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Abstract

Considering that smartphones are tightly-coupled with their users, the in-

teraction between smartphones and wireless sensor networks will play a very

important role in pervasive computing for improving our daily life. Instead of

using smartphones to access the services provided by various wireless sensor

networks, we focus on using smartphones to collect data from sensor nodes

opportunistically. In this paper, through analyzing the dataset from Mobile

Data Challenge by Nokia, we validated the feasibility of opportunistic data

collection through smartphones and identified several important characteris-

tics of smartphone users’ mobility, such as the strong spatial and temporal

localities that should be considered when designing protocols and algorithms

for opportunistic data collection.
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1. Introduction1

As wireless sensor networks mature, we expect to see many long-term and2

large-scale deployments for various applications, such as environmental mon-3

itoring, domestic utility meter reading, urban monitoring, etc. For example,4

millions of water meters will be installed across Republic of Ireland in the5

near future and many air quality monitoring systems will be deployed in large6

cities of Europe to satisfy EU regulations. Considering that the increasingly7

ubiquitous smartphones are tightly-coupled with their users, the interaction8

between smartphones and wireless sensor networks will play a very impor-9

tant role in future pervasive computing. For instance, a smartphone can10

get various information (temperature, air quality, etc.) from sensor nodes11

around its user and assist in making informed decisions. Here, it is normally12

assumed that smartphones and sensor nodes can communicate through some13

low power radios, such as Bluetooth and ZigBee 1. In this paper, instead14

of the above classical paradigm, we focus on letting smartphones provide a15

service to wireless sensor networks, i.e., using smartphones to collect data16

from sensor nodes opportunistically.17

Due to the limited computing capability and storage size of sensor nodes,18

these nodes normally send their data to an application server through some19

dedicated static sink nodes with the aim of further processing [1]. However,20

1Bluetooth is distributed with almost all smartphones and it is also adopted by many

sensor nodes, such as IMote and BTnode. ZigBee is the most widely used radio on sensor

nodes and it starts to appear on smartphones. In Mobile World Congress 2012, TazTag

released the first smartphone with both ZigBee and NFC (Near-Field Communication)

interfaces (http://www.taztag.com/).
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due to environmental constraints and/or cost issues, sensor nodes tend to be21

deployed sparsely and these networks tend to be partitioned. Consequently,22

deploying large numbers of static sink nodes for collecting sensor data from23

these sensor nodes would incur prohibitive costs in terms of deployment,24

maintenance, and data back-haul. The cost of equipping each sensor node25

with cellular network interface is even higher.26

Figure 1: Data Collection through Smartphones

As illustrated in Figure 1, it has been proposed to use smartphones carried27

by people in their daily life to collect sensor data opportunistically [2][3][4][5].28

Under this scenario, smartphones will gather data from sensor nodes auto-29

matically and accidentally (without any user intervention or route change).30

To participate in opportunistic data collection, a smartphone user just needs31

to run a background application on the phone, and many users could be mo-32

tivated with a very low reward. For instance, the owners of wireless sensor33

networks could reward these users by allowing them to access the current sen-34

sor readings (temperature, humidity, etc.). In case that the sensor readings35
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are not needed by smartphone users or the sensor readings cannot be publi-36

cized due to confidential and privacy reasons, these users could be rewarded37

by a small amount of virtual/real money through cellular network system.38

More discussion about the incentive, security, and privacy issues arising in39

opportunistic data collection through smartphones can be found in [5]. Con-40

sequently, the cost of data collection can be reduced through exploiting the41

uncontrolled mobility of smartphone users.42

Apart from reducing the cost significantly, opportunistic data collection43

through smartphones also has the benefits of adopting mobile sinks, such as44

the increased network reliability through removing the dependency on static45

sink nodes and the extended network lifetime through removing hot-spots46

near the static sink nodes [6][7]. Although data delivery latency could be47

long in opportunistic data collection, there are many promising wireless sen-48

sor network applications which are delay-tolerant. For example, analysis of49

environmental monitoring data is rarely urgent and meter readings for billing50

purposes can be delayed by weeks. Hence, it is worthwhile to study how to51

improve the performance of opportunistic data collection, especially for wire-52

less sensor networks in which sensor nodes are duty-cycled aggressively for53

longevity.54

Considering that the main point of opportunistic data collection is to ex-55

ploit the uncontrolled mobility of smartphone users, it becomes necessary to56

analyze their mobility traces for answering the following important questions.57

1. In opportunistic data collection, is the smartphone’s overhead (energy58

consumption, CPU, etc.) low enough so that the participation of smart-59

phone users could be motivated with a very low reward?60
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2. For each encounter between a smartphone and a sensor node, does the61

