An XG-PON Module for the NS-3 Network

Simulator: the Manual

Xiuchao Wu, Kenneth N. Brown, Cormac J. Sreenan, Jerome Aaokk
Department of Computer Science, University College Cordahd

{xw2, k.brown, cjg@cs.ucc.ie{jerome&@4c.ucc.ie

Pedro Alvarez, Marco Ruffini, Nicola Marchetti, David Paynenda Doyle
CTVR / The Telecommunications Research Centre, Trinity @ellBublin, Ireland

{pinheirp, marco.ruffini, marchetn, ledoyi@tcd.ie, david.b.payne@btinternet.com

Abstract

10-Gigabit-capable Passive Optical Network (XG-PON), one of thetlataadards of optical access networks, is
regarded as one of the key technologies for future Internet aceéssnks. This report presents our XG-PON module
for the NS-3 network simulator. This module is designed and implementedaimitiio provide a standards-compliant,
configurable, and extensible module that can simulate XG-PON with rabkospeed and can support a wide range
of research topics. These include analyzing and improving the peafaenof XG-PON, studying the interactions
between XG-PON and the upper-layer protocols, and investigating its ati@gmwith various wireless networks. In
this report, we will introduce PON and XG-PON, discuss design principtesteade-offs made during the course,
describe the design and implementation details, and present the prelireir@nation results.

I. INTRODUCTION

During the last few decades, we have witnessed the huge suo€ehe Internet, which has changed our daily
life significantly and has become one of the main economyregiln these years, the infrastructure of the Internet
kept evolving to provide better performance, and opticahcmnication is one of its driving forces.

Transmission links in the network core are already basedtinal fiber technology, which provides huge amount
of bandwidth through the matured DWDM (Dense Wavelength €divi Multiplexing) technology. More recently,
optical fibers have also found their application in accesaowks to provide high speed Internet access to end users.
FTTx (Fiber To The Home/Building/Curb, etc.) networks lhsm Passive Optical Network (PON) technologies,
such as Gigabit-capable PON (GPON) standardized by the Sarlice Access Network (FSAN) group of the
International Telecommunications Union (ITU) [1] and Hiiet PON (EPON) standardized by the Ethernet in the
First Mile (EFM) task force of the Institute of Electrical drftlectronics Engineers (IEEE) [2], have been widely

deployed in many countries such as the US, Korea and Japan.

10-Gigabit-capable Passive Optical Network (XG-PON) isew rstandard released by the FSAN that improves
G-PON, by increasing the default downstream data rate told/8,Gvhile increasing the upstream data rate to 2.5
or 10 Gb/s. Also, the maximum number of users per wavelergthcreased from 64 to 256, and amendments are
being defined for extending the physical reach up to 60 Km.

Since XG-PON could pave the way for many bandwidth-intemsigplications (IPTV, Video On Demand, Video
Conference, etc.), it is very important to study the perfamnge issues arising with the deployment of XG-PON.
For instance, it is valuable to study the impacts on the perdimce of XG-PON, when the propagation delay is
much longer than that of the current PON networks [3]. It ®ddmportant to investigate the interactions between
XG-PON and the upper-layer protocols (TCP [4], etc.) for ioying user experience [5]. In addition, XG-PON
has been proposed for Fiber To The Cell, in which XG-PON astsha backhaul for multiple base stations of
a cellular network [6]. Under this scenario, it is also vesluable to study its integration with various wireless
networks (LTE [7], WIMAX [8], etc.) for providing high speeahobile Internet access.

Considering that XG-PON is still in its early stage, the abagsearch topics should be first studied through
simulation since it is too expensive to setup one XG-PONbesbtand it is too complex to model the above
scenarios to be studied with enough details. In this repegtpresent an XG-PON module for NS-3 [9], a state of
the art open-source network simulator. Our XG-PON moduleased on a series of G.987 Recommendations from
the FSAN group of ITU. These recommendations mainly defiregbecifications of Physical Media Dependent
(PMD) and Transmission Convergence (TC) layers of XG-PQiNstlidy the above research topics with reasonable
simulation speed, the optical distribution network and diperations of physical layer are simplified significantly.
This XG-PON module focuses on the issues of TC layer, suchamsef structure, resource allocation, Quality of
Service (QoS) management, and Dynamic Bandwidth Assigh(DEBA) algorithms for the upstream wavelength.
During the design and implementation of this module, we halg® paid a lot of attention on its extensibility
and configurability. Since this XG-PON module needs to satauia 10Gbps network and hundreds of ONUSs, its
performance (the speed of simulation and the overhead ofam@nhas also been given a high priority when
designing and implementing these components.

This XG-PON module is built completely in C++ with 72 classmsd approximately 22,000 lines of code.
These code are under the GNU General Public License and caoviseloaded from our websites (CTVRnd
MISL?). To the best of our knowledge, it is the first XG-PON module KS-3. We believe that this work is a
significant contribution to the scientific community as ikoals to simulate XG-PON, the next generation optical
access network, and study the performance issues thatvetis¢he deployment of XG-PON.

This report is organized as follows. Section |l briefly imtuwes PON, NS-3, and related works. The details
of XG-PON are then presented in section lll. The design plas and key decisions are discussed in section

IV. The important trade-offs made by us in terms of simulatazcuracy and simulation speed are also discussed

Iwww.ctvr.ie

2http://www.ucc.ie/en/misl/

December 18, 2013 DRAFT

throughout. Section V presents the details of the designimpiementation of our XG-PON module for NS-3.
The preliminary evaluation results are then presenteddticseVI. Finally, section VII concludes this report with
several directions for future work. At the end of this reptintee appendices are also attached for introducing the

installation with NS-3, the source files, and one example GERXON simulation.

II. BACKGROUND AND RELATED WORK
A. Passive Optical Network (PON)

Compared to copper, optical fiber can provide higher banttwogler a longer distance. However, the deployment
of optical fiber in access networks is severely hindered byctst issue. In fact, optical fiber was seriously considered

for access networks only after the emergence of PON tecgyolo

Core Network

Central Office

@ \ ONU Feeder Fiber

splitter/
jointer

Metro Network

Fig. 1. An lllustration of PON

As shown in Figure 1, PON is a point-to-multipoint fiber netlvand there are three kinds of equipment: the
OLT (Optical Line Terminal) in central office, ONUs (Optiddetwork Unit) in/near customer premise, and passive
optical splitters/jointers in the middle. Through spiiffeinter, OLT and the feeder fiber are shared by multiplesise
Compared with the point to point architecture, PON can $icanitly reduce the amount of required optical fibers
and the central office equipments. Since the passive opgtaters/jointers do not need power supply, the cost of
deployment, maintenance and operation can also be rediibad, PON could reduce both capital expenditure and
operational expenditure significantly.

In a classical TDMA (Time Division Multiple Access) based R@etwork, downstream traffic is broadcast by
the OLT to all ONUs that share the same optical fiber and emionyps used to prevent eavesdropping. Upstream
traffic from ONUs is interleaved by OLT for using the opticdidi in a TDMA-like manner. Since ONUs normally
have different distances to the OLT, the data bursts frommel@NUs must be scheduled carefully for providing
a collision-free and efficient upstream data communicafi@anaccommodate the dynamics in bandwidth demands

from users and exploit the gain of statistical multiplexidgnamic bandwidth assignment (DBA) is normally used

December 18, 2013 DRAFT

for managing the upstream bandwidth. More specifically, GNill report their buffer occupancy to OLT, which
will then allocate the upstream bandwidth to ONUs based eir thandwidth demands and their Service Level
Agreement (SLA).

Some standards have been developed for PONs by both EFM & (EBON) and FSAN of ITU-T (GPON).
EPON is designed for carrying Ethernet frames and GPON caw carious traffics through encapsulation, such as
Ethernet frames and ATM cells. Although EPON and GPON hafferdnt frame structures, they share the same
network architecture and data communication follows theesprinciples described above. One important difference
between EPON and GPON is that GPON is well standardized f@ @anagement. Hence, GPON can provide
full service with the same network and it is highly prefertadISPs. XG-PON is the new standard developed by
FSAN based on GPON. Its details will be introduced in sectlan

B. NS-3 Network Simulator

NS-3 [9] is a state of the art open-source network simuléBaised on many lessons from the well-known
NS-2 simulator [10], NS-3 is written from the scratch andsita completely new network simulator. NS-3 has
many attractive features, such as high emphasis on confiment real networks, good support for testbeds, a
novel attribute system for configuring simulation paranmgtautomatic memory management, and a configurable
tracing system [11]. It has also been reported that NS-3opad much better than other simulators in terms of
simulation speed and memory overhead [12]. The first releé$¢S-3 was made in June 2008 with support for
a number of modules including CSMA, Point-to-Point, WiFEBE 802.11), TCP, UDP and IPv4. Figure 2 shows

the organization of NS-3 modules.

High-level wrappers
for everything else

No smart pointers

Node class
NetDevice ABC Aimed at scripting
Address types
(Ipv4, MAC, etc.) helper
Queues
Socket ABC > :
Ipva ABCs Routing Internet stack Devices
Packet sockets
node mobility Events
Scheduler
. Time arithmetic
common simulator
care
Smart pointers Callbacks, Tracing I‘-‘ac::eb.?r Mohility models
Dynamic type system Logging ::cket Hagfl (static, random
Attributes Random Variables ckct Meadors walk, etc)

Pcaplascii file writing

Fig. 2: The Organization of NS-3 Modules

In the last few years, many new modules have been develogbddded into NS-3, such as WIMAX module
from Inria [13] and LTE module from CTTC [14]. Thus, throughplementing one XG-PON module in NS-3, we

December 18, 2013 DRAFT

can get a very good research platform for studying the isatesn with the deployment of XG-PON.

C. Related Work

Although simulation has been used to study PON, the existiogk cannot be used directly or extended easily
to study the performance issues arising with the deployroéXG-PON.

In [3], the authors developed their own simulator to studyaiyic bandwidth assignment (DBA) algorithms
when the physical reach is much longer than the current PQWNonkes. This simulator has limited functions and
there is no Internet protocol stack, which is needed to stadpy research topics.

EPON and GPON had also been studied with OPNET [15] and dewedels have been implemented by different
groups [16][17]. However, these EPON/GPON models are raitahle to the public. Furthermore, OPNET simulates
too many details (CPU of a router, etc.) and the simulati@edps slow even when the simulated network bandwidth
is lower than 1 Gb/s. Since OPNET is not an open-source stotulae cannot change its core to simulate a 10
Gb/s XG-PON network with a reasonable simulation speed.

In addition, one simple EPON module has been developed foN&M+ [18] and the code is available to the
public. Since there are a lot of difference between EPON aGdPON, the code of this EPON module may not
be very helpful to implement one XG-PON module for OMNeT+-anGidering the good points of NS-3 discussed
above, it should be better to develop one XG-PON module fioenstratch for the NS-3 network simulator.

Hence, an XG-PON module is designed and implemented inebpisrt for NS-3. With such an XG-PON module,
we can simulate XG-PON and study its own performance. Wighrttore realistic Internet protocol stack of NS-3,
we can study the performance experienced by users/apptisain XG-PON networks. With the existing NS-3
modules for various wireless networks (WiFi, WIMAX, LTE,cet, we can also study the integration between
XG-PON and wireless networks, which is the trend of the fitunternet access networks. In summary, with this
XG-PON module, NS-3 will become a good platform for studythg next generation Internet access networks
composed by XG-PON and wireless networks.

Not only XG-PON, we can also extend this XG-PON module to yiuohg-Reach PON (LR-PON), an evolution
of XG-PON with a larger number of users, symmetric data raeGb/s in both upstream and downstream), and
longer reach (100+ km) [19][20]. The aim of our LR-PON resbagroup is to initially build LR-PON from the

XG-PON standard, while identifying the required modifioas and improvements.

IIl. XG-PON DETAILS

The XG-PON standard has many similarities with GPON, sucitisaBDMA scheme used to share the medium,
the mechanism to provide QoS, and the DBA scheme used forpgsieeam wavelength. However, some changes
are required in order to support a larger number of userdiehnigata rate, and extended physical reach. In this

section, we will present the details of XG-PON.

December 18, 2013 DRAFT

A. Overview of XG-PON

A series of recommendations has been released by FSAN ofllTds-XG-PON. ITU-T G.987 explains several
important concepts of XG-PON and ITU-T G.987.1 presentggireeral requirements, such as network architecture,
migration and coexistence with GPON, services to be suppgphardware specifications, protocol stack, etc. ITU-
T G.987.2 focuses on issues of the physical media depenB&#iD) layer, such as the used wavelength and the
supported data rates. ITU-T G.987.3 presents the detaitsanfmission convergence (TC) layer. Not only the
protocols for data communication, it also covers QoS mamage and Dynamic Bandwidth Assignment (DBA)
scheme for the upstream wavelength. Another related re@mdation is ITU-T G.988, which specifies ONU
management and control interface (OMCI) for both GPON andP@N. Figure 3 illustrates XG-PON common

functions and the recommendations in which they are spdcifie

———

1 ‘ TME, |
| OLT MIB. [ETF |
| o et |
s S
| | |
| | ONUMIB ITU-T G.omei 1| SNMP ;
|] i
! 1 ETF |
| 1 |
| I

| oMcc oMcC | ||| Tcpp :
== e]
" ___ R T |
!) P :
| Qs DBA || | Bt MAC |
| (I I
3 ITU-T G.987.3 B ‘ IEEE 802.3 |
| (I I
|

| TC TC | !]| Eth PMD i
— r,,,,,,,,,,,,,,,,l
| PMD PMD | |

| |

1 ITU-T G987.2 |

! |

i PON medinm i

}L 777 K G.987 1(10)_F1-8

Fig. 3: XG-PON common functions

B. Network Architecture

XG-PON has been proposed for various deployment scenarissrie different customers, such as residential,
business, and cell site. To serve these customers, XG-Pi¥\thie services to be provided, such as Telephony, high
speed Internet access, mobile back-haul, etc. XG-PON atsoduces many ONU variants that provide different
functions and interfaces. In summary, XG-PON has been vtatidardized for providing full services to various

users with one optical network.

December 18, 2013 DRAFT

Long Feeder Fiber
O)[Ry Jiong Feeder fiber | Core Network

Remote Node splltter/ Remote Node

jointer .
@/ 5\@ Central Office

Fig. 4: XG-PON Network Architecture

As for optical distribution network, XG-PON can be deployesia classical PON, but mechanisms to extend its
reach up to 60 km are currently being defined. As illustratelBligure 4, to support this longer physical reach, active
component (Reach Extender) can be applied in remote nodesrenXG-PON can be composed of multiple passive
segments connected through REs. These REs can be opticifienmpr optical-electrical-optical regenerators that

could fulfill the necessary optical link budget.

C. PMD Layer

There are two flavours of XG-PONs based on the upstream lige X&-PON1, featuring a 2.5 Gb/s upstream
path, and XG-PON2, featuring a 10 Gb/s one. The downstreardite is 10 Gb/s in both XG-PON1 and XG-PONZ2.
ITU-T G.987.2 focuses on the PMD layer for XG-PON1. XG-PONi#ifit been standardized yet.

In XG-PONL1, the used wavelengths are 1575-1580nm (dovarsdrend 1260-1280nm (upstream). The exact
downstream line rate is 9.95328 Gb/s and the upstream ond8832 Gb/s. For line coding, NRZ (Non-Return
to Zero)is used for both directions. ITU-T G.987.2 also #ipex the requirements for hardwares, such as optical

fiber, transmitter/receiver, etc.

D. Transmission Convergence Layer

The XG-PON Transmission Convergence (XGTC) layer is whbesMedium Access Control (MAC) protocol
of XG-PON are defined.

To carry traffic between the OLT and the ONUSs, the XGTC layeintaéns logical connections between these
two entities, designated XGEM Ports. Each connection igtifled by a unigue XGEM Port-Id, which enables to
send a packet to the correct ONU and associate a connectenddain Quality of Service (QoS) agreement. Note
that one connection is configured to carry downstream orregst traffics. It's impossible for two connections in
the same direction (downstream or upstream) to have the $@BteM Port-Id, but one downstream connection

may use the same XGEM Port-Id with one upstream connectiornteduce the overhead of the DBA scheme,

December 18, 2013 DRAFT

upstream bandwidth is allocated to groups of connectiofengang to a single ONU. These groups are designated
as Transmission Containers (T-CONT) and each group/T-C@Ndentified by a unique identifier, the Alloc-Id.
Figure 5 shows the multiplexing in XG-PON for both direcon

.987.3(10)_F6-4 G9873(10)_F6-5
(a) Downstream (b) Upstream

Fig. 5: Multiplexing in XG-PON

XGTC comprises three sublayers: service adaptation, frgnaind PHY adaptation, from top to bottom. Following
these sublayers, XGTC is introduced below.

1) Service Adaptation Sublayeithe service adaptation sublayer is responsible to adapapper layer traffic
to the transmission mechanisms of XG-PON. It will do this bgpping upper layer traffic to the correspond-
ing connections, encapsulating/decapsulating data, exetimy/reassembling SDUs when necessary and inserting
padding when there is not enough data to fill an XGTC framee#ded, it is also this sublayer’s responsibility to
encrypt/decrypt SDUs.

