Secure Naming for Distributed Computing using the
Condensed Graph Model

by

Thomas Brendan Brabants Quillinan, B.Eng., M.Sc.

THESIS

Presented to the Faculty of Science
National University of Ireland,
Cork

for the Degree of

Doctor of Philosophy

July 2006



“O! be some other name: What's in a name? that which we callszyo
by any other name would smell as sweet.”

William Shakespeare, Romeo and Juliet Act Il, Scene II.



Abstract

Distributing computations across multiple machines haire increasingly important in recent
years. With the advent of the computational Grid and othsiriduted compute projects, such as
Seti@Home and, most recenthStardust@Home, the distributed computation area is expanding
rapidly. In general, distributed computing incorporates areas of meta-computing, Grid comput-
ing, cluster computing and Web Services. Implementing @illiged computation architecture has
several basic functional requirements, such as load hapn@ult tolerance and security. Provid-
ing a security architecture for such a diverse area is anr@pochallenge. Requirements include
ensuring the integrity of results, providing an accessgrobmechanism for sensitive resources and
computations, and authenticating the users of the system.

An important aspect of a security architecture for a disteld system is the identification and
control of both the computation and the compute nodes wittérsystem. For example, in order to
control access to a computation, we must be able to idetéyirtdividual components that make
up the computation. We propose that in order to control a ctatipn, we must be able to name all
the aspects of the computation. The central premise of @sighs:“If you can name it, you can
control access to it”

This dissertation examines the security requirements efVlebCom distributed computing
environment. WebCom is an extensible distributed comfmurtagnvironment that has the ability
to execute arbitrarily complex compute jobs on many diffietgpes of architecture. WebCom is
primarily designed to execute condensed graph applicatiora distributed manner. This thesis
develops the security architecture for WebCom, primadlyptovide a systematic access control
mechanism for condensed graph applications. We exploreahgensed graph model and develop
a naming system that is used to control the execution of thegghs and allows the specification
of sophisticated security policies in a distributed erviment. SDSI-like local haming is used to
name objects in condensed graphs. We demonstrate thelftgxabthis architecture with a number
of case studies, including a micropayment architecturalistributed computations, an automated
administration architecture for Grid and an activity basedure workflow architecture.



Dedicated to my Grandfather, Captain P. Brendan Sugrue 12005, who passed away during
the writing of this thesis. He never let me forget that fanmlyhe most important treasure that we
posess. He considered his family his greatest achievermeiitforever miss his larger than life

personality, his caring of others and, most of all, his sarfisrischief and fun.

“Ni fheicfidh muid a leithéid aris ”



Acknowledgements

First and foremost, | want to thank my family who have bel@we and supported me during my
endless college career: at last the eternal student no Momay parents whose advice, belief and
love has always been readily available and is appreciatett ialways at the time. | especially
want to thank my sister Niamh who spent a weekend proof-ngathis totally unfamiliar work.
She has also kindly provided me with somewhere (nice!) te fiwr the last four years. | also
want to thank my other siblings, Cliona and Cillian, who h&edped and entertained me over the
years. | especially want to thank my mothame, and brother, Cormac, who ransomed the laptop
containing this work back from the thieves who stole it. loalgant to thank Galway Bay FM and
especially the Galway Sentinal for their help retreiving taptop.

| also want to acknowledge the help and friendship shown toythe members of the Centre
for Unified Computing in UCC especially: Adarsh, Barry, BridDave, Hongbin, James, John
O’Regan, Keith, Max, Neil, Padraig, Philip and Therese.cgdenention must go to Barry Mulcahy
and Brian Clayton, with whom | have collaborated in the past ftom whom I've learnt a great
deal. Thanks also go to Barry for the last-minute proof negdiAlso to Philip Healy with whom a
friendly competition for completion, that | lost by two weskelped keep me focused throughout
seemingly endless writing up period. Thanks also go to theéo CUC postgradutes Daithi and
Colm for their help. | want to thank the other postgraduatesomputer science that have helped
(and entertained) me, especially the Adrians, JonathaneMatz and Will.

To the head of the CUC, John Morrison, who has always helpddeavides a great environ-
ment within the group. | particularly appreciate his actirggmy internal examiner in very difficult
circumstances. | also want to thank my external examinauc®iChristianson, who provided a
rigorous, but enjoyable, examination. His interest anthgsiasm are greatly appreciated.

Last, but never least, to my supervisor, Simon Foley, whajuided and supported me through-
out my Ph.D. and whose advice was always available and colgesmt never thank him enough for
all his help. Special thanks also go to Vivien for those gotgebrownies!



Contents

Abstract 2
Acknowledgements 4
| Introduction and Overview 15
1 Introduction 16
1.1 Distributed Computing . . . . . . . . . . e e 16
1.2 WebCom . . . . . . e
1.3 Naming Distributed Computations . . . . . ... ... ... .. . «...... 18
1.4 SecuringWebCom . . . .. .. .. . .. .. e 19
1.5 Contributions . . . . . . . . e 20
1.6 LayoutofDissertation . ... .. ... .. ... .. .. .. ... 21
Il Background and Review 23
2 Authorisation and Authentication 24
2.1 AccessControl . . . ... 24
2.1.1 AccessControl Matrix . . . ... ... ... ... . 25

2.2 AccessControlModels . . . . . . .. e 27
2.2.1 Mandatory AccessControl . . . . ... ... ... ... ... ... .. 28

2.2.2 Discretionary Access Control . . . . . . ... .. 0 e 30

2.3 Trust Management Systems . . . . . . . . . . .. e 31
2.3.1 PolicyMaker . . .. . . . . e

2.3.2 KeyNote . . . .. . . . . . e

2.3.3 SDSI/SPKI . . . . .

2.3.4 Advanced Trust Management Systems . . . . . ... ... ...... 40

2.4 Authentication . . . . . . . . .. 48



2.4.1 Simple Authentication Protocol . . . .. .. .. ... ... ...... 48

2.4.2 SSLITLS . . . . e 49
24.3 Kerberos . .. ... 50
2.5 Other Security Technologies . . . . . . . . . . . . . i i 50
251 X509 . ... e 51
252 PGP . . e 53
253 SecureMobileCode . . ... ... . ... 35
Distributed Naming 55
3.1 DirectoryNaming . . . . . . . . . . . . . e e e 56
311 X500 . .. 56
3.1.2 LDAP . . . e e e 57
3.2 ObjectNaming . . . . . . . . . . . e e 59
3.2.1 SpringNaming Service . . . . . . . . .. . .. e 59
3.22 CORBANamMeS . . . . . . . . 60
3.3 OtherNaming Systems . . . . . . . . . . . . e 61
3.4 Discussion and Conclusions . . . . . . . ... L 62
Condensed Graphs and Distributed Computing 63
4.1 Computational Model . . . . . . . . .. ... e 64
4.1.1 Stemming and Grafting: a basis for lazy and eageratiatu . . . . . . . 65

4.1.2 Condensation and Evaporation: embedding subgraphs ... . . . ... 69
4.1.3 Unifying eager, lazy and imperative computations ...... . . . ... .. 70

4.2 Executing Condensed Graphs . . . . . . . . . . . . . . ... ... 71
421 TripleManager . . . . . . .. e 17
4.2.2 Distributing Computations . . . . .. ... ... . L. 71

WebCom 73

5.1 Distributing Computations . . . . . . . . ... .. e 74

5.2 Architecture . . . . . . . . 75
5.2.1 Execution EngineModule . . ... ... ... ... ... . ... ... 76
5.2.2 Communications Manager Module . . . . ... ... .......... 76
5.2.3 LoadBalancingModule . . ... ... ... ... .. .. .. .. ..., 77
5.2.4 Fault Tolerance Module . . . . ... ... ... . ... .. ... .. .. 77
5.2.5 Naming ManagerModule . . .. ... ... ... ... .. ... . ..., 77
5.2.6 Security ManagerModule . . . ... .. ... .. ... . 78
5,27 UserModules . . . . . . ... . .. ... 78

5.3 WebCom Applications . . . . .. .. .. ... .. .. . 78



5.4 Separation of Concerns
5.5 Discussion and Conclusions

Security in Distributed Systems

Naming for Condensed Graphs

6.1 Context
6.2 Naming Condensed Graphs

6.2.1
6.2.2

6.3 A Naming Model for Condensed Graphs
6.4 Reduction Rules

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5

6.5 History-based Names

6.5.1
6.5.2

6.6.1
6.6.2
6.6.3
6.6.4

6.7 Discussion and Conclusion

Uniguenames. . . . . . . . . . . i
Self ReferencingNames . . . . ... .. ..........

Tuple Reduction . . . ... ... ... ...........
Tuple Elimination . . .. ... ... ... .........
Name Equivalence . . . .. .. ... ... ... ......
Reduction Rule ApplicationOrder . . . . . ... ... ...
Creating and UpdatingNames . . . . ... ... .....

Naming Grid Submissions . . . . ... ... ... .....
Web Services Policy . .. ... ... ............
6.6 An API for Naming in WebCom

webcom.core.naming.ReductionRule

webcom.core.naming.NameGenerator . . . . .. .. ...
webcom.core.naming.WebComName . . ... ... ...

webcom.core.naming.NamingManagerModule

WebCom Security Model

7.1 WebCom Access Control Model

7.1.1
7.1.2
7.1.3
7.1.4

7.2 Sample Security Policies for WebCom

7.2.1
7.2.2
7.2.3

WebCom Permissions . . . . .. ... ... ........
Ordering Permissions . . . . . . .. ... ... .......
Binding Permissions to Entities . . . . . .. ... ... ..

Implementing the Security Model in WebCom

ShareTrader . . . . . . . . . e
High Watermark stylepolicy . . . . .. .. ... ... ...
Pull and Push Access Control . . . . .. ... ... ...



7.3 Secure WebCom Software Architecture . . . . . . .. ... .. ... ..
7.3.1 webcom.core.security.SecurityManagerModule . ...... . . .. .. ..
7.3.2 Trust Management Based Security Manager . . . . ... ... .. ..

7.4 Secure Authentication between WebCom Virtual Machines. . . . . . . . . ..
7.4.1 webcom.core.conman.SecureConnectionManager ........ . . . ...

7.5 Discussion and Conclusions . . . . . . . ... e e e

8 Case Studies

8.1 Classic Secure WebCom . . . . . ... ... . ... .

8.2 Micropayments . . . . . . ... e e e e e e
8.2.1 MicropaymentsinKeyNote . . ... ... ... ... ... .......
8.2.2 Security Analysis . . . . ...
8.2.3 Micropayments in Secure WebCom . . . .. ... ... ..... ...
8.2.4 DISCUSSION . . . . . .

8.3 GridAdmin . . . . .. e
8.3.1 Administratinga Grid . .. ... .. .. ... ... ..
8.3.2 Grid Administration using WebCom . . . . . . ... ... .. .....
8.3.3 Trust Paradigms for Grid Administration . . . .. .. .........
8.3.4 DISCUSSION . . . . . .

8.4 WebComhac . . . - o o o e e
8.4.1 WebComyac Architecture . . . . . . . . . . . .. .. ..
8.4.2 Implementing WebCopuc . . . . - o . o oo e
8.4.3 KeyStar . . . . . ...
8.4.4 Stacked Authorisation . . . .. ... ... L e

8.4.5 DISCUSSION . . . . . v o e e e e e

8.5 Discussion and Evaluation . . . . . . . . . . . . ... e

IV Discussion and Conclusions

9 Conclusions
9.1 Results and Contributions . . . . . . . . . . e e e
9.2 Limitations and Future Work . . . . . . . . . . . e e

V Appendices

A WebCom Names XML Definition

137
138
140
140
141

177
178
178

181

182



B Naming System for the ShareTrader Application

B.1 Generating Names for ShareTraderNodes . . . . . ... ... ........

B.2 Reduction Rules for ShareTrader Nodes
Afterword

Bibliography

184
184
186

187

188



List of Figures

2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18
2.19

3.1
3.2
3.3
3.4

4.1
4.2
4.3

Asimple access controlmatrix. . . . . . . . . .. ... .. . e
The Reference Monitor Model . . . . . . . ... ... ... ... ... ...,
Layers of a Software System. . . . . . . . . ... e .
Overview of a University Delegation Tree . . . . . . . .. .. ... .. ....
KeyNote Trust Management Architecture (From [30]).

Structure of a PolicyMaker query. . . . . . . . . . . . .. e
Structure of a PolicyMaker assertion. . . . . . . . .. . .. oL
PolicyMaker policy assertion for University. . . . . . . .. .. ... ... ...
PolicyMaker assertion for Departmental Head. . . . . . ...... . .. . ... ..
Basic Structure of a KeyNote credential . . . .. .. ... .............
Local Names using S-Expressions . . . . . . . . . . . ... e
An example SPKI Certificate, authorising the appointhacademic staff.
Overview of a SD3 Application . . . . . . . . .. ... .. ... .. ......
Example REFEREE statement indicating Alice is trustiyoin a certification mod-

]

Example REFEREE Policy, enforcing UCC'’s acceptabdéecomditions. . . . . . .
Example QCM GlobalName. . . . . . . .. ... ... ... .. ... .. ...
The different types of credentials inRT. . . . . . . .. . ... .. ... ...
Challenge-Response Authentication Protocol

An example X.509v3 certificate . . . . . . .. ... L e

X.500 Directory Information Tree . . . . . . . . . . . . e
A sample UCC LDAP directory tree . . . . . . . .. . .. .. .. ... ...
Information about Ceres stored in an LDAP directory. ...... . . . ... .. ..
AFile System Naming Graph. . . . . . . . . .. .. ... .. . . .. .. u..

(a) shows a node with a dynamic operator, (b) a node withtie ®perator.
Asimple Condensed Graph. . . . . .. .. ... ... ... .. .. ...
(@)Ais a stemmed operand B) (b) Ais graftedtoB . . . .. ... ... .....

10



4.4
4.5
4.6
4.7
4.8
4.9
4.10

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

A lazy graph implementation of Factorial(n). . .. .. .. ... ........ 67
The partially executed graph of Factorial(n) aftercees . . . . .. .. ... .. 68
The partially executed graph of Factorial(n) after teéps. . . . . . . ... .. .. 68
The partially executed graph of Factorial(n) after tkeceition of tha f el node. . 68
Evaporation of the recursi\act node within the Factorial Graph . . . . . . .. 69
An eager version of Factorial(n) . . . ... ... ... ... ... ....... 70
The architecture of the Triple Manager . . . . . . . .. .. ... ...... 71
WebCom’s n-tier architecture. . . . . . . .. . . . ... ... e 75
Secure WebCom Architecture . . . . . . . . . .. Lo 76
A Simple Purchase Ordering Application . . . . . ... ... ......... 78
A skeleton credential authorising KBob to perform thitcexs Or der App andpr op. 80

A credential allowing KBob to executepa op node with any input(s) and any

destination(s) in the domalmob. ucc.ie. . . .. ... ... ... ... ..., 82
The Components of a Distributed Name . . . . . ... ... ... . ..... 87
The structure of a WebComname. . . . . . . .. . ... ... ... . ..., 88

A simple Travel Agent Web Services application, spetifie a Condensed Graph. 89

A possible name forthBuySeat Node. . . . . ... ... .. ... ....... 90
An extended name for tieuySeat node. . . .. .. ... ... ... .. ..., 91
A SPKI credential authorising a user to execuBugSeat node. . . . ... ... 92
A condensed graph with non-unique nodes. . . . . ... ... ........ 93
A recursive definition of thRent Car node. . . . . . ... ... ... ... ... 94
Haskell representation of WebComnames. . . . . . . ... . ... ... ... 94
Representation oftiRent Car node . . . . . . .. . ... ... .. ....... 95
Definition of theOrd relation. . . . . . . . ... .. ... ... . . 96
The Remaining Tuple Elimination Rules. . . . . . . .. .. . ......... 98
Equality defined interms of Reduction . . . . . . ... ... . ......... 99
A definition of the Equality relation. . . . . . . . ... ... . ... ..... 100
A simple Reduction Rule to retain domain history . . . ...... ... ... ... 103
Domainorderingrules . . . . . . . . . . ... e 103
Definition of theOrd relation. . . . . . . ... .. ... ... ... ... 103
GRID Portal Structure. . . . . . . . . . e 104
The name for thRent Car node, executing on a particular GRID resource. . . . . 105
Ceiling ReductionRule . . . . . . .. .. ... .. ... .. e 105
Airline Car Rental preferencerules . . . . . . . ... ... ... .. .. ... 106
WebCom’s Naming Architecture . . . . . . . . . . .. ... .. . . ...... 107
The implementation of a simple reduction rukeduce(n) . . . . . . . ... ... 108



6.24

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8

8.9
8.10
8.11

A destination reduction rule retaining the functiopléu. . . . . . . . . ... ... 109
WebCom’s Reference Monitor . . . . . . . . . . . . ... ... e 117
Definition of theOr d relation forPermi ssion. . . . . . ... ... ... .... 119
Sample ordering of execution permissions . . . . . . ... ... 122
SPKI Credential authorisin@onput e _Cl ust er to execute any node. . . . . . . 124
A SDSI/SPKI credential authorisingRent Car node. . . . . . .. .. ... ... 126
The Share Trader Application . . . . . . . . . .. ... ... . . .. uu.... 127
ThePri ceDeal Component . . . .. .. . . . . . . . ... 127
TheCaptureDeal Component . . . . . . . . . .. .. ... .. ... ...... 127
TheVerify Component . . . . . . . . . . . . . . .. e 128
The name of apt ur eDeal node before scheduling . . . . ... ... ... .. 128
The ShareTrader policy authorising the Senior Trader. . . . . . ... ... .. 129
The ShareTrader credential authorising the Juniatefra . . . . . .. ... ... 129
Reserving a Flight specified as a Condensed Graph. . ........ . . ... ... 130
High watermark reductionrule. . . . . . . . ... ... ... . . ... ... 130
Company Domain orderings. . . . . . . . . . . . .. e . 131
The name of thAccept node: (a) before and (b) after reduction. . . . . ... .. 131
Reserving a Car specified as a Condensed Graph. . . . . ............. 134
Name of th&€ar Mbdel node before the Push Authorisation decision. . . . . . . . 134
Push reduction rule, for a node with two destination@osy gandv. . . ... .. 134
Name of th&electModehode after the authorisation decision. . . . . . ... . .. 135
Authorisation Steps in Secure WebCom . . . . . . . .. ... L. ... 136
The Trust Management based security manager for WebCom. . . . . . . .. 138
Trust Manageme@heck function used by the Security Manager. . . . . . . . .. 139
A function only KeyNote credential. . . . .. .. .. ... ... ... ..... 145
Making Micropayments . . . . . . . . . . . 147
The Company'sPolicy . .. ... ... ... . ... ... . .. . . .. ... 147
Customer’s Contract Credential . . . . . . . . .. ... ... . ... .... 148
INVOICING . . . . . . e e 149

A Node Name including a digitalcoin . . . ... ... ............. 150
Condensed Graph Application to reserve Grid resources.. . . . . . . . .. .. 154
Policy Credential allowing the Grid Manager to assigcl@sive access to up to 100

FESOUICES. . . v v e e e e e e e e e e e e e 515
User Credential, delegated by the Grid Manager, to aléservation of 32 resources. 155
Timings to Execute Graph from Figure 8.7 on 1,2,4,8rkb32 Machines. . . . . . 156

A Virtual Organisation, with three organisations @i@resources. . . . . ... .. 157



8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

8.20
8.21
8.22
8.23
8.24
8.25
8.26

Karma Credential forUserkBob. . . . . . . ... ... ... .. . .a. . ... 158
Karma Policy, allowing conditional access to Computdes. . . . . .. ... .. 158
Condensed graph workflow application to reserve aresou . . . . . .. .. .. 160
Administrator Angela is delegated a credit of 1000. ...... ... .. .. .. .. 161
Administrator Angela delegates a creditof 100toud®olK . . . . . . . .. ... 162
KClare contract for reserving 15 compute nodes fori0a . . . . . . . . . .. 163
Credit Credential from UCC's Finance Department,rgyKClare’s Credit limit. . 163
KUCC-Admin’s policy, trusting the keys of several Figa departments to assign
credit limits. It also dictates the terms acceptable to tdenkistrator. . . . . . . . 164
The Template foran Activity. . . . . . . . . . . . . . ... .. .. .. ... 166
A Share Trading Activity Set. . . . . . . . . . . . . .. .. e 166
The DAC Architecture . . . . . . . . . . . .. 167
The WebCom ¢ Architecture. . . . . . . . . . . . . . . . . . 168
The KeyStar Architecture . . . . . . . . . . . . .. . . .. e 171
A KeyNote credential used by KeyStar. . . . .. .. .. ... . .......... 172
Stacked Security Architecture inWebCopr . . . . . . . . . ... ... 173



List of Tables

8.1 Interpretation of Middleware RBAC Models

14



Part |

Introduction and Overview

15



Chapter 1

Introduction

A challenge for the design of access control mechanismsdtitilited systems can be summarised
as: “if you can fully name an object, then you can properly cohtrocess to that object” Ac-
cess control is primarily concerned with limiting the aosathat authorised users of a system can
perform, either directly, or indirectly through programsining on the system. This dissertation
investigates the security requirements for the WebCom][dB&ibuted computation environment,
and the condensed graphs [122] computation model on whistb#sed.