smartphone stay in the communication range of the sensor node long62

enough for collecting data opportunistically?63

3. Could smartphone users visit a sensor node frequently enough to sup-64

port a variety of applications?65

4. How does the smartphone users’ mobility distribute in time and space?66

How do these distributions influence the design and operation of the67

protocols and algorithms for opportunistic data collection?68

Based on the dataset from Mobile Data Challenge by Nokia [8], the mo-69

bility traces of 37 smartphone users are studied in this paper for answering70

these questions. This paper is organized as follows. The analysis method-71

ology is first introduced in Section 2. We also describe how the dataset is72

trimmed. The results of analysis are then presented and discussed in Section73

3. Finally, Section 4 discusses related works and Section 5 concludes this74

paper with several key findings, such as the feasibility of opportunistic data75

collection through smartphones and the strong spatial and temporal locali-76

ties that should be considered when designing the protocols and algorithms77

for opportunistic data collection.78

2. Data Preparation79

In this paper, the mobility of smartphone users is studied through an-80

alyzing the dataset from Mobile Data Challenge by Nokia. Although a lot81

of information had been collected for each smartphone user, we are mainly82

interested in the GPS readings recorded when a user was moving around83

outside. More specifically, we only use the following information of a GPS84
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reading, <time, latitude and longitude, speed>, i.e., the time, the location,85

and the movement speed when this GPS reading was logged.86

For opportunistic data collection, we hope to know how the encounters87

between smartphones and sensor nodes distribute in both space and time.88

Hence, the area visited by smartphone users is divided into cells2 with a89

size of 0.001 (Latitude) * 0.001 (Longitude). Approximately, a cell is a90

rectangle with a size of 185m * 126m and it matches well with the outdoor91

communication range of the current sensor node platform [9]. The duration92

of the Data Collection Campaign by Nokia is also divided into slots in the93

unit of hour, day, or week based on the analysis to be carried out. The94

distributions of GPS readings in time and space are then calculated and95

analyzed in this paper.96

Before carrying out analysis, the dataset is first trimmed. We have re-97

moved a few GPS readings that are far away from the Lake Geneva region so98

that the number of cells to be considered can be reduced significantly. For99

reducing the number of time slots to be considered, the GPS readings which100

were logged when most of users had quit the Data Collection Campaign by101

Nokia are also removed. Hence, the analysis can be carried out in a short102

time. Through removing these GPS readings, we can also avoid that the103

conclusions are skewed by the large areas and long periods in which the level104

of user participation is very low. The GPS readings, which have been trun-105

cated for user anonymity, are also removed since we cannot associate such a106

reading to a specific cell.107

2Note that a cell here is just a small area and it is totally different from the cell in

cellular networks.
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Consequently, 893,920 GPS readings from 37 smartphone users are used108

in our analysis3. The latitude range is [46.1, 46.8], the longitude range is [6.4,109

7.4], there are totally 700,000 cells, and the whole area is referred as the Lake110

Geneva Region. Sometimes, we only analyze the cells of the Lausanne Urban111

Area (one major city of the Lake Geneva Region), in which the latitude range112

is [46.50 46.55], the longitude range is [6.54, 6.66], and there are 6,000 cells.113

As for the duration, it is from 05/09/2009 to 07/01/2011 and the time span114

is 70 weeks. Considering that smartphone users may not participate during115

the whole period, based on the timestamps in their GPS readings, Figure116

2(a) plots the periods that these 37 users participate the Data Collection117

Campaign by Nokia. The level of user participation, i.e., the number of118

active smartphone users, is also plotted in Figure 2(b).119
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Figure 2: The participation of 37 smartphone users

3In the dataset obtained from Nokia, there are totally 1,553,154 GPS readings from 38

smartphone users. 491,566 GPS readings are purged because they have been truncated

for user anonymity. Since only GPS readings in a few sensitive locations are truncated,

these purged data does not affect the analysis results in this paper.
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3. Results of Analysis120

