (PM)n (months)

• where TDEV = number of months estimated for software

development.

26

R.L. Probert

Average Staffing

• Average Staffing Equation

– (PM) / (TDEV) (FSP)

• where FSP means Full-time-equivalent Software Personnel.

27

R.L. Probert

The Development mode

• the most important factors contributing to a project's

duration and cost is the Development Mode

• Organic Mode: The project is developed in a familiar, stable

environment, and the product is similar to previously developed

products. The product is relatively small, and requires little

innovation.

• Semidetached Mode: The project's characteristics are

intermediate between Organic and Embedded.

28

R.L. Probert

The Development mode

• the most important factors contributing to a project's

duration and cost is the Development Mode:

• Embedded Mode: The project is characterized by tight, inflexible

constraints and interface requirements. An embedded mode

project will require a great deal of innovation.

29

R.L. Probert

Modes
Feature Organic Semidetached Embedded

Organizational

understanding of

product and

objectives

Thorough Considerable General

Experience in

working with related

software systems

Extensive Considerable Moderate

Need for software

conformance with

pre-established

requirements

Basic Considerable Full

Need for software

conformance with

external interface

specifications

Basic Considerable Full

R.L. Probert 30

Modes (.)
Feature Organic Semidetached Embedded

Concurrent

development of

associated new

hardware and

operational

procedures

Some Moderate Extensive

Need for innovative

data processing

architectures,

algorithms

Minimal Some Considerable

Premium on early

completion

Low Medium High

Product size range <50 KDSI <300KDSI All

R.L. Probert 31

Relation between LOC and FP

• Relationship:

– LOC = Language Factor * FP

– where

• LOC (Lines of Code)

• FP (Function Points)

32

Relation between LOC and FP(.)

Assuming LOC’s per FP for:

 Java = 53,

 C++ = 64

 aKLOC = FP * LOC_per_FP / 1000

It means for the SpellChekcer Example: (Java)

 LOC=52.25*53=2769.25 LOC or 2.76 KLOC

33

R.L. Probert

Effort Computation

• The Basic COCOMO model computes effort as a

function of program size. The Basic COCOMO equation

is:

– E = aKLOC^b

• Effort for three modes of Basic COCOMO.

34

Mode a b

Organic 2.4 1.05

Semi-

detached

3.0 1.12

Embedded 3.6 1.20

Example

35

Effort Computation

• The intermediate COCOMO model computes effort as a

function of program size and a set of cost drivers. The

Intermediate COCOMO equation is:

– E = aKLOC^b*EAF

• Effort for three modes of intermediate COCOMO.

36

Mode a b

Organic 3.2 1.05

Semi-

detached

3.0 1.12

Embedded 2.8 1.20

Effort computation(.)

• Effort Adjustment Factor

37

Cost Driver

Very

Low

Low

Nominal

High

Very

High

Extra

High

Required Reliability

.75

.88

1.00

1.15

1.40

1.40

 Database Size

.94

.94

1.00

1.08

1.16

1.16

 Product Complexity

.70

.85

1.00

1.15

1.30

1.65

 Execution Time Constraint

1.00

1.00

1.00

1.11

1.30

1.66

 Main Storage Constraint

1.00

1.00

1.00

1.06

1.21

1.56

 Virtual Machine Volatility

.87

.87

1.00

1.15

1.30

1.30

 Comp Turn Around Time

.87

.87

1.00

1.07

1.15

1.15

 Analyst Capability

1.46

1.19

1.00

.86

.71

.71

 Application Experience

1.29

1.13

1.00

.91

.82

.82

 Programmers Capability

1.42

1.17

1.00

.86

.70

.70

 Virtual machine Experience 1.21 1.10 1.00 .90 .90 .90

Language Experience

1.14

1.07

1.00

.95

.95

.95

 Modern Prog Practices

1.24

1.10

1.00

.91

.82

.82

 SW Tools

1.24

1.10

1.00

.91

.83

.83

 Required Dev Schedule

1.23

1.08

1.00

1.04

1.10

1,10

Effort Computation (..)

Total EAF = Product of the selected factors

 Adjusted value of Effort: Adjusted Person Months:

 APM = (Total EAF) * PM

38

R.L. Probert

Example

39

Software Development Time

• Development Time Equation Parameter Table:

 Development Time, TDEV = C * (APM **D)

Number of Personnel, NP = APM / TDEV

40

R.L. Probert

Parameter Organic Semi-

detached

Embedded

C 2.5 2.5 2.5

D 0.38 0.35 0.32