1.1 Distributed Computing

Distributed computing provides the ability to execute ctarproblems across multiple networked
computers. Distributed applications range from massigahallel computations such as distributed
cryptographic key cracking [4] or climate prediction [3]Jdomplex enterprise workflows and supply
chain management. The provision of a secure environmemligoibuted computing is a necessary
part of any distributed computation system.

The basic requirement for distributed computing is theigbib link users and resources as
transparently as possible. Ideally, distributed comjmrtatshould be fault tolerant, the computation
load should be spread across available resources as eggmbgsible and the computations should
be secure.

Security is an important aspect of distributed applicatiolVhen a distributed application is
scheduled to execute on external resources, the stakehdgplication and resource owners) typ-
ically need security guarantees. For example, the resauwoer might require that the application
should not have access to local data.

Analysing the requirements of stakeholders in distributedhputations implies analysing the
threats to distributed computations. Threats to a digibeomputation system include the illicit
modification of data used in a computation; the modificatibtihe computation itself; the unautho-
rised access of data by principals; the unauthorised er@cot computations, and identity theft.

16



1.2 WebCom 17

Addressing these threats entails the development of $eqaiicies that allow stakeholders to
define their requirements and the development of a mechahiatrenforces these policies. Dis-
tributed computations are, by their very nature, decestrdl For this reason, a decentralised se-
curity architecture is required for distributed applicat. One such approach is Trust Manage-
ment [32].

Trust management schemes [16, 29, 152] use public key catéfi to specify delegation of
authorisation between public keys and can be used to hegmttaise authorisation policies. Trust
Management is an approach to constructing and interprétimgrust relationships between public
keys that are used to mediate security critical actionsptographic credentials are used to specify
delegation of authorisation between public keys. Trust &gment has been used for a number of
applications including active networks [34] and to contiotess to Web pages [2, 42, 44].

Trust management systems have a humber of advantages eahipahe traditional systems
based on X.509 [41]. Policies and certificates are creatddrenintained separately from the appli-
cation in a very natural way. The attributes used within thiices and/or certificates are application
defined, and they are represented in a customisable fasttionwjng the application designer to de-
cide what characteristics are required. Changing théoate$ does not require changes to the trust
management system used. By removing the traditional lookap identity’s authority, and instead
representing that authority within the certificate, apgiiens no longer need to consider the secu-
rity of where and how this authority is stored. An additiobahefit of utilising a trust management
system within an application is that designers and impldererof the application are required to
consider trust management explicitly. This encouragesl goactices when considering the overall
security of such applications. Trust management policieseasy to distribute across networks,
helping to avoid reliance on centralised configuration efributed applications.

Trust management provides a flexible approach to speciagenforcing security requirement
across a network of resources. Each of the stakeholdersisytstem, for example, the owner
of compute resources and/or application, can specify gegurity requirements in terms of trust
management policies.

1.2 WebCom

WebCom applications are specified as condensed graphs.e@sed graphs are directed acyclic
graphs where the nodes are computational components aratdhepecify the sequencing con-
straints between nodes. WebCom is a multi-tiered pareid-blased architecture. When a con-
densed graph is executed by WebCom, the nodes in the grapbhe@uled by the WebCom parent
to its children. Children can become parents themselvesemetule work to their own children.
Condensed graphs can be used as a distributed job contgpldge to describe the schedul-
ing of operations in an application. Nodes represent valgsforming actions and can be defined



1.3 Naming Distributed Computations 18

at any level of granularity, ranging from low-level machinstructions to mobile-code programs.
Examples include computational primitives, Web Servid€s8], Corba objects [28, 81], PVM com-
putations [125], Grid applications [123], and commercifitthe-shelf (COTS) components [118].
Atomic operations in a condensed graph application neecaatess synchronisation or concur-
rency concerns: such details are implicitly specified bydatus between nodes and are managed by
the condensed graph execution scheduler.

WebCom has been designed as a modular architecture whevigiradl components, such as
fault tolerance [104], load balancing [144] or securityn ¢ replaced as required by applications.
WebCom’s modules are connected to a central scheduler andsed to help determine where
nodes are to be scheduled for execution.

WebCom handles the issues associated with distributed wiatigns, such as communication,
load balancing, fault management and security. Theser=aare transparent to the execution of
condensed graph applications. In this dissertation, weritkesthe security architecture of WebCom.
This is an architecture that can control where the nodes iraphgare executed, and monitor the
results of these executions.

1.3 Naming Distributed Computations

Creating security policies for distributed computatiogs ichallenging prospect. Different applica-
tions have a wide range of security goals. In this disserative are primarily interested in access
control. Providing a means to create such access contriciggtequires having the ability to refer
to components throughout the computation in a consistahpatentially unique way. For example,
application owners may want to specify where sensitiveigastof their computation are executed,
or to specify an acceptable range for the result of a compuatat

Our thesis is that this fundamental problem can be reducach&mingproblem. The central
premise of our argument i% you can name it, then you can make authorisation decisiabout
it" . If every component (or, in the case of a condensed graplicagiph, a node) in the computation
is properly named, then it can be referred to with as muchigicecas is required.

Object names range from simple descriptions, suchaaerPrinter to globally unique refer-
ences, for example, the digital object identifier [Fi8fp://doi.acm.org/10.1145/1111348.1111359
This requirement is seen is all aspects of computing. Fanpl& locating websites on the Internet
requires the use of DNS names.

Naming distributed components is not a new problem, for gtar@ORBA [81], the Spring
naming system [149], the X.500 naming architecture [182] Bnterprise Java Beans (EJB) [169]
each provide practical solutions towards the naming ofitisied components. However, each of
these solutions addresses naming as a static problemibDistt objects in these systems have
priori defined names as they do not change often. In contrast, ne@desandensed graph evolve



1.4 Securing WebCom 19

continually during execution and therefore the names cdd@hedes must also evolve. A naming
scheme for condensed graphs must consider this evolvinganaftcomponents in the computations.

In this dissertation, we develop a naming model for condégsaphs. This model allows us to
name nodes in a condensed graph with as much precision aplisa These names are used to
specify policy requirements in WebCom, and are knowiabCom namesNebCom names can
be used by any of WebCom’s modules.

1.4 Securing WebCom

Securing WebCom involves specifying and enforcing segymitlicies for condensed graph appli-
cations. As nodes in condensed graphs are represented bBgdiiebames, security policies are
specified in terms of these names. In this dissertation, weldie an access control model and
secure authentication mechanism for WebCom. This modeaiaiefivhat is meant by a secure We-
bCom system.

Access control policies are enforced in Secure WebCom bgeherity manager. The security
manager ensures that any resources involved in schedul@igraexecuting nodes are authorised to
do so. The enforcement mechanism that is used by securitageasis dependent on application
requirements. We provide an application programming fater (API) for WebCom that allows
third party enforcement mechanisms to be implemented ifired. A general purpose trust man-
agement based security manager is available. Secure capation between instances of WebCom
is also supported using secure communication managersxdéonple, a SSL-based communication
manager module.

Managing and verifying the principals using a distributedhputing environment entails ensur-
ing that there is a systematic means to determine the aiditgwif the principals and the resources
used in the computation. This can be provided through the@fiaethentication mechanisms.

The WebCom security architecture is designed to addres$sdmutess control and authentica-
tion. We argue that the goal of access control for distridbutemputations is threefold. It can be
characterised as the need to ensure that: computationbendlkecuted only on resources that are
explicitly authorised; resources will execute only congpiains that come from authorised servers,
and results of computation execution will be accepted ordynfresources that are authorised. In
an access control based security architecture, accesstujent is authorised when the subject has
been granted permission to use the object in the requestgd wa

The authentication problem in WebCom can be characterisdidearequirement of two princi-
pals to set up a communication channel whereby each prirfoiliaves that they are communicat-
ing only with the other principal.



1.5 Contributions 20

WebCom'’s security architecture addresses authorisationaathentication separately: Web-
Com'’s authorisation architecture is supported by the ngraimd security manager modules; au-
thentication is supported by WebCom’s communications menarhis entails using a secure au-
thentication protocol, such as SSL/TLS [92], and providsagport for a public key infrastructure
(PKID), when necessary. Providing authentic and secureatiams between WebComs ensures that
data is sent to the correct destination, and cannot be @ptrd, or modified, by a third party.

1.5 Contributions

The contributions contained within this dissertation adéoiows;

1. A naming architecture for condensed graphs, that spedifee contextual detail required to
properly name a distributed component.

2. An access control-based security architecture for Wabat allows application developers
to specify security constraints regarding their applaradi

3. A software architecture to support names in practice.

4. A number of case studies that examine the capabilitiesedf@@m and explore some of the
advantages of WebCom'’s security architecture.

Early versions of the results in this dissertation have igshbd in peer-reviewed publications.
These publications are broken down into work that the autes the primary contributor, and
collaborations with others.

Primary Contributor.  Primary investigative research has concentrated on théngaand secu-
rity architectures for WebCom.

* S. N. Foley, T. B. Quillinan, J. P. Moarrison, D. A. Power, ahdJ. Kennedy. Exploiting
KeyNote in WebCom: Architecture neutral glue for Trust Mgament. In Proceedings of
the Nordic Workshop on Secure IT Systems Encouraging Ceoatipa, Reykjavik University,
Reykjavik, Iceland, October 2000.

* S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure cormgnt distribution using Web-
Com. In Proceeding of the 17th International Conferencenforination Security (IFIP/SEC
2002), Cairo, Egypt, May 2002.

* S. N. Foley and T. B. Quillinan. Using Trust Management fopsrt Micropayments. In Pro-
ceedings of the Second Information Technology and Teleaamirations Conference, pages
219-223, Waterford Institute of Technology, WaterforéJdnd., October 2002. TecNet.



1.6 Layout of Dissertation 21

» T. B. Quillinan and S. N. Foley. Security in WebCom: Addiagsnaming issues for a Web
Services architecture. In Proceedings of the 2004 ACM Wuarfson Secure Web Services
(SWS)., Washington D.C., USA., October 2004. ACM.

» T. B. Quillinan and S. N. Foley. Synchronisation in Trustdgement using push authorisa-
tion. In Proceedings of the First International WorkshopSaeurity and Trust Management
STM2005. Electronic Notes in Theoretical Computer ScieSeptember, 2005.

Contributions as part of collaborations. Several of the case studies discussed in Chapter 8 are
the result of collaborations with researchers in the Cdotr&nified Computing in UCC.

* S.N.Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahy, addP. Morrison. A framework for
heterogeneous middleware security. In Proceedings of3tteltiternational Heterogeneous
Computing Workshop, Santa Fe, New Mexico, USA., April 20(RDPS.

T. B. Quillinan, B. C. Clayton, and S. N. Foley. GridAdmin:eBentralising grid adminis-
tration using Trust Management. In Proceedings of the Thiternational Symposium on
Parallel and Distributed Computing (ISPDC04), Cork, InelaJuly 2004.

S. N. Foley, B. P. Mulcahy, and T. B. Quillinan. Dynamic adistrative coalitions with
WebComDAC. In WeB2004: the Third Workshop on e-BusinesssiWwagton D.C., USA,
December 2004.

B. C. Clayton, T. B. Quillinan and S. N. Foley. Automatingcsgty configuration for the
Grid. In Journal of Scientific Programming. I0S Press, ValN8. 9, 2005.

S. N. Foley, B. P. Mulcahy, T. B. Quillinan, M. O’Connor and?JMorrison. Supporting Het-
erogeneous Middleware Security Policies in WebCom. Inrauof High Speed Networks
(Special issue on Security Policy Management). 10S Pré&§5.d0 appear

1.6 Layout of Dissertation

The remainder of this dissertation is structured as folld®ast || examines the background informa-
tion and current research discussed in this dissertatiompaitticular, Chapter 2 examines security
research relevant to this dissertation; Chapter 3 invastiggcommon naming systems; Chapter 4
describes the condensed graph model in some detail, anlg,fthal\WWebCom distributed metacom-
puter is examined in Chapter 5.

Part 1l contains the primary contribution provided by ttiesis. Specifically, Chapter 6 in-
troduces the naming architecture for the condensed graglelmihis naming architecture is then



1.6 Layout of Dissertation 22

applied to WebCom, and a new security model is described ap@h 7; Chapter 8 evaluates the
effectiveness of architecture through the examinatiorppfieations for Secure WebCom.

Part IV (Chapter 9) discusses the results of this Thesis espubpes some future work that may
be undertaken.



Part |l

Background and Review

23



Chapter 2

Authorisation and Authentication

In this chapter, we examine the current security reseateliaet to our thesis. Securing any system
entails identifying and addressing the threats to thatesystThere are many classes of security
threats, including identity theft, the misappropriatiodnirdormation, illicit access to protected re-
sources and so on. In this chapter we examine mechanismgemibtogies that address specific
categories of security threats, including authorisatiod authentication.

This dissertation is primarily concerned with the develepinof a security architecture for
the WebCom distributed computation environment. Progdir secure distributed computation
involves controlling access to resources and autheniigdkie entities that are participating in the
computation. In this chapter, we investigate methods térobaccess to security critical operations
and methods to properly authenticate entities of the system

Section 2.1 investigates access control and introducefutittamental concepts of the access
control matrix, reference monitors and the security kerhelSection 2.2, we discuss the conven-
tional models of access control, including the Bell LaPadb], Biba [27] and Clark-Wilson [46]
models. As trust management is extensively used througtinisitdissertation, Section 2.3 re-
views several of the trust management schemes currentljalalea including PolicyMaker [33],
KeyNote [31] and SPKI/SDSI [56, 152]. Section 2.4 invedigaauthentication and describes au-
thentication protocols such as SSL/TLS [92]. Finally, wecdiss other relevant security research in
Section 2.5.

2.1 Access Control

Access control [77] is concerned with providing control iosecurity critical actions that take place
in a system. Providing control over actions consists of ieitjyl determining either the actions
that are permitted by the system, or explicitly determirtimg actions that are not permitted by the
system.

24



2.1 Access Control 25

2.1.1 Access Control Matrix

Lampson [110] introduced the concept of an access contrsbmaith domains forming the rows,
objects forming the columns, and cells indicating the pesions. Objects are things in the system
that need to be protected. Subjects are entities that haessto objects. Permissions are attributes
that specify the access that subjects have to objects. @silojgn themselves be objects. The access
control matrix model is not intended for practical use.

Example 2.1 A simple access control matrix is shown in Figure 2.1. Thigtemy has three objects,

Filel DirectoryB | | net Socket
Alice | read write
Bob read, write | write read

Figure 2.1: A simple access control matrix.

Fil el,Di rectoryBandl net Socket, and two subjectsAl i ce andBob. The cells display
the access rights that subjects have to the objects. Forpieailice hasread access td-i | el,
but no access rights @i r ect or yB. A

An access control model captures the set of allowed actisres @olicy within a system. In
[110], Lampson defined the terprotectionto describe'mechanisms that control the access of a
program to things in the systemThis notion of protection was further formalised in the kkon-
Ruzzo-Ullman (HRU) access control model [84]. The HRU mquelides a theoretical study of
policies to control the creation and removal of access sighiibjects and objects in the Lampson
matrix model. The HRU model formalised tlsafetyproblem, that is, an access mechanism is
considered safe when there is no sequence of commands thediase the matrix teak an access
right. A leak occurs when a sequence of commands exist tiedadccess right to a subject for an
object that previously did not have that right. One of thendgigant results of HRU is that the safety
problem is undecidable in their model. Other work, such &$, ias examined means to make the
problem decidable, for example, by limiting the commandsatatain a single operation or limiting
the number of subjects in the system.

Policy

=

Access Allowed
[

Access Request|
T .
Reference Monitor

Access Denied

Subject Object

Figure 2.2: The Reference Monitor Model



2.1 Access Control 26

A reference monitorepresents the mechanism that implements the access loooitel, and
is depicted in Figure 2.2. A reference monitor is defined ey Brepartment of Defence Trusted
Computer System Evaluation Criteria (TCSEC) (commonlywkmas the Orange Book) as:

An access control concept that refers to an abstract madhiaemediates all accesses
to objects by subjects.

A reference monitor typically operates as follows: a sdygumiitical action is required, for example,
an access request for sensitive data, the reference mom#orepts the action and checks whether
the action is authorised according to the security politi.i$, then the action proceeds. Otherwise
the security critical action is not authorised and the cadlenotified of this failure. Many security
systems use the reference monitor paradigm to enforceisepolicies. However, every access
control model has a different means to specify their secpnticy, and therefore, a different imple-
mentation of the reference monitor. In practice, impleratons of reference monitors lie in a range
between the two extremes of the security/usability tradesafcurity kernels and application based
reference monitors. Security kernels provide verifiablugty but are more difficult to configure;
application based reference monitors are easier to usecetfigure, but are more easily bypassed.
Other implementations of the reference monitor model akst ¢hat lie between these extremes.
For example, application wrappers, such as TCP/IP wrafdp@ry, have kernel-level primitives
that are used to confine access of the application to themnsybte operate at the application layer.