3.1. Percentage of Movement Time121

Considering that a sensor node is normally powered by un-chargable bat-122

tery, its radio must be duty-cycled for longevity. Hence, it is preferred to123

let a smartphone with re-chargable battery always keep its radio on so that124

they can discover each other in a timely manner [3]. However, the energy125

consumed by a smartphone’s radio for opportunistic data collection might126

become a serious concern.127

Fortunately, we can reduce its energy consumption based on context in-128

formation. It has been reported that a smartphone can deduce whether it129

is moving through accelerometer [10][11]. A smartphone can then keep its130

radio on only when its user is moving around. In case that its user is static,131

the smartphone can turn on its radio occasionally for collecting data and132

turn off its radio in most of the time for saving energy. To study the energy133

overhead with this scheme, we need get to know the percent of time that a134

smartphone user is moving around.135

In the dataset, a GPS reading is recorded every 10 seconds only when a136

user is moving around outside. Hence, if the interval between two consec-137

utive GPS readings is too long (>300s), we assume that the user is static138

and the radio can be turned off during that interval4. We then calculate139

the percentage of movement time for each smartphone user. Figure 3 plots140

the cumulative distribution function (CDF) of the percentage of movement141

4Note that GPS readings could be absent due to many reasons. Here, we assume the

dominant reason is that a smartphone user stops to move.
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time across 37 users. It shows that for most of smartphone users, the move-142

ment time is less than 10%. Hence, smartphone users are static and the143

radio for opportunistic data collection can be turned off most of the time.144

In another word, the overhead of opportunistic data collection in terms of145

energy consumption could be low for a smartphone, thus encouraging user146

participation.147
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Figure 3: CDF of the percent of movement time

3.2. Movement Speed148

Since a sensor node is normally duty-cycled, a smartphone still needs to149

take time to discover a sensor node even when they are in close proximity.150

Furthermore, a smartphone and a sensor node normally belong to different151

authorities, and authentication must be carried out before collecting data.152

Hence, for opportunistic data collection, it is desired that a smartphone could153

stay in the communication range of a sensor node for a period that is sufficient154

for discovery, authentication, and data collection.155

To check this issue, the cumulative distribution function of the move-156

ment speed in these smartphone users’ GPS readings is plotted in Figure 4.157
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Figure 4: CDF of movement speed

This plot indicates that the movement speed is quite low in many cases. In158

Lausanne Urban Area, the speed of 85% GPS readings is less than 10m/s.159

Even for the much larger Lake Geneva Region with many roads, there are160

still 75% GPS readings whose speed is less than 10m/s. Considering that161

the outdoor communication range of a sensor node is around 100m, a lot of162

data could be collected during the encounter between a smartphone and a163

sensor node. With the assumptions that ZigBee radio is used (the data rate164

is 250Kbps) and the duration for data collection is 10 seconds, 312K bytes165

can be collected per visit. Considering that the size of a sensor reading is166

normally small, thousands of sensor readings can be collected per visit.167

Figure 4 also indicates that the movement speed can be high with non-168

negligible probability, even when only the Lausanne Urban Area is consid-169

ered. This fact justifies our sensor node-initiated probing mechanism for170

timely discovery between smartphone and sensor node [3].171
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3.3. Per-cell’s GPS Reading Distribution among Smartphone Users172

As mentioned earlier, a smartphone and a sensor node normally belong to173

different authorities, and some authentication schemes based on public key174

cryptography are needed for secure data collection. Hence, a smartphone and175

a sensor node may consume too much CPU, time, and energy for carrying176

out the related public key operations. In case that a sensor node is repeat-177

edly visited by a few smartphones, hash-chain-based authentication scheme178

could be used by them to avoid carry out public key operations during each179

encounter [12]. To verify whether hash-chain-based authentication scheme180

should be applied, for each cell that is visited at least once per day and is181

visited by more than one user, we calculate the relative standard deviation182

of its GPS reading distribution among these users5.183
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Figure 5: CDF of relative standard deviation for per-cell’s GPS reading distribution among

smartphone users

5Among 700,000 cells in the Lake Geneva region, 16,687 cells are visited by more than

one users. As for 6,000 cells in the Lausanne urban area, 2815 cells are visited by more

than one users.
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Figure 5 plots the CDF of the relative standard deviation across these184