To map upper layer data to and from the connections of XGTE@&r|ahe OLT will maintain all connections and
the ONU will maintain the connections that belong to itself.

When the upper layer has something to transmit, it is alsoghgce adaptation sublayer’s responsibility to select
the connections to be served according to their QoS parasn&tthen a connection is scheduled to be served, the
service adaptation sublayer will then get data from its quend insert an XGEM header to create an XGEM frame.
The XGEM header will contain an XGEM Port-ld and some othdorimation related to segmentation, padding,
encryption, etc.

When receiving an XGEM frame, the service adaptation sublesie get the XGEM Port-1d from the XGEM
header. If the corresponding connection exists in the odiores maintained by the OLT/ONU, this sublayer will

carry out reassembly (if necessary) and pass the data to lgyee. Otherwise, this XGEM frame will be discarded.

December 18, 2013 DRAFT

2) Framing Sublayer:In XG-PON, the OLT will send downstream XGTC frames every }&5 to broadcast
traffic to all ONUSs. In the upstream, ONUs send variable lei{&TC bursts to the OLT for their upstream traffic.
The length and start time of these upstream bursts are detmirby the OLT through a DBA algorithm.

The framing sublayer is responsible to generate and paese tKGTC frames/bursts. When generating one
downstream XGTC frame at the OLT, the framing sublayer geBEM frames from service adaptation sublayer
and joins them together into an XGTC payload. To create arego® XGTC burst at ONU side, the framing
sublayer may create multiple XGTC payloads, where eachopdyWill carry XGEM frames from a single T-
CONT. When parsing an XGTC frame/burst, the framing sublayiirsend its payloads to the service adaptation
sublayer for further processing.

In the header of the upstream XGTC burst generated by an Ohde tmight be queue occupancy reports for
the T-CONTs of this ONU. For each downstream XGTC frame, &ader contains one BV),,, which instructs
ONUs to share the upstream wavelength in a TDMA-like manMere specifically, BW,,, specifies the size of
bandwidth allocations for T-CONTSs, the used burst profife (ength of preamble, the length of delimiter, forward
error correction or not, etc.), and the time to start to maihsSince the OLT-ONU physical distance could be quite
different for ONUs, each ONU should adjust the start timedwoiding collision in the upstream direction. Note
that when one ONU is activated, the ranging procedure isethout between the OLT and this ONU to determine
how to adjust the start time of its upstream bursts. FigurbBuStiates the time-lines in XG-PON. The OLT and
ONUs have a common view of the logic one-way delay of the apfiistribution network (the largest one-way
propagation delay plus various processing delay) and edtld @ses its own equalization delay¢D calculated

in ranging procedure) to avoid collisions in upstream dicec

Start of the DS PHY frame Start of US PHY frame
in OLT's view in OLT's view
+ Toya . Startlime
OIT PSBd ‘ PHY frame content ‘ PSBd ‘ PHY frame content ‘ PSBd I PHY frame content ‘

BW Grant: /
StartTime = § P
/// //
ONU a

PSBu | PHY burst content
Tisn s RspTime, EqD, StartTime Toro.s
A
Start of
DS PHY frame Start of the US PHY frame
in ONU's view in ONU's view (StartTime = 0) G 987, 3(10)_F13-5

Fig. 6: Time-line in XG-PON

In the header of one upstream XGTC burst, the ONU can send @AM (Physical Layer Operations,
Administration and Maintenance) message to the OLT. As feg downstream XGTC frame, the OLT can send

multiple PLOAM messages to multiple ONUs. Through exchaggPLOAM messages, many XGTC functions

December 18, 2013 DRAFT

10

(key management, ONU power management etc.) can be fulfilled

3) PHY Adaptation SublayerPHY adaptation sublayer interacts with PMD layer direcltg. main functions
are forward error correction (FEC), scrambling, and frareéneation through a Physical Synchronization Block
(PSB). In the downstream, the PHY adaptation sublayer vetlan XGTC frame to create a PHY frame. These
PHY frames are sent continuously every 1285 In the upstream, the PHY adaptation sublayer will get tI&
burst and create a PHY burst. These PHY bursts have variab@gh due to the variable-length XGTC bursts. In
the PHY burst, the PSB is determined by a burst profile sedebtethe OLT (through the BW,,) among the

burst profiles, that are configured through PLOAM messages.

Figure 7 illustrates how these sublayers encapsulate tHgsSid XG-PON into 12xs the downstream frames

or the variable-length upstream bursts.

sDu spu | - sDU sou | -~ | sou spU sou/ SDU
1
o | .. [-spu [spu = - .
SDU spu | - [2SDU [SDU [o oy _ SpU fagment ‘ﬁa;m:m’“ =
e fiag 7/
XGEM | IXGEM V;j XGEM | XGEM | [of XGEM
[XGEM [xcEmMT " XGEM [XGEM JrxGeM | [XGEM Ll paiioad jipayload {fp asTiond
payload Hipayload payload payload [Hl payload payload H ot — xomt | xommt S~
4 fran fran fr fran
XGEM | XGEM XGEM XGEM | XGEM XGEM s Pt [S | freme [fame], fue
frame | frome frame frame | frame frame g e T
payioa XGTC paylon
XGTC payload XGTC payload
N XGTC payload XGTC payload
XGTC payload XGTC payload 2 ¥
x‘ﬂ'f A0 XGTC payload A0 XGTC payload e
P XGTC payload o XGTC payload & Allocation Allostion
XGTC burst
XGTC frame XGIC frame
XGTC burst i
XGTC frame | XGTC frame | ‘ l‘\Al ‘
\ 2 . FEC data P FEC data P FEC data B
< \‘ < y‘ \\‘ [Shortened FEC
FEC data |P| FEC data |P| FEC data [P FEC data |P) FEC data [B| FEC dam [B] FEC data [B| FEC daa [¢] FEC codevond PEC odevond Coemord
FEC FEC Scrambled PHY burst payload
codeword | codeword
PHY burst
[psed] Scrambled PHY frame payload PSBd Scrambled PHY frame payload ST o2
]- PH fiame; 125 15 PR ffame; (125 s * The remaining fragment of the SDU is transmitted in the subsequent allocation with the same Alloc-ID.
G.987.3(10)_F6-1 H
H XGEM frame header a0
P FEC parity ®
(a) Downstream (b) Upstream

Fig. 7. SDU Mapping in XG-PON

E. Scheduling and DBA

To decide the data to be transmitted in a downstream XGTCdrantdownstream scheduler is used by the OLT.
Based on QoS parameters and service history of these deanstconnections, the downstream scheduler will
decide the connections to be served and the amount of dat t@fsmitted for each of them.

As for the upstream scheduling, the OLT uses a DBA algorithraliocate the upstream bandwidth to T-CONTSs.
The DBA algorithm makes decisions based on queue occupa&pmyrts, QoS parameters, and service history of
these T-CONTs. The DBA algorithm needs to select the T-CONdTise served, reserve a short gap time between
the consecutive XGTC bursts for tolerating clock synctration errors, determine the size of each bandwidth
allocation, and calculate the start time for each bandwaltbcation. These decisions are broadcast to ONUs

through BW,,,,,. Since the upstream bandwidth is allocated to T-CONTs amthi @&CONT may have multiple

December 18, 2013 DRAFT

11

upstream connections, the ONU also needs one upstreamusehéa determine the upstream connections to be
served during one transmission opportunity assigned toTeGONT.

These scheduling algorithms, especially the DBA algorijtlame very important to network performance and
QoS management. To allow competition and encourage résdhgse algorithms were intentionally left out of the
standard. Indeed, it has been a very hot topic to study DBArakgns for EPON and GPON [21][22][3]. Hence,

there should be many research opportunities for XG-PON too.

IV. DESIGNPRINCIPLES ANDKEY DECISIONS

When designing and implementing XG-PON module, there areyrismues to be considered and many tradeoffs
must be made when the goals conflict with each other. Thisosewtill present the design principles followed by

us and the key decisions make during the course.

A. Design Principles

« Standard Compliance:
The ultimate goal of our research is to improve the performeaasues arisen with the deployment of XG-PON.
It is highly desirable that the simulated XG-PON is closehe teal XG-PON networks that will appear in
the future. We can then identify the real problems and pewddiutions that can be directly applied in the
real world. Hence, we will follow G.987 Recommendationgrirthe FSAN group of ITU when designing this
XG-PON module.

o Simplicity:
Considering that XG-PON is a quite complex standard, it teike a very long time to simulate the whole
network, from physical layer to network management. Fotaimse, the document for ONU Management and
Control Interface (G.988) is more than 500 pages. Hence, wst ahecide the functions to be simulated in
current phase. We will only simulate the functions needeatnyresearch. Other functions will be left alone
or designed as some stub classes for the future extensioringtance, since we are mainly interested in
XGTC layer and upper layer issues, we can simulate the pdiyisiger in a very simple way. We can assume
that power budget for the optical distribution network hagi satisfied through various techniques. The reach
extenders and passive optical splitters/jointers neecdbactimulated. The channel, that simulates the optical
distribution network of XG-PON, can simply pass downstrdaames to all ONUs and pass upstream bursts
to the OLT. As for Forward Error Correction (FEC), insteadtloé algorithm itself, we can simulate only its
effect, i.e., the bandwidth overhead and the much lower gtactirruption rate.

« Extensibility:
When designing the XG-PON module for NS-3, we should also idensts extensibility since many other
research topics might also be studied using this modulecéletine extensibility is very important. When
designing the class architecture of the XG-PON module ratistlass should be used appropriately and the

interface should be well designed for the future implemgoneathat simulates more details. Of course, we will

December 18, 2013 DRAFT

12

only provide a much simpler implementation for the compaséhat we are not interested in current phase.
For instance, when designing the class interface for tharaiahat simulates the optical distribution network
of XG-PON, we should enable researchers to specify the traetsre of fibers, reach extenders, and splitters.
When adding one ONU, they can also specify the splitter thatlitbe attached and the physical distance
between them. With this interface, it is possible to sinuldite optical signal propagation and the possible
packet corruption. However, for the current phase, we caithk channel store a list of ONUs and pass the
downstream frames to all of them (without any erfoigince DBA algorithm is one hot research topic, the
classes for DBA should be well designed to allow the easyaempintation of various DBA algorithms.

« Configurability:
In one simulated XG-PON network, there could be thousandedés, such as the OLT, hundreds of ONUs, and
hundreds of data traffic generators/sinks in core netwdvlesy nodes will also be attached to ONUs through
various networks and act as traffic generators/sinks. Welldhexport many configurable parameters, but
provide default parameters for most of them. Other methbdsld also be considered to easy the researcher’s
task for configuring the XG-PON network to be simulated.

o Simulation Speed:
Considering the XG-PON to be simulated is a 10Gbps netwankulation speed must be considered in all
times. One module, that can simulate XG-PON accurately ybuy slowly), is useless for our research in
which extensive simulations are needed. We should seleddta structures and algorithms carefully for saving
CPU and memory. For instance, when XG-PON is fully loaded #uedsize of each packet is 1KBytes, the
simulator need process around one million packets per se@nce XG-PON could have hundreds of ONUs
(1023 at most), the simulator must run the procedure used WYy @ judge whether it is the destination
of one XGEM frame one billion times per second. This procedomust be implemented high-efficiently.
Straightforwardly, we can add one vector at each ONU whodexiris XGEM Port-ld. When configuring
XGEM Ports for this ONU, this vector can be marked correspgig. Consequently, this vector can be used
to filter out the traffic for this ONU quickly. However, XGEM Reld is a 16-bit number and this vector can
consume a lot of memory when the number of ONU is large. Duénéosame reason, hash map in which
GEM Port-Id acts as the key is not adopted by us too. In our XddHAnodule, we impose some simple
relationship among XGEM Port-1d, Alloc-l1d, ONU-ID, and IRldress of the computer that this XGEM Port
belongs to. Consequently, we consume a small amount of nyeimdotal and achievé (1) time complexity
when mapping IP address/XGEM Port-Id to the correspondatg dtructure.
During the implementation, many useful features of C++ lege should be exploited and some black-holes
of CPU cycles should be avoided. First, we should pass pdeasby reference whenever it is possible and

const reference is preferred. We should also know that thetspointer provided by NS-3 is fundamentally

3Depending on the situation, it may be worthwhile to simulatéely packet corruption rate, which should be very low wittnsidering
the effects of FEC.

December 18, 2013 DRAFT

13

a small object. When the function is called frequently and eah its parameters are smart pointers, we
should replace them with the reference of that smart poistecond, since C++ allows one class to override
its new and deleteoperators, we should exploit this feature for data strestuhat are created and destroyed
dynamically and frequently. Through overriding the two i@ters, we can avoid to call the expensivalloc

too many times and CPU cycles can be saved. Third, when wetdéle data structure for a sequence of
objects,vectorshould be considered due to its efficiency. However, whemtaay objects are added into one
vector, reallocation may occur and the simulation can beedodown significantly. Thus, we should reserve
enough memory if the largest vector size can be pre-detedni®therwisedequeshould be considered as
the container. Fourth, although virtual function and iitagice are very attractive, they should be used when
absolutely necessary since virtual function is much slatlvan the common function. Class downcast should
also be avoid in the implementation since it is unsafe ancdwmes a lot of CPU cycles. For instance, for
each function of XGPON (DBA, etc.), there should be two aasdesigned for OLT and ONU, respectively,
and it is attractive to let them inherit from the same parkiawever, the logic at OLT is totally different with
that of ONU, the amount of reused code is limited, the interfaf the parent becomes more complex, and
simulation speed is slowed down. Thus, these classes aignddsindependently and the inheritance is not

used.

B. Key Decisions

Below are several key decisions made by us when designingngplémenting this XG-PON module.

« Stand-alone Simulation: Since XG-PON is a 10Gbps netwottk Wwundreds of ONUSs, it is very attractive
to use distributed simulation to speed up XG-PON simulatidowever, although NS-3 supports distributed
simulation through MPI, this feature only works for poiotoint links and XG-PON is fundamentally a
point-to-multipoint network. Many works are necessary nalde distributed simulation for XG-PON and we
need also study how to allocate ONUs to different computeusthermore, many researchers may not have
the access to some clusters and these clusters may not siyfplowell. Thus, in the current phase, this XG-
PON module works as a stand-alone simulator. It uses onlycone even when one computer has multiple
processors or cores. In the future, distributed simulatiihbe considered for this XG-PON module.

o Packet-level Simulation: Due to the high bandwidth of XGNPQ0Gbps) and the frequency of state-of-the-art
processor (several GHz), it is hopeless to simulate thelslétabyte or bit level. For flow-level simulation,
it's too complex to model both XG-PON and TCP/IP protocotkiaand We cannot study the potential subtle
interactions between TCP/IP and XG-PON. Considering ti&t3Ns fundamentally a packet-level simulator,
this XG-PON module should simulate XG-PON in packet levelrtirermore, when passing traffic between
OLT and ONU, all XGEM frames in the downstream frame or ustrédurst should be handled together, and
the number of simulation events can be reduced significabthg to the short XG-PON frame size (125,
the upper layer protocols won't be affected if we keep theeoaf XGEM frames in the downstream frame or

the upstream burst. Based on this decision, many physigaf laperations, such as line coding and Forward

December 18, 2013 DRAFT

14

Error Correction, will not be implemented in this module.wéver, the bandwidth overhead of FEC must be
considered. Payload encryption/decryption will not be lenpented too. The logic used for key management
will be implemented for future extensions.

o XG-PON in Operation: Since we are mainly interested in thdopmance issues of one XG-PON network in
operation, many aspects of XG-PON can be simplified. Foaits, the activation procedure that uses PLOAM
messages to add one ONU to one operating XG-PON need not benimpted. We can simply add all ONUs
to the network before starting the simulation through onkpédreclass. Instead of the ranging procedure that
uses PLOAM messages to measure the one-way propagationafed@ch ONU, we can set the same value
to both the OLT and this ONU when configuring the XG-PON to bmuwated. In XG-PON, XGEM Port
and T-CONT configuration is carried out through OMCI (ONU NMgement and Control Interface: G.988).
However, this standard document (more than 500 pages) s cmmplex and it will take a lot of time to
implement OMCI for XG-PON. Thus, instead of configuring XGE®@rt and T-CONT dynamically through
OMCI, we will configure all XGEM Ports and T-CONTs before sitag the simulation through one helper
class. In summary, PLOAM and OMCI channels will not be fultyplemented in this XG-PON module. Stub
classes will be designed for the future extensions.

o Simple Optical Distribution Network and Reliable Data Tstar: In XG-PON, the optical distribution network
is quite complex and is comprised of many optical fibers ttgp$i/jointers, and reach extenders. Although they
are important to network architecture and optical deviseaech, they are irrelevant to the research topics that
we plan to study. Thus, the optical distribution networklveié modeled as one simple channel and we only
simulate the propagation delay and line rates. We assunh¢hihdink power budget has been ensured through
various techniques (reach extenders, etc.) and the lassivee can work well. Thus, we won'’t simulate optical
signal propagation (wavelength-dependent) and assunielihdownstream frames and upstream bursts can
arrive to their recipients correctly. In another word, samssion errors are not simulated in our XG-PON
module. This is reasonable since FEC is normally appliedde transmission errors. Based on this decision,
CRC and HEC (header error correction) are not executed irsithalation.