Security Kernel

A security kernel [74] is an implementation of a referencenitt in the kernel of a system. This
means that all actions that take place on the system are te@dipon by the security kernel. A
security kernel is defined by [173] as:

The hardware, firmware and software elements of a trustechbating base that im-
plement the reference monitor concept. It must mediatecakkss, be protected from
modification and to be verifiable as correct.

The trusted computing base (TCB) is defined by [173] as:

The totality of protection mechanisms within a computetesysincluding hardware,
firmware, and software—the combination of which is resgaadbr enforcing a security

policy.

The advantages to the security kernel approach lie in thetat any security architecture can be
compromised when the attacker manages to infiltrate a laglemthe security system. A security
kernel runs at the lowest software layer, avoiding thesedyqf attack. A reference monitor is an



2.2 Access Control Models 27

Applications

Operating System

O.S. Kernel

Hardware

Figure 2.3: Layers of a Software System.

abstract model, the security kernel is an implementatiothaf model, and the trusted computing
base contains the security kernel together with other ptiote mechanisms [77].

Figure 2.3 shows the component layers of a software systartheke systems, the hardware
is on the bottom, with the operating system providing actesgpplications. The security kernel
forms part of the operating system kernel.

Application-based Reference Monitors

Application-based reference monitors are reference mianthat operate at the application layer
of software systems. They are typically embedded into aifspepplication, rather than operating
on the entire system. The application system makes theisedecision using advice from their
application-based reference monitor. Examples of apicdbased reference monitors include
those that use Trust Management [32] and the Java [170]isemodel [78, 79].

Such systems are typically used to enforce security pslioie user actions. For example,
the Java security model is used to enforce the access predrave to the system. However, the
Java security model also has kernel-level primitives thatused to confine code, for example, to
particular JVM domains, to support application level metsms.

2.2 Access Control Models

Security models characterise different kinds of securdlces. There are many different access
control models, such as Bell LaPadula (BLP) [25], Biba [27Pocess Control Lists (ACL) [160].
These models provide a means to define the security goalsystens. For example, BLP is con-
cerned with ensuring confidentiality of classified inforinat whereas the Biba model is concerned
with ensuring integrity. In general, access control modetsn two categories: mandatory and
discretionary access control.

Mandatory access control means that the security kernétatsrihe access that subjects have
over objects. In contrast, in discretionary access carttielowners of objects define the access that
other users have to their objects.



2.2 Access Control Models 28

2.2.1 Mandatory Access Control

Mandatory Access Control (MAC) policies allow subjects egxto objects only when the secu-
rity level of the subject is greater than the security levelhe object. There are many different
types of mandatory access control models, including Beddula (BLP) [25], Biba [27], Clark-
Wilson [46], Chinese wall [40], role-based access conRBAC) [159, 185] and type enforcement
(TE) [36].

Bell LaPadula Model (BLP)

The Bell LaPadula (BLP) [25] model was designed to providausty guarantees for multi-user
operating systems. BLP is a state machine model that addresmfidentiality concerns. BLP
policies are concerned with preventing information flowdwyvnwards from a high security level
to a lower level. This can be summarised as “no read up” andwfite down.” Such policies are
commonly referred to as multi-level security (MLS)-typdipies.

BLP defines three access control properties, two of them el@fiandatory access properties
(ss-property and *-property), the third defines a discretig property (ds-property).

» The Simple Security Propertgg-property states that a subject at a given security level may
not read an object at a higher, or disjoint, security levelrgad-up).

» The Star (*) Security Property-property) states that a subject at a given security level must
not write to any object at a lower, or disjoint, security lefre write-down).

» The Discretionary Security Propertdq-property uses an access matrix to specify discre-
tionary access control.

As BLP is a state-machine model, security is defined in terithe current state and any
transitions from that state. An important property of BLR&fined as th8asic Security Theorem
“If all state transitions in a system are secure and if thdialistate of a system is secure, then every
subsequent state of the system will also be secure, regardfeany input that occurs.”

Biba

The Biba security model [27] is designed to address intgegahcerns in terms of access that sub-
jects have to objects. Integrity in this respect is defineims of the correctness of data. As in the
BLP model, the Biba model is defined in terms of state machiHesvever, the integrity properties
defined by Biba mirror the confidentiality properties defitigdBLP. Biba defines two mandatory
access properties:

» The Simple Integrity property defines that a subject at argsecurity level may not write to
an object at a higher security level (no write-up).



2.2 Access Control Models 29

» The Integrity Star (*) property defines that a subject caadran object at a given security
level, that subject may not write to any other object at a digtecurity level.

If these two properties are upheld then objects cannot biewsonated by lower level information.

Clark-Wilson

The Clark-Wilson model [46] also addresses integrity. Th#hars argue that one of the primary
security concerns for applications is that data is notiffianodified, and that errors and fraud do
not occur. They separate integrity requirements into tveasir internal and external consistency.
Internal consistency is concerned with the internal sthtbesystem, and can be enforced by the
system. External consistency is outside of the control efdystem, and must be enforced by an
external mechanism, for example auditing.

The basis for enforcing integrity policies is that data malyde modified by specific programs.
Users have access only to these programs, not the data Raetfiermore, users have to collaborate
to perform changes to data. Therefore, multiple users nuliside in order for the security system
to be broken. This is known asseparation of dutiesequirement.

The Clark-Wilson model uses programs as an intermediategest subjects and objects (in this
case data). Subjects are authorised to execute progranggaprs are authorised to modify objects.

Chinese Wall

Chinese Wall policies [40, 58, 106] are based on the prerheeonce a subject accesses an object,
they must not access any other objects that cause a conflicteoést. The standard example of
such a conflict is when a subject working in an accounting ficaeases the financial data of one
company, they should not have access to a competing congpfinghcial data. In effect, once a
subject accesses an object a “Chinese wall” is build aroagdtanflicting objects for that subject.

The Chinese Wall model proposes a formal model to addressmmlicies. This model has been
defined as an extension to the BLP model [58] to address tipesifis concerns.

In the Chinese Wall model, as actions can potentially chéimg@ccess rights that a subject has
to every other object, access rights must be examined afegy action. In contrast, in the BLP
model access rights can usually be considered static.

Role Based Access Control (RBAC)

Role based access control, or RBAC [159, 185], is an accedsot@architecture that places users
into roles, and permissions are assigned to these roles. CRBAlesigned to reflect real-world
relations between users and permissions. Roles define gimaldasks that users can perform.
Users become members of roles and roles are assigned gemsis§or example, in a financial



2.2 Access Control Models 30

company, clerks may order items purchased. Thus, in RBAG]efiee aClerk role, and assign it
the permission to make purchase orders. Then we assign wderare employed as clerks into the
Clerkrole. This implicitly gives them the permissions necessamnake purchase orders.

RBAC is an efficient means to define an access control polisyugers are grouped in roles and
permissions are assigned to these roles, the policy doe®gauaire the enumeration of every user
and permission possible. The enforcement check is twofetien a user attempts to perform an
action, the reference monitor checks the roles the user smbrar of; these roles are then checked
in turn to determine whether the action is permitted by anthefuser’s role. RBAC is commonly
used in operating systems, database management systemmsdahelvare architectures.

Type Enforcement

Type enforcement (TE) [36] is a labelling approach to aceesdrol. TE is a table-orientated
mandatory access control mechanism suited for confinindjcagipns to known behaviour. do-
main and type enforcement (DTE) [21] is an extension of tylereement including the concept
of domains to traditional type enforcement. Several systase implementations of TE, such as
SELinux [115] (DTE) and Flask [165] (TE) to enforce their ggty policies.

In type enforcement, labels are attached to both subject®hbjects. Subjects are considered
active entities and a domain label is attached to them. Theaitolabel encodes the access con-
trol attributes associated with subjects. Objects areiderexd passive entities, and a type label is
attached to them. The type label encodes the access cottititmlt@s associated with objects. The
access that subjects have to objects depends on the acpabilipathat the subject’s domain has
to the object’s type. These capabilities are encoded in afsables.

There are two main tables, the domain definition table (DDAg domain interaction table
(DIT). As with an access control matrix, the DDT specifies d@lewed interactions between sub-
jects (domains) and objects (types). Domains form the rdwkeotable, types form the columns
and the permitted access modes, for exampk or write, are stored in the cells. When a domain
attempts to access a type, the DDT is consulted to deterntiethar the access is permitted.

The DIT table specifies the allowed interactions betweetjestd In the DIT table, both the
rows and columns contain subjects (domains). As with the DB cells contain the access mode
permitted between domains, for example, create, destrgigoal. When one domain attempts to
interact with another, the DIT is consulted and an authtbasadetermination is made.

2.2.2 Discretionary Access Control

In discretionary access control (DAC) models, subjects earnheir discretion, modify access to
objects that they own. For example, the Unix file system ads@llows the owners of files to set
the read, write and execute permissions for other usersy Mp@rating systems have some type of



2.3 Trust Management Systems 31

DAC system. The most prevalent DAC model is the access ddistr¢ACL) model. DAC models
are also used in database management systems and opeyatiems as these systems use the
concept of subjects owning objects and these subjectsat@uizess to their objects.

Access control lists (ACLs) [160] are a simple means to imma@et the access control matrix
model. ACLs represent columns in the matrix. Each objedidéstystem has an associated ACL that
holds a list of subjects and the access rights that they loolth&t object. When a subject attempts
to access an object, the reference monitor checks the acoessl list associated with the object
and determines whether the subject has the required pé&miss

2.3 Trust Management Systems

Trust Management [29, 32, 80, 152] is an approach to coristguand interpreting the trust rela-
tionships among public keys that are used to mediate sgauitical actions. Credentials are used
to specify delegation of authority among public keys, arelued to determine whether a signed
request complies with a local authorisation policy.

Blaze et al [32] defined trust managementasanified approach to specifying and interpreting
security policies, credentials, and relationships thdbwal direct authorization of security-critical
actions” Trust Management is basically designed to answer the guetdo | trust principal X to
do action Y?” A trust management system enables permissidns associated with cryptographic
keys. These permissions can be delegated by one key to andthst management systems must
be able to navigate these delegation chains, linking a stdqaghe authority required to perform
the requested action.

There are two basic categories of cryptographic certificatdentity certificates that define an
association between a public key and the identity of thedradfithe certificate; and attribute certifi-
cates that define an association between public keys andoé petmissions. For consistency, we
refer to identity certificates simply a®rtificatesand attribute certificates @sedentials Existing
systems such as X.509 and PGP allow the association of tigéatpublic keys. Trust Manage-
ment addresses the need to associate abilities to pubkc kepther words, certificates answer the
guestion: “who is the holder of this public key?”; credelstianswer the question “what can | trust
this public key to do?” In general, trust management systéonsot necessarily need to verify the
identity of the holder of credentials. These questions)ewdlid security problems, are not relevant
to the application that is attempting to decide whether oanaction is authorised. Such problems
are instead left to identity certificates systems (such &89).

The ability to delegate permissions between users is aatdatiture of trust management sys-
tems. This allows the users of a system to selectively gikeratsers part of their authority. This
reflects how authority is shared in reality. In the commémiarld, a central figure does not set out
the authority of every employee of a company. Instead, th® @Elegates authority for specific



2.3 Trust Management Systems 32

areas to company directors, who delegate portions of thuhoaity to specific employees. Trust
management supports this view of authorisation.

Example 2.2 Consider a university application (Figure 2.4): A Universappoints a President
and a Registrar. The President also appoints departmesgalsh(HoD), who appoint lecturers.
The Registrar registers students for specific courses.idfishconsidered in a trust management
sense, then the University delegates the authority to appdepartmental heads and lecturers to the
President. The President then further delegates the dyttmappoint lecturers to the departmental
heads. The Registrar is delegated the authority to regiidents by the University.

University

T

President Registrar

/ \ Students
A A """"

~— Lecturers

Figure 2.4: Overview of a University Delegation Tree

In this case we can say “The Universityststhe President to appoint departmental heads and
lecturers”. Furthermore, the delegation of authority ® dlepartmental heads can be stated as “The
Presidentruststhe departmental heads to appoint lecturers”. A

In general a Trust Management system is made up of five basipaoents (From [29]):

» Alanguage for describing ‘actions’, which are operatiaiih security consequences that are
to be controlled by the system.

» A mechanism for identifying ‘principals’, which are eii$ that can be authorised to perform
actions.

» A language for specifying application ‘policies’, whiclogern the actions that principals are
authorised to perform.

» A language for specifying ‘credentials’, which allow pripals to delegate authorisation to
other principals.



2.3 Trust Management Systems 33

. |

Application Trusted Environment :
|

T™ API |
Policy |

|

|

TM queries ™ :
Application/ System |
|

T™ API \ |
Policy ol

Figure 2.5: KeyNote Trust Management Architecture (Fro6i).3

» A ‘compliance checker’, which provides a service to amtliens for determining how an
action requested by principals should be handled, giverieypand a set of credentials.

Trust Management systems have a number of advantages amirtpahe traditional identity-
based systems created using X.30Policies and certificates are created and maintainedatepar
from the application (Figure 2.5). The terminology usedhimitthe policies and/or credentials is
application defined. They are represented in a applicapenific fashion, allowing the application
designer to decide what characteristics are required. t Tnamagement removes the traditional
access control approach of first determining the identitthefrequester, and then determining the
requester’s authority. Instead that authority is represemvithin the credential. Applications no
longer have to consider the security of where this authdsitstored. A benefit of utilising a trust
management system within applications is that designetéaplementers of these applications are
required to consider authorisation issues explicitly.sricourages good practice when considering
the overall security of such applications. Trust managemelicies are easy to distribute across
networks, helping to avoid reliance on centralised conégan of distributed applications.

In Sections 2.3.1 — 2.3.3 we will examine some of the more comtrust management systems
that are currently available. Section 2.3.4 examines samgoged trust management systems that
provide more advanced mechanisms to support specific tyff@asgpbcations.

2.3.1 PolicyMaker

In [32], Blaze et al identified the trust management problena alistinct component of network

security. PolicyMaker [31-33] proposed a solution towaddressing the trust management prob-
lem. Prior to the development of PolicyMaker, existing eyss$ that supported security in network
applications, such as X509 and PGP, addressed only narginseof the trust management spec-
trum, namely identification. PolicyMaker changed this ioyding a generic trust management

1X.509 (Section 2.5.1) has also been extended to suppottarsagement [70].



2.3 Trust Management Systems 34

framework.

In PolicyMaker, policies, credentials and trust relatiips are specified as programs (or parts
of programs), and are expressed isade programming language. In this context, “safe” means
resource and I/O limited, for example, AWKWARD (which is desgersion of the AWK [14] lan-
guage was developed for the PolicyMaker system). Othee”dahguages include Safe-TCL [57]
and Java [170]. As the policies, credentials and relatipsstre specified as programs, they are ex-
tremely flexible and expressive. However, when the authbf33) analysed the proof mechanism
used by PolicyMaker, they found that in its most general farisiundecidable and is NP-hard even
when restricted in several natural ways.

Security policies and credentials are defined in terms alipages, calledilters. These filters
are associated with public keys and accept or reject adbiassd on what abilities those public keys
are trusted to perform. The basic function of the PolicyMalestem is to procesgueries Queries
(see Figure 2.6) are requests to determine whether a publi¢dk keys) is allowed to perform a
specified action, according to the local security policy.

keyy, keys, . .., key, REQUESTSAction String

Figure 2.6: Structure of a PolicyMaker query.

Action Strings are application-specific messages thatritesa trusted action by one or more
public keys. Applications specify themselves the strietamd the content of these action strings,
PolicyMaker has no knowledge of their structure. Theseadiirings are interpreted only by the
application that generates them.

PolicyMaker usegssertions containing bindings between predicates (filters) and onmaare
public keys. This binding is called asuthority structure These assertions (Figure 2.7) confer
authority on keys.

SourceASSERTSAuthorityStructWHERE Filter

Figure 2.7: Structure of a PolicyMaker assertion.

The simplest filters are interpreted programs that accemject action strings. In Figure 2.7,
Sourceindicates the source of the assertion (either the publicokdlge generator of the assertion
or the local policy, in the case of a policy assertioAuthorityStructspecifies the key or keys for
whom the assertion has been creatéitter is the predicate that action strings must satisfy for the
assertion to hold.

As was previously stated, there are two types of PolicyMalssertions: signed assertions—
more commonly called credentials—and unsigned assertwnolicies. A credential is a signed
message that binds a particular authority structure toex.fiPolicies are unconditionally trusted
because they originate locally and are therefore not sigi@n any given machine, a local root
must exist from whom all trust is delegated. PolicyMaker magoncept of the semantics of action



2.3 Trust Management Systems 35

strings or signatures. The calling application must veltily signature. This allows Policymaker to
exploit existing signature schemes. Signing a crederdjalasents the delegation of authority from
the signer of the credential to the holder of the public keytiomed in the credential.

Example 2.3 Consider the University example shown in Figure 2.4. Thevehsity's policy is

pol i cy ASSERTS
pgp: "0x0123456abcdef abe23428129038747b32"
VWHERE
PREDI CATE=r egex: "Appoint Staff";

Figure 2.8: PolicyMaker policy assertion for University.

represented in the policy assertion shown in Figure 2.8.s ghies the PGP key mentioned the
authority to appoint staff. As this is a policy assertionsitinsigned. This authority can be further
delegated by the President. For example, the Presidenigama €redential for department heads
authorising them to appoint lectures only, as shown in Egu®.

pgp: "0x0123456abcdef abe23428129038747b32"
ASSERTS
pgp: " Oxf a3463334bc934a34b34f d0232ad"
VWHERE
PREDI CATE=r egex: " Appoi nt St af f
Position: Lecturer";

Figure 2.9: PolicyMaker assertion for Departmental Head.

This assertion specifies that the only staff the Departnhétgad can appoint are lecturers. This
assertion would of course be signed by the President’'s P@fhkerder to bind the predicate to the
Departmental Head's PGP key. A

2.3.2 KeyNote

KeyNote [29, 30] is an expressive and flexible trust manageraeheme that provides a simple
credential notation for expressing both security policdes delegation. A standard application
programming interface (API) to KeyNote is used by applmasi to help determine if security crit-
ical actions are authorised. The formulation and managewnfesecurity policies and credentials
are separate from the application, making it straightfodsma support trust management policies
across different applications. KeyNote has been used tadaarust management for a number of
applications including active networks [34] and to contiotess to Web pages [2].

KeyNote was developed to address the complexity issuesuding PolicyMaker. In effect,
KeyNote provides support for a limited subset of PolicyMakeapabilities. Like PolicyMaker,
KeyNote uses a single language to specify policies and otied® However, unlike PolicyMaker,
these have a structure, and are not arbitrary programs. straisture is defined in RFC 2704 [29]
and is designed to be flexible and human-readable.



2.3 Trust Management Systems 36

Example 2.4 Figure 2.10 shows an example of a basic KeyNote credentiais dredential rep-
resents the example discussed before — a University deketfa¢ authority to appoint staff to the
President, actually to the President’s public key.