cells. It indicates that for most cells, the GPS reading distribution among185

users has a large variance (>1.0), i.e., the visits to a cell are mainly con-186

tributed by a few users. Hence, hash-chain-based authentication scheme187

could be used in opportunistic data collection and the overhead of authenti-188

cation could become quite low.189

3.4. Spatial Analysis190

3.4.1. Spatial Distribution191

In the following analysis, we first calculate the number of GPS readings192

in each cell. We then plot the spatial distribution of GPS readings among193

all cells of the Lake Geneva Region in Figure 6(a). The spatial distribution194

among cells of the Lausanne Urban Area is also plotted in Figure 6(b).195

Figure 6(a) shows that the mobility traces of just 37 smartphone users196

still could cover a large area. Figure 6(b) indicates that the cells in an urban197

area are visited frequently even when there are only 37 smartphone users.198

Our analysis shows that 19% of cells in the Lausanne Urban Area are visited199

at least once per week and 2.466% of cells are visited at least once per day.200

Hence, we can expect that opportunistic data collection through smartphones201

can support many applications, especially when sensor nodes are deployed in202

urban areas where we live in most of the time.203

3.4.2. Spatial Locality204

Figure 6(a) and 6(b) also indicate that a strong spatial locality exists in205

these distributions of GPS readings and different cells are visited by smart-206

phone users with different frequencies. Through checking the map of Lake207
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(a) Lake Geneva Region

(b) Lausanne Urban Area

Figure 6: Spatial distributions of GPS readings
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Geneva Region shown in Figure 7, we find that Figure 6(a) clearly illustrates208

that most of these GPS readings are within the towns alongside the A9 mo-209

torway of Switzerland. Figure 6(b) indicates that even in the urban area,210

there are still some cells that have never been visited. There are also some211

hot cells that are visited much more frequently than other cold cells. To study212

the spatial locality quantitatively, we have calculated the relative standard213

deviation of the distribution of GPS readings in the Lausanne Urban Area214

and it is as high as 5.23. Hence, a strong spatial locality is identified and215

sensor data should flow among sensor nodes to improve the performance of216

opportunistic data collection through exploiting this spatial locality [4].217

Figure 7: The Map of Lake Geneva Region

To study the feasibility of exploiting spatial locality, for the Lausanne218

Urban Area, a cell is marked as a hot cell if it is visited at least once per day.219

Otherwise, the cell is marked as cold cell. We then calculate the distance220

between a cold cell and its nearest hot cell. The cumulative distribution221

function of these distances is plotted in Figure 8 and this plot shows that for222

63.5% cold cells, the distance is less than ten cells. The distance could be223
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reduced if the mobility traces of more users are considered. However, con-224

sidering that human mobility is normally constrained by roads and streets,225

cold cells should continue to exist. Hence, sensor data should be exchanged226

among sensor nodes for exploiting spatial locality and the data could reach227

a hot cell through a few hops.228
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Figure 8: CDFs of the distance between a cold cell and its nearest hot cell

We have also calculated the distance between a hot cell and its nearest229

hot cell. The result in Figure 9 shows that for most of hot cells, one of230

its direct neighbors is also a hot cell. Hence, opportunistic data collection231

through smartphones is robust to the failure of sensor nodes in a hot cell. It232

also indicates that the neighboring hot cells tend to be visited sequentially233

and this characteristic should be exploited if the duty cycle of sensor nodes234

isn’t too low.235

3.4.3. Seasonal Changes236

To exploit the spatial locality for opportunistic data collection, a hot cell237

should continue to be a hot cell for a long time so that sensor data won’t238

chase the moving hot cells and consume too much energy to arrive at a hot239
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cell and be collected by a smartphone in that cell. Hence, for each week, we240

calculate the number of GPS readings for each cell and these numbers have241

been plotted into a 3-D figure. Several animations are then produced based242

on these figures to demonstrate the changes of the spatial distribution with243

the elapse of the time. These animations are available at the official webpage244

of the Mobile Data Challenge by Nokia [13].245
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Figure 10: The invariability of hot cells

To study the seasonal changes of hot cells quantitatively, for each week, a246

cell in the Lausanne Urban Area is first marked as a hot cell if it is visited at247
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least once per day. We then plot the percent of hot cells that continue to be248

hot cells with the elapse of time. Figure 10 shows that 34% of hot cells are249

still hot cells after two weeks. Hence, spatial locality is quite steady and it250

could be exploited in opportunistic data collection. However, it also indicates251

that seasonal changes do exist and sensor nodes must learn and exploit the252

spatial locality online.253

3.5. Temporal Analysis254

To carry out temporal analysis, the whole duration is divided into time255

slots of one-hour length. The number of GPS readings in each time slot is256

then counted and this temporal distribution is plotted in Figure 11.257
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Figure 11: Temporal Distribution