In the future, transmission error might be simulated. Atrd@pient, the downstream frame or upstream burst
will be dropped with a distance-dependent probability.sTikireasonable since FEC is normally used and there
is no XGEM frame delimitation. Once the transmission erranrmt be handled by FEC, all of the following
data cannot be decoded by the recipient.

« Serialization Avoidance and Meta-data in Data Structugasce this XG-PON module is designed for stand-
alone simulation, (de)serialization is unnecessary amdilghbe avoideti This is why XgponXgemFrame is
added into this XG-PON module to represent XGEM frame. Atfite¢ glance, we can use Packet provided by
NS-3 directly. XGEM frame header can be added into and etetdaitom Packet easily. Packet also supports

40f course, all data structures should provide one functioreturn its Serialized size for composing the downstreamérand upstream
burst correctly.

December 18, 2013 DRAFT

15

fragmentation and reassembly which is needed by XGEM endtatpm. However, when XGEM frame header
is added into Packet, the header is serialized and put irédogte array. When one XGEM frame is received,
the recipient needs to extract the XGEM frame header fronbjhe array, i.e., create one XgponXgemHeader
and carry out de-serialization. Considering that one XGEAie in downstream direction will be processed by
hundreds of ONUs, the above operations may consume too mRth @ solve this issue, XgponXgemFrame
is designed to have one smart pointer of XgponXgemHeadepaadmart pointer of the corresponding SDU
(an instance of Packet). At the recipient, it can then getofgfgemHeader directly from XgponXgemFrame.
Another observation is that some meta-data can be addedatdcstructures for various purposes since they are
exchanged between OLT and ONU as objects (instead of a lngg)aFor instance, all XGEM frames of one
downstream frame need be checked by all ONUs and it is vergresige when the number of ONUSs is large.
We notice that due to the small size of the downstream frandetlaa bursty bandwidth allocation, the traffic
in one downstream frame might belong to a few ONUs. Thus,radptcan be added to the downstream frame
to indicate whether one ONU needs to check XGEM frames indbignstream frame. With this meta-data,
the simulation can be speed up significantly when there amgy r@NUs in the simulated XG-PON network.
o Extensible DBA, Scheduling, and Queue Schemes:

As discussed in subsection IlI-E, downstream scheduldneatXLT is responsible to allocate the downstream
bandwidth to the downstream XGEM Ports. DBA at the OLT is cesible to allocate the upstream bandwidth
to T-CONT, and upstream scheduler at ONU is responsible lozatk the transmission opportunity of one
T-CONT to the upstream XGEM Ports. These algorithms and tieeig used by each XGEM Port at the sender
side are very important to the performance of the whole nétwod the QoS experienced by user traffic. In
this XG-PON module, these classes will be designed cayefallsupport future extensions. New algorithms

should be implemented easily through inheriting theseselmsnd instantiating a few functions.

In summary, this XG-PON module can be used to carry out stdmite packet-level simulations for studying

XG-PON networks in operation. Table | summarizes how XG-HOh¢tions are supported in this XG-PON module.

December 18, 2013 DRAFT

16

Function H Layer Simulated? | Comments
Optical Distribution Network & || PMD X Use one simple channel to simulate ODN.
Signal Propagation & We only simulate propagation delay and bandwidth of the celann
Line Coding & Frame Detectior] These information will be provided to other classes of this nied
Burst Profile PMD v Instead of OMCI, they are configure through helper class.
FEC & Scrambling PHY_ad X Just provide FEC overhead information to other classes.
XGTC Framing Framing Vv HEC and CRC is not implemented for saving CPU.
PLOAM Engine Framing v Just implement the logic and interface for exchanging messages
DBA & QoS Framing Vv Round-robin is implemented first.
DS Scheduling & QoS N/A Vv In the first phase, Round-robin will be implemented.
US Scheduling & QoS N/A v Round-robin will be used for XGEM Ports of one T-CONT.
XGEM Framing Servicead | / HEC isn’'t implemented Fragmentation and reassemblirsge implemented,
Encryption Servicead | X Not implemented. Key management logic will be implemented.
(De)Multiplexing Servicead | / Packet classification and flow management are implemented.
Alloc-ld, XGEM Port-Id, and IP address are assigned cahefior speed.
Queue Mechanism Servicead | / one FIFO queue per XGEM Port
OMCI & MIB N/A X Configuration will be carried out through helper class.
Activation & Ranging N/A X Not implemented. Per-ONU delay is configured through helpasscl

December 18, 2013

TABLE I: Choices for Simulating XG-PON in NS-3

DRAFT

17

V. THE XG-PON MODULE FORNS-3

This section describes in detail the XG-PON module we haweldped for NS-3. Our aim is to provide a
standard compliant, configurable, and extensible modaedan simulate XG-PON with reasonable speed and can

support a wide range of research topics.

A. Overview of the XG-PON Module

ONU
[Internet Protocol Stack |
Internet ‘
Protocol OtherNetDevice HH‘”
R Stack (ethernet, wifi, X9 pggaggNet ‘ ‘
OtherNetDevice | | *'™® lte, etc:) ‘ HHH Internet Protocol Stack |
BT cee HHH“ HHHHH P2PNetDevice,
9‘”\ ‘ ‘ ‘ ’ XgponOltNet etc.
Device
N\ ONU | Internet Protocol Stack] ‘H
[Internet Protocol Stack |
OtherNetDevice -
OtherNetDevice XgponOnuNet (ethernet, wifi, XgpgnQnuNet !
(ethernet, wifi, Devi wimakx, Ite, etc.) evice |nte|"net
wimax, lte, etc.) evice
[I

C XgponChannel

Fig. 8: The Reference XG-PON Simulation

Figure 8 illustrates a typical simulation that uses this mlecand NS-3 to study the performance issues arising
with XG-PON. The OLT is simulated as a node that has #gponOltNetDeviceand another network device,
such as PointToPointNetDevice, to connect to an externavark. The ONU is simulated as a node with one
XgponOnuNetDevicand other network devices (Ethernet, WiFi, WiMAX, LTE, @timr connecting user equipments
to the ONU. Thanks to NS-3, network devices of a node can béguord and we can study different deployment
scenarios of XG-PON easily. Although XG-PON is proposedaayclayer-2 frames of various network technologies
(Ethernet, ATM, etc.), our XG-PON module interacts dirgatlith the IP layer and IP packets are the SDUs. This
is reasonable since we focus on FTTx networks connectedeténternet.

The OLT and ONUs are attached ¥gponChannethat simulates the optical distribution network (ODN) of
XG-PON. As illustrated in Figure 4, this ODN is a quite compteee composed by optical fibers, splitters/jointers,
and REs. To produce trustworthy simulation results, it ghhji desirable to simulate all details. However, XG-PON
is a high speed network with a very complex standard. In thiglute, many aspects have been simplified for
reducing the development workload and speeding up the ationlspeed.

Specifically, our XgponChannel just simulatgs,.., i.€., the logic one-way delay of the channel that is deteethi

by the maximal propagation delay of ODN and various prooessielay.d...,, can be configured through the

December 18, 2013 DRAFT

18

attribute system of NS-3. For a downstream frame from the, 3gponChannel will pass this frame to each ONU
after waiting ford, i.e., the corresponding one-way propagation delay batwiee OLT and this ONU. Note that
for avoiding unnecessary data copy, XgponChannel paseesnthrt-pointer of this frame to each ONU which will
just copy and process the data for it8elks for an upstream PHY burst, it will be postponed for theresponding
propagation delay, but XgponChannel will pass it to the OldlyoThe equalization delay is considered by ONU
when it schedules to produce the upstream burst base@lop,,, from the OLT.

This means that although the difference of propagationydalmaong ONUs is simulated, the propagation of
optical signals (fiber, splitter, etc.) is not simulated e tXgponChannel. This design is reasonable since the
targeted research topics are related with MAC and upperdayéhrough these simplifications, simulation speed
can also be significantly improved. Otherwise, many eventstrhe scheduled to pass a downstream XGTC frame
to ONUs if fibers and splitters are considered. It is also v@RU-intensive to calculate the optical signal strength
for each downstream frame when it arrives to each ONU.

In the following subsection, we will present how the XG-POitpcol stack is simulated. More specifically, we

will identify its functional blocks, followed by the desiggnd implementation details.

B. XG-PON Functional Blocks

Since we are interested in the performance of a running mklee functional blocks of XG-PON are identified
below through explaining the data transmission paths i lbdotvnstream and upstream directions.

1) Downstream Traffic on OLT SideAs shown in Figure 9, when one SDU is received from the uppgsr]a
it will first be mapped to the corresponding connection (XGE#It) based on the destination IP address and put
into the queue for transmitting in the future. Thus, therestrhe one algorithm for mapping the IP address to a
XGEM Port-1d.

Since the OLT needs to broadcast the downstream XGTC fraweeyg £25.s, it will periodically ask the OLT's
Framing Engineto generate a XGTC frame. This engine will first generate anf&Geader since the available
space for data in the frame depends on the size of the XGTCehead

For the payload of a downstream XGTC frame, the Framing Engéasorts to theXGEM Engineto get an
XGTC payload. This payload is comprised of concatenated MGEmes that occupy all the available space. As
for the SDUs to be encapsulated and transmitted, the XGEMnEnigts theDownstream Scheduletecide the
connections to be served. This scheduler makes decisi@es lmmDownstream Connection Managethich knows
gueue length, QoS parameters, and service history of eaghsti@am connection. When carrying out encapsulation,
fragmentation will be carried out by XGEM Engine if one SDUa® long for the current transmission opportunity.
XGEM Engine is also responsible to encrypt these SDUs tadawavesdropping. The keys used for data encryption

are negotiated through PLOAM messages and are maintain&loayn Engine

5In the future, this feature will be revised to support palagimulation in which ONUs are simulated on different CPUs aluster.

December 18, 2013 DRAFT

19

ONU OLT

I Upper Layer (Internet Protocol Stack) I | Upper Layer (Internet Protocol Stack)
Dalta D;ta LS
4
Classification OmCi% Classification mci
¢ omci Dzl

Broadcast / ONU1 ONU2 ONUn
Multicast

Luuoo
ZUuod
10Wo

Data

omgi or data? omci

(7
@
L -
B S
Q :
T-CONT T-CONT A § g
< T 3 t r o
. * : \ S
S [0y . -
stream kS . ad =
] P . \ \ 4 L. ! o
Connection omci or data? =
Manager Downstream Connection 17
9 |_ Manager s
Upstream || o
Scheduler ©9 s
| 3 = =
| XGEMIE“Q'"e - l— |22 XGEM Engine
@ O
Bl A
Downstream 3
Connection Upstream T-CONT
Manager L Manager
—y e e —— — —] U (g | Sv—— S Y —— T ———
DBA DBA
Engine Engine s
| | 3
BWmap / T Report / g g
o
Roger v o I8 L - - pLoan [o
| Framing Engine Vs m | Framing Engine Msgs. | M =1
|8 3)
3 3| &
v S v 0%
| PHY Adaptation Engine | PHY Adaptation Engine 581
3o
G
< &
XGTC US Burst ~ XGTC Df Frame XGTC DS Frame XGTC US Burst 8¢
n 1
: I v |
| PMD Engine | | PMD Engine |
+ 4 v)

XG-PON ODN (Optical Distribution Network)

Fig. 9: Function Block Diagram of XG-PON

To construct the XGTC header of the frame, DIBA Engineis used to generate BW,, that tells ONUs how to
share the upstream wavelength. DBA Engine makes decis@sexdbon queue occupancy reports, QoS parameters,
and service history of T-CONTSs. As for the PLOAM messageh@header, they are generated by Ploam Engine.

The downstream frame is sent to the ODN after passing thr&$¥i Adaptation Enginend PMD Engine

2) Downstream Traffic on ONU Sid&Vhen a downstream PHY frame arrives to one ONU, it will passubh
PMD Engine and PHY Adaptation Engine which will remove the/gibal-layer overhead. The Framing Engine is
then responsible to parse the resulting downstream XGTi@dra

The PLOAM messages from the XGTC header will be given to theaml Engine, which will process the

messages related with this ONU. The DBA Engine is respomgsiblprocess BW,,, in the header, i.e., schedule

December 18, 2013 DRAFT

20

its upstream XGTC bursts if required by this BYY,.

As for the payload, the XGEM frames are passed to XGEM Enddased on the list of its connections maintained
by Downstream Connection Manager, the XGEM frames for tiNdJQ@re first extracted. XGEM Engine then carries
out decapsulation, decryption, and reassembly (if neéd@tie received SDUs are then sent to the upper layer.

3) Upstream Traffic on ONU SideAs illustrated in Figure 9, when a IP packet is received at@hJ, based
on the source IP address, it is first mapped the corresponglisfjeam connection that are organizedUpstream
Connection ManagerThe packet is then put into the corresponding queue fostnéting in the future.

When it is the time to transmit one upstream XGTC burst (scleedby the DBA Engine based on B}V,
from the OLT), the Framing Engine is resorted to produce ti&TX burst. To do this, the Framing Engine
asks the XGEM Engine to get an array of XGTC payloads. Eaclihesd payloads is a concatenation of XGEM
frames belonging to one T-CONT scheduled in the BW. To decide the SDUs to be encapsulated, Wpstream
Scheduleris also needed since the upstream bandwidth is allocatedXONT and multiple upstream connections
might belong to the same T-CONT. This scheduler makes d@esdbased on the amount of bandwidth allocated
to one T-CONT, queue length, QoS parameters, and servitenhisf this T-CONT’s upstream connections.

If required by the OLT, Framing Engine at ONU will resort DBAgine at ONU to generate queue occupancy
report for the corresponding T-CONT. This report is dedubgdUpstream Connection Manager based on the
upstream connections of this T-CONT. For various purpd3e®AM messages may be generated by Ploam Engine.
When it is allowed by the OLT, one PLOAM message can be put iiohteader of this XGTC burst.

The upstream XGTC burst is then passed to PHY Adaptationrengith the burst profile to be used. After
going through PMD Engine, this burst is sent to the ODN.

4) Upstream Traffic on OLT SideWhen the OLT receives one upstream XGTC burst, this burst passes
through PMD Engine and PHY Adaptation Engine. The Framingifign at OLT is then responsible to parse the
header and the payloads of this burst. The potential queaepaacy report will be sent to DBA Engine and
the potential PLOAM message is sent to the Ploam Engine. Ashifo XGTC payloads, they are sent to XGEM
Engine for decapsulation and reassembly (if needed). HeameUpstream T-CONT Manages needed to hold

the potential segments for reassembly.

As illustrated in Figure 9, both OLT and ONU should have @MCl Enginefor exchanging OMCI messages that

are used for various purposes (ONU management, XGEM PorfT@@@NT configuration, etc.).