KeyNot e- Ver si on: 2
Local - Constants: kUni versity="RSA: 324b234a"
kPr esi dent =" DSA: 67bc23f a2"
Aut hori zer: kUniversity
Li censees: kPresi dent
Condi tions: app_donmai n="Uni versity" &&
actions="Appoint" &&
(Position == "Lecturer" ||
Position == "Dept-Head");
Si gnat ur e:

Figure 2.10: Basic Structure of a KeyNote credential

The Conditionsfield specifies the authority that the President has beeregtaim this case the
authority to appoint lecturers or to appoint departmengalds. A

TheCondi t i ons field defines a set of permissions that represent all posathibute value
combinations. Policies are practically identical syritadly to ordinary credentials, except the
Aut hori zer field is not set to a key but is instead set to the keywe@l| CY. Policy assertions
are unsigned (as is true in PolicyMaker) and are implicithgted by the application.

KeyNote credentials can be restricted by the authoriserageent further delegation of the au-
thority granted. In our original example (Figure 2.4) thegR&ar registers students. In effect the
registrar would delegate to the students the authorityatiogkample) sit exams for the subjects that
they were registered to take. If a student could furthergigke this authority then a situation is
created where an unauthorised student is sitting an exaanfauthorised student. To prevent this
the Registrar will use theACTION_AUTHORIZERS keyword within theCondi t i ons field. This
tells KeyNote that no further delegation is allowed. Thigwerd specifies the names of principals
that are directly authorising the action in the credential.

When a KeyNote query is evaluated by the compliance chettiegvaluator returns the Policy
compliance valuef the query. These compliance values range fronN _TRUSTtO _MAX _TRUST.
Applications specify compliance values in the form of seigain ranging fromMIN_TRUST to
_MAX _TRUST. An example would b¢ FALSE, TRUE} where an application requires a boolean
answer to a query drNOTAPPROVED, APPROVEDL OG, APPROVED} for an application that re-
guires more context. In this caBi©TAPPROVEDIs _MIN _TRUST andAPPROVEDIs _MAX _TRUST.

An assertion compliance value results from the minimum efd¢bmpliance values of the Condi-
tions field and the.i censee field. If theLi censee or Condi t i ons field is missing, then the
assertions licensee/conditions compliance value is dersil to be MAX _TRUST; however, if it is
present but empty, then the licensee / conditions comm@iaatue is considered to h®IN_TRUST.



2.3 Trust Management Systems 37

As principals can delegate permissions to other principédyNote must walk these chains of cre-
dentials to determine if a request is authorised. The Kegompliance checker attempts to find a
path between the requesting key and the policy. Policiesisarspecify thresholds, that is, multiple
principals must be involved in any valid request.

The KeyNote assertions syntax is defined in RFC2704 ([29).ekample, thédut hori zer
field is the only required field; all other fields are option@he optional fields are th€orment ,
Condi ti ons, KeyNot e- Ver si on, Licensees, Local - Const ants andSi gnat ur e.
When theSi gnat ur e field is present, it must be the last field. No field must appearrenthan
once, and they are all case insensitive.

2.3.3 SDSI/SPKI

SDSI 47,112, 152] or Simple Distributed Security Infrasture (pronounced Sudsy) and SPKI[94]
or Simple Public Key Infrastructure (pronounced Spookygareas two separate standard propos-
als. It was quickly realised that they shared many simi&sgjtand the projects were combined in
1999.

SDSI was originally developed by Ron Rivest and Butler Lapmp® address the complex and
incomplete proposals for a public key infrastructure. kalX509, SDSI does not rely on a for-
malised global certificate hierarchy. Instead they use a&élLdlaming” architecture that leverages
the advantages of a PGP-like “web of trust” (described iniSe.5.2).

Both SDSI and SPKI are key-centric systems, in that, pradsipre public keys and all actions
are performed by these keys. SDSI does not attempt to linkitoes to keys, however,people can
hold these keys and thus manipulate the system.

The SPKI was proposed by the Internet Engineering Task KtEdd-) in 1996 as an alternative
to the X.509 version 3 PKIX public key infrastructure (PKDhe IETF SPKI working group was
founded just before the publication of the original SDSIgmeal [152]. However, SPKI quickly
incorporated SDSI names and shares many other similawitbsthe SDSI proposal. In 1999 the
projects were merged and are now referred to as simply SPKI.

S-expressions

S-expressions [153] were developed by Ron Rivest at MITx@essions are lisp-like data struc-
tures that are used to represent complex data. They are bitteestrings (octet-strings) or lists of
other S-expressions. The data in S-expressions can beseeped in many formats, from simple
strings to hexadecimal or base64 strings. S-expressions @esigned to be a compact, human-
readable efficient and transportable mechanism for statéta.

An octet string is a sequence of eight-bit octets. These earepresented in many formats



2.3 Trust Management Systems 38

including strings, quoted strings, base64, hexadecinral, langth prefixing “verbatim” encod-
ing; these should all be interchangeable. For example, tiiregs‘abc” can be represented as
#616263#, that is simply the hexadecimal form of the characters a, (61$2) and c (63). The #
marks surrounding the numbers are used to specify the datede is in hexadecimal form. Ver-
batim length prefixing encoding, represents the string whithlength of the string prefixed to that
string, for example3: abc.

Lists of s-expressions are also s-expressions. In this ttees® lists are made up of s-expressions.
An s-expression is surrounded with parentheses, for exanapl( b c¢)) represents a s-expression
that linksa to the second s-expressi¢i c) . S-expressions are used to represent credentials in
both SDSI and SPKI. S-expressions can be used to represarieg\of constructs:

» setsof elements;

* rangesof data, such as dates, time or numbers;

« prefixesof strings, used for comparisons, and

* anyset constructs representing any s-expression out of a petssible s-expressions.

These constructs can be used to store arbitrary data.

Local Names

The SDSI project introduced the idea db¢al naming. In SDSI all principals (keys) are equal.
Each key has its own name-space, as in PGP (Section 2.5.28n Whrincipal refers to another
principal in their own name space, they define the name tHeeseFor example if Alice has a
computer, then she calls it “Computer”. Bob may also havenapeder, and he may too refer to it as
“Computer”. As Alice and Bob are separate principals thigagfectly acceptable. However, how
does Bob refer to Alice’s Computer? Suppose Bob knows Alicgly as “Alice”. Local naming
provides the ability to use names from other namespace. lBbfore refers to Alice’s Computer
as “Alice’s Computer”.

(Al'i ce Conmputer)
(Bob Conputer)

(Bob (Al'ice Conputer))

Figure 2.11: Local Names using S-Expressions

If we take these local names and describe them using s-esigmes then we get a naming
system such as the one shown in Figure 2.11. Informally wer ttef these naming relationships
using the “’s” construction (i.e., Bob’s Alice’s ComputerJhese namespaces can be built up to



2.3 Trust Management Systems 39

describe a hierarchy, for example, consider there is manme ¢time Alice in a company. We could
refer to her computer as Company’s Department’s Alice’s @ater. This provides a flexible yet
consistent method to name objects.

SPKI

The SPKI [54-56] is a certificate based system like KeyNotéRwlicyMaker. A SPKI certificate
is a signed statement consisting of five fields. The messat@utia signature (assertion in Poli-
cyMaker), is called a 5-tuple. The five elements are: isssudnject; delegation; authorisation, and
validity dates.

The issuer and subject fields are mandatory, the remainneg #re optional. These fields are
expressed in the form of s-expressions. There are standi@sfor converting s-expressions into
binary format and back. These have the same purpose as thel AN notation. S-expressions
are used instead of ASN.1 simply because they are lightweigbressions that are more suitable
for lower specification hardware. The issuer field holds tie (or a hash value of the key) and a
name associated with that key. This name is a SDSI local name.

The subject field also holds a SDSI local name, or a list ofllnames. The validity dates field
contains the validity period of this certificate, in termsaaiot-beforeand/ornot-after date fields.
The validity field may also include a number of “online testhbeessions, that specify the certificate
should be verified by checking a certificate revocation &RI) or an online validity list (a list of
currently valid certificates). These are optional comptsehthe field.

The authorisation field specifies the authority being deéslya This is roughly equivalent to
the KeyNoteCondi t i ons field. Finally, the delegation field specifies whether théharisations
contained within this certificate can be delegated further.

Example 2.5 Figure 2.12 shows an example of a SPKI certificate, repreggemiie Appoi nt
Lect ur er permission discussed in Example 2.3. In this example ainectgy (the President’s

(cert
(i ssuer (hash shal | dsEFA73sahf dDF3784JDFj f sFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash shal |dasdk...|))))

(propagat e)
(

(tag (Appoint Lecturer))
)
(not -before "2002-11-31_17: 00: 00")
(not-after "2003-11-31_16:59:59")

)

Figure 2.12: An example SPKI Certificate, authorising theaiting of academic staff.

key) is authorising a key in the local namespal2C s CSDEPT to Appoi nt Lecturer. The



2.3 Trust Management Systems 40

pr opagat e field allows this permission to be delegated further, and/éliglity dates specify that
this certificate is valid for one year only. A

There are three types of SPKI credentials: identity, aitdland authorisation credentials.

* |dentity credentials bind a public key to a name, similaatnX.509 certificate. However,
unlike X.500 distinguished names, SPKI names are local¢h pablic key in the system.

« Attribute credentials bind an authorisation to a name ougr These are generally used with
identity credentials, as different issuers may generatattiibute and identity credentials.

 Authorisation credentials provide a means to delegateosity between names.

2.3.4 Advanced Trust Management Systems

The trust management systems outlined above (PolicyMEkgi\Note and SDSI/SPKI) provide the
means to specify general trust management policies foriatyasf systems. In this section, we
examine more specialised trust management systems, iingl&D3, REFEREE and QCM, and
more advanced systems, including RT and DAL, that addressfapproblems with the traditional
approach to trust management.

SD3

SD3[97] is a Trust Management system consisting of a higél leelicy language, a local policy
evaluator and a certificate retrieval system. Unlike truahagement systems such as KeyNote or
SPKI, SD3 has a built-in certificate distribution componehat allows a complete security infras-
tructure within SD3.

SD3 —>
Daemornm =< Source

Yes/No

Request),
Certs.

Application

Figure 2.13: Overview of a SD3 Application



2.3 Trust Management Systems 41

SD3 (“Secure Dynamically Distributed Datalog”) is an exdiem of the database programming
language, datalog. Datalog [26] is a logic programming leagg specifically designed to be used
as a database language. It is a nonprocedural, set-orilmgdage, with no order sensitivity, no
special predicates and no function symbols. Datalog’s satles are logical implications. SD3
extends datalog into a trust management system by exteidiitlpy SDSI names.

SD3 provides an API that allows applications to query a daetinat maintains security policies.
Figure 2.3.4 shows a overview of SD3 architecture. The SEBndm is initialised with the local
policy. The application can then query the daemon for pdliegisions. The application supplies a
request and optionally some certificates it thinks appadgffior the query to the daemon. These are
then examined by the daemon, the signatures are validatbd decision is reached determining
whether or not the request is valid in accordance with thiyol

The local policy may depend on a remote policy. In this cageSB3 daemon will commu-
nicate with a remote data source (such as another SD3 daensome directory service, such as
LDAP [52]) to check the request.

A unique and important feature of SD3 is its certified evaduatn addition to computing the
result of a query, the evaluator also computes a proof tiesatiswer follows the policy. This proof
is passed through a very simple checker before the resdpisrted by the evaluator. If the proof
does not pass the checker, then the evaluator rejects thvelasd reports an error. The fact that the
checker is so simple, allows confidence in the correctnetseanswer produced by the evaluator.

REFEREE

REFEREE [42, 44] (Rule controlled Environment For Evaloatdf Rules and Everything Else)
was created by Yang-Hua Chu et al as part of the World Wide Wats@Qrtium’'s (W3C) PICS
(Platform for Internet Content Selection) project [176]CB is an effort to define meta-data to be
associated with Internet content. This is intended to stgawental control over access to web sites
by children. REFEREE is designed to provide Trust Managésigoport for the PICS project. The
DSig project [43], that uses PICS labels, has also supperteld on REFEREE. The DSig project
looks at methods to provide a mechanism to make the statersigner believesstatementibout
an information resource.

REFEREE is based on the PolicyMaker trust management sysamilarly to PolicyMaker,
REFEREE is arecommendation based query engine. In REFERIi&es and credentials are pro-
grams. However, REFEREE differs from PolicyMaker in thatlibws policies to control credential
retrieval and signature verification. PolicyMaker makesaksumption that the calling application
has gathered all the relevant credentials and verified gitadlisignatures before calling the trust
management system.

REFEREE is designed with the principle that the policy calsteverything, including the order



2.3 Trust Management Systems 42

of execution of a query and the retrieval of credentials. Acgdchas a fixed language syntax and
may call other policies in order to satisfy a query. REFERERp®rts three primitive datatypes:
Programs Statement listandTri-values A tri-value is one otrue, falseandunknown A statement
list is a collection of assertions, or statements, expressa two element structure (Figure. 2.14).
This structure consists of soneententand acontextfor that content. These context and content
attributes are specified as s-expressions [153]. The dod&grmines how the content is to be
interpreted. The interpretation of the context is subjecaidreement between REFEREE and the
calling application. Each program takes a statement lishdaput and may take additional inputs.
Programs may invoke additional programs during execution.

((“‘certification nmodule'”)
("“Alice’’ (trustworthy yes)))

Figure 2.14: Example REFEREE statement indicating Ali¢euistworthy in a certification module.

Policies are programs defining the suitability of certaiticans, that return a tri-value for a query
based on conformity or lack thereof to the stated propedfdhat policy. If a query can neither
be satisfied or rejected based on the policy, theknownis returned. Credentials are also pro-
grams that examine initial statements passed to them ai @elditional statements. Unlike other
trust management systems, REFEREE credentials gendftaissual concept of credentials as just
supplying statements. These new statements supplied bgdantial can be based on the initial
statements or on environmental factors, such as the disgle spanaining locally. Both policies and
credentials return tri-values and statement lists. Radican return a statement list that justifies the
tri-value answer returned. Credentials return tri-valieesdicate whether a execution was success-
ful or not. Applications invoking REFEREE provide a databad available programs, an initial
statement list and designates a particular program (polcyun. It can also specify additional
parameters to the program.

Policies calling other policies are central to the REFEREEem. Policies often defer judge-
ment to other policies — Alice will trust a website becausé Baists it. Evaluation of particular
request may also require “dangerous” activity such as métwocess. These dangerous activi-
ties are allowed within policies, and these actions arerobetl by other policies. One aspect of
REFEREE's creed is that everything is controlled by poticie

Profiles 0.92 is a rule-based trust policy language desigmeark with REFEREE. Each rule
is an s-expression with an operator as the first elementwietioby operands. The language in-
cludes support for a language constrimvbkethat supports calling of another REFEREE program.
Invoked subprograms can return statements. These statearerprepended with the name of the
subprogram. This feature allows tracing of a statementi&iror “load labels” is another profiles-
0.92 program that looks for PICS labels either embeddeddnmients or retrieved over the network.



2.3 Trust Management Systems 43

These labels are parsed and converted into REFEREE statenRenfiles-0.92 also provides sup-
port for generalising the tri-values returned by REFERE&gmms. This generalisation provides
a means to convert a tri-value into a traditional Booleameal Conversion is handled by using
either thefalse-if-unknowror true-if-unknownconstructs. There also exists support for gD,
OR andNOT Boolean operators within the language. Finally the languagvides a statement-list
pattern-matcher that can examine a statement list fomstates of a particular form.

Example 2.6 Figure 2.15 shows an example of a REFEREE Palicy. In this gi@policy we want
to restrict users from accessing sites that don't follow UC&AEceptable use conditions. We trust
website owners to declare honestly their rating accordind@cC.

(i nvoke "l oad-I| abel" STATEMENT-LI ST URL
"http://ww. ucc.ie/ratings/acceptable. htm"
( EMBEDDED) )
(fal se-if-unknown
(mat ch
(("l oad-1 abel " =)
(» ((version "PICS-1.1") =«
(service
"http://ww. ucc.ie/ratings/acceptable.htm ") =
(ratings (RESTRICT < uccrate 3)))))
STATEMENT- LI ST)

)

Figure 2.15: Example REFEREE Policy, enforcing UCC's atalgle use conditions.

This policy has two steps: Firstoad- | abel is invoked to find and download labels for the
embedded URL. Any labels found are added to the stateméntNisxt we run a pattern match
with this statement list, looking for matches from the ad¢abfe use rating service and with an
uccr at e rating of less than 3. If such a label is found, then a true lsefes returned, based on the
value associated with the label. If no such label is founehtihef al se-i f - unknown condition
forces afalse to be returned. The result of this policy isew@nt viewing of a document (webpage)
that has aiccr at e rating of less than 3. A

QCM

QCM [82,83] is a predecessor of SD3. QCM, or Query Certifiddemnager, was proposed by
Carl Gunter and Trevor Jim at the University of PennsylvaQi€M was developed to address the
problem of failed queries due to missing certificates. In aemanventional Trust Management
system, such as KeyNote or SPKI, when an application quéreesystem, it provides all the cer-
tificates (credentials) needed to satisfy the query. Howéhvall of the required certificates are not
present, then the query will fail due to insufficient infotina (In REFEREE, anunknownwould

be returned). QCM was developed to address this issue.



2.3 Trust Management Systems 44

QCM uses what the authors of [83] calblicy-directed certificate retrievab determine what
certificates to retrieve for a particular query. In previguesxisting trust management systems, if a
guery failed due to lack of relevant certificates, then a (meapplication) would have to parse the
policy and determine what additional certificates are neglliIn this case a three-fold duplication
of effort is required: First the verifier must try to answee thuery, when this failed, the policy
must be parsed again to determine what is missing and filelgtery must be resubmitted to the
verifier. QCM attempts to eliminate this duplication.

The design of QCM was intended to draw upon the strengths isfimy trust management
systems and to add support for the automatic retrieval efagit certificates. To address this aim,
the developers chose a conservative approach and baseththumge on the language of sets that
forms the core of some database languages. The languagdGesedi [93]) serves as both the
policy language and the query language of QCM. Verificatibm @CM query, therefore, takes
the form of a database evaluation and retrieval corresptmdsdistributed database evaluation.
QCM takes advantage of the extensive research into datajoesg optimisations and distributed
databases. This allows the system to form optimised quésigsinimise message traffic. The
design of the system around an existing database querydgagallows users to write policies
without specifically addressing remote queries. QCM autially detects when a policy requires
external certificates, formulates the correct query arrikxess the appropriate certificates.

Principals in QCM, as in PolicyMaker (Section 2.3.1), Keydl(5ection 2.3.2) and SDSI/SPKI
(Section 2.3.3) are public keys. QCM natively uses SDSHihlkocal names, with support for global
names as in SDSI. In QCM a global name refers to a set.

Example 2.7 Figure 2.16 shows an example of a QCM global name. In this pl@i$PKD is a
global name referring to a set of (user, key) pairs. It sttasK 4;;.. is Alice’s key andK g, is
Bob’s key. K$PKD is the global name of PKD in K's namespace.