3.5.1. Period Analysis258

Previous studies find that human mobility normally follows some repeated259

patterns (diurnal, etc.) [14]. To check whether repeated patterns exist in260

smartphone users’ mobility, autocorrelations of the above time series are cal-261

culated with different time lags and the results are plotted in Figure 12. This262
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Figure 12: Autocorrelations with different time lags

plot indicates that the mobility of smartphone users does have a repeated263

pattern whose epoch length is 24 hours.264

However, the diurnal pattern isn’t obvious since there is no negative au-265

tocorrelation with a 12-hours lag. As illustrated in Figure 2(b) and Figure266

11, one potential reason is that the number of active users and the number267

of GPS readings are reduced significantly in the late phase of the Data Col-268

lection Campaign by Nokia. Hence, period analysis is carried out again for269

the GPS readings between the 15th and the 35th week (2520-5880 hours)270

during which the number of active users and the number of GPS readings271

are stable. The corresponding results of period analysis are then plotted in272

Figure 13, which demonstrates the existence of the diurnal pattern clearly.273

Furthermore, both Figure 12 and 13 don’t show the common weekly pat-274

tern. When the time lag is one week (7*24=168 hours), the autocorrelation275

is only slightly higher than other time lags. This issue will be discussed later276

when we carry out per-cell analysis.277
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Figure 13: Autocorrelations (15th – 35th weeks)

3.5.2. Temporal Locality278

In opportunistic data collection, if there are rush hours in which a sensor279

node is visited by smartphones much more frequently, a sensor node can280

discover smartphones mainly during rush hours so that it can upload the281

same amount of data with much less energy consumption [2]. Hence, we will282

check the existence of rush hours, i.e., temporal locality, in the mobility of283

smartphone users. Considering that the mobility of smartphone users has a284

strong diurnal pattern, the distribution of all GPS readings among 24 hours285

of a day is then calculated and plotted in Figure 14. This plot indicates that286

rush hours do exist in the morning (8am) and evening (4–6pm).287

If an hour continues to be a rush hour for many days, a sensor node can288

learn and exploit the temporal locality easily. To study this issue quanti-289

tatively, for each day, an hour is marked as a rush hour if its number of290

GPS readings is one time more than the average across 24 hours. This large291

threshold is used to avoid that too many hours are marked as rush hours.292

Figure 15 then plots the percent of rush hours that continue to be rush hours293
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with the elapse of time. It shows that 56% of rush hours are still rush hours294

even after 20 days. Hence, temporal locality is quite steady and it should295

and could be exploited. However, Figure 15 also indicates that rush hours296

stop to be rush hours after a long period, seasonal changes do exist, and a297

sensor node should learn and exploit rush hours autonomously.298
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Figure 15: The invariability of rush hours
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3.5.3. Per-cell Analysis299

We notice that in Figure 14, the number of GPS readings in a rush hour300

isn’t much higher than the average. The possible reason is that the rush301

hours of various cells are different. They will cancel each other since we302

study the temporal locality for the whole area. To validate this conjecture,303

we carried out the following per-cell temporal analysis.304
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Figure 16: Daily distribution of two cells

For two cells that are visited frequently, their distributions of GPS read-305

ings among 24 hours of a day are calculated and plotted in Figure 16. This306

plot clearly validates the above conjecture since these two cells do have dif-307

ferent rush hours.308

In the above period analysis, we also notice that the common weekly309

pattern doesn’t exist in both Figure 12 and Figure 13. This issue might310

be caused by the same reason, i.e., the period analysis is carried out for311

the whole area. Hence, for the above two cells, their distributions of GPS312

readings among 7 days of a week are also plotted in Figure 17. This plot313

shows that cell 1 is visited more frequently in weekdays and cell 2 is visited314
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more frequently in weekends. Hence, weekly pattern may exist for some315

cells. However, due to the small numbers of GPS readings per cell, per-316

cell period analysis doesn’t produce any meaningful results and these results317

aren’t reported here.318
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For carrying out contact probing efficiently, it could be helpful to design319