8For each downstream connection, the Downstream Conneltiaorager at the ONU should hold the segments that have beeinegder
carrying out reassembly when the remaining segments are eeceiv

December 18, 2013 DRAFT

€102 ‘8T Jaqwadag

14vya

1 ;
PonFrame XgponXgtcDsHeader PonNetDevice |
1
— = +m_bwmap +m_channel k1" PonChannel ; |
+GetSerializedSize() +m_ploams n
= +ReceivePonFrameFromChannel() +m_oltDevice
4 +Seng() - +m_onuNetDevices
+SendFrom
[- XgponXgtcBwmap 1 +SendUpstream()
+SendDownstream()
XgponUsBurst , _|XgponDsFrame “m_bwAllocations . [ﬁ
1 +m_xgtcDsFrame "
::f:g;ﬁUsBurst m psbd L XgponNetDevice | |
= XgponXgtcBwAllocation n +m_phy I]
XononXetcUsBuretlt L XgponXgtcDsFrame 5 +m7a110§§l_3 1] XgponChannel
+m_grantSize | | |
gponXg 1 [nneader o | etarttine XgponPhy +m_LogicPropbelay
+m_header 1 ———<>+m_xgemFrames = I { I] I
+m_allocations < | —
I]
L XgponXgtcUsHeader XgponOnuNetDevice XgponOltNetDevice
+m_ploam 1<> +m_onuConnManager 1 1 1 +m_oltConnManager o—l
+m_onuId +m_onuOmciEngine < XgponOnuOmciEngine XgponOIltOmciEngine ————————<+m_oltOnciEngine
+m_onuXgemEngine < <>t+m_oltXgemEngine
+m_onuDbaEngine < +ReceiveOmciPacket () XgponXgemRou +ReceiveOmciPacket () 1 +m_oltDbaEngine 1]
" +m_onuPloamEngine < +GenerateOmciPacket () +GenerateOmciPacket () +m_oltDsScheduler
XgponXgtcUsAllocation n +m_onuFramingEngine <> <>t+m_oltPloamEngine
+m_dbr +m_onuPhyAdapter < 1 X A - 1 ——<>{+m_oltFramingEngine
! 1 = onOnuXgemEngine XgponOltXgemEngine -
+m_xgemF rames < +ProduceAndTransmitUsBurst () SB & & ap 9 9 ~<>t+m_oltPhyAdapter
+ProcessXgemFramesFromLowerLayer () +ProcessXgemFramesFromLowerLayer () +SendDownstreamFrameToChannelPeriodically ()
+GenerateFramesToTransmit () +GenerateFramesToTransmit ()
0 - 1
XgponXgemFrame | I XgponOnubDbaEngine XgponOItDbaEngine
+m_type
= 1 1 +m_servedBwmaps
+m_xgemHeader L +GenerateStatusReport () =
+misgu XgponOnuConnianager +ReceiveBwMap () P +ReceiveStatusReport () 1
= +conns and tconts XgponOltDbaBursts | |GenerateBullap() XgponOltDsScheduler
+0Operations4mappin 1
1 & X g XgponOltDbaPerBurstinfo I*—=<fin_dbaPerBurstinfos +SelectConnToServe()
XgponXgemHeader +m_bwAllocations
+m_xgemPortId
XgponOItDbaEngineGiantl |XgponOItDbaEngineRoundRobin XgponOltDsSchedulerRoundRobin
XgponXgtcPloam I] |] I 1
| 1
1 ; S 1
— uPloamEngine XgponOIltPloamEngine
XgponOnuConnManagerSpeed Xgponon 9 11 - 1 gp. 9
I 1 +m_linkInfo >—— XgponLinkiInfo —<j+m_linkInfos
XgponXgtcDbru I 1 — n -
+ReceivePloamMessages () +m_onuID +ReceivePloamMessage ()
+GeneratePloamMessage () +m_keys +GeneratePloamMessages ()
1 +m_profiles 1
|XgponOnuConnManagerFIexible XgponOnuFramingEngine +m_equalizeDelay XgponOIltFramingEngine
I 1
L 1 +GenerateXgtcUsBurst() +GenerateXgtcDsFrame()
+ParseXgtcDsFrame() +ParseXgtcUsBurst() 1
1 1 XgponOIltConnM g
XgponConnection XgponOnuPhyAdapter XgponOItPhyAdapter +conns and tconts
XgponQoSParameters - <~fin qosparameters +ProcessXgponDsFrameFromChannel () +ProcessxgponUsBurstFromChannel () +Operations4mapping()
" +m_direction +ProcessXgtcBurstFromUpperLayer() +ProcessXgtcDsFrameFromUpperLayer ()
m_tconType
+m_xgemPortId
+m_fixedBw, m_assuredBw +m allocID
+m_nonAssuredBw +n onuID, m onuAddr XgponTcont
+m_maxBw, m_maxInterval = — +m_onuID

Fo.. A +m_allocID
+info4DBA

XgponQueue 1 A
—|] XgponOltConnManagerSpeed |
+Enqueue() E |
+Dequeue () " XgponTcontOlt
+Peek() XgponConnectionReceiver —<+m_connections 1
+PushFrontRemainingSegment () +m_pkt4Reassemble XgponOnuUsScheduler =
+IsSegmentation () :wg:;:i::iiz’:ﬁe +m_qosParameters |XgponOItConnManagerFIeX|bIe
1 = “ReceivestatusReport() XgponTcontOnu . +SelectConnToServe() I |
XgponServiceRecord — 1 +m_onuUsScheduler
+m_servedTime 1 XgponConnectior n <>+Z\TCZ2necélzzz .
+m_bytes +m_txQueue +FindConnBy; ress 1
o 1 m_serviceRecord +PrepareStatusReport () !XgponOnuUsScheduIerRoundRobm !
L 1

Fig. 10: Class Diagram of the XG-PON module for NS-3

T

22

C. The Design and Implementation Details

Figure 10 shows the main classes of this XG-PON module. wollp this class diagram, the design and
implementation details of this module are presented below.

1) Channel and Network DeviceRonChannel and PonNetDevice are the base classes for alge@® network.
Through developing different subclasses, we can simuthter ®ON technology (10G-EPON [23], etc.) and compare
with XG-PON. PonChannel is inherited from Channel of NS-3 @& used to simulate the optical distribution
network (ODN). It has implemented the functions for manggietwork devices of the OLT and ONUs attached
to this ODN. PonNetDevice is inherited from NetDevice of R&nd is responsible to communicate with upper
layers and PonChannel.

XgponChannels the subclass of PonChannel for XG-PON and its implemiemdtas been discussed in V-A.
As a subclass of PonNetDevicégponNetDevicés used to represent a network device attached to Xgpon@hann
It also implements the functions that are common for both @b@l ONU, such as the statistics for the network
device. XgponOltNetDevice and XgponOnuNetDevice areltsckasses for the OLT and ONU, respectively. They
mainly act as the container of various engines that implértrenprotocol stack of XG-PON.

2) Frame Structure: PonFrameepresents the frame transmitted over the ODN of a PON andtifgrovides the
interfaces for (de)serialization, etégponDsFramend XgponUsBurstre used to represent the downstream frame
and the upstream burst of XG-PON, respectively. There angyrother classes used to represent the related data
structures, such as BW,,, PLOAM message, and the header of PHY adaptation sublayguré=13).

XgponXgemFrames used to represent XGEM frame. It includes the payload (mauket from the upper layer)
and one header defined by XG-PON standXighonXgemHeadds used to represent this header of XGEM frame.

3) Connection Managemengince XG-PON traffic is carried by logic connections, margsskes are designed
and implemented for representing, organizing, and hagdhese connections.

XgponConnectioris used to represent a connection (XGEM Port). It mainly aimst the identifiers of this
connection (XGEM Port-ld, ONU-ID, etc.). XgponConnecteteiver and XgponConnectionSender are its sub-
classes that represents a connection at the receiver adérsgide. XgponConnectionReceiver mainly holds the
received segments for reassembling. XgponConnectiorg8ermhtains the service history (XgponServiceRecord),
QoS parameters (XgponQosParameters), and the transmasgue for SDUs from upper layer (XgponQueue).

XgponTcontis the class for representing T-CONT. XgponTcontOnu, itsckass for the ONU, is designed to
organize the upstream connections of the same T-CONT. AXdponTcontOlt, the subclass of XgponTcont for
the OLT, queue occupancy reports from ONU, QoS parametetseanvice history of this T-CONT are maintained
for DBA algorithm. XgponTcontOlt is also responsible to dhdthe received segments for implementing reassembly.

XgponOnuConnManagerontains a list of downstream connections (XgponConneRzeiver) and a list of
T-CONTSs. Note that each T-CONT might have multiple upstremmnections (XgponConnectionSender). It is also
responsible to map SDU/XGEM frame to the corresponding eotion. Thus, it implements both Downstream

Connection Manager and Upstream Connection Manager foOie.

December 18, 2013 DRAFT

23

XgponOltConnManageis designed to fulfill the functions of Downstream ConneattManager and Upstream T-
CONT Manager for the OLT. It contains a list of broadcast @mtions (XgponConnectionSender). It also contains
all uni-cast downstream connections (XgponConnectiod&grand T-CONTSs for upstream traffic (XgponTcontQOlt).

For both XgponOnuConnManager and XgponOIltConnManagehave implemented several subclasses in which
these data structures are organized in different ways fileredint purposes. XgponOnuConnManagerSpeed and
XgponOltConnManagerSpeed impose some relationships @XGEM Port-1d, Alloc-Id, ONU-ID, and IP address
of the computer connected to ONU. They can carry out mappery quickly, but they also limit the number
of XGEM Ports that one ONU could have. XgponOnuConnManadggisle and XgponOIltConnManagerFlexible
don’t have such limitations,but they are much slower. Simikions of packets need to be processed per second,
XgponOnuConnManagerSpeed and XgponOltConnManagerSerdd be used for most cases.

4) PMD and PHY AdaptationPMD Engine and PHY Adaptation Engine in Figure 9 are simpmliBegnificantly
for simulating XG-PON with reasonable speed.

XgponPhyis used to implement PMD Engine and it mainly maintains thgsptal layer parameters that are
common for the OLT and ONUSs, such as the downstream data nateha upstream data rate of XG-PON. The
data rates can be configured through the attribute systemSe8.N'he most important interface is to tell other
classes about the size of one downstream/upstream frame.

XgponOltPhyAdapteand XgponOnuPhyAdapteare used to implement PHY Adaptation Engine for the OLT
and ONU, respectively. Instead of simulating their funetiqline coding, FEC, scrambling, etc.) step by step, they
just passes frames/bursts between XgponChannel and Fyd&nigine after removed physical layer header. Hence,
we implicitly assume that all frames/bursts can be recedardectly. Since the network should be well planned and
FEC has been adopted, the observed frame corruption rdtbevilery low and this assumption is reasonable. In
the future, the corruption of frames will be simulated basadhe distance between OLT and ONU or empirical
measurements of XG-PON networks in real world.

5) Framing Engines: XgponOltFramingEngiimaplements Framing Engine on the OLT side. It is respondible
generate the downstream XGTC frames and parse the upstréai@ Xursts XgponOnuFramingEnginienplements
Framing Engine on the ONU side. It is responsible to gendheteipstream XGTC bursts and parse the downstream
XGTC frames. Both of them follow the standard strictly.

6) XGEM Engine: XgponXgemRoutiniegplements some routines that are common for both the OLTGINY,
such as XGEM frame creation.

As for XGEM Engine functions, they are implemented by XgptX@emEngine and XgponOnuXgemEngine
for the OLT and ONU. They carry out encapsulation, decapisulafragmentation, reassembly, etc. fragmentation
and reassembly are implemented based on the Packet clasS-8f Mhe logic for data encryption/decryption is
also implemented. But the cryptographic algorithm is noplemented and executed for saving CPU.

When they are called to produce the payload of a downstreamefrar upstream burst, they will resort
Downstream Scheduler or Upstream Scheduler for determithie traffic to be transmitted. When getting XGEM

frames from Framing Engine, XgponOnuXgemEngine need ex&mad only process its own traffic.

December 18, 2013 DRAFT

24

7) Scheduling and DBATo study different scheduling and DBA schemes, severalratistlasses are used in
this module for extensibility. The actual schedulers cantmherit these abstractions and implement their specific
algorithms. The related classes in this module are intredum=low.

XgponOltDsScheduleacts as the OLT Downstream Scheduler shown in Figure 9. Whe@on@ltXgemEngine
generates the payload of a downstream XGTC frame, it will caé virtual function of XgponOItDsScheduler
(SelectConnToSeryto decide the connection to be served. XgponOltSimplebs&aler is one subclass that follows
the round robin scheme.

XgponOltDbaEngines designed for the OLT DBA Engine shown in Figure 9. When XdpbRramingEngine
generates one downstream XGTC frame, it will resort XgptDBAENgine to generate a BY,. XgponOIltD-
baEngine is also responsible to receive queue occupanoytspom ONUSs. Currently, a simple DBA algorithm is
implemented in XgponOltDbaEngineRoundRobin that servéseal amount of bytes for each T-CONT in a round
robin manner. GiantMAC [22] has also been implemented in ofgptDbaEngineGiant for supporting different
kinds of T-CONTs with various QoS parameters.

XgponOnuDbaEnginacts as the ONU DBA Engine shown in Figure 9. It is responsibl@rocess BW, .,
generate queue occupancy report, and schedule to genathteaasmit the upstream burst.

XgponOnuUsSchedulercts as the ONU upstream scheduler shown in Figure 9. Whenn@moXgemEngine
generates the payload of one upstream burst, XgponOnud8ieh is resorted to decide the connections to be
served in the transmission opportunity assigned to one WC&gponOnuUsSchedulerRoundRobin is one subclass
implemented to serve the connections of one T-CONT in a roobdth manner. Note that XgponOnuUsScheduler
is put within XgponTcontOnu so that T-CONTSs of the same ONW mse different scheduling algorithms for their
upstream traffic.

8) Miscellaneous: XgponOltPloamEngiaad XgponOnuPloamEnginare designed for exchanging Ploam mes-
sages between the OLT and ONU. They also usggsonLinkinfoto maintain per-ONU information, such as keys
and burst profiles. As foXgponOIltOmciEnginend XgponOnuOmciEnginghey are designed for implementing
the OMCI channel. For these classes, we have just implemhénédr interactions with other classes of this module.
We will simulate their messages and the related proceduaréisei future.

9) Helper: For facilitating researchers to configure one XG-PON néeitwath hundreds of ONUs and thousands
of connectionsXgponHelperis also implemented in this module. Through XgponHelpesgagchers can install
XgponNetDevice on nodes and attach them to XgponChannel Tan also configure XGEM Ports and T-CONTs
for carrying user traffic. Researchers can also use Xgpqatdéb enable Ascii and Pcap tracing.

XgponConfigDhis one database that holds the information used by Xgpomtegefore using XgponHelper,
researchers should first configure subclasses and paranuses in the simulation. When adding XGEM Port/T-
CONT/ONU into XG-PON,XgponldAllocatoris used to get the corresponding XGEM Port-Id/Alloc-1d/ONDI
XgponldAllocatorSpeeds the subclass developed for imposing some relationshipngnXGEM Port-Id, Alloc-

Id, ONU-ID, and IP address of the node connected to ONU with af speeding up XG-PON simulation.
XgponConfigDb uses one flag to make sure that XgponOltConalnspeed, XgponOnuConnManagerSpeed,

December 18, 2013 DRAFT

25

and XgponldAllocatorSpeed are used together.

VI. EVALUATION RESULTS

Our XG-PON module is designed for simulating a 10Gbps optieswork with hundreds of ONUs and the
simulation performance is one of the most important mefacsesearchers. Thus, in this section, we will evaluate
its simulation speed and memory consumption under varicesaios with one off-the-shelf server. Extensive
pressure tests are also carried out to demonstrate our X&+RAGdule can run for a very long time and work

correctly under more random simulation settings.

A. Simulation Performance

To avoid interference from other processes, one dedicaietpater is used to measure the performance of our
XG-PON module. The server used by us is Dell PowerEdge R3&0garver. The processor is Intel(R) Xeon(R)
CPU E5-1410 0 @ 2.80GHz and its cache size is 10MBytes. Natealthough this processor has 4 cores, just

one of them is used by our simulation. As for the main memdrg, derver is installed with 48GBytes in total.

Upstream Traffic Generator PC1

ONU1
QQQ ONU2
N XG-PON
OLT
o PCn
Downstream Traffic Sink ONUs

Fig. 11: Network Topology

The network topology used in our simulations is illustratedrigure 11. We simulate one XG-PON network
whose largest propagation delay is 0.4ms, i.e., the pHyse&h is around 60km. For the data rates of XG-PON,
we follow XG-PON1, i.e., 10Gbps in downstream and 2.5Gbpsipstream. There are totallly’ ONUs in the
XG-PON and one PC is connected to each ONU through a poiptita- link whose delay is 2ms. These PCs act
as the customer of XG-PON and play the generators for theagattraffic and the sinks for the downstream. The
OLT is connected to Router and the point-to-point link betwehem is used to simulate the core network. More
specifically, the delay of this link is set to 10ms. Downstne@raffic Generator and Upstream Traffic Sink are

connected to Router through point-to-point links whoseglés 2ms. To generate network traffic in both directions,

December 18, 2013 DRAFT

26

each PC sends UDP packets to Upstream Traffic Sink and redd®d® packets from Downstream Traffic Generator.
Due to the bandwidth asymmetry of XG-PON1, the generated dat in the upstream direction is always one
guarter of the data rate in the downstream direction. Foofalthe above point-to-point links, the bandwidth is set
to 20Gbps so that XG-PON is the only bottleneck.

To study the simulation performance of our XG-PON moduleanndirious scenarios, the number of ONUs and
the amount of network traffic are changed in our experimerte evaluated values a¥ (the number of ONUSs)
are 25, 50, 100, 200, 400, 800, and 1000. As for the total amoiunetwork load the downstream, the evaluated
values are, 150Mbps, 300Mbps, 600Mbps, 1.2Gbps, 2.4GHpShhs, and 9.6Gbps. Note that due to the overhead
of XG-PON physical and XGTC layers, packets start to be dedpphen the downstream network load is 9.6Ghps.
Furthermore, for all experiments, the upstream networH isalways one quarter of the downstream network load.
Thus, when the downstream network load is 9.6Gbps, the agmatmetwork load is 2.4Gbps and there are also
packets dropped in the upstream direction.

To evaluate the speed of our XG-PON module, 400 secondsratdaged in each experiments, the total amount
of time used to complete the simulation is recorded, and we talculate and plot the amount of time consumed to
simulated one second. Figure 12(a) shows the results uadieus scenarios. It indicates that the consumed time is
increased linearly with the network load. It is reasonaliees NS-3 is one packet-level network simulator and the
number of events are increased linearly with the number oketa. Figure 12(a) also indicates that the consumed
time increases with the number of ONUs much slower. Hence X@tPON module have successfully avoid to let
each ONU process all packets in the downstream directiqqur&il2(a) also indicates that our XG-PON module
takes around 160s to simulate one second even when ther®@9eQNUs and the downstream network load is
9.6Gbps with which XG-PON has been over-loaded.