K$PKD = {(“Alice”, K ajice), (‘BOb”, Kpop)}

Figure 2.16: Example QCM Global Name.
A

QCM can be used as a replacement for systems currently ie.pkar example, it was shown
in [83] how a replacement for REFEREE could be built using Qcies.

RT

RT [113] is a family of role based trust management framewdricluding RT, RT;, RT2, RT! and
RTP. RT was created to combine the strengths of traditionat naagement systems and those
of role based access control. RT uses both the conceptsesfaoll the advantages of local naming



2.3 Trust Management Systems 45

to provide attribute-based access control. Traditionattmanagement systems, such as KeyNote
or SDSI/SPKI, use credentials to delegate permissionsalilties). These capability-based trust
management systems, however, do not lend themselves &incdecentralised problems. For ex-
ample, imagine an airline has an agreement with a rentalazapany that preferred customers of
the airline receive special rental rates. This is difficoltleanly represent in a traditional trust man-
agement system, as the airline does not want to give an ekfmarty access to its internal passenger
database.

One approach is the rental company could delegate the ‘ldist@ermission to the airline,
who then specifically delegates the permission to its custenmAnother approach would be for the
airline to create a new keypair to represent customers, aledjate all rights for this key to each
customer. The rental company then delegates the discothistkey.

Neither of these approaches are particularly appealinbesdause significant overheads for
one party or another. In the first case, the airline has thérasinative overhead to determine what
customers get the preferential rate. The second approastaseparate keypair for each grouping.
Every key pair must be distributed to all the parties in thetesy. For example, imagine that the
rental company has different rates based on the type ohaidustomer. The airline now must
create a key pair for each type of customer and each rentgdaayn Such an approach can quickly
become unreasonable.

RT introduces the concept of attribute based access cd®BAC). ABAC systems have a
number of advantages over capability based systems, inglftom [113]):

1. Decentralised attributes: an entity asserts that anetitéy has a certain attribute.

2. Delegation of attribute authority: an entity delegatesauthority over an attribute to another
entity, that is, the entity trusts another entity’s judgetnan the attribute.

3. Inference of attributes: an entity uses one attributeakannferences about another attribute.

4. Attribute fields. It is often useful to have attribute azadals carry field values, such as age
and credit limit. It is also useful to infer additional abites based on these field values
and to delegate attribute authority to a certain entity dohycertain specific field values, for
example, only when spending level is below a certain limit.

5. Attribute-based delegation of attribute authority. A ke an ABAC's scalability is the ability
to delegate to strangers whose trustworthiness is detediiased on their own certified at-
tributes. For example, one may delegate the authority @am{ifying) students to entities that
are certified universities, and delegate the authority dneusities to an accrediting board.
By doing so, one avoids having to know all the universities.

The RT framework supports localised authority over rolegedation in role definitions; linked
roles; parameterised roles, and manifold roles. The diffesystems use a subset of these abilities.



2.3 Trust Management Systems 46

In particular, R only allows atomic strings as role names; Raxtends RY to allows parame-
terised roles. This is useful as the same roles in differentains often hold the same permissions.
For example, manager roles hold the permission to set theysfalr their employees. Parameter-
ising this role allows the same salary permission to be agb different manager roles within an
organisation, with respect to their employees.

RT, extends RT with the notion of o-sets which group logically related atgeand access
modes together similarly to parameterised roles. In the c®-sets, it is sometimes useful to be
able to apply the same permissions to sets of objects andsaouedes.

RT” provides support for threshold schemes to the RT framew®tkeshold policies define
that more than one entity must agree before an action is asgido For example, in a simple
payment system, a cheque must be signed by two separatedfeys kb can be cashed.

In certain cases, an entity may not wish to use all of theintscall of the time. A simple
scenario is where an administrator logs in to a system asdinaoy user so that they cannot make
a catastrophic mistake. RTprovides the ability to handle delegation of the capacitgxercise
role memberships. This allows an entity to delegate partheaif role permissions to particular
processes. In traditional trust management systems,sthistipossible. An entity implicitly uses
all of their rights in every request. They could reduce thenber of credentials supplied when
making the authorisation check, however, in a truly distield system this may not be possible.
RTP adds the notion of delegation of role activations to supgelkctive delegation of permissions
to processes.

An entity in RT defines an uniquely identified individual olopess. They can issue creden-
tials and make requests. Roles in RT define a set of entiti@sam members of that role. They
can be viewed as an attribute. Entities in RT correspond ¢ostisn RBAC systems. Roles can
represent both roles and permissions in an RBAC system. &¥svuser and role assignments as
dominations ¥):

Roles r1 = ro defines that; has every permission i
Users to Roles U defines that user is assigned to role
Permissions to Rolesr > p defines that permissignis assigned to role
A role is denoted asl. R, whereA is and entity andr is a role. A.R can be considered’'s R
similar to local naming in SDSI/SPKI. In this case, omlyhas the authority to assign members to
the roleR. This is achieved by issuing role definition credentialh®ather entity. Each credential
defines one role to contain either an entity, another roleedain other expressions that evaluate
to a set of entities. A role may be defined by multiple creaasitiThe effect of such multiple role
credentials is a union. Credentials used in RT are defineghing of delegations-{), as shown in
Figure 2.17.
RT supports common vocabularies between entitiesd tfefinesA.R to containB. R, then
A must understand wha® means by the role nam&;. This is achieved in RT through the use



2.3 Trust Management Systems 47

ARy «— ARy A defines that?, dominatesR; .

AR +« B.R defines thatd delegates authority oveR to B.

ARy «— B.Ry defines a mapping between two organisations, A and B,
and the roles they provide.

AR <+ AR{.Ry Using the role mapping credential above, this credential

defines thatd. R contains anyB.Rs if A.R; containsB.
A.Ry + Bi.RyNBy.Ry definesthatd.R; contains roles3;.?; andBy.Rs.
This is the intersection of two credentials.

Figure 2.17: The different types of credentials in RT.

of application domain specification documents (ADSD). ABSI2fine a suite of related datatypes,
role identifiers (Role IDs) with the name and datatype of gaamtameter. This forms the vocab-
ulary. ADSDs may also declare other common characteristid?ole IDs such as storage type
information. ADSDs generally provide natural languagecdesions of role identifiers, including
the conditions under which they should be issued by the aotide defining them. These creden-
tials also have a preamble where they specify the ADSD thagesl with the credential, typically
by specifying its uniform resource identifier (URI) [177].

When role identifiers are used in credentials, the vocapidkentifiers are incorporated as pre-
fixes to the role identifier. While role identifiers are relaty short, they specify a globally unique
Role ID. ADSDs can be linked together in order for one ADSD s$e the data types defined in
another.

DAL

DAL [186], or Distributed Authorisation Language, was dfieally designed to avoid the problem
of authorisation subterfuge. Subterfuge [68] is the abditan entity to illicitly gain authorisation
using malformed delegation chains. If two entities use #mespermission in different ways within
a coalition, then it is possible that one entity can misugeghrmission in some unexpected way.

In order to avoid such problems, common vocabularies ard tsprovide a globally unique
name space for use in credentials, such as ADSDs in RT or Xha@tes in X.509. However,
these approaches rely atoseddelegation, that is delegation between users in coalitibasare
effectively controlled by a single administrator. Ensgrthat delegation credentials created in these
schemes are subterfuge free requires formal analysis rapdividing pre-agreed global naming
services.

DAL statements represent facts held by entities: idengifievles and threshold entities. DAL
statements are made using basic logic operators, functindsays(j~) anddirectly says(||~)
operators. Identifiers represent global unique entitielssa@ denoted by the tripld<, N, T'), where
K is the entity’s signature keyy is a descriptive name for the entity, aiids the type (individual



2.4 Authentication 48

(1) or coalition (C)) of the entity. Typically this triple isepresented by the structufé’, where
1D specifies the global identifier containidg and V.

Example 2.8 A simple DAL certificate is as follows:
Alice” v act As(UnivAC .student, Bob!)

This defines that Alicsaysthat Bob is a student of UnivA. This can be stated more infdisnaes:
Alice, who is an individual, signs a certificate stating tBab, who is also an individual, is a student
at University A (UnivA), which is a coalition. AN

DAL has a number of advantages over other trust managemsteinsy. DAL provides an built-
in proof system that ensures that statements are subtdifege As with RT, DAL supports role
based authority and role based delegation.

2.4 Authentication

Authentication is the process by which entities can deteenaine another’s identity, and use this
information to establish a secured communication betweemtities. Identities are usually stored
as crytographically signed certificates, and are typicapresented as cryptographic keys. In this
dissertation, when we refer to authentication, we are fipalty talking aboutentity authentication
Entity authentication is defined as (from [76]):

Entity authentication mechanisms allow the verificatiommentity’s claimed identity,
by another entity. The authenticity of the entity can onlyabeertained only for the
instance of the authentication exchange.

Two users, Alice and Bob, wish to communicate across a n&twthen Bob receives a mes-
sage from Alice, how does he know it comes from Alice and nottacker, Eve? This is the
fundamental problem that authentication protocols addregrthermore, can Alice and Bob create
a shared encryption key so that they may communicate intprivaithout Eve intercepting their
messages. These problems are addressed using authentaradi key-exchange protocols.

2.4.1 Simple Authentication Protocol

A simple challenge-response authentication protocolagvshin Figure 2.18. In this protocol, when

a client wants to access a server, it sends its n&md,he server then sends the client a challenge
in the form of a nonce encrypted with a key shared by the chedtserverKsc. If the client can
then send the server the nonce, incremented by one and &ttnysing the shared key, then the
client has been authenticated by the server.



2.4 Authentication 49

Client Server

Access: ©

Challenge: {S, C, nonce}Ksc

Response: {C, S, nonce+1}Ksc

Figure 2.18: Challenge-Response Authentication Protocol

The challenge response protocol provides single-sidesatitfation, that is the server has au-
thenticated the client, but the client has no guarantesttisailking to the correct server. There are
many different authentication protocols providing a ran§authentication guarantees. For exam-
ple, some protocols provide single side authenticationlevathers provide two-way authentication.
We now briefly examine two commonly used key exchange prégp&SL/TLS and Kerberos.

2.4.2 SSL/ITLS

SSL [92], or secure sockets layer, was originally develdpedletscape to provide authentication
between web browsers and web servers on the Internet. loisaply the most common security
protocol in use today. Itis primarily used to provide se@gmmunication between users and online
shops, in order that personal and financial information ii¢ Bean encrypted form between users
and businesses. The SSL protocol (version 3) was submistedstandard to the IETF, and when
accepted was renamed transport layer security or TLS. Bfis,version 3 is virtually identical to
TLS version 1. (We will refer to SSL/TLS henceforth simplySSL).

SSL uses X.509 certificates, described in Section 2.5.Inkadentities to public keys. Each
entity must share trusted certificates to be used to find a dfaiust to the other entity’s certificate.
Usually each entity will havéroot” certificates from certification authorities (CA) whom theyst
to properly verify the identities of the entitys they writertificates for. In order for a certificate to
be trusted by a entity, there must exist a certificate chaiwd®n a known trusted certificate and the
certificate provided.

In general SSL can operate in either client-side authdoisatvhere just the client verifies the
identity of the server, or in client and server side autleatitbon, where both sides authenticate each
other’s identity.



2.5 Other Security Technologies 50

2.4.3 Kerberos

Kerberos [50, 138, 161] is an authentication protocol thsasua trusted third party to allow clients
to authenticate themselves, and thus gain access to seornidhe network. The protocol uses two
trusted parties, one to hold the shared encryption keysthandther to control access to protected
services on the network. The Kerberos model is based on tedhden-Schroeder trusted third
party protocol [136]. The Kerberos server keeps a databfadeents and their secret keys. Clients
can be users or even software programs running on machinbe inetwork. Clients requiring
authentication, register their keys with the Kerberos eserixs the Kerberos knows the secret keys
of all the clients on the network, it can create messagesctmatconvince one client of another
client’s identity.

Using the Kerberos protocol, when a client wants access totagied service on the network,
they must contact the ticket granting service. The tickahting service (TGS) can grant authenti-
cated clients access to a service. First however, the chest be authenticated to the TGS. This is
achieved using the Kerberos server as a trusted third pey.client contacts the Kerberos server
and asks to be authenticated to the TGS. The server sétidsst granting ticket” (TGT), or a mes-
sage containing a session key, or ticket, encrypted usmglibnt's secret key and also encrypted
using the key shared by the Kerberos server and the TGS tdi¢iné. cThe client sends a message
containing the TGT to the TGS, with its access request. Tieatchnd the TGS now share a secret,
that is, the session key generated by the Kerberos server.

If the TGS determines that the access to the service is asglaipthen it generates a new ticket
for the client, containing a session key that the client aglise will share (as before). This ticket
will then be presented to the service by the client. In gdntra ticket granting ticket will be long
lived, for example it could be valid for a day, but the serviim&et would be a more short-lived
ticket, for example, suitable for a single access to theiserv

Kerberos provides the ability to securely authenticatentd and servers using a trusted third
party. Kerberos is used in a variety of applications, suchBss Project Athena [139] and most
recently, a modified version is used by Microsoft to provide¢hantication in their Windows net-
working, since the release of Windows 2000 [50]. Kerberas@se than a simple authentication
scheme. It also provides an access control mechanism tsets.u

2.5 Other Security Technologies

There are many different certificate based access contbhtdogies currently in use. In this
section we will examine the most important of these techygieky including X.509 and several trust
management systems. Each of these systems provide a mesdtastoattributes to public keys. In
general, we refer to attribute certificatescasdentials



2.5 Other Security Technologies 51

Using certificated-based access control allows the creafi@a decentralised security architec-
ture. Credentials are portable, and can be presented byljects attempting to access security
critical objects to prove they are authorised to access th&wess is granted only when the ref-
erence monitor controlling access to the object receivederttials sufficient to authorise access to
the object according to the system policy.

2.5.1 X.509

X.509 [38, 70, 87] is one of the most ubiquitous security tetbgies in use today. It is the authen-
tication framework designed to support the X.500 [182] clivey services. Both X.500 and X.509
are international standards proposed by the ISO and ITWXi& designed to meet the directory
service requirements of large computer networks.

The naming service is rigidly hierarchical, that is bestexifor large corporations and govern-
ments, where such a structure is common. X.509 provides d3Public Key Infrastructure)
framework for authenticating X.500 services. X.500 diogiets have a tree-like structure (and will
be described in Chapter 3). The root of the tree has branotesch of the countries. Each country
has organisations, these form the next set of sub-bran@emnisation are made up of organisa-
tional units, that have users.

Example 2.9 A distinguished namfor a user (Alice) in the Computer Science department in Uni-
versity College Cork is:

Di stingui shed Name (DN) : {
Country (O = IE,
Organisation (O = UCC,

Organi sational Unit (QU) = CS,
Comon Nanme (CN) = Alice

A

The X.509 PKI standard was originally proposed in 1988. I¢ wee first attempt at standardis-
ing a PKl available at the time. It was developed to supperatithentication of entries in an X.500
directory. Version 3 is the current standard. An X.509v3ifieate is shown in Figure 2.19. The
certificate binds an identity to a key. The serial number igumand is issued by the Certification
Authority (CA). The CA and Subject names are X.500 names. Oube close relationship with
X.500, CA hierarchies generally follow X.500 hierarchies.

Example 2.10 Figure 2.19 displays how the issuing certification autd@S Root CAhas created
this certificate forAlice Userin the Computer Science department in UCC.
This certificate is valid for one year from Januaf§ 2002 at 18:06:51. A



2.5 Other Security Technologies 52

Certificate:
Dat a:
Version: 3 (0x2)
Serial Nunmber: 1 (0x1)
Signature Algorithm dsaWthSHAL
| ssuer: C=I E, ST=Munst er, L=Cor k, O=UCC, OU=CS Dept,
CN=CS Root CA/ Emmi |l =rootca@s. ucc.ie
Validity
Not Before: Jan 7 18:06:51 2002 GMI
Not After : Jan 7 18:06:51 2003 GMI
Subj ect: C=I E, ST=Munst er, O=UC Cor k, QU=CS, CN=Al i ce User
Subj ect Public Key Info:
Public Key Al gorithm dsaEncryption
DSA Public Key:
[--]
X509v3 ext ensions:
X509v3 Basi c Constraints:
CA: FALSE
Net scape Commrent:
penSSL CGenerated Certificate
X509v3 Subj ect Key ldentifier:
61: DO: B5: 4A: OF: CA: 1E: BO: 49: 59: 73: 59
X509v3 Authority Key ldentifier:
keyi d: 0B9: 2F: 63: F6: 26: ED: 72: 8F: C9: 8C
Di r Nane: / C=1 E/ ST=Munst er / L=Cor k/ O=UCC/ OU=CS Dept /
CN=CS Root CA/ Enmil =rootca@s. ucc.ie
serial: 00
Signature Algorithm dsaWthSHAL

[--]

Figure 2.19: An example X.509v3 certificate

In order for a certificate to be valid it must be presentedrdutine validity period, and must not
have been revoked. Certificates are revoked using CerdifiRavocation Lists (CRL). These CRLs
are issued by the CA's periodically. When a user wishes tolchdnether a certificate is valid, they
should also contact the issuing CA to procure the latest QRLemsure the certificate has not been
revoked. CRLs provide an additional layer of complexity t&09. Not only does the user have to
check if the certificate is semantically valid, they musbalentact the CA to ensure the certification
still authorised to.

X.509v3 also supportsertificate policieghat give CAs the ability to include a list of policies
followed when the certificate was created. For example dficate might be valid to support
online email reading but not for online financial transaw$ioX.509 is widely used within Internet
applications. It is, perhaps, best known as providing tfi@atructure for securing websites with
Netscape’s SSL [92] protocol. SSL uses X.509v3 certificei@nable users to verify the identity of
the website they are connected to. X.509 (version 1) hasakso used to support privacy enhanced
mail (PEM) [22, 100, 105, 114]. PEM is a proposed standartigtavides encryption in email.

X.509 defines a rigid hierarchical structure, ideally witlecsuper certification authority. In
practice, the each major certification authority considieesnselves the top of the hierarchy. This



2.5 Other Security Technologies 53

means that cross-CA certificates must be created for evarpip@As. Furthermore, the compro-

mise of a CA private key is extremely serious. Should thisugoevery certificate that is signed by
that key is potentially suspect. Revocation of an entire, fpdus re-keying is a daunting task. X.509
is not a security panacea. It is one useful tool that can be taséevelop secure systems.

252 PGP

PGP [38, 116, 187] or pretty good privacy was developed bliPAhimmerman as a secure asym-
metric encryption system for the common man. PGP introdtiveddea that each user is their own
certification authority. This leads to a very ad hoc PKI systanlike the rigid structure of X.509.

An important feature of the PGP system is its “web of trust’s éach user is a certification
authority, they certify others according to personal kremlgle. The system works as follows: every
user creates his/her own encryption key pairs. They theo fiiends, who are also using PGP, and
get their key “certified” (signed) by those friends. Thegerfds will set a level of trust along with
their signature, ranging from untrusted to fully trusted.

This is intended to build links from any one key to any other kethe system. When receiving
a message from an unknown key, a user can decide to trusethigtydof the message’s signer based
on the quality of the links between their known (and fullystied) keys and the message signer’s
key. For example they could require two separate paths atrgimahtrust level or one completely
trusted path.