the scheme based on the distribution of the inter-arrival time among nodes320

[15]. Hence, for each of the above two cells, we also calculate the intervals321

between the consecutive visits of smartphone users. Figure 18 plots the322
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cumulative distribution functions of their inter-arrival time. It indicates that323

the smartphone arrival patterns observed by cells are location-dependent.324

Instead of designing a probing scheme for all sensor nodes, it’s better to let325

each sensor node adapt to its own situation.326

In summary, the results of per-cell analysis indicate that there are no327

common repeated pattern, temporal locality, and inter-arrival time across all328

cells and a sensor node must autonomously learn and exploit the temporal329

distribution of its own location.330

4. Related Work331

4.1. Mobile Data Collection332

In [16][17][18][6][7][19], the use of mobile nodes has been proposed to move333

around in the deployed area and collect data from sensor nodes. Depending334

on the applications, their mobility can be either controlled or not, and these335

mobile nodes may collect data from sensor nodes within the range of one or336

multiple hops. In [20], the use of mobile phones had also been proposed to337

collect data from static sensor nodes purposely or opportunistically. However,338

none of them had studied the scenario when the uncontrolled mobility of the339

public is considered.340

In [2][3][4][5], we have carried out research on opportunistic data collection341

through smartphones, and several protocols have been designed for efficient342

data collection through exploiting the temporal and spatial locality of human343

mobility. The findings in this paper validate the assumptions used by us in a344

more appropriate spatial granularity and provide more directions to improve345

the performance of opportunistic data collection through smartphones.346
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4.2. Human Mobility Analysis347

Based on the history that users visit two Wi-Fi access points (one is348

deployed in a residence building and the other is deployed in an academic349

building), human mobility has been studied in [21]. It is confirmed that rush350

hours, i.e., temporal locality, does exist in human mobility. As for seasonal351

changes of rush hours, the existence depends on the locations of access points.352

The mobility datasets of phone users have also been studied by the re-353

search community [14][22][23], and it has been pointed out that their mobility354

follows some repeated patterns and demonstrates strong temporal and spa-355

tial localities. However, in these datasets, only the current base station is356

recorded when a phone user communicates through a cellular network (call,357

short message, etc.). Hence, the phone user’s location accuracy is as coarse358

as several kilometers or even tens of kilometers due to the large communica-359

tion range of a base station. Although the mobility analysis based on these360

datasets is valuable for urban planning, the location accuracy is too coarse361

for opportunistic data collection since the communication range of a sensor362

node is normally less than 100m [9].363

We believe that our study based on the dataset from Mobile Data Chal-364

lenge by Nokia is extremely valuable to opportunistic data collection through365

smartphones. It is the mobility traces of smartphone users that are analyzed366

in this paper and the location accuracy of GPS readings could be tens of367

meters, that should be enough for opportunistic data collection.368
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5. Conclusions369

For the purpose of opportunistic data collection through smartphones,370

the smartphone users’ mobility traces from Mobile Data Challenge by Nokia371

are analyzed in this paper and our findings are summarized below.372

1. Opportunistic data collection through smartphones should be a very373

promising solution. The overhead on smartphone in terms of energy374

consumption and CPU can be very low and the mobility of smartphone375

users could provide a performance level that is sufficient for many wire-376

less sensor network applications, especially when sensor nodes are de-377

ployed in urban areas.378

2. The mobility of smartphone users follows some repeated patterns (di-379

urnal, etc.) and the distributions in time and space have strong local-380

ities. When designing the protocols and algorithms for opportunistic381

data collection, these localities should be considered and exploited. For382

instance, a sensor node should try to discover smartphones mainly dur-383

ing rush hours [2], and sensor data should also be exchanged among384

sensor nodes for exploiting the spatial locality of smartphone users’385

mobility [4]. Due to the existence of seasonal changes and the location-386

dependent mobility patterns observed by sensor nodes, sensor nodes387

should learn and exploit these localities autonomously.388

In this paper, the used dataset only includes the mobility traces of 37389

smartphone users. Some planned analysis (per-cell period analysis, etc.)390

cannot produce any meaningful results since there is insufficient data. In the391

case that a larger dataset becomes available, we will carry out this analysis392
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to get more extensive results. Based on the above findings, we will refine our393

protocols proposed for opportunistic data collection through smartphones394

[2][3][4]. With the dataset from Mobile Data Challenge by Nokia, these395

proposals will also be re-evaluated through trace-based simulations.396
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