We have also useddb to run the simulation of the most difficult scenario (ONUsOQpNetwork load: 9.6Gbps)
in debug mode. After the simulation enters into steady phase, wekbiteat random time, check the call stack,
and continue the simulation. These steps are repeated Gotih2s and the CPU is running our XG-PON code for
only 4 times. Thus, our XG-PON module is not the bottleneaksimulation speed and other modules (routing,
etc.) need be revised for improving the speed further.

Not only simulation speed, we have also evaluated the amafumtemory consumed by XG-PON simulation.
The same experiments are repeated to collect these resoifteach experiments, after starting the simulation, we
wait for a long time until the simulation enters into its stggphase and the amount of consumed memory does not
increase anymore. These values for various scenarios ewedesl and plotted in Figure 12(b). This plot indicates
that the consumed memory increases linearly with the nétvead, and it increase much slower with the number
of ONUs. When there are 1000 ONUs and the downstream netwatki$9.6Gbps, the consumed memory is still
less than 5GBytes.

In summary, with off-the-shelf servers, our XG-PON modubn simulate a 1000 ONUs 10Gbps XG-PON

network with reasonable speed and moderate memory consumpt

December 18, 2013 DRAFT

December 18, 2013

100

10

00

10 Downstream Network Load (Mbps)

Number of ONUs

(a) The amount of time consumed to simulate one second

1000

100

00

10 Downstream Network Load (Mbps)

Number of ONUs

(b) The amount of memory consumed in steady phase

Fig. 12: Simulation Performance of XG-PON Module under Various Scenarios

180
160
140
120
100
80
60
40
20

5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500

27

DRAFT

28

B. Pressure Tests

To evaluate the robustness of our XG-PON module, we havéedaaut more experiments. In one group of
experiments, we use the same configurations designed ffmrpeamce evaluation and 4000 seconds are simulated
in each experiment to demonstrate that our XG-PON modulestanlate XG-PON for a long period (longer than
one hour). Note that when there are 1000 ONUs and the dovanstretwork load is 9.6Gbps, it takes more than
one week to complete the simulation. All of these simulaibave been carried out successfully, and there is no
crash and memory leakage in the course. In another grouppefiexents, we randomly select the number of ONUs
and the amount of network traffic, and 500 seconds are siptilateach experiment. For 49 random configurations
evaluated by us, all simulations have been carried out sstudéy.

In summary, evaluation results in this section indicaté tha XG-PON module is quite robust and can simulate
XG-PON with reasonable speed and moderate memory consumyti could be a good research platform for

studying performance issues related with XG-PON.

VIlI. SUMMARY AND FUTURE WORK

In this report, we introduce an XG-PON module for the NS-3moek simulator. We describe the details of its
design and implementation, and present some preliminaajuation results. These results indicate that our XG-
PON module is quite robust and can simulate XG-PON with nealsle speed and moderate memory consumption.
As the first XG-PON module for NS-3, we believe that this woska significant contribution to the scientific
community as it allows us to simulate XG-PON and study thdoperance issues that arise with the deployment
of XG-PON.

In the future, we will implement more scheduling and DBA altfoms that were proposed for G-PON or XG-
PON. We will also keep improving its simulation speed andapeldistributed simulation will be considered.
Furthermore, we will study how to simulate Fiber to the Ceithwthis XG-PON module and the WiIMAX/LTE
modules distributed with NS-3. The potential performarssiés mentioned in this report will also be investigated
using this XG-PON module.

VIIl. A CKNOWLEDGMENTS

This work is supported in part by Science Foundation of ir@lthrough CTVR (http://www.ctvr.ie/).

December 18, 2013 DRAFT

29

APPENDIXA

INSTALLATION

This appendix briefly introduces how to install our XG-PONdule with NS-3. Here, we assume that NS-3 had
been installed on your computer and you are using the develnpcode tree.

In this release of our XG-PON module, all files are put into éolder "xgpon”. In "xgpon”, there are several
folders that are similar to other NS-3 modules, such as 'lhge! (for Ptyhon bindings), "doc” (for documentations
included this manual), "examples” (for examples to demmsthow to use this module), "helper” (for classes
provided to researcher with aim to facilitate its usage)optiel” (fore source code), and "test” (for test cases).

In "xgpon”, we have another folder "changesOnOtherModutbat contains some bug fixes related with other
modules. Currently, we just changed "ipv4-I3-protocdl.atthe internet module to avoid program crash when long
simulations are carrying out.

To use this XG-PON module, you should copy or link "xgpon” andhe folder "ns-3-dev/src”. You should
also copy our "ipv4-I3-protocol.cc” into "ns-3-dev/snaternet/model”. Considering that "ipv4-I3-protocol.atiight
evolve with NS-3, it's better to search our copy with "XG-PORr identifying the changes, and change "ipv4-I3-
protocol.cc” in the latest NS-3 release accordingly. Afteat, please configure and build NS-3 as normal. XG-PON
module should be ready to be explored.

In addition, in "xgpon”, there is one folder "scripts4evation” that holds the scripts used by us to evaluate
this module. Before running these evaluations, you neeq top corresponding script file into "ns-3-dev”. To
test GiantMAC through running "pedro/pargiantscript.pyyou need set one new environment parameter (NS3)
according to the path of NS-3 on your system. You should aleate "data/giant-data” folder in your NS-3

installation.

December 18, 2013 DRAFT

30

APPENDIXB

SOURCEFILES
This appendix briefly introduces all source files of this XGNP module for NS-3.

1) pon-channel.h/.cc: source code fdonChannelPonChannel has implemented how to send one upstream

frame from one ONU to the OLT and how to broadcast one dowastrggame from the OLT to all ONUSs.
It is one abstract class and its subclass should manage tfiea@d all ONUs attached on the channel,
especially the propagation delay between the OLT and eacl.@Mhen subclass instantiates PonChannel,
each ONU should have one unique index in the PonChannel enithtlex can be used to get its corresponding
propagation delay.

2) pon-frame.h: source code fBonFramePonFrame is one abstract class with the interfaces foséda)ization.

3) pon-net-device.h/.cc: source code fasnNetDevice PonNetDevice is inherited from NetDevice of NS-3. It
defines one abstract function "ReceivePonFrameFromCHativa should be implemented by its subclass
for handling frames received from PonChannel. It also nadmstthe index of this device on the PonChannel.
This index is useful to ONU only for getting its propagatioalal,.

This group of files are used to model a general TDMA-basedirRa&ptical Network. EPON could also be

implemented through instantiating these classes.

4) xgpon-burst-profile.h/.cc: source code ¥gponBurstProfile XgponBurstProfile implements the burst profile
used by one ONU to produce one upstream burst. It specifiepltiisical layer overhead (the length of
preamble and delimiter) and whether FEC is used for thistbiWkhen the OLT assigns one upstream
transmission opportunity to one ONU, it also notifies the OBlhbut the burst profile to be used. Thus,
one ONU may use different burst profile for different burstslifferent times. The OLT may make decision
based on channel quality and the kind of payload, etc.

5) xgpon-key.h/.cc: source code faigponKey XgponKey is used to carry out encryption. It is just one stub
class to be instantiated in the future if key managementsezde studied.

6) xgpon-link-info.h/.cc: source code fatgponLinkinfo. XgponLinkinfo is used to maintain the information of
one ONU, such as the keys and burst profiles negotiated bettlieeOLT and this ONU. It also includes the
corresponding equalization delay of this ONU for avoidirailision in upstream direction. XgponLinkinfo
also maintains one list of PLOAM messages to be sent to the @LDNU side) or the corresponding ONU
(at OLT side). It also includes many other state informatiorechieve various purposes through PLOAM
messages, the header of downstream frame, the header odamdburst, and the header of XGEM frame.
This group of files are used to represent the information of @NU, especially keys, burst profiles,
PLOAM messages, and equalization delay. XgponLinkinfd s managed by XgponOIltPloamEngine and

XgponOnuPloamEngine so that other engines of XgponNetieewvan get the corresponding information.

December 18, 2013 DRAFT

31

7) xgpon-xgtc-ploam.h/.cc: source code ¥gponXgtcPloanmXgponXgtcPloam is used to represent one PLOAM
message exchanged between OLT and ONU. Since PLOAM messageésto be allocated and released
dynamically during simulation, the new and delete opegatdrXgponXgtcPloam are overridden and a pool
is maintained for reducing the cost of the expensive "maltguerations.

8) xgpon-xgem-header.h/.cc: source codeXgponXgemHeaderXgponXgemHeader is the header of XGEM
frame exchanged between OLT and ONU. It is one member variabthe following XgponXgemFrame.

9) xgpon-xgem-frame.h/.cc: source code ¥gponXgemFrameXgponXgemFrame is used to encapsulate SDU
from upper layers. Except one XgponXgemHeader and the pate&SDU, it also has one member variable
used to specify the type of this XGEM frame (normal framegitlame, or short idle frame). Since huge
amount of XGEM frames need to be allocated and released dgabynits new and delete operators are

also overridden and a pool is maintained for reducing the abthe expensive "malloc” operations.

10) xgpon-ds-frame.h/.cc: source code ¥gponDsFrameXgponDsFrame is one subclass of PonFrame for XG-
PON. It is designed to represent one downstream frame bagtatt from OLT to ONUSs. It mainly contains
two member variables, one for physical layer header (XgpbdpPand the other for XGTC layer downstream
frame (XgponXgtcDsFrame). For saving CPU used to allocatkralease this structure, its new and delete
operators are also overridden and a pool is maintained fducieg the cost of the expensive "malloc”
operations.

11) xgpon-psbd.h/.cc: source code fégponPsbd XgponPsbd is the physical layer header of the downstream
frame of XG-PON (XgponDsFrame).

12) xgpon-xgtc-ds-frame.h/.cc: source codeXgponXgtcDsFrameXgponXgtcDsFrame is the downstream frame
observed by XGTC layer. It mainly includes one XGTC layer dexa(XgponXgtcDsHeader) and a bunch
of XGEM frames. To allow hundreds of ONUSs to process one XgfgtoDsFrame quickly, we separate the
broadcasted XGEM frames that must be processed by all ONdghenuni-casted ones. Considering that
one XgponXgtcDsFrame may contain the traffic of just a few GNidost of ONUs need not parse these uni-
casted XGEM frames for extracting their own traffic. Thus,itanbp is also added into XgponXgtcDsFrame
to indicate the ONUs whose traffic are within this frame.

13) xgpon-xgtc-ds-header.h/.cc: source codeXgponXgtcDsHeaderXgponXgtcDsHeader is the XGTC layer
header of a downstream frame (XgponXgtcDsFrame). It costailist of PLOAM messages (XgponXgtc-
Ploam) to be sent to ONUs and the following XgponXgtcBwmapdut instruct ONUs how to share the
upstream wavelength.

14) xgpon-xgtc-bwmap.h/.cc: source code ¥gponXgtcBwmap XgponXgtcBwmap is produced by the OLT
and broadcasted to all ONUs in the header of the XGTC dowastifeame (XgponXgtcDsHeader). It is used
to instruct ONUs how to share the upstream wavelength in a ABike manner. It includes a list of the
following XgponXgtcBwAllocation. For saving CPU used tdaalate and release this structure, its new and

delete operators are also overridden and a pool is maictdgrereducing the cost of the expensive "malloc”

December 18, 2013 DRAFT

32

operations.

15) xgpon-xgtc-bw-allocation.h/.cc: source code XgponXgtcBwAllocation In XgponXgtcBwmap, there is one
XgponXgtcBwAllocation for each T-CONT scheduled in the responding upstream frame. XgponXgtcB-
wAllocation is used to specify when one ONU should send th&trepm traffic of this T-CONT, how many
bytes it can send, and whether it can send one queue occupapast. The XgponXgtcBwAllocation of
the same ONU will form one upstream burst. For the first XgpgtecBwAllocation of the same burst, it
also specifies the burst profile used by the correspondingegms burst and whether the ONU can send
one PLOAM message to the OLT. For saving CPU used to allocaderelease this structure, its new and
delete operators are also overridden and a pool is maictdorereducing the cost of the expensive "malloc”

operations.

16) xgpon-us-burst.h/.cc: source code #gyponUsBurst XgponUsBurst is one subclass of PonFrame for XG-
PON. It is designed to represent one upstream burst that dhé €@nds to the OLT in upstream direction. It
mainly contains two member variables, one for physical ldyeader (XgponPsbu) and the other for XGTC
layer upstream burst (XgponXgtcUsBurst). For saving CPEdu® allocate and release this structure, its
new and delete operators are also overridden and a pool igaired for reducing the cost of the expensive
"malloc” operations.

17) xgpon-psbu.h/.cc: source code ¥gponPsbuXgponPsbu is the physical layer header of the upstreant burs
of XG-PON (XgponUsBurst). It contains the preamble andrdiééir. Their length is determined by the burst
profile used for this burst. And the burst profile is selectgdt®e OLT and specified in the corresponding
XgponXgtcBwmap.

18) xgpon-xgtc-us-burst.h/.cc: source code ¥gponXgtcUsBurst XgponXgtcUsBurst is the upstream burst
observed by XGTC layer. It mainly includes one XGTC layerdera(XgponXgtcUsHeader), a trailer, and a
bunch of the following XgponXgtcUsAllocation (one for ea€hCONT).

19) xgpon-xgtc-us-header.h/.cc: source codeXgponXgtcUsHeaderXgponXgtcUsHeader is the XGTC layer
header of an upstream burst (XgponXgtcUsBurst). If screztibly the OLT, one PLOAM message can also
be sent to the OLT within this header.

20) xgpon-xgtc-us-allocation.h/.cc: source codeXgponXgtcUsAllocation XgponXgtcUsAllocation is designed
to represent the traffic of one T-CONT to be transmitted in dpstream burst. It mainly contains a bunch
of XGEM frames. If scheduled by the OLT through XgponXgtcBapn one queue occupancy report (Xg-
ponXgtcDbru) is also transmitted in XgponXgtcUsAllocatid-or saving CPU used to allocate and release
this structure, its new and delete operators are also deemi and a pool is maintained for reducing the cost
of the expensive "malloc” operations.

21) xgpon-xgtc-dbru.h/.cc: source code fdgponXgtcDbru XgponXgtcDbru is used to represent one queue
occupancy report of one T-CONT.

This group of files are used to represent the information camoated between the OLT and ONU. For

December 18, 2013 DRAFT

33

all of these classes, they should support the (de)setiaizaSince the current simulation is carried out in

the same thread of the same computer and it could be quitelenmpe have not fully implemented this

feature. However, "GetSerializedSize()” has been impleea: for all so that we can compose the downstream
frame and upstream burst with considering their length waims. In many of these classes, some error
detection/correction coding schemes are used to be robustmsmission error. In current phase, these
algorithms are not implemented and we assume that thesgwsts are correct. In the future, transmission
errors might be simulated through discarding one whole &bnorst. Furthermore, in many of these classes,
some meta-data member variables are added to facilita)sefitdization and maintain some time-related
information (creation time, receiving time, etc.). Fortarsce, XgponXgtcBwmap maintains its creation time.
The OLT uses this information, the logic one-way-delay @& tthannel, and the time that a upstream burst
is received, to associate this upstream burst to its carrelpg XgponXgtcBwmap. Figure 13 summarizes

how these classes are used to represent the frame/burshitiad in XG-PON.

XgponXgemHeader' SDU,l

-_..égpon}(gemFrarne r | AgponXgemFrame

XgponXgtcDsHeader Ifﬁjltiple)(gemFrame/{ 4gan_)5gthsHeader XgponXglI:UsAllntiod ...\l)(gponthcUsAllocatiorV trailer
XgponPsbt] ‘XgponXgtcDsFrame [¥gponPstr| XgponXgtcUsBurst
XgponUsBurst

Fig. 13: Classes for frame/burst of XG-PON

22) xgpon-gos-parameters.h/.cc: source codeXfgmonQosParameterXgponQosParameters is used to hold the
Qos parameters of one XGEM Port or T-CONT (aggregated freamXBEM Ports) that XG-PON should
satisfy. Its content follows XG-PON standard, such as fixaddwidth, assured bandwidth, etc.

23) xgpon-connection.h/.cc: source codeXgponConnectionXgponConnection is used to represent one XGEM
Port of XG-PON. It is one abstract class with basic inforimatithe direction, Broadcast or Uni-cast,
XGEM Port-Id, Alloc-ld for upstream XGEM Port, ONU-ID thahis XGEM Port belongs to, and upper
layer address of the computer whose traffic this XGEM Port wélry) and its QoS parameters should be
satisfied by XG-PON. XgponConnectionReceiver is the s@isdiar the receiver and XgponConnectionSender
is the subclass for the sender. Thus, for one upstream XGE®M) there is one XgponConnectionSender at

ONU and one corresponding XgponConnectionReceiver at ®Gbrf.the downstream XGEM Port, there is

December 18, 2013 DRAFT

34

one XgponConnectionSender at OLT and one correspondingn@mnectionReceiver at ONU. The QoS
parameters at the sender and the receiver must be identical.

24) xgpon-connection-receiver.h/.cc: source codeXfgponConnectionReceiveAs the subclass of XgponCon-
nection for the receiver, XgponConnectionReceiver isgjgimple. It mainly holds the segments that have
been received to carry out reassemble in the future. Note filraupstream traffic, reassemble is carried out
by the OLT per T-CONT.