2.5.3 Secure Mobile Code

Mobile code [155], such as Java applets [79, 170], are eablutomponents that run in remote
locations. Unlike mobile agents, mobile code does not mowa flocation to location, instead it is
downloaded by the user and executed on their machine. Fond&aduring a Formula 1 GrandPrix,
interested viewers can execute a Java applet that provigesate information, such as driver lap
times [13]. As mobile code is foreign code to the user, thegtrbe confident that this code is not
malicious. There are several techniques used to assurs¢hefthe safety of the mobile code.

One of the primary solutions towards securing mobile code &xecute any remote code in a
protection domain osandbox A sandbox limits the set of operations that the remote coalgcall.
For example, Java’s applet sandbox prevents remote coatechieating a socket connection to any
remote machine other than the machine that provided thetppandboxing mobile code allows
users to specify the mobile code they trust and what opeativat the code is allows execute on
the local machine.

Another solution is to digitally sign mobile code. Signingde reassures the user that the code
was produced by a reputable software manufacturer. Thesisr should only execute code from



2.5 Other Security Technologies 54

software makers that they trust not to provide maliciousecddowever, this approach has disad-

vantages. Digital signing certificates have been issue@oplp masquerading as a representative
of a well known software maker [69]. Furthermore, small apeérosource software makers may

not have the financial capability to purchase such signintficates.



Chapter 3

Distributed Naming

Naming objects is a common requirement for many systems.imf¢paem object allows that object
to be correctly identified by different entities in the systeFor example, in in an email applica-
tion, users are identified by their email address. One of #nly eistributed naming services for
the Internet was the domain name service (DNS) [121]. DNi&lmecognisable strings to the nu-
meric identifiers of machines on the Internet and providesphkfied access for users to distributed
resources.

Naming is a particular challenge for distributed systemactEpart of the distributed system
must be able to refer to objects in the system. This is a compnollem in computing, ranging
from properly identifying users to providing a persistergans to identify objects on the Internet,
for example, using digital object identifiers (DOI) [73]. dbiibuted computing relies on having
names for objects in the system. For example, in order tosaamkjects in CORBA, we must be
able to uniquely refer to them.

We argue that when an object is properly named, it is thenilles® make informed security
decisions about that object. This philosophy is evidenh@ngecurity architectures of each of the
naming systems described in this chapter. For exampledier @ make an access control decision
about a CORBA obiject, one must first identify the object ingtios.

Developing names for objects is vital when referencing éhmigects. Object names range from
simple descriptions to globally unigue references. This é@mmon challenge in computing. For
example, determining the exact version of a document dlailan the Internet can be vital in
understanding information citing that document.

Developing a naming architecture for a distributed systatails having a means to represent
the aspects of the objects in that system and providing deuszfierence to the object for the system.
Research in distributed names has concentrated aroumtidir@maming services such as LDAP and
X.500 directories, and in object naming services such as BfOfames. We examine these topics
separately.

55



3.1 Directory Naming 56

In this Chapter we describe some approaches that are usean® objects in distributed sys-
tems. We examine directory naming services, specificallycthssic Internet standard X.500 di-
rectory naming service and the increasing popular LDARgligight directory access protocol)
in Section 3.1. Section 3.2 investigates object namingicesy specifically how the CORBA and
Spring systems manage names for objects. Other types ohgaystems are briefly examined in
Section 3.3.

3.1 Directory Naming

Directory naming services are used primarily to store gt static information, such as tele-

phone and email directories. Such systems are optimiseedding, rather than writing. The most
prevalent directory naming systems in use are X.500 and LB¥dPexamine these systems in this
section.

3.1.1 X.500

X.500 [179, 182] defines a directory naming service that sigieed to meet the directory service
requirements of large computer networks. X.500 was dedigi®ea client / server architecture.
Clients query a server that holds the directory informatXrb00 is a decentralised system, where
each site running X.500 is responsible only for the locat pathe directory. The naming service
is rigidly hierarchical. Such a structure is more apprdprfar large corporations and governments.
Another example is the X.509 PKI [39] (Public Key Infrastiure) framework for authenticating
X.500 named services that was discussed in Chapter 2. X.B80dps a single homogeneous
global namespace. X.500 directories have a tree-like tstrei€Figure 3.1). The root of the tree
has branches to each of the countries. Each country hasisatjans, these form the next set of
sub-branches. Organisation are made up of organisatioital which have users. Figure 3.1 gives
an example of this structure.

X.500 names are based on a the perceived structure of anisatian for example, a gov-
ernment or a large company. Such organisations can be bdiken as follows: country (C);
state (ST); locality (L); organisation (O); organisatiboait (OU), and common name (CN). The
common name is defined by the organisational unit and thenmagonal unit is defined by the
organisation. The country, state and locality define whieeeotganisation is physically located.

While X.500 names are commonly used, their rigid structuekes them useful only for spe-
cific applications, such as a telephone or email directofrige organisations. In practice, X.500
names are primarily used to identify the entities refereihtX.509 certificates (see Chapter 2),
and in large organisations. Smaller organisations, fomgte, a small company without internal
organisational units, would find it difficult to justify these of an X.500 based directory. X.500's



3.1 Directory Naming 57

Root

IE Country Code COM

NS~ N~

UccC

Orgainisation

CS Organisational Unit

Alice Common Name

Figure 3.1: X.500 Directory Information Tree

decentralised structure does not suit every application.ekample, it is difficult to imagine using
an X.500 directory to store unstructured information.

3.1.2 LDAP

The Lightweight Directory Access Protocol (LDAP) [49, 8971178, 184] is based on X.500 di-
rectories, but is designed to be simpler and more custoieisaDAP is commonly referred to as
a database, although this analogy is not completely aceuraplementations of LDAP directories
are typically optimised for read performance as LDAP is jamity used for looking up data, rather
than updating data. Thus, LDAP is well suited for storingadduiat is not frequently changed, for
example, a telephone directory. LDAP is extremely flexibdy type of data may be stored in
an LDAP directory. The structure of the directory is apgiima specific, but in general follows a
X.500 type layout, using X.500 headings.

Data is stored in LDAP in a hierarchical structure, similarat X.500 directory. Figure 3.2
shows an sample directory tree layout for University Cal€prk. This example shows the layout
without any data. In X.500 directories, the organisatioit (mu) name was used to distinguish the
functional areas within a company.

The distinguished name for each LDAP entry is made up of twtsptne relative distinguished
name (RDN) and the location within the directory where th&ada stored. The relative distin-
guished name is the portion of the distinguished name thaitiselated to the directory structure,
commonly stored in then or common name attribute. The root of each entry, calledtme DN



3.2 Directory Naming 58

dc=ucc dc=ie
ou=sci ence
ou=cheni stry
ou=conput er sci ence
ou=physi cs
ou=hunmani ti es
ou=l aw

Figure 3.2: A sample UCC LDAP directory tree

is stored in thalc field. This is typically a representation of the DNS entrytfog organisation.

Example 3.1 A machine in the computer science department in UCC has tlosvfog entry (dis-
tinguished name) in an LDAP directory:

cn=cer es, ou=conput er sci ence, ou=sci ence, dc=ucc, dc=i e

In this case the base of the directoryds=ucc, dc=i e. The record of the machine name
is stored inou=comput er sci ence, ou=sci ence. The relative distinguished name of this
LDAP record iscn=cer es. A

dn: cn=ceres, ou=conput er sci ence, ou=sci ence, dc=ucc, dc=i e
cn: Ceres

machi neType: Wrkstation

machi neConponent: Pentium |V

machi neConponent : 1024MB Ram

nmachi neConponent: 80GB Hard Di sk

machi neConponent: G gabit Ethernet
machi neConponent: NVi dia Graphics Card
machi neSof t war e: Debi an Li nux

nmachi neSof t war e: KDE

machi neSof t war e: Xorg

Figure 3.3: Information about Ceres stored in an LDAP doBct

The entries in an LDAP directory can be customised for theifiperequirements of an ap-
plication. For example, Figure 3.3 shows the informaticresd in an LDAP directory about the
machinecer es. This information might be used for auditing or statisticehsons. The fields
machi neConponent andnachi neSof t war e are application specific, in this case to store the
hardware and software components of the machine respgctivi@AP directories are designed to
store multiple values of a simple type (for examptachi neConponent ) in this manner, rather
than in the familiar row and column layout of a relationalatatse. LDAP provides a flexible means
to store (ideally) static information that can be quicklyriexed.



3.2 Object Naming 59

3.2 Object Naming

Object naming systems link references to objects on a systgmically, this reference is passed
to the component that wishes to use the object. For exam@& B2 objects are represented by
an object name. When an application wishes to use a CORBAwIijéooks up the reference and
uses the reference to access the object. Objects namepialyyrelatively static, in that objects

are long-lived and their names do not often change. In tluis® we examine some object naming
services, specifically, the Spring naming service and CORBjAct names.

3.2.1 Spring Naming Service

The Spring [120, 137, 149, 166] operating system was an erpatal microkernel [171] based
operating system designed by Sun to replace its Unix operatystem. One of the basic design
aspects of Unix is its concept that “everything is a file”. $hdirectories are files, devices are files,
and so on. However, this paradigm does not fit every aspectbfiasystem. For example, the
capabilities of printers are represented in a printer $jgatamespace.

To address this limitation, subsystems in Unix have typeeHig name services, such as the
printer capabilities (/etc/printcap) or environment ahles. Furthermore, distributed services of
Unix, such as NIS or NFS, must also have a means to refer tetshjéstributed across a network.
These systems use directory services to bind objects tosiarhe spring system provides a specific
name service to support the requirements of the differdpgysiems of the operating system. This
naming service provides users and normal Unix program®&mmifiaming access to most types of
Unix objects.

Spring is an extensible distributed operating system thiahierently multi-threaded. It is struc-
tured around the concept of objects that acasabstraction that contains state and provides a set
of operations to manipulate that stat¢?37]. Spring provides the concept ofdamain that is an
address space with a set of threads. In a distributed systdmmuiltiple domains, Spring provides
an unforgeable nuclewor identifierthat identifies the server domain.

The Spring name service allows any object to be bound to amendhese name binding are
stored in acontext A context is an object that stores one or more unique nandirgga. A simple
example of a context is a Unix directory file. Each file in theediory is an object-name binding
and the directory file stores these bindings. Objects carobhadto more than one unique name
at a time. The Spring name service provides the capabilibirtd objects to names and to resolve
the name for any object. As contexts are themselves objbetgcan also be bound to names. This
leads tonaming graphsFor example, the Unix file system is such a naming graph. Amgte of
such a graph is shown in Figure 3.4. In a naming graph, dingctantexts are bound to names (the
directory name) and these contexts stored in another disefite (the parent directory).

Names in the Spring system provide the basis for the Spriagrisg model. Objects that are



3.2 Object Naming 60

/home/tom

/home/tom/researct

Figure 3.4: A File System Naming Graph

bound can be associated with access control lists (ACL). A§Hecify the access rights that princi-
pals have to objects within the system. One of the major adgas of this paradigm is that names
in the Spring system provide the detail to specify securntycges for all of the different subsystems
that make up the Spring operating system.

3.2.2 CORBA Names

Common Object Request Broker Architecture (CORBA) [28,180] is a application component
system that is specified and standardised by the Object Mamagt Group (OMG) [8]. CORBA
defines an API, communication protocol and object managesystem to enable heterogeneous
components to inter-operate on various systems. CORBAGh§an be thought of as services that
are used by applications. In general, CORBA wraps code teigge a standard interface to that
code for distribution across a network.

An important aspect of CORBA is how these objects are name@REA objects may be
distributed across many different CORBA servers (callefbabrequest brokers or ORBs). The
provision of means to refer to objects on remote systemgvaltbese objects to be used. In most
object orientated systems, objects have references thatsad internally to identify them. In
CORBA, objects are used remotely, a more systematic appisaequired.

CORBA's naming service, like the Spring system, relies @andbncepts of name to object asso-
ciations called name bindings. Name bindings in CORBA afindé relative to naming contexts.



3.4 Other Naming Systems 61

As with Spring name contexts, CORBA name contexts contaietafsname bindings in which
each name is unique. Many different names can be bound t@ke sibject. However, there is no
requirement that every object have a name. Contexts carbalsamed, allowing the creation of
naming graphs. CORBA uses linked contexts to form compowardeas to refer to an object. A
compound name defines the path in the naming graph that leaasabject.

Names in CORBA are made up of a sequence of name componemte ¢&temponents consist
of two attributes: théd attribute and th&ind attribute. Both the id attribute and the kind attribute are
represented as interface definition language (IDL) strikgsd attribute provides a textual descrip-
tion of the name. For example, a kind attribute could hedarce” or “executable”. Kind attributes
are not interpreted by the naming system. Both attributesdiitrary length ASCII strings. Name
components cannot be empty and a name must consist of abfeasame component. In contrast
id attributes store the reference to the object in question.

As with the Spring system, the CORBA security model usesablsjames to form the basis of
the access control system. Permissions are specified negatoject names.

3.3 Other Naming Systems

We have only examined a small sample of the naming systemmentlyr in use. Other naming
systems include Internet based naming services, such asabtlMicrosoft's Windows Internet
Naming Service (WINS) [53], that link names to physical addes on a network. In Chapter 2,
we examined SDSI local naming. Recall that in SDSI all ppats (keys) are equal and each key
has its own name-space. When a principal refers to anotheigmal in their own name space, they
define the name themselves. Local haming has the advantaarkitrary precise names can be
represented within a name. Namespaces can be linked todgethBow one principal to refer to
objects defined by other principals.

Abadi et al [11] describe a tree naming scheme that usedicatdls to provide context. In this
system, only certified names would be allows in the trustadespace. For example, if an appli-
cation sought the name “/bin/Is”, then it would have to pdeva certificate that the administrator
trusted so that the name would be assigned. This schemenrianiyi aimed at operating systems,
where specific namespaces have special meaning. Systetiepdapecify trusted namespaces in
term of regular expressions that are used as permissiohs irettificates.

Howell [88] proposes another tree based naming hierarchiyattempts to provide highly se-
mantic and human readable (mnemonic) names for objectsistréibdted system. In this system,
names are bound to objects by users. These names providelgyaodnnections to objects, rather
like links in the Unix file system.



3.4 Discussion and Conclusions 62

3.4 Discussion and Conclusions

In this chapter we have discussed several naming systenggngafrom structured naming systems
(X.500 and LDAP) to flexible naming graph based systems (§mnd CORBA). Structural names
have the advantage that the naming service can be easilgtddis=d. Names in a directory under a
particular branch are controlled by the owner of that bramtdwever, this also limits the ability of
such naming architectures to adapt for use in distributed@ments. In contrast, flexible naming
systems provide the ability to refer to complex compound emnmNames can be linked together
into naming graphs.

One similarity of all of these naming systems is that the cisjehey reference are static in
nature. In the case of X.500 and LDAP, object names do noh aftange. In both CORBA and
the Spring systems, while data contained in the objects hagge, the names themselves do not
change. Another approach to distributed names is the copt&DSI local naming, discussed in
Chapter 2. Unlike the naming services outlined in this chia@DSI| names are capable of storing
a more dynamic reference to an object.

In Chapter 6, we will develop a naming service for the conddngraph architecture that will
be described in Chapter 4. A primary difference of the namétmirements for condensed graphs
to the naming systems described in this chapter is the dynaature of condensed graphs. As
the structure of a condensed graphs application evolvaaglexecution, it requires a dynamic
approach to naming. For this reason, we base our approacB8hl&e local naming.



Chapter 4

Condensed Graphs and Distributed
Computing

Condensed Graphs [122] is a graph based computational nfgolgications are codified as graphs.
Nodes in a graph correspond to operations, the arcs repréaenpaths between operations. The
model supports three computational paradigms, which obtite execution order of a graph.

 Imperativecomputation [175], where the sequencing of the operatiotisa graph drives the
execution order. This corresponds to the traditional abutriven approach.

» Eagercomputation [102], where node execution is determined bwthilability of parameter
data to the nodes. This is equivalent to dataflow and is cersiddata-driven evaluation.

» Lazycomputation [20, 143], where execution sequencing is tesluiven. It corresponds to
the functional approach and is considered demand-drivaluaion.

Condensed Graphs may be used as a distributed job contpnldga to describe the schedul-
ing of operations in an application. Atomic operations aakig-transforming actions and can be
defined at any level of granularity, ranging from low-levedchine instructions to mobile-code pro-
grams. Examples include computational primitives, Welyiges [148], CORBA objects [28, 81]
and commercial-off-the-shelf (COTS) components [118JorAic operations in a condensed graph
application need not address synchronisation or conotyreoncerns: such details are implicitly
specified by the arcs between nodes and are managed by trenseddyraph execution scheduler.

In this chapter, we describe both the condensed graph madédtsaexecution engine. In Sec-
tion 4.1 we examine the condensed graph computational nandehvestigate its execution mecha-
nism. The Triple Manager [131] is used to schedule and egaemirtdensed graphs. This is described
in Section 4.2.

63



4.1 Computational Model 64

4.1 Computational Model

The condensed graph model unifies three different model®mipatation (imperative, lazy and
eager) within a single graph based model. In the traditiomplerative (control-driven) model of
computation [175], the programmer explicitly determinks scheduling constraints of the com-
putation. In the eager (data-driven) approach [12], segjngris determined based on the arrival
of data to the computational components. In the lazy (abiiiha driven) approach, components
are executed based on the need for their results. Both theddaen and availability driven [143]
approaches are typically represented in the literaturérastdd acyclic graphs (DAG), for example,
dataflow graphs [18].

Definition 4.1 Condensed Graph. A condensed graph, henceforth referred to as a graph, is a
directed acyclic graph, representing an application anghtmgram. A condensed graph is made up
of a collection of condensed nodes that are connected by Argsaph has a singlEnter node E)
defining where operands enter the graph and a siExgjienode ) defining where results flow out

of the graph. &

Definition 4.2 Arc. Arcs are directional connections between condensed ndoleg which data
flows, in the graph. &

Definition 4.3 Port. A port is a point on a condensed node where other condenseas roaah
attach, via arcs. &

Ports on a node are where data from other condensed nodesaadteata for other condensed
nodes exit. Operands enter through operand ports, opgratter through the operator port and
data exits the condensed node via destination ports.

Operator
e
Operand(s) Destination(s) Operand(s) Destination(s)
(a) (b)

Figure 4.1: (a) shows a node with a dynamic operator, (b) @ math a static operator.

Definition 4.4 Condensed Node (computational triplel condensed node, henceforth referred to
as a node, provides one or more operand ports, a single ope@t and one or more destination

ports. &



4.1 Computational Model 65

Nodes are typically represented as a circle, as shown in€&gd(a), with operands on the left,
destinations on the right and the operator on top. Operdikesoperands can flow along arcs to
nodes. In most cases, the operator is statically definedsameghiesented as text in the centre of the

Figure 4.2: A simple Condensed Graph.

node, as shown in Figure 4.1(b).