25) xgpon-connection-sender.h/.cc: source cod&fmronConnectionSendeXgponConnectionSender is the XGEM
Port instance at the sender. It has one queue (XgponQueumr)ffer the traffic to be transmitted on XG-
PON and a list of service records (XgponServiceRecord) ¢batd be used for scheduling purposes. It is
also responsible to receive the SDU (put it into the queue),tige packet to be transmitted on XG-PON
(fragmentation needs to be considered), maintain itssgivistory (a list of XgponServiceRecord), and return
the occupancy of its queue.

26) xgpon-service-record.h/.cc: source code XgponServiceRecordXgponServiceRecord is used to store the
event that one XGEM Port is served. It records the time thattthffic of this XGEM Port are transmitted
and the amount of bytes transmitted through XG-PON. Fornga@GPU used to allocate and release this
structure, its new and delete operators are also overridddra pool is maintained for reducing the cost of
the expensive "malloc” operations.

27) xgpon-queue.h/.cc: source code XgponQueueXgponQueue is used for each XGEM Port at the sender. It
is used to hold the traffic to be transmitted through XG-PQistdad of Queue from NS-3, XgponQueue is
added for three reasons. First, fragmentation need to bgidered and it should hold the remaining part of
one fragmented SDU and send the remaining part immediatedg this XGEM Port is served again. Second,
some variables in ns3::Queue are private and we cannoteifitein. Third, when SDU is encapsulated into
XGEM frame, padding must be carried out for word-alignméltius, queue occupancy must be updated
accordingly. Instead of calculating queue occupancy t{msieach packet in the queue) when needed, this
value is maintained when packet is enqueued/dequeued,alwolations are necessary for each packet, and
CPU can be saved. Note that XgponQueue is one abstract cldstsasubclass is responsible to manage
packets in the queue and implement some queue discipline.

28) xgpon-fifo-queue.h/.cc: source code ¥KgponFifoQueue XgponFifoQueue is one subclass of XgponQueue

and it follows the principles of FIFO (First In, First Out).

29) xgpon-tcont.h/.cc: source code f@gponTcont XgponTcont is used to represent one T-CONT (Note that
one T-CONT might have multiple upstream XGEM Ports) of XGNRQt is one abstract class with basic
information (Alloc-Id, ONU-ID that this T-CONT belongs toXgponTcontOlt is the subclass used by the
OLT and XgponTcontOnu is the subclass used by ONU. In addit¥gponTcont also holds a list of
XgponXgtcDbru (the history of queue occupancy reports) atidt of XgponXgtcBwAllocation (the serving
history) related with this T-CONT. These information colld used by the OLT to deduce how many data

December 18, 2013 DRAFT

35

of this T-CONT is still waiting at ONU to be served.

30) xgpon-tcont-olt.h/.cc: source code fdgponTcontOlt XgponTcontOlt is the T-CONT instance at the OLT.
It has a list of XgponConnectionReceiver that are used toutatle its aggregated QoS parameters. It is
responsible to carry out reassemble, receive queue occyipaport from ONU, maintain its serving history
and queue occupancy reports, and calculate the amount afatl@NU that still needs to be served. When
there is no queue occupancy reports from ONU, it is also mespte to tell the OLT whether to poll the
ONU for the status of this T-CONT.

31) xgpon-tcont-onu.h/.cc: source code ¥arponTcontOnuXgponTcontOnu is the T-CONT instance at ONU. It
has a list of XgponConnectionSender that belong to this NTQt is responsible to maintain these connec-
tions, generate queue occupancy report, and maintain thingenistory (a list of XgponXgtcBwAllocation
from the OLT). Since the OLT just assigns the upstream baditthato T-CONTSs, XgponTcontOnu has one
upstream scheduler (XgponOnuUsScheduler) used to sehédiflic of the connections that belong to the
same T-CONT. Through putting one upstream scheduler infwoKgcontOnu, we can use different upstream
schedulers for different T-CONTS.

32) xgpon-onu-us-scheduler.h/.cc: source code XgponOnuUsScheduleiXgponOnuUsScheduler is used to
schedule traffic of the connections that belong to the san@ONT. When one upstream burst need to
be produced, XgponOnuUsScheduler is used by ONU to deterthim traffic to be put into this burst. The
main interface is "SelectConnToServe”, a virtual functitiat its subclass must be implement to determine
the connection to be served and the amount of data to be tid@dm

33) xgpon-onu-us-scheduler-round-robin.h/.cc: soum#ecdor XgponOnuUsSchedulerRoundRobXgponOnu-
UsSchedulerRoundRobin is one subclass of XgponOnuUs8ldhetthat schedules the upstream connections
of the same T-CONT in round-robin manner with consideringjrtiqueue occupancy.

This group of files are used to represent XGEM Port and T-CONX®G-PON. At the sender, there is one
qgueue for each XGEM Port. Fragmentation and reassemblecagdered in these classes. Qos parameters

and serving history are also maintained in these classes.

34) xgpon-channel.h/.cc: source code ¥gponChannel XgponChannel is a subclass of PonChannel for XG-
PON. It maintains the logic one-way-delay for the whole XGNP network, which should be set based on
the largest propagation delay among all ONUs and variousesging delays. In XG-PON, all nodes (OLT
and ONUSs) have a consistent view of this value. Correspahgieach ONU has one equalization delay that
is related with the logic one-way-delay and its own propagatielay (between this ONU and the OLT).

35) xgpon-phy.h/.cc: source codeXfponPhy XgponPhy contains the physical layer parameters of onePXaBt
network and provides several common routines. These p#gasnean be configured through NS-3 attribute
system. Through changing these parameters, we could $enGRON approximately.

36) xgpon-net-device.h/.cc: source codeXgponNetDeviceXgponNetDevice is a subclass of PonNetDevice that

December 18, 2013 DRAFT

36

implements the common functions for both OLT and ONU. It iempénts "Send” and "SendFrom” inherited
from NetDevice for accepting packets from upper layers. i@y, these functions just trace these events and
the main jobs are done by "DoSend” and "DoSendFrom” that bélinstantiated by XgponOnuNetDevice
and XgponOltNetDevice. XgponNetDevice also provides fioms to other components for sending SDU
to upper layers and supporting Pcap and Ascii tracing. ki at@intains a per-device statistics, such as the
amount of data received from upper layer, dropped due tcebufferflow, etc. It also has one instance of
XgponPhy so that the engines of XgponOltNetDevice/Xgpam@eiDevice can get to know physical layer
parameters used in simulation.

37) xgpon-olt-net-device.h/.cc: source code ¥yponOltNetDevice XgponOltNetDevice is a subclass of Xg-
ponNetDevice for the OLT. It has a bunch of engines that imgliet various functions of the XGTC layer
for the OLT. These engines will be introduced below. Xgpdh@tDevice has implemented "ReceivePon-
FrameFromChannel” for processing the upstream bursts ®bdlds with its engines. It also has implemented
"DoSend” and "DoSendFrom” to put the packets from the uppgets to their corresponding queues. When
this class is initiated at the beginning of the simulatio8efidDownstreamFrameToChannelPeriodically” is
called to periodically (125 micro-second) generate a dereasn frame with its engines and pass the frame
to XgponChannel for broadcasting to all ONUs.

38) xgpon-onu-net-device.h/.cc: source code faponOnuNetDevice XgponOnuNetDevice is a subclass of
XgponNetDevice for ONU. It has a bunch of engines that imgetnvarious functions of the XGTC layer
for ONU. XgponOnuNetDevice has implemented "ReceivePamteéFromChannel” for processing the down-
stream frames from the OLT with its engines. It also has imgleted "DoSend” and "DoSendFrom” to put
the packets from the upper layers to their correspondingegieXgponOnuNetDevice also provides "Produce-
AndTransmitUsBurst” in which one upstream burst is produegth its engines and pass to XgponChannel
for sending to the OLT. This function is used when ONU proessXgponXgtcBwmap and schedules to
produce the burst assigned by the OLT.

This group of files are used to implement XG-PON through im#ating PonNetDevice and PonChannel.
Within XgponOltNetDevice, their engines need to call eatfiieds functions quite frequently. Although we
can decouple these engines through adding functions infmX@ltNetDevice (these functions will simply
delegate the tasks to the corresponding engines), theseesngre tightly coupled and too many functions
need to be added. Thus, we let each engine have one refereEXgponOltNetDevice and the engine can
access other engines through XgponOltNetDevice. For X@poiNetDevice, the situation is similar and we

handle in the same way.

39) xgpon-olt-engine.h/.cc: source code ¥yponOItEngine XgponOItEngine is the base class of the following
engines used by XgponOltNetDevice. Through inheritingrfridgponOItEngine, each engine will have one

reference of XgponOltNetDevice, which can be used to acotws related engines.

December 18, 2013 DRAFT

37

40) xgpon-onu-engine.h/.cc: source codeXgponOnuEngineXgponOnuEngine is the base class of the following
engines used by XgponOnuNetDevice. Through inheritinghfdgponOnuEngine, each engine will have one

reference of XgponOnuNetDevice, which can be used to aatess related engines.

41) xgpon-olt-conn-per-onu.h/.cc: source code XgponOltConnPerOnuAt the OLT, XgponOIltConnPerOnu is
used to hold the downstream XGEM Ports and the T-CONTs thHanhbgeo one ONU.

42) xgpon-olt-conn-manager.h/.cc: source codeXgponOltConnManagerXgponOltConnManager is designed
to maintain all XGEM Ports and T-CONTSs at the OLT. For each XGEort or T-CONT, it could be put into
several data structures for different purposes. In facgr&his only one instance of XGEM Port or T-CONT.
We just put one smart pointer that points to this XGEM Port e€AQNT to these data structures. Thus,
the memory overhead won't be increased significantly. Therene vector of XgponOItConnPerOnu and
the index of one ONU’s XgponOItConnPerOnu equals to its ORUThe broadcast downstream XGEM
Ports are organized separately. The main function of Xgft@udnManager is to find the corresponding
XGEM Port when receiving one packet from the upper layer anfind the corresponding T-CONT when
one upstream burst is received from XgponChannel. For peig the upstream burst quickly, all T-CONTs
(XgponTcontOlt) are organized into one vector and the inoiegne XgponTcontOlt equals to its Alloc-1d.
For the downstream XGEM Ports (XgponConnectionSendeg); #re organized differently in the following
two subclasses of XgponOltConnManager.

43) xgpon-olt-conn-manager-speed.h/.cc: source codégponOltConnManagerSpeeXdgponOltConnManager-
Speed is one subclass of XgponOltConnManager designedit&lyjumap the packet from upper layer to
its corresponding XGEM Port (XgponConnectionSender).dslivnstream XGEM Ports (XgponConnection-
Sender) are organized into one vector and the index of oneXgpnnectionSender is its XGEM Port-Id.
There is one pre-defined relationship between the XGEM HRorthe upper layer address of the computer
that this XGEM Port is configured for, and the ONU-ID of the ONhht this computer is attached to.
When the OLT gets one packet from the upper layer, based onettendtion address in packet header, the
corresponding XGEM Port-Id can be calculated directly arel dorresponding XgponConnectionSender can
be found very quickly ©@(1)). There are several shortcomings in this solution. Fir&EX1 Port-1d is 16-bit
and the vector may waste a lot of memory when there are a fewNK@Brts in the system. Considering
that there are only one OLT, the memory overhead should beptaiale. Second, due to the relationship
among XGEM Port-ld, Address, and ONU-ID, there will be somastraints on the number of XGEM Ports
per ONU. In the current implementation, the maximal XGEMtBaf one ONU is 64. It should be enough
unless we simulate some special cases.

44) xgpon-olt-conn-manager-flexible.h/.cc: source cadexyponOltConnManagerFlexibleXgponOltConnMan-
agerFlexible is one subclass of XgponOltConnManager desidgor flexibility, i.e., one ONU could have
a large number of XGEM Ports. In this class, all downstreamEKGports (XgponConnectionSender) are

organized into one map and the key is the upper layer addfeseccomputer that this XGEM Port is

December 18, 2013 DRAFT

38

configured for. Thus, it take®(log(n)) to map one packet from upper layer to the corresponding Xgpon

ConnectionSender.

45) xgpon-onu-conn-manager.h/.cc: source codeXgponOnuConnManagerXgponOnuConnManager is de-
signed to maintain the XGEM Ports and T-CONTSs that belong®rie ONU. It also maintains Xgpon-
ConnectionReceiver for the broadcast downstream XGEM fBoreceiving the broadcasted traffic. For each
XGEM Port or T-CONT, it could be put into several data struetufor different purposes. In fact, There
is only one instance of XGEM Port or T-CONT. We just put one gnpainter that points to this XGEM
Port or T-CONT to these data structures. Thus, the memoryheael won't be increased significantly. The
main functions of XgponOnuConnManager are to find the cpmeding downstream XGEM Port (Xgpon-
ConnectionReceiver) when receiving one XGEM frame from ofgphannel and to find the corresponding
upstream XGEM Port (XgponConnectionSender) when reagivime packet from upper layer. Its T-CONTs
(XgponTcontOnu) should also be maintained for T-CONT ealabperations. The following two subclasses
of XgponOnuConnManager are designed for speed and flayjhidispectively.

46) xgpon-onu-conn-manager-speed.h/.cc: source cod@farnOnuConnManagerSpedtbr each ONU, it needs
to check millions of XGEM frames per second to filter out thefftc for itself. Considering that there
could be hundreds of ONUs in XG-PON, the operation of mappi@EM frame to the corresponding
XgponConnectionReceiver must be carried out very quidRlye naive solution is to add one vector for each
ONU and let the index of XgponConnectionReceiver equal $oXGEM Port-ld. However, the vectors in
all ONUs may consume too much memory. Thus, we use one pneedefelationship between the XGEM
Port-1d, the upper layer address of the computer that thi€MGPort is configured for, and the ONU-
ID of the ONU that this computer is attached to. Based on XGEMt-RI and ONU-ID, we can judge
whether this XGEM Port belongs to this ONU. When it does beltmthis ONU, we can produce a small
number based on XGEM Port-Id and ONU-ID, and this number eduss the index of the corresponding
XgponConnectionReceiver in a much smaller vector. Therepst XGEM Ports (XgponConnectionSender)
and T-CONTs (XgponTcontOnu) are treated similarly. Whereirgog one packet from upper layer, we
calculate the index of the corresponding XGEM Port (Xgpom@rtionSender) based on the source address
in packet header. Similarly, due to the relationship amo@&EX! Port-Id, Address, and ONU-ID, there are
some constraints on the number of XGEM Ports and T-CONTs gor&id for one ONU.

47) xgpon-onu-conn-manager-flexible.h/.cc: source cadeXfjponOnuConnManagerFlexibl&XgponOnuConn-
ManagerFlexible is one subclass of XgponOnuConnManagsigiked for flexibility, i.e., one ONU could
have a large number of XGEM Ports and T-CONTSs. In this classlosvnstream/upstream XGEM Ports and
T-CONTSs are organized into one vector or one map. Thus, &stéklog(n)) or O(n) when searching the
corresponding data structures (XgponConnectionSendgrpXConnectionReceiver, XgponTcontOnu, etc.).
This group of files are used to manage XGEM Port and T-CONT af @hd ONU. They are designed

carefully so that the corresponding XGEM Port can be founidkdy when one SDU is received from upper

December 18, 2013 DRAFT

39

layer or one XGEM frame is received from XgponChannel. In RGN standard, the SDU could be IP
packets or layer-2 frames of various network technolodigtdrnet, ATM, etc.). In current implementation,
we assume that the SDU is IP packet and the IP address of thputemattached to ONU is used for
mapping. Furthermore, we can only configure one XGEM Porteflach computer since only IP address
is considered. Thus, to simulating multiple XGEM Ports pedld) we need connect multiple nodes to
this ONU. For XgponOltConnManagerSpeed and XgponOnuCamagerSpeed, there are some pre-defined
relationship among XGEM Port-Id, IP address, and ONU-IDe Bame relationship should also be applied
when allocating XGEM Port-ld and Alloc-ID to one ONU. Thisroalation is ensured through XgponHelper

that will be introduced below.

48) xgpon-olt-dba-per-burst-info.h/.cc: source codefgponOltDbaPerBurstinfdn XG-PON, multiple T-CONTs
of the same ONU may be served in the same XgponXgtcBwmap @mdctbrresponding XgponXgtcBwAllo-
cation should be put together to save the overhead of theeapstourst (Inter-burst gap, physical layer header,
etc.). XgponOltDbaPerBurstinfo is designed here to maintiaese XgponXgtcBwAllocation that belong to
the same upstream burst.

49) xgpon-olt-dba-bursts.h/.cc: source codeXgponOltDbaBurstsin one upstream frame, multiple ONUs may
be served and one XgponXgtcBwmap needs to specify multimistd Thus, XgponOltDbaBursts is designed
to maintain a list of bursts (XgponOltDbaPerBurstinfo) #® $pecified in one XgponXgtcBwmap. Note that
when producing XgponXgtcBwmap from XgponOltDbaBurst® thurst that is changed lastly must be the
last burst in XgponXgtcBwmap. Otherwise, if the size of thstichanged burst is increased a lot, some short
bursts at the end of the list may be totally out of the boundhey corresponding upstream frame and the
OLT cannot process these bursts correctly.