Figure 4.2 is an example of a simple condensed graph with &m pade E) an exit node X)
and three condensed nod&sB andC. Each node consists of three parts: one or more operands, an
operator, and one or more destinations. Thus, nodes aresgtfe ascomputational triplesA node
can only execute when this triple is complete, that is, theyehall of their operands, an operator
and all of their destinations. Arguments to the graph shawfigure 4.2 are passed as operand data
to bothA andB, through theE node.

Definition 4.5 Firable Node. A node is considered firable when its triple is complete, thathen
it has an operator associated with its operator port, ogerassociated with each of its operand
ports, and its destination ports are bound to a destinatoie.n &

When the graph from Figure 4.2 is scheduled for executioth thee A andB nodes are imme-
diately firable, that is, they each have their operator, am#s and a destination. These two nodes
can execute in parallel. In contrast, the n@leannot execute until it has the results from bath
andB. When the node# andB execute, the results flow along the arcs to the nod@nceC has
its operands, it becomes firable.

4.1.1 Stemming and Grafting: a basis for lazy and eager evaation

Stemming and grafting are used in condensed graphs to ladtexecution sequence of nodes in a
graph. Stemming has the effect of temporarily delaying ttexetion of parts of the graph. This
provides for lazy evaluation of the graph.

Definition 4.6 Stemming. A node’s operand is stemmed when the operand node’s déstiriat
not attached to the operand port of the node. &

Definition 4.7 Grafting. Grafting is the process of attaching a stemmed operand théheperand
port of the destination node o

1Grafting can also be used to graft operators to operatos port



4.1 Computational Model 66

A stemmed node cannot be executed until it has been graftéds allows control over the
execution of parts of the computation. Nodes that are stahwilenot be grafted until their results
are required by the computatfariThis provides for lazy evaluation. In contrast, when aliesin
a graph are grafted, all nodes that are fireable can be exeicuparallel. This provides for eager
evaluation. There are advantages to both the lazy and eamlsmof computation. These will be
explored in Examples 4.1 and 4.3.

OaN0

Figure 4.3: (aAis a stemmed operand B) (b) A is grafted toB

In the graphical representation of condensed graphs, wegept stemmed nodes as “sitting” on
the arc, as shown by the noden Figure 4.3(a). In contrast, the noden Figure 4.3(b) is grafted to
B. Constants are represented graphically as rectangulastemclosing the constant value. They are
traditionally stemmed until the node is ready to be fired, iebpon they are automatically grafted.
Ports are represented as small boxes on nodes where arcstawis. a

Stemming a node will delay its execution as stemmed nodesrdyagrafted when their results
are required. Stemming is often used when there are muttggiditional branches within the com-
putation. The branches are grafted after the conditions¢ acomputed. Stemming all potential
branches means that only one of these branches will everdmitexi. If these branches were in-
stead grafted, then all branches could be executed in eardhis behaviour has both advantages
and disadvantages. Potentially nodes in all possible hencould be executed before the cor-
rect branch is chosen and redundant computations discakdextuting conditional branches of a
computation simultaneously provides speculation, oreegguation. Eager evaluation of multiple
branches can potentially provide much more parallelism ¢oraputation, with the disadvantage
of redundant computations. The condensed graphs exeainigine has the ability to increase or
decrease the amount of speculation depending on the ambpatallelism desired. This will be
examined in more detail in Section 4.2.

A special case exists for nodes where one or more of theiinddisihs are stemmed while
their operator and operand(s) are present. Such nodes rs@eeedreducible that is, they will
be fireable when their destinations are present. This rbldustate is important for the execution
scheduler. When a graph is executing, the scheduler witllbak for fireable nodes. When no
fireable nodes are present it will then examine the graphefitucible nodes. Reduceable nodes will
then have their destinations grafted and thus become fieabl

2Although this rule is sometimes overridden to allow spetiv#acomputations.
3Note that where no ambiguity can arise: ports are not spefifidepicted on subsequent graphs.



4.1 Computational Model 67

Definition 4.8 Reducible Node. A node is considered reducible if there is a condensed graph
associated with its operator and with each of its operandaode with stemmed operands is not
reducible until all of the operands and the operator argeptaf &

Example 4.1 We define a simple graph, shown in Figure 4.4 to compute therfatof an integer.
An integer value is passed as a parameter to the graph thtbaghnode and in turn is passed as
an operand to thequal st o (=), mi nus (-) andnul ti pl y (*) nodes. The partially executed
graph ofFact ori al (50) is shown in Figure 4.5. Fireable nodes are shown in the diagm
shaded.

Figure 4.4: A lazy graph implementation of Factorial(n).

Nodes that have fired are not immediately garbage collegtedebexecution engine. They are
simply dereferenced and are properly deallocated whernxihaae fires. The f el (conditional)
node has conditional BooleaB), True (T) and FalseK) operand ports. Thef el node becomes
fireable once its boolean port becomes bound to an operand (Figure 4.6), even though its other
ports may not be bound. The conditional node is a specialwidbia the condensed graph model.
Other nodes are fireable only when their all of their operamtispare bound. In contrast, thé el
node is fireable once the boolean operand port is fouddexecuted nodes may be present on any
of the other operand ports. Once the conditional node besdineable, the node (or nodes) present
at the ‘winning’ operand port pass through the conditiormlenand attach to the operand port(s) of
the conditional’s destination(s).

If the operand to the graph was equal to 1, then the compuotatould continue using the true
branch and the false branch would be ignored. Given that weising the valué0 as the input
to this graph, the computation proceeds alongféfeebranch. Thus the nodes on the false branch
now pass through the conditional node, and«thmede is now attached to thxenode’s operand port,
as shown in Figure 4.7.

Thei f el node is now dereferenced and theode is instead attached to tkenode. At this

“4Actually, this is not a special case. The Condensed GrapreMas the concept of patrictness This is discussed
in detail in [122]. The f el node is the only node with this behaviour that is discussedignthesis.



4.1 Computational Model 68

Figure 4.5: The partially executed graph of Factorial(t@rbne step.

Figure 4.6: The partially executed graph of Factorial(m@rafwo steps.

i BN,
\ @
@

Figure 4.7: The partially executed graph of Factorial(tg¢rathe execution of thef el node.




4.1 Computational Model 69

point there are no fireable nodes, but as Haet node is reducible, it is grafted and becomes
fireable. Another instance of the graph is now spawned, usie@perandl9. When the result of
this graph (and all potential sub-graphs) are computednthe i pl y node is executed returning
a result to theX node, giving the factorial d0. A

4.1.2 Condensation and Evaporation: embedding subgraphs

A node in the condensed graphs model can represent eithéomicaaction or a complete con-
densed graph. Atomic actions are primitives of the exenuitheduler or operations provided by
the underlying host. When a node representing a condenaptl grexecuted, that node is replaced
by the graph it represents. The graph is then executed. @sedaraphs are hierarchical, that is,
graphs can contain subgraphs. Subgraphs can represeableeos recursive sequences within a
condensed graph application. In the condensed graph nsdegjraphs are represented as nodes in
the parent graph. When these nodes execute they expancetd tiee subgraph. The subgraph is
then executed. This process is knowresaporation

Example 4.2 Figure 4.8 shows an instance of the factorial graph wherdatterial node in the
original graph shown in Figure 4.4 has been evaporated.idrcése, two iterations of the graph are

Figure 4.8: Evaporation of the recursiFact node within the Factorial Graph

visible, the original shown in the dashed box and the evaedrgraph shown in the dotted box. In



4.2 Computational Model 70

practice, evaporation causes a separate condensed graptspawned, with the operands passed
through theE node and the result returned, via @ode, to the next node, in this case theode,
in the parent graph. A

The process to convert complex graphs to simpler subgrapkisown as condensation. This
process is not automated: condensing a graph is currerdiskeperformed by programmers.

4.1.3 Unifying eager, lazy and imperative computations

The original aim of the condensed graphs model was to unéfetiyer, lazy and imperative sequenc-
ing of computations. As previously defined, a node in the rhoale be considered a computational
triple of operands, an operator and destinations. A nodetigirable until this triple is complete.

In the condensed graphs model, each of these approachamréig restriction of one part of the
triple in order to control executions. With the eager apphpa@&omputations are sequenced based
on the availability of operand data. In the lazy approacmmatations are sequenced based on
the availability of destinations. The imperative apprqachcontrast, relies on the availability of
operators to sequence the computation. It is possible tahmithree models of computation within
a single graph, depending on how the graph is written.

Example 4.3 The original Factorial graph (Figure 4.4) is a lazy conddngmph. It is called lazy,
as nodes are only executed when the result of a node is rdqgliireontrast, an eager version of this
graph is shown in Figure 4.9. In this graph the recurfi@et node is grafted, allowing it to recurse

=
O T N ®
G\ < [Noenode

grafted.

Figure 4.9: An eager version of Factorial(n)

before the boolean check has been performed. This allow$ mace parallelism as many more

nodes are now fireable, both in the original graph and in itgysaphs. However, this eagerness
has consequences. Since the boolean check is not perfompetbgghe spawning of the subgraph,

graphs that recurse infinitely are possible. A

®In theory, athrottling mechanism can be used to selectively stem graphs, or thizttk on the infinite recursion in
this graph [122]. However, throttling is not currently piged as part of the WebCom system.



4.2 Executing Condensed Graphs 71

4.2 Executing Condensed Graphs

Condensed Graphs are executed using a execution schedilder theTriple Manager The triple
manager schedules nodes within a condensed graph for mxecut

4.2.1 Triple Manager

The Triple Manager manages and executes computationsdstript consists of two basic parts,
the graph memory and a scheduler, as shown in Figure 4.10.edNioda condensed graph are
either executed by the host operating system or are exebytte triple manager itself. The triple
manager will execute special nodes, called triple managentyes. Examples of triple manager
primitives include theég, X andi f el nodes, and nodes that are condensed subgraphs.

Triple Manager

Q)
Q/O

Graph Memory

Scheduler

Host OS

Figure 4.10: The architecture of the Triple Manager

Graph Memory stores the current status of an executing gréfiiien computational compo-
nents are executed, their results are integrated into #tessof the graph. The scheduler selects
fireable nodes to be executed. If no fireable nodes are prasenll select reducible nodes and
graft their operands.

4.2.2 Distributing Computations

Triple managers can be linked together to form a distributemhputation architecture. There are
several implementations of this type of architecture [88,,1.32, 144-146]. These implementa-
tions provide parallel execution of graphs across differeachines. In each case, the initial triple
manager schedules fireable nodes to different machinesn®bea condensed node that defines
a condensed graph is executed, its defining graph is schitthubetriple manager. In a distributed
implementation, this evaporated graph may be sent to aeliffériple manager. This results in a hi-
erarchical n-tier architecture where the connections betwdistributed triple managers will evolve



4.2 Executing Condensed Graphs 72

to match the executing graph.

WebCom is the primary architectural platform for distribditcondensed graphs. It is a dis-
tributed n-tier metacomputer and is examined in detail iyitér 5. Other examples include the
peer-to-peer metacomputer, ComPeer [146] and an impleti@mion field programmable gate ar-
rays, ARC [85, 128].



Chapter 5

WebCom

WebCom [104, 124, 126, 130-132, 144, 145] is a metacomp2ded D3] that is designed to execute
condensed graphs in a distributed manner. It uses a vafiti@ olient/server paradigm to distribute
operations for execution over a network. WebCom provides-der approach to distributed com-
puting. In contrast to a traditional two-tier metacomputenere there is a single parent and many
children, WebCom's n-tier structure allows each child Webito act as a parent to other children.
WebCom handles the issues associated with distributed utatigns, such as communication, load
balancing, fault management and, as is proposed in thisrthé®n, security. These features are
transparent to the execution of condensed graph applisatio

The WebCom architecture has proven itself to be adaptalileeatensible. It can be used
to support a variety of architectures including middlewgi'g, 126], web services [148], and the
Grid [124]. WebCom is designed to be modular, that is, eadts ofajor components are developed
as modules. The implementations of these module$phnggable” — they can be easily replaced
with different implementations of that type of module. Frample, there could be a load balancer
that provides round-robin scheduling and an alternatia¢ tises a more sophisticated scheduling
policy based on feedback from its children. This allows WeilnGo be easily extended. The security
manager in WebCom has been extended to support a micropagystam [64], a decentralised
system administration tool for grids [48, 147] and a segypitlicy tool for enterprises [63]. Each
of these extensions are described in detail in Chapter 8.

This chapter will examine the architecture of WebCom, catreging in particular on the de-
sign of the security architecture. The development of Web®a@s a collaborative effort within
the Centre for Unified Computing in University College Corkhe fault tolerance architecture is
described in [104]. In [144], the load balancing architeetis described. The contribution detailed
in this dissertation is the design and implementation of @h’s security architecture.

Providing a security architecture for WebCom entails fidgnitifying the security risks that
metacomputers suffer and creating an architecture thakessies these risks. The security system

73



5.2 Distributing Computations 74

must also consider, and work with, the other systems thalGQ&gbprovides, such as fault tolerance
and load balancing.

In Section 5.1 we will introduce the WebCom system and idigtie type of problems it can
be used to solve. The WebCom architecture is examined irndBest2. Section 5.3 describes
the types of problems WebCom can be used to solve. Thesaigiocessor intensive parallel
computations, such as a distributed key cracking and loig&gd workflows. One of the major
benefits of the WebCom system is the ability to separate ifumatity from scheduling control.
This is described in Section 5.4. We discuss the advantagkbraitations in Section 5.5.

5.1 Distributing Computations

WebCom essentially functions as a distributed condensaphgexecution engine, known as the
Triple Manager that was described in Section 4.2.1. WebQuoenates as a virtual machine running
on top of the host architecture. Thus, we refer to the systetheWebCom Virtual Machine, or
WVM When a WVM is executing a graph, it can schedule nodes wittahgraph to its children.
The child WVMs then execute the nodes and return the resuliseir parent. The results are in-
tegrated into the graph and the execution continues. Whemaeased graph is executing and a
subgraph is uncovered, this subgraph can be sent to anottibt # scheduling. This subgraph
is then maintained by a second WVM. This is knownpasmotion[130]. The promoted WVM
will schedule the nodes contained within the subgraph tohtklren As an application executes,
there can be many subgraphs uncovered within the parerti.gBybgraphs can themselves contain
further subgraphs. As these graph are discovered, the restracture of the WVMs will ideally
change based on the discovery of subgraphibus, as a computation evolves, the network architec-
ture of WVMs executing the application dynamically evolvesccount for the needs of the graph
[104]. This type of evolving network is known as an n-tieusture. A representation of WebCom'’s
n-tier structure is shown in Figure 5.1.

WebCom also supports child migration, where child WVMs atlepged from other WVM
parents. A WVM can either make this request to its parentanmasake the request to a central child
repository, such as Cyclone [133]. Volunteers first regiatith Cyclone, and are then migrated to
WVMs that need workers. Other repositories include Grid mvaes [145], that is, machines that
are provided as workers within a Grid architecture.

WebCom has been used to manage the execution of applicatiogisig from simple workflows
to complex Grid applications. Recall that nodes in condeigsaphs can represent atomic actions of
any level of complexity, from simple computational primés to complete application components.
A WVM makes no differentiation (other than load balancingjMeeen simple and complex nodes.
Both are handled transparently by the scheduler.

IProvided that sufficient WVMs are available.



5.2 Architecture

75

WebCom
Parent

WebCom
Parent

Child

WebCom
Parent

WebCom
Parent

WebCom
Parent

Child

WebCom
Parent

(chia | [chia || “moon

_cnia_

Figure 5.1: WebCom'’s n-tier architecture.

5.2 Architecture

WebCom is composed of a number of replaceable modules cmpéo a central scheduler. The
core WebCom modules are thxecution Engine Moduléhe Communications Manager Modulle
the Load Balancing Modulghe Fault Tolerance Modulethe Naming Manager Moduland the
Security Manager ModuleThese modules make up the core of the WebCom system. Eaallenod
has its own local policies that define the configuration of thadule. Non-core modules, called
user modules, are also supported. The architecture isgphilg”, in the sense that a module can
be re-implemented to replace the reference implementatbthat module. WebCom supports the
use of multiple instances of a core module type concurrekiigen multiple instances are present,
decisions are made jointly. For example, if multiple segumanager modules are present, each
module makes decisions on requested actions and only whemodlles agree will any action
take place. Figure 5.2 displays a representation of the\&@gCom modules. These modules are
examined in more detail below.

WebCom provides a complete messaging infrastructureyisgpmodules to communicate be-
tween themselves on both the same WVM, and on other WVMs ingh&ork. For example, a load
balancing module can ask another load balancing moduleiffeassht WVM the extent of the load
on its children. The messaging infrastructure is regulaiethe security manager.

When a node is firable by the execution engine and is to be atdeetly the WVM, the sched-
uler asks the load balancing module and the security mamagdule to find a child that is both
unloaded and is authorised to execute such a node. Whetlmddascunloaded and authorised is
determined by the load balancer and security manager modegeectively.



5.2 Architecture 76

Secure WebCom

Load Balancer Fault Tolerance
Module Module

Communications
Manager
Module

Execution Engine!

-

Naming Manager
Module

Network

Security Manage|
Module

Figure 5.2: Secure WebCom Architecture

5.2.1 Execution Engine Module

The execution engine module is used to execute operatioridséhe WVM. Execution engine
implementations can be written to execute any type of ojpgrafl he reference implementation is
a Triple Manager that is used to execute condensed graplpertrantations also exist to execute
CORBA J2EE .NET andGrid nodes. If a WVM is operating as a child, the execution engiile w
execute the nodes sent to it locally and will return resultfs parent. If the WVM is operating
as a parent, the execution engine selects nodes for sahg@uld maintains the current state of the
executing graph.

5.2.2 Communications Manager Module

The communication manager module is used to manage comationidbetween WVMs. Typically
this network communication uses the TCP/IP protocol. Hawether types of communication
manager module also exist, such as the Web Services comaionienanager module [129], that
provides a web services interface to WVM. The communicatimager module is used to route
the traffic between a WVM, its children and parent.

The current prototype of Secure WebCom uses SSL [92] to geosfecure and authentic com-
munication links. This will be discussed in more detail inapter 7. Thesecurecommunications
manager manages the cryptographic keys and store trusged kaplementing a secure commu-
nication manager module entails replacing the standardramitation manager module with an
implementation that uses the SSL protocol.



5.2 Architecture 77

5.2.3 Load Balancing Module

The load balancing module manages the load on the childrenVi@g¥/M. This allows the parent
WVM to choose to schedule nodes to children that are relgtiveloaded. The load balancing
module makes the scheduling decisions in conjunction vhithsecurity manager. The load bal-
ancing policies range from simple round-robin schedulersamplex schedulers using history to
predict future loads [144].

The load balancer is also used to match nodes to specific W\Rds.example, a hode may
require data that is only available to a specific WVM. The |bathncer policy can contain such
details and match nodes to specific W\AVIs

5.2.4 Fault Tolerance Module

The fault tolerance module managers faults that occur wihaetwork of WVMs. This can range
from fault avoidance to fault recovery [104]. Work that wateduled to WVMs that have since
failed will be rescheduled to other WVMs by the fault tolezarmechanism.