50) xgpon-olt-dba-engine.h/.cc: source codeXgponOltDbaEngineXgponOltDbaEngine is one engine of Xg-
ponOltNetDevice. It is responsible to process queue ogurypeeport from ONU, i.e., pass the report to the
corresponding XgponTcontOlt. It also maintains a list ofpggXgtcBwmap that have been transmitted,
but the corresponding upstream bursts have not been rdcéiVben receiving one upstream burst, the
burst’s receiving time, these XgponXgtcBwmap and theirattom time, and the logic one-way-delay of
XgponChannel will be used to find the XgponXgtcBwmap in whitle burst was scheduled. The OLT
can then get to know the burst profile used by this burst andegswo this burst further. The last and
the most important task of XgponOltDbaEngine is to produagpotXgtcBwmap for each downstream
frame. XgponXgtcBwmap notifies ONUs about how to share thstrapm wavelength. When producing
XgponXgtcBwmap, XgponOltDbaBursts and XgponOltDbaPdBmfo are utilized. As for T-CONTSs to be
served and the amount of allocated bandwidth, we let thelasbof XgponOltDbaEngine make these
decisions based on the DBA algorithm implemented by thelagbc

51) xgpon-olt-dba-engine-giant.h/.cc: source codeXfigmonOltDbaEngineGianXgponOltDbaEngineGiant is one

December 18, 2013 DRAFT

40

subclass of XgponOltDbaEngine and implements GiantMAQ [#2posed for GPON. It supports different
types of T-CONTSs specified in GPON (Fixed, Assured, Non-Aasduand Best-effort) and the correponding
parameters can be configured through our helper class.

52) xgpon-olt-dba-parameters-giant.h/.cc: source cotddhe QoS parameters used by T-CONTs supported by
GiantMAC [22].

53) xgpon-olt-dba-engine-round-robin.h/.cc: sourcesciod XgponOltDbaEngineRoundRohiXgponOltDbaEngineR-
oundRobin is one subclass of XgponOltDbaEngine. It tredtg-€ONTs equally and allocates upstream
bandwidth in a round-robin manner with considering queusupancy reports from ONUSs.

54) xgpon-onu-dba-engine.h/.cc: source codeXgponOnuDbaEngineXgponOnuDbaEngine is one engine of
XgponOnuNetDevice. It implements DBA related functionsGitlU side. More specifically, it produces
gueue occupancy report of one T-CONT when asked by the Olalst processes XgponXgtcBwmap in
each downstream frame. In case that one or more T-CONTs ®fQNU appear in XgponXgtcBwmap, it
will schedule one event to produce and transmit the upstieast at the corresponding time.

This group of files are used to implement DBA related functiah OLT and ONU. Considering that DBA is
a hot research topic, more subclasses of XgponOltDbaEmgih&e developed to implement various DBA

algorithms proposed for GPON or XG-PON.

55) xgpon-olt-ds-scheduler.h/.cc: source code XgponOltDsSchedulerWhen producing the payload of each
downstream frame, the OLT needs to determine the downst¢@mBM Ports to be served. Thus, Xg-
ponOltDsScheduler is designed as one engine of XgponM#Néte. The main interface is "SelectCon-
nToServe”, a virtual function that its subclass must impeatto determine the XGEM Port to be served and
the amount of data to be transmitted in the downstream frame.

56) xgpon-olt-ds-scheduler-round-robin.h/.cc: souragecfor XgponOltDsSchedulerRoundRobiXgponOItDsS-
chedulerRoundRobin is one subclass of XgponOIltDsScheduét schedules all downstream XGEM Ports
in round-robin manner with considering their queue occapgan
This group of files are used to schedule the downstream trhafftbe future, more subclasses of XgponOItDsS-

cheduler will be developed to support different QoS paransedf the downstream XGEM Ports.

57) xgpon-xgem-routines.h/.cc: source codeXgponXgemRoutinesXgponXgemRoutines provides several rou-
tines used to generate one XgponXgemFrame. It is used byXgpbnOltXgemEngine and XgponOnuXge-
mEngine.

58) xgpon-olt-xgem-engine.h/.cc: source code XgponOltXgemEngine XgponOltXgemEngine is one engine
of XgponOltNetDevice. It is responsible to produce the payl of a downstream frame, a bunch of XGEM
frames. It calls XgponOltDsScheduler to determines thfficrtéo be transmitted in this downstream frame.

Fragmentation may be carried out in the course. XgponOiltXgegine is also responsible to process XGEM

December 18, 2013 DRAFT

41

frames from ONU (Reassemble is carried out if needed). X@itxXgemEngine is resorted once for the
payload of each T-CONT (XgponXgtcUsAllocation).

59) xgpon-onu-xgem-engine.h/.cc: source coded@ponOnuXgemEngineXgponOnuXgemEngine is one engine
of XgponOnuNetDevice. It is responsible to produce the gaylof one upstream burst. It is also resorted by
XgponOnuFramingEngine once for each T-CONT within thissband it resorts to XgponOnuUsScheduler
of the T-CONT (XgponOnuTcont) for deciding the traffic to bartsmitted. Fragmentation may be carried
out in the course. XgponOltXgemEngine is also responsiblerocess the XGEM frames from the OLT.
For each downstream frame, it will filter out XGEM frames fbist ONU and carry out further processing

(reassemble, etc.).

60) xgpon-olt-framing-engine.h/.cc: source code X¥aponOltFramingEngineXgponOltFramingEngine is one
engine of XgponOltNetDevice and it is the core of the XGTCelayits main functions are to produce
XgponXgtcDsFrame to be transmitted in downstream diracéind to process XgponXgtcUsBurst received
from ONU. When producing XgponXgtcDsFrame, it resorts otbegines to compose different parts of
XgponXgtcDsFrame. For instance, XgponOltDbaEngine isdue produce XgponXgtcBwmap and Xg-
ponOltXgemEngine is called to generate the payload, a bwickGEM frames. Similarly, other engines
are resorted to process different parts of one XgponXgtecldstBreceived from ONU.

61) xgpon-onu-framing-engine.h/.cc: source codeXfgponOnuFramingEngineXgponOnuFramingEngine is one
engine of XgponOnuNetDevice. It also plays the core roledUGide. When producing XgponXgtcUsBurst,
XgponOnuDbaEngine is used to produce queue occupancytrapdrXgponOnuXgemEngine is called to
generate the payload, a bunch of XGEM frames. When procexgjpgnXgtcDsFrame, XgponOnuDbaEngine
is used to process XgponXgtcBwmap and XgponOnuXgemEngimalled to filter out and process XGEM
frames for this ONU.

62) xgpon-olt-phy-adapter.h/.cc: source code XgponOIltPhyAdapter XgponOIltPhyAdapter is one engine of
XgponOltNetDevice. It is responsible to implement the pbylaptation sub-layer of XG-PON standard at
OLT side. Currently, it is a stub class. In the future, traizsion error may be simulated in this class.

63) xgpon-onu-phy-adapter.h/.cc: source codeXfoponOnuPhyAdapteiXgponOnuPhyAdapter is one engine of
XgponOnuNetDevice. It is responsible to implement the ghgslaptation sub-layer of XG-PON standard at
ONU side. Currently, it is a stub class. In the future, traission error may be simulated in this class.
This group of files are used to implement the three sub-lagedsGTC layer. The framing sublayer plays

the core role and the information flow among these sublayeiltustrated in Figure 14.

64) xgpon-olt-ploam-engine.h/.cc: source code XgponOltPloamEngineXgponOltPloamEngine is one engine
of XgponOltNetDevice. It has a vector of XgponLinkinfo arftetindex of one XgponLinkinfo equals to the
corresponding ONU-ID.

December 18, 2013 DRAFT

42

6.967.3(10) F6-3
(1) XGTC PHY adaptation sublayer

(2) XGTC framing sublayer
(3) XGTC service adaptation sublayer

Fig. 14: XG-PON Information Flow

65) xgpon-onu-ploam-engine.h/.cc: source codeXgponOnuPloamEngineXgponOnuPloamEngine is one en-
gine of XgponOnuNetDevice. It has one XgponLinkinfo foreifs
Since our simulation module is designed to study performassues of one running XG-PON, PLOAM
messages and the corresponding procedures (activatinginga etc.) are not simulated. The two classes are
used mainly for holding per-ONU information organized writtXgponLinkinfo. In the future, these classes

may be enriched to simulate some PLOAM messages needed logsibarch.

66) xgpon-olt-omci-engine.h/.cc: source code fayponOltOMciEngine XgponOIltOmciEngine is one engine of
XgponOltNetDevice.

67) xgpon-onu-omci-engine.h/.cc: source codeXgponOnuOmciEngineXgponOnuOmciEngine is one engine
of XgponOltNetDevice.
Both the two classes are stub classes. OMCI for XG-PON is eergplex and it takes too much time to
implement. For functions accomplished through OMCI charf{(X*&EM Port and T-CONT configuration,

etc.), we implement through XgponHelper.

December 18, 2013 DRAFT

43

68) xgpon-id-allocator.h/.cc: source code fogponldAllocator When adding XGEM Port/T-CONT/ONU into
XG-PON, XgponldAllocator is used to get one available XGEMIrtRd/Alloc-ld/ONU-ID. There are two
subclasses designed for allocating these IDs in differexytswior different purposes.

69) xgpon-id-allocator-speed.h/.cc: source codeXgponldAllocatorSpeedAs introduced above, to speed up
XG-PON simulation, we can impose some relationship amond=M@ort-1d, Alloc-Id, ONU-ID, and IP
address of the node connected to ONU. XgponldAllocator&psethe subclass designed to impose this
relationship.

70) xgpon-id-allocator-flexible.h/.cc: source code fayponldAllocatorFlexible XgponldAllocatorFlexible is the
subclass of XgponldAllocator. It does not impose any refethip on XGEM Port-Id, Alloc-Id, ONU-ID, and
IP address of the node connected to ONU.

71) xgpon-config-db.h/.cc: source code fponConfigDbh XgponConfigDb is one database that holds the infor-
mation used by XgponHelper to configure XG-PON. For instaitcgan be used by the researcher to change
the subclasses of XgponOltDbaEngine and XgponOltDsSdeedsed in the simulation. It also uses one flag
to make sure that XgponOltConnManagerSpeed, XgponOnuZ@anagerSpeed, and XgponldAllocatorSpeed
are used together.

72) xgpon-helper.h/.cc: source code fdgponHelper XgponHelper provides the main interfaces needed by
researchers for simulating XG-PON. "Install()” is provitiéo install XgponOltNetDevice on the OLT and
install XgponOnuNetDevice on all ONUs. In this function, panOltNetDevice, XgponOnuNetDevice, and
their engines are created and configured. Thus, beforegdlinstall()”, XgponConfigDb should be used to
specify the subclasses used in the simulation and the pomdgg object factories must be initialized. The
attributes of some classes (XgponPhy, XgponChannel, edam)also be changed before calling "Install()”.
Through XgponHelper, researcher can also enable Ascii ap Bacing. In XgponHelper, functions are also
provided to create XGEM Port and T-CONT for the network. Befoalling these functions, XgponHelper
can be used to change QoS parameters and queue used by XGEM Por
This group of files provide the interfaces used by reseasctoersimulating XG-PON. Firstly, the researcher
need specify the parameters through XgponConfigDb and Xdelper. Secondly, the nodes for the OLT
and ONUs must be prepared and "Install()” of XgponHelper adledl to install XponOltNetDevice and
XgponOnuNetDevice on these nodes. Thirdly, after gettimgy ¢orresponding IP address of the computers
connected to ONUs, XGEM Port and T-CONT can be configuredutiitoXgponHelper. Before creating
XGEM Port or T-CONT, their QoS parameters and queue can aschbnged through XgponHelper.

December 18, 2013 DRAFT

44

APPENDIXC

XG-PON SMULATION EXAMPLE

This appendix presents one example for XG-PON simulatidh &im to demonstrate the usage of XgponHelper.
In this example, dumb-bell topology is adopted and bi-diosal UDP traffics are generated between computers
in core network (Left Servers and Left Clients) and commuteat access the Internet through XG-PON. The code
related with XG-PON simulation has been explained by commstarted with "////". The most important steps are
to install XgponNetDevice on the OLT and ONUSs, configure IRIradses for these nodes, and add XGEM Port
(and the T-CONT related with upstream XGEM Port) for cargytraffics of ONUSs.

/**

* This script will create UDP client and server at both sides ftgenerate tweway traffics.

*

* P2P

* ONU1 UDP sink/sender 1
* P2P P2P (CN) /

* Left Servers——— Gateway OLT

* | \ P2P

* P2pP | ONUN UDP sink/sender n
* Left Clients

st KK KK KK KoK KK oK oK oK oK oK oK oK oK oK ok ok s ok o o o o o o o o o s K KKK KKK KK KoK Kok Kok ok ok ok [

#include <iostream>
#include <fstream>

#include "ns3/core-module.h”

#include "ns3/network-module.h”
#include "ns3/internet-module.h”
#include "ns3/object-factory.h”
#include "ns3/applications-module.h”
#include "ns3/point—to—point—module .h”
#include "ns3/stats—-module.h”

/1 /1this header file must be included for simulating >®®N.
#include "ns3/xgpon-module.h”

using namespace ns3;

//'/1Some constants used in the simulation: 100 seconds tosbmulated; 2 ONUs;
/11/210Mbps per ONU for downstream and 2.5Mbps for upstream.

#define APP_START_TIME 0

#define APP_STOP.TIME 100

#define SIM_STOPTIME (APP_STOPTIME + 1)

#define ONUNUM 2

#define UDP_PKT_SIZE 1500

#define DS_PKT_INTERVAL 0.001

#define US_PKT_INTERVAL 0.004

/11l for supporting NS3 Log
NS_LOG_COMPONENTDEFINE (”XgponSimulationSpeedFanUdp”);

December 18, 2013 DRAFT

45

Il'lltrace sink used to print perdevice statistics periodically (per second).
void DeviceStatisticsTrace dqonst XgponNetDeviceStatistics& stat)

{
static uint64_t time2print = 1000000000; //1,000,000,000 nanoseconds per second.
if (stat.mcurrentTime> time2print)
{
std ::cout<< (stat.m.currentTime / 1000000000LX< "seconds have been simulated.”;
std :: cout<< "DS-BYTES:” << stat.m.passToXgponBytes;
std ::cout<< ";USBYTES:” << stat.m.rxFromXgponBytes;
std :: cout<< " ;FROM-CN-DS-BYTES:” << stat.m.rxFromUpperLayerBytes;
std :: cout<< ”;DROPPED-DS-BYTES:” << stat.m.overallQueueDropBytes;
std ::cout<< std::endl;
time2print += 1000000000;
}
}

int main (int argc, char sargv[])

{
I/ /1l default values for commardine options
bool p_verbose =false;
uintl6_t p_nOnus = ONUNUM;
uintl6_t p_appStartTime = APESTART_TIME;
uintl6_t p_appStopTime = APPSTOPTIME;
uintl6_t p_simStopTime = SIMSTOPTIME;
uintl6_t p_pktSize = UDPPKT_SIZE;
double p_dsPktinterval = DSPKT_INTERVAL;
double p_usPktinterval = USPKT_INTERVAL;

/1'1'get commandline options

CommandLine cmd;

cmd. AddValue ("verbose”, "Tellapplication to_log_if_true”, p_verbose);
cmd. AddValue ("onus”, "thenumber.of_onus”, p.nOnus);
cmd. AddValue ("astarttime”, "thestart_time_of_applications”, pappStartTime);

cmd. AddValue ("astoptime”, "thestop_time_of_applications”, pappStopTime);

cmd. AddValue ("sstoptime”, "thestop_time_of_whole_simulation”, p_simStopTime);
cmd. AddValue ("dspktinterval”, "thepacketinterval_of_downstreamudp_client(second)”, pdsPktinterval);
cmd. AddValue ("uspktinterval”, "thepacketinterval_of_upstreamudp_client(second)”, pusPktinterval);

cmd. AddValue ("pktsize”, "theUDP_packetsize(byte)”, ppktSize);
cmd. Parse (argc,argv);

if (p_verbose)

{
LogComponentEnable ("UdpClient”, LOGEVEL_INFO);
LogComponentEnable ("UdpServer”, LOGEVEL_INFO);
LogComponentEnable ("XgponChannel”, LOGEVEL_FUNCTION);

}

Packet:: EnablePrinting ();

I1'11111] Create all nodes and organize them into the corresgling containers for installing network devices.
//'//the ONUs, OLT nodes, and container for all xgpon nodes

NodeContainer oltNode, onuNodes, xgponNodes;

oltNode . Create (1);

December 18, 2013 DRAFT

46

onuNodes. Create (mOnus);
xgponNodes .Add(oltNode . Get (0));
for (int i=0; i<p_nOnus; i++) { xgponNodes.Add (onuNodes.Get(i))}

/lthe gateway node, OLT node, and container for the link tomsiate Internet’s core network
NodeContainer gatewayNode, cnNodes;

gatewayNode . Create (1);

cnNodes .Add(oltNode . Get (0));

cnNodes . Add(gatewayNode . Get (0));

//the end hosts at both sides of the networks
NodeContainer leftServerNode , leftClientNode , rightNexd,
NodeContainer leftServerLinkNodes , leftClientLinkNosle
NodeContainer rightLinkNodes[mOnus];
leftServerNode . Create (1);

leftClientNode . Create (1);

leftServerLinkNodes .Add(leftServerNode .Get(0));
leftServerLinkNodes .Add(gatewayNode . Get (0));
leftClientLinkNodes .Add(leftClientNode .Get(0));
leftClientLinkNodes .Add(gatewayNode . Get (0));

rightNodes . Create (mOnus);

for (int i=0; i<p_nOnus; i++)

{
rightLinkNodes[i].Add(rightNodes .Get(i));
rightLinkNodes[i].Add(onuNodes.Get(i));

11111111 Create all links used to connect the above nodes
/111 Xgpon network configuration through XgponHelper
XgponHelper xgponHelper;

XgponConfigDb& xgponConfigDb = xgponHelper.GetConfigDp);

xgponConfigDb . SetOItNetmaskLen (16);
xgponConfigDb . SetOnuNetmaskLen (24);
xgponConfigDb . SetlpAddressFirstByteForXgpon (10);
xgponConfigDb. SetlpAddressFirstByteForOnus (172);

/11l other configuration related information

Config:: SetDefault(”ns3:: XgponOltDbaEngineRoundRobi MaxServiceSize”, UintegerValue (1000));//1000 words
Config:: SetDefault("ns3:: XgponOltDsSchedulerRoundRw:: MaxServiceSize”, UintegerValue (10000));//10K bytes
Config:: SetDefault(”ns3:: XgponOnuUsSchedulerRoun®Ro:: MaxServiceSize”, UintegerValue (4000));//4K bytes

/111 Set Typeld String for object factories through XgpomGgDb before the following call.
Il'/l'initialize object factories
xgponHelper.InitializeObjectFactories ();

/11l configuration through object factory
xgponHelper. SetQueueAttribute (”MaxBytes”, UintegerNi@ (50000)); //queue size is 50KBytes

/l'/l'install xgpon network devices
NetDeviceContainer xgponDevices = xgponHelper.InstaltggonNodes);

December 18, 2013 DRAFT

47

/l'Internet core network through PointToPointHelper

PointToPointHelper p2pHelper;

p2pHelper. SetDeviceAttribute ("DataRate”, StringValu@20000Mbps”));
p2pHelper.SetChannelAttribute ("Delay”, StringValue 0ms”));
p2pHelper.SetQueue ("ns3::DropTailQueue”, "MaxPacKetsUintegerValue (2000));
NetDeviceContainer cnDevices = p2pHelper.Install (cnKs{,

/l'links for connecting end hosts to routers/onus throughifdoPointHelper
p2pHelper. SetDeviceAttribute ("DataRate”, StringValu@20000Mbps”));
p2pHelper.SetChannelAttribute ("Delay”, StringValue 2s”));
p2pHelper.SetQueue ("ns3::DropTailQueue”, "MaxPacKetsUintegerValue (2000));
NetDeviceContainer leftServerLinkDevices , leftClienitikDevices;
leftServerLinkDevices = p2pHelper.Install (leftServeirkkNodes);
leftClientLinkDevices = p2pHelper.Install (leftClienibkNodes);

p2pHelper. SetDeviceAttribute ("DataRate”, StringValu@20000Mbps”));
p2pHelper.SetChannelAttribute ("Delay”, StringValue hs”));
p2pHelper.SetQueue ("ns3::DropTailQueue”, "MaxPacKetsUintegerValue (100));
NetDeviceContainer rightLinkDevices[mOnus];
for (int i=0; i<p_nOnus; i++)
{

rightLinkDevices[i] = p2pHelper.Install (rightLinkNod®[i]);

I1'1111/]install internet protocol stack
InternetStackHelper stack;

stack. Install (xgponNodes);
stack.Install (leftServerNode);
stack.Install (leftClientNode);
stack.Install (rightNodes);
stack.Install (gatewayNode);

11111111 Assign IP addresses to all interfaces of all nodes
Ipv4AddressHelper addressHelper;

/1 Assign IP addresses to core network nodes (peitd—point link)
std :: string cnlpbase = xgponHelper.GetlpAddressBase 0(1®, 24);
std :: string cnNetmask = xgponHelper.GetlpAddressNeting®4);
addressHelper.SetBase (cnlpbasestr(), cnNetmask.cstr());
IpvdinterfaceContainer cninterfaces = addressHelpersi§a (cnDevices);
if(p_verbose)
{

Ipv4Address tmpAddr = cninterfaces.GetAddress (0);

std ::cout<< "OLT_Internet Interface’'sIP._Address:”;

tmpAddr. Print(std ::cout);

std ::cout<< std::endl;

tmpAddr = cninterfaces.GetAddress (1);

std ::cout<< "Internet_Gateway's IP_Address:”;

tmpAddr. Print(std ::cout);

std ::cout<< std::endl;

December 18, 2013 DRAFT

48

/I Assign IP addresses to end hosts at the left side (petot-point link)
IpvdinterfaceContainer leftServerLinklnterfaces , |€ftientLinklnterfaces;
std ::string leftServeripbase = xgponHelper.GetlpAddsBase (160, 1, 24);
std :: string leftServerNetmask = xgponHelper.GetlpAdsisBletmask (24);
addressHelper.SetBase (leftServerlipbasestr (), leftServerNetmask.cstr());
leftServerLinklnterfaces = addressHelper.Assign (leérSerLinkDevices);
std ::string leftClientlpbase = xgponHelper.GetlpAdds®&ase (160, 2, 24);
std::string leftClientNetmask = xgponHelper.GetlpAddsdNetmask (24);
addressHelper.SetBase (leftClientlpbases¢r(), leftClientNetmask.cstr());
leftClientLinkIinterfaces = addressHelper.Assign (lefi€ntLinkDevices);

/111 Assign IP addresses to OLT and ONU (for xgpon network ites)
Ptr<XgponOltNetDevice>- tmpDevice = DynamicCastXgponOIltNetDevice , NetDevice (xgponDevices.Get(0));
std :: string xgponlpbase = xgponHelper.GetXgponlpAddi®@ase ();
std :: string xgponNetmask = xgponHelper.GetOltAddressiNask ();
addressHelper.SetBase (xgponlpbasestr (), xgponNetmask.cstr ());
IpvédinterfaceContainer xgponinterfaces = addressHelp&®ssign (xgponDevices);
for (int i=0; i<(p_nOnus+1);i++)
{
Ipv4Address addr = xgponlnterfaces.GetAddress(i);
Ptr<XgponNetDevice- tmpDevice = DynamicCastXgponNetDevice, NetDevice (xgponDevices.Get(i));
tmpDevice—>SetAddress (addr);
if(p_verbose)

{
if (i==0) std::cout<< "OLT_IP_Address:";
else std::cout<< "ONU” << (i—1) <<"IP_Address:";
addr. Print(std::cout);
std ::cout<< std::endl;
}

/1 Assign IP addresses to end hosts at the right side (peiot-point link)
IpvdinterfaceContainer rightLinkinterfaces[pOnus];
for (int i=0; i<p_nOnus; i++)
{
Ptr<XgponOnuNetDevice tmpDevice = DynamicCastXgponOnuNetDevice, NetDevice (xgponDevices.Get(i+1));
std :: string onulpbase = xgponHelper.GetOnulpAddressBadmpDevice);
std :: string onuNetmask = xgponHelper.GetOnuAddressNethk();
addressHelper.SetBase (onulpbasestr (), onuNetmask.cstr ());

rightLinkinterfaces[i] = addressHelper.Assign (rightikDevices[i]);
if (p_verbose)
{
Ipv4Address addr = rightLinklnterfaces[i]. GetAddress)(0
std :: cout<< "Right_Node.” << i <<"IP_Address:";
addr. Print(std ::cout);
std ::cout<< std::endl;
addr = rightLinkinterfaces[i]. GetAddress(1);
std ::cout<< "IP_Address at_the_CorrespondingONU :";
addr. Print(std::cout);
std ::cout<< std::endl;
}
}

December 18, 2013 DRAFT

49

/1 11Add OMCI Channels

/I set attributes (QoS parameters, etc.) for connections He added as OMCI channel

//we need get the address before setting OMCI channel.

[/ for(int i=0; i<p_nOnus; i++)

11{

Il Ptr<XgponOlIltNetDevice oltDevice = DynamicCastXgponOIltNetDevice, NetDevice (xgponDevices.Get(0));
I/l Ptr<XgponOnuNetDevice onuDevice = DynamicCastXgponOnuNetDevice, NetDevice(xgponDevices.Get(i+1));
/I xgponHelper.AddOmciConnectionsForOnu (onuDevice ,tDodvice);

1}

/l'//add xgem ports for end hosts connected to ONUs
for (int i=0; i<p_nOnus; i++)
{
Address addr = rightLinkIinterfaces[i]. GetAddress(0);
Ptr<XgponOltNetDevice- oltDevice = DynamicCastXgponOIltNetDevice, NetDevice (xgponDevices.Get(0));
Ptr<XgponOnuNetDevice onuDevice = DynamicCastXgponOnuNetDevice, NetDevice (xgponDevices.Get(i+1));
uintl6_t allocld = xgponHelper.AddOneTcontForOnu (onuDevice ,tDévice);
uintl6_t upPortld = xgponHelper.AddOneUpstreamConnectionFouOfonuDevice, oltDevice, allocld, addr);
uintl6_t downPortld = xgponHelper.AddOneDownstreamConnectior®nu (onuDevice, oltDevice, addr);
if(p_verbose)
{
std :: cout<< "ONU-ID="<<onuDevice=>GetOnuld () << ";ALLOC—ID=" << allocld
<< ";UP—PORFID=" << upPortld << ";DOWN-PORFID=" << downPortld<< std::endl;

I1'111111] Populate routing tables for all nodes
Ipv4dGlobalRoutingHelper:: PopulateRoutingTables ();

1111111111 generating traffics

// Containers (downstream)

ApplicationContainer leftServers, rightServers;
uintl6_t leftServerPort=9000;

uintl6_t rightServerPort=9001;

/I Set UdpServer on left nodes

UdpServerHelper leftServerHelper (leftServerPort);
leftServers = leftServerHelper.Install (leftServerNoxe
leftServers. Start (Seconds (0));

leftServers.Stop (Seconds (pppStopTime));

/I Set UdpServer on right nodes

UdpServerHelper rightServerHelper (rightServerPort);
rightServers = rightServerHelper.Install (rightNodes);
rightServers. Start (Seconds (0));

rightServers.Stop (Seconds (pppStopTime));

/I SetUdpClient on left nodes (generate downstream traf)ffjiicconnect to right servers

for (int i=0; i<p_nOnus; i++)

{
UdpClientHelper udpClientHelper (rightLinklnterfaces]. GetAddress(0), rightServerPort);
udpClientHelper. SetAttribute ("MaxPackets”, UintegeaWie (2000000000));
udpClientHelper. SetAttribute (”"Interval”, TimeValue e8onds (pdsPktinterval)));

December 18, 2013 DRAFT

50

udpClientHelper. SetAttribute ("PacketSize”, UintegeaMie (p_pktSize));
ApplicationContainer clientApp = udpClientHelper. Inslia(leftClientNode .Get (0));
clientApp.Start (Seconds (m@mppStartTime + ix 0.001));

clientApp.Stop (Seconds (J@ppStopTime));

/I SetUdpClient on right nodes (generate upstream traffjcqonnect to left servers

for (int i=0; i<p_nOnus; i++)

{
UdpClientHelper udpClientHelper (leftServerLinkinteates.GetAddress(0), leftServerPort);
udpClientHelper. SetAttribute ("MaxPackets”, UintegealWie (2000000000));
udpClientHelper. SetAttribute (”"Interval”, TimeValue @8onds (pusPktinterval)));
udpClientHelper. SetAttribute ("PacketSize”, UintegeaMie (p_pktSize));
ApplicationContainer clientApp = udpClientHelper. Inslia(rightNodes.Get (i));
clientApp . Start (Seconds (mmppStartTime + ix 0.001));
clientApp.Stop (Seconds (JappStopTime));

/l'/lascii and pcap feature
if(p_verbose)

{
xgponHelper.EnableAsciiAll ("xgporsimulation—speed-fan—udp—ascii”);
xgponHelper.EnablePcapAll ("xgpersimulation—speed-fan—udp—pcap”);

/l'llprint per—net—device statistics at the OLT
Ptr<XgponOltNetDevice> oltDevice = DynamicCastXgponOIltNetDevice, NetDevice (xgponDevices.Get(0));
oltDevice—>TraceConnectWithoutContext ("DeviceStatistics”, Mak&lback(&DeviceStatisticsTrace));

std ::couk<std ::endl;

Simulator :: Stop(Seconds (gimStopTime));
Simulator::Run ();

Simulator :: Destroy ();

std ::couk<std ::endl;

return O;

REFERENCES

[1] Gigabit-Capable Passive Optical Networks (G-POREc. G.984.x, ITU Std., October 2008.

[2] IEEE 802.3ah Task ForGdEEE Std., June 2004. [Online]. Available: http://wwve@&302.org/3/efm

[3] H. Song, B.-W. Kim, and B. Mukherjee, “Multi-Thread Paiti: A Dynamic Bandwidth Distribution Scheme in Long-Reach FOREE
Journal on Selected Areas in Communicationsl. 27, no. 2, p. 134, Feburary 2009.

[4] J. Postel, “Transmission Control Protocol - DARPA InteriProgram Protocol Specification,” RFC 793, DARPA, Sep.1198

[5] H. lkeda and K. Kitayama, “Dynamic Bandwidth Allocation tWiAdaptive Polling Cycle for Maximized TCP Throughput in 2&PON,”
Journal of Lightwave Technologyol. 27, no. 23, pp. 5508-5516, December 2009.

[6] 10-Gigabit-Capable Passive Optical Networks (GPON) SedeRecommendation&.987.x, ITU Std., March 2010. [Online]. Available:
http://www.itu.int/rec/T-REC-G/e

[7] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRGPP Std.

[8] IEEE Std. 802.16-2004, IEEE Standard for Local and MetritpnlArea Networks - Part 16: Air Interface for Fixed BroadizhWireless
Access SystemHEEE Std., Octobor 2004.

December 18, 2013 DRAFT

(9]
[20]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]

[19]
[20]

[21]

[22]

[23]

51

“The NS-3 network simulator (available at http://wwwrzsn.org/),” 2008.

S. McCanne and S. Floyd, “The LBNL network simulator (IR5- 1997, http://www.isi.edu/nsnam/ns/.

T. R. Henderson, M. Lacage, and G. F. Riley, “Network dations with the ns-3 simulator,” iSigcomm (Dem)2008.

E. Weingartner, H. vom Lehn, and K. Wehrle, “A performareomparison of recent network simulators,”|@C, 2009.

J. Farooq and T. Turletti, “An IEEE 802.16 WiIMAX Moduleff the NS-3 Simulator,” irSIMUTools 2009.

G. Piro, N. Baldo, and M. Miozzo, “An LTE module for the 8snetwork simulator,” inWNS-3 in conjunction with SIMUTogl2011.
“OPNET Modeler (available at http://www.opnet.corh[Online]. Available: http://www.opnet.com/solutiongtwork_rd/modeler.html
C.-H. Chang, “Dynamic bandwidth allocation mac protacfdr gigabit-capable passive optical networks,” Ph.Dselitation, University
of Hertfordshire, 2008.

Z. Peng and P. Radcliffe, “Modeling and Simulation of &thet Passive Optical Network (EPON) Experiment Platforisedeon OPNET
Modeler,” in ICCSN 2011.

A. Bodozoglou, “EPON for OMNeT++,” Available at: htiffsourceforge.net/projects/omneteponmodule/, Septem®&0.2[Online].
Available: http://sourceforge.net/projects/omnetepodube/

D. B. Payne and R. P. Davey, “The future of fibre accessesys?”BT Technology Journalol. 20, no. 4, pp. 104-114, October 2002.
D. P. Shea and J. E. Mitchell, “A 10-gb/s 1024-way-spX0-km long-reach optical-access networdgurnal of Lightwave Technology
vol. 25, no. 3, pp. 685-693, March 2007.

M.-S. Han, H. Yoo, B.-Y. Yoon, B. Kim, and J.-S. Koh, “Effent dynamic bandwidth allocation for FSAN-compliant GPOBGurnal of
Optical Networking vol. 7, no. 8, pp. 783-795, August 2008.

H. C. Leligoun, C. Linardakis, K. Kanonakis, J. D. Angpbulos, and T. Orphanoudakis, “Efficient medium arbitratid FSAN-compliant
GPONSs,”International Journal of Communication Systemsl. 19, pp. 603-617, 2006.

IEEE 802.3av 10G-EPON Task Forc&EE Std., September 2009.

December 18, 2013 DRAFT