The default fault tolerance mechanism is sophisticateca \WVM that is acting as a parent
fails, then the only work lost is the work that is taking placethe failing machine. Its children will
decide on a new parent between themselves. This new parfénbntiact their “grandparent”, that
is, the WVM that was the parent of the failing machine. Thekatbiat the children have executed
up to that time will be reintegrated by the new parent and ¥eew@ion will continue as before.

5.2.5 Naming Manager Module

The naming manager module manages the names of node objaatemdensed graph. When We-
bCom modules make decisions they require a fully qualifiedenfor nodes. The naming manager
generates, stores and updates the names as the executioespes. These names hold the execu-
tion context of the nodes in a condensed graph applicatibiis dxecution context can be used by
the other modules to make scheduling and security decisibost the nodes.

Chapter 6 describes how nodes in condensed graphs can leglpnogmed. The naming man-
ager uses these techniques to manage descriptive namexdfes im the WebCom system. In the
current prototype the security manager alone uses thesesnafowever, it is envisioned that the
other modules will take advantage of the naming architectlor example, it is proposed to use
the naming system to properly identify WVMs for use by thdtfamanagement mechanism.

The security manager module is also capable of ensuringtitats are sent to specific WVMs. This will be examined
in Chapter 7.



5.3 WebCom Applications 78

5.2.6 Security Manager Module

The security manager module enforces the local securifgypof WebCom. The security manager
module acts as a reference monitor [25], determining whéthe safe to execute security critical
actions. These actions could be the scheduling of a nodesethding of a message, a result to be
processed or the local execution of a node. The security geamaakes decisions based on its local
security policy.

The security manager can be implemented in a number of wayging from a simple manager
that permits everything, to a sophisticated access cosyitem. An early prototype implemented
a trust management based access control system. In thisnraptation permissions are delegated
to principals, representing WVMs, using cryptographicdergials. The trust management security
manager uses the credentials provided by child WVMs to @esidere to schedule nodes. The
implementation of the Trust Management security modulésisussed in more detail in Chapter 7.

5.2.7 User Modules

WebCom supports the development a variety of non-core nadgipes. These are referred to as user
modules. One example is the information gathering modu?&][that gathers machine execution
information from WVMs. This is used to map the load on a clusteWVMs to measure both
performance and usage. User modules cannot directly effectcheduling decision making logic
of WebCom. User modules are restricted to gathering infGomaThis information could be used
by a core module, and thus effect a scheduling decision.

WebCom provides a complete application programming iaterf(API). Using this API, third
parties can create different implementations of core Webh@mwdules, or create entirely new mod-
ules.

5.3 WebCom Applications

WebCom allows us to execute applications across many meiina network. It is used to solve
both complex scientific computations, such as identifyisigamomical phenomenon [141] and sim-
ple workflow applications [126]. Workflow applications amgsiences of operations that must ex-
ecute in the order specified for the application to be sufigesBor example, Figure 5.3 shows a
simple purchase ordering system specified as a workflow. isnwtbrkflow, an order must be first
proposed fr op) and then verifieder ) to be considered a valid order.

e

Figure 5.3: A Simple Purchase Ordering Application



5.4 Separation of Concerns 79

Specifying this application as a condensed graph has thkcitrigenefit that thepr op node
will be executed before theer node. WebCom provides the ability to distribute such ajpgilhn
components to different machines in a network. WebCom egipdins are primarily created using
a graphical integrated development environment, the WeblDidE.

WebCom applications use the benefits of the architecturealfG¥m transparently. Consider
the following scenario: the noder op has been scheduled to a WVM running on maclng&his
machine breaks down before the node finishes executing. ACWma has a fault tolerance (in this
case a fault recovery) mechanism the node is rescheduleskémution without user interaction.
This mechanism is outside of the condensed graph model.

5.4 Separation of Concerns

WebCom provides the inherent ability to separate comprtdtinctionality from computation con-
trol. Computation functionality is provided by the implemtation of the nodes and graphs, the
control is provided by the WebCom modules. In most distedutomputation architectures, such
as PVM [9] and MPI [7], control is embedded within the funotid code. For example, the num-
ber, type and order of resources to be used to execute theutatiop are known a priori. This
provides a tight coupling between functionality and contho contrast to this type of architecture,
WebCom provides for a separation of concerns at the codk &l@mving a loose coupling between
functionality and control: functional code is separatarfrcontrol code.

Example 5.1 Traditionally when Trust Management is used within an aypion, the calls to the
trust management system are embedded into the functiodal émr example, Figure 5.3 shows a
condensed graph with two nodesop andver . If the implementation of ther op node used the
KeyNote trust management system (as described in SectoR) 2the calls to KeyNote would be
embedded into the code as shown beélow

1 /1 Initilise JKeyNote (bjects
KeyNot eFact ory knf = new KeyNot eFactory();
KeyNot ePar ser trustedParser = knf.getParser(true);
KeyNot ePar ser untrusted = knf. get Parser (fal se);
KeyNot eNavi gat or nav = knf. get Navi gator();

/1 Set up a list of variables to act as query.
Vari abl esLi st vL = new BasicVari abl esLi st ();
vL. addStri ngVar (" App_Donmai n", "Order App");

10 vL. addStri ngVar (" Operation", "prop");
knf . addVari abl esLi st (vL);

/1 setup the conpliance values and | oad policy

3In the code fragments shown in this chapter we use the Javiermeptation of the KeyNote Trust Management
system, JKeyNote [90].



5.4 Separation of Concerns 80

knf . set Conpl i anceVal ues("untrusted, trusted");
String pol = ...
trust edPar ser. parse(pol);

/1l Parse the user credentials
String usercreds = ...
20 untr ust ed. parse(usercreds);

/1 Performthe query, using the client’s key.
PublicKey dientkKey = ...
int resl = nav.findAuthorizer(dientKey);
if (resl > 0)
{
prop();

el se
30
/1 deny access...

}

In this code, before thpr op() function call is made, the system calls KeyNote and verifies
that the call is authorised. It must first initialise the JKeye objects and define the query (lines
1-14). Next the local policy (trusted) credentials and teeryuntrusted) credentials are loaded
(lines 15-20). Finally KeyNote is queried whether the dliepublic key is authorised for the
given query (lines 23-25). In this case, the client must lwwktlentials authorising the actions
App_Domai n == "Order App" andOper ati on == "prop", such as the credential shown
in Figure 5.4.

Aut hori zer: "KAlice"

i censees: "KBob"

Condi ti ons: App_Domai n=="0r der App"
&& Operation=="prop";

Figure 5.4: A skeleton credential authorising KBob to perfdhe actionOr der App andpr op.
A

WebCom offers a different approach to scheduling of nodesle that represent atomic com-
ponents are scheduled based on the characteristics ofribdes. For example, the WebCom se-
curity manager decides whether a nodes are permitted taiexen specific resources. If a node is
not so authorised, then it will not be scheduled to that nesau~urthermore, if a resource receives
a node that its security model does not permit, then that molidoe rejected. In the WebCom
system, the node application code has no explicit calls éoWWebCom security model. The se-
curity policy is thus independent of the application codéisTallows, for example, programmers
who have little experience of the security model to creawesaand grapHs The security policy
is created later, before the application is executed in areggnvironment, thus providing a loosely

4The security model is examined in detail in Chapter 7.



5.4 Separation of Concerns 81

coupled architecture. All WebCom’s modules share thisattaristic and are, as such, all loosely
coupled. Typically, security policies are created duripglecation development, as developers will
have greater insight into the security requirements of éygplication. However, a loosely coupled
architecture allows policies to be easily changed withoodlifiying the application code.

Example 5.2 When a node is to be scheduled by WebCom, the scheduler a&sksald Balancing
Module and the Security Manager Module to find a suitabledciiVM to execute the node. The
Load Balancer and Security Manager search for a child baséueir decision logic. If the Security
Manager is using the KeyNote trust management system agdisioh logic, the search for a
suitable child WVM takes the form of a check of each candidaut an authorised child is found.
This search is performed bycheck method, parts of which is shown below.

1 /1 Node nane stored in instrnane
/1 Environent Variables
vL. addStri ngVar (" App_Domai n", "WebCon');
vL. addStri ngVar (" Domai n", instrnane. get Domai n());
vL. addStri ngVar (" G aph", instrnanme.getGaph());

vL. addStringVar (" Function", instrnane.getFunction());
/1 Miltiple Inputs and Destinations
Vector inputs = instrnanme.getlnputs(); // Go through inputs
for (lterator iter = inputs.iterator(); iter.hasNext(); )
10 vL. addStringVar ("I nput", (String) iter.next());
Vector dests = instrnane.getDestinations(); // Go through destinations

for (lterator diter = dests.iterator(); diter.hasNext(); )
vL. addStringVar ("Destination", (String) diter.next());

knf . addVari abl esLi st (vL);
knf . set Conpl i anceVal ues("untrusted, trusted");

/1 Initilise the credential search engine and | oad credentials
20 KeyNot eNavi gat or nav = knf. get Navi gator();
try {

for (lterator polsiter = pols.iterator(); polsiter.hasNext(); ) {
String pol = (String) polsiter.next(); // Policy (trusted) Credentials
trust edPar ser. parse(pol);

}

for (lterator iter = creds.iterator(); iter.hasNext(); ) {
String cred = (String) iter.next(); // User (untrusted) Credentials
untrust ed. parse(cred);

}

30

/1 Check if the client key supplied is authorised.

int resl = nav.findAuthorizer(dientKey);

if (resl > 0) {
return true; // it is, let the SecurityManager know.

}

el se {
return false; // not authorised, informthe SecurityManager

}

}
40 1}



5.5 Discussion and Conclusions 82

In this code fragment, jKeyNote is initialised in the sameyvaa before, and acts in a similar
manner to the embedded version discussed earlier. Hovikeadmplementation used by the Secu-
rity Manager is generic, that is, it can be used for any node dnvironment variables used for the
query are extracted from the name of the rogi@es 4-15). The properties of the nodes are stored
in a name variablé, nst r nane in this code fragment, and are extracted for use by the KegyyNot
guery. The KeyNote credentials used will reflect these envirent variables. A sample credential
is shown in Figure 5.5.

Aut hori zer: "KAlice"

i censees: "KBob"

Condi ti ons: App_Domai n=="WebConf'
&& Domai n=="bob. ucc.ie"
&& Graph=="PurchaseCOrder"
&& Functi on=="prop";

Figure 5.5: A credential allowing KBob to execut@raop node with any input(s) and any destina-
tion(s) in the domairbob. ucc. i e.

A

WebCom'’s pluggable design allows different implementagiof security managers for specific
types of security policy. For example, it is easy to imaginat ta separation of duties security
policy [135] would be required for the purchase orderingesysshown in Figure 5.3. Such a policy
could define that one person should perform phne@p operation and another theer operation.
In this simple application, the security policy would reface both the@r op andver nodes. The
simplest policy would define a specific WVM that should exequrtop nodes and a different WVM
that should executeer nodes. A specific implementation of the security manageruieocould
be used to enforce this policy.

5.5 Discussion and Conclusions

The WebCom architecture is a metacomputing environmeniptiozides the basis for secure, fault
tolerant, load balanced distributed applications. Thggéble nature of the WebCom architecture
allows the development of modular components. The referanplementations of the core mod-
ules can be replaced, allowing different implementatidith@se modules to be used. WebCom can
therefore adapt to different execution conditions as requi

From a security standpoint, the architecture of WebCom ptersome unique challenges. En-
suring the integrity of the computations executing in ariisted environment entails controlling
the configuration of both the computation and the network &N that the computation will be

The process by which the node’s name is determined is disdis<Chapter 6 and is not important at this point.



5.5 Discussion and Conclusions 83

executing on. The security requirements of WebCom are nethhg the Security Manager Mod-
ule. Different implementations of the security manager lbarused to enforce different types of
access control. As WebCom is a distributed environmengreafment of the security policy must
also be distributed. WebCom can exist outside of the comwiral single administrator. Instances
of WebCom running on different resources can have diffeagintinistrators. The security system
must support this type of architecture.

Another challenge that faces the security architecture elb@dm includes the localisation of
security policy. Each WVM will have its own local policy, arst will only execute computations
that comply with these policies. WebCom must support thie tgf policy localisation and manage
the problems that this creates.

WebCom provides built-in support for the separation of fiowal and control code. Condensed
nodes implement functional code; WebCom’s modules prowatdrol over this code. Functional
and control code requirements are typically disjoint. Whamomponent is modified, that does not
necessitate modifying the control code, and vice versas pravides a loosely coupled architec-
ture. Conventionally, trust management does not suppigrséparation of concerns: security code
is embedded within the functional code. However, sepaydtie functional and control code does
not provide the same level of detail when making a trust memegnt check. When this check is
embedded within the functional code, all of the informataailable to the application is poten-
tially available to the trust management system. Removiegtitust management check from the
application requires the ability to extract that same l@fedletail from WebCom. We argue that
a rich naming system for WebCom is necessary so that we cay @atr the same kind of check
outside of the application code. Chapter 6 will addressisisise.

In this chapter, we examined the architecture of the WebCatacomputer. In Chapter 7,
we will examine WebCom'’s security model in detail and adsieesthe threats that WebCom must
defend against. Specific implementations of security marsafpr WebCom are also described in
Chapter 7, with the types of security policies that thesdémgentations can support.



Part Il

Security in Distributed Systems

84



Chapter 6

Naming for Condensed Graphs

Distributed computing technologies, such as Grid [71, T&] euster computing [167], raise some
unique problems when articulating security policies. Thenplexity of these problems depends
greatly on what type—open or closed—of distributed systeim use. Closed distributed systems
are those where the entire system is owned and/or operatadsimgle organisation, such as an
organisation’s cluster or enterprise application. In castt open distributed systems consist of
shared resources across many administrative domainsasutibomputational grid.

Distributed applications are made up of computational comepts that are executed on dis-
tributed resources. With traditional closed systems, adgatjpns are performed within domains
where the characteristics of the system, such as the resoax@ilable or the types of operating
system in use, are a priori known. However, in open disteéfrchitectures, computational com-
ponents may be executed across widely distributed domainsre developers may have less a
priori information about the resources the components ndendnere these components will exe-
cute. In a closed distributed system, these resources arenkio the developer and the security
requirements are more easily configured.

In practice, open decentralised security architectunesh as Trust Management [29, 32, 56],
provide an approach towards addressing this concern. iBepalicies are maintained by the
stakeholders in the computations: the users who initiadecttimputations and the computational
resources that host the jobs.

Creating security policies for open distributed compuotadiis a challenging prospect. In this
dissertation, different applications have a large rangeeofirity goals. In particular, we are primar-
ily interested in access control. Providing a means to ersath access control policies implies
having the ability to refer to components throughout the gotation in a consistent and potentially
unique way. For example, how does one specify that sengitives of a computation are only sent
to be executed on appropriately trusted resources? Morgleamroblems can also be imagined,
such as creating a history-based policy [40, 135, 164, 180th policies require representing the

85



6.1 Context 86

contexts that the computation has passed through to thit, gor example, a separation of duty
rule on a financial transaction could entail ensuring thatfarént principal approve the transaction
that another principal initiates. The context must mamthé information necessary to uphold such
policies. We argue that this fundamental problem can becextito anamingproblem. The central
premise of our argument i% you can name it, then you can make authorisation decisiabout

it" . If every component (or, in the case of a condensed graplicagiph, a node) in the computation
is properly named, then it can be referred to with as muchigicecas is required.

Naming distributed components is not a new problem, for eptanr®ORBA [81], the Spring
naming system [149], the X.500 naming architecture [182] Bnterprise Java Beans (EJB) [169]
each provide solutions towards the naming of distributedmanents. However, each of these so-
lutions addresses naming as a static problem. Distribugects in these systems have a priori
defined names as they do not change often. In contrast, nodesoindensed graph evolve continu-
ally during execution, therefore, the names of these nodes edso evolve. A naming scheme for
condensed graphs must consider this evolving nature of coemts in the computations.

In Chapter 3, we examined the background of distributing matations and described a num-
ber of the technologies used to address some of the secssitgs that arise. Chapter 5 described
the distributed architecture used to execute condensgthgrén particular, Chapter 5 outlined the
security architecture of WebCom. This chapter will furtletamine the structure of condensed
graphs in order to properly develop a naming architecturéhfem. Section 6.1 examines the con-
textual information required to name a computational congmb. These requirements are applied
to condensed graphs in Section 6.2. In Section 6.3, we peopagyorous model for condensed
graph names. This naming model provides the ability to defarae reduction rules that provide
a translation from complex and unwieldy nhames to a more esaduced form. These reduction
rules are described in Section 6.4. Section 6.5 describiee saxamples of history-based naming
policies. A practical implementation of this naming arebture for the WebCom system is then
described in Section 6.6.

6.1 Context

A distributed application consists of a number of compaotal components. Naming such com-
ponents entails capturing the attributes of the computadioa specific moment in time. One of
the applications of these names is in making access corgniidns regarding the ongoing com-
putation; for example, whether or not it should be allowecdeas to certain resources. This is not
the only application: names can be used to help define mamg tgppolicy, ranging from load
balancing to fault tolerance. To properly name a componeattiomputation, we must first identify
the computational context that incorporates the comporidris context can be broken down into a
number of attributes:



6.2 Context 87

Domain

Function

Graph

T~

Input(s)

Figure 6.1: The Components of a Distributed Name

» Domain the context in which this component is executing, or in lhiontext it will be
executed.

» Application the application (graph) that this component a part of.

» Function the operational function of this component.

Inputs the computational context(s) that have led to this value.

Outputs the context(s) that this computation is destined for infthiere.

SDSI/SPKI [152] proposes linked local namespaces as a wayitd complex names. For
example, Alice has a computer that she simply c&llsmputer”. Bob also has a computer, that he
too refers to asComputer”. As Alice and Bob are separate principals, this is perfeatiyeptable.
However, how does Bob refer to Alice’'s Computer? Supposeatws Alice simply asAlice” ;
Bob, therefore, refers to Alice’s Computer‘@dice’s Computer”. More precisely: it is the object
that Alice refers to as'‘Computer”. SDSI uses s-expressions to encode these names. In an s-
expression, the ef : keyword can be regarded as a formalisation of the ’s relatignbetween
related components of the local name. Thus, the s-expressisesentation dfAlice’s Computer”
is(ref: Alice Conputer).

Each principal in a system names objects according to thedl view of the system. This same
rational can be applied to the nodes of a condensed grapbudihthe use of s-expressions, local
naming provides the ability to use names from other prinsipsmespaces.



6.2 Naming Condensed Graphs 88

6.2 Naming Condensed Graphs

WebCom applications are specified in terms of condensedhgrafn order that the context of

a condensed graph application is properly named, comp®sriantes) in condensed graphs are
named in terms dfVebCom nanmse A WebCom name is a five-tuple, made up of a domain, a graph,
a function, zero or more inputs and zero or more outputs. Battiese tuples can themselves refer
to a WebCom name, or can be empty. The tuples representeditfaspects of a node’s context, and
are defined as follows:

» thedonai n tuple in a WebCom name is the execution context in which traertbat the
name refers to has executed, is currently executing, oexdtute;

thegr aph tuple in a WebCom name is the condensed graph in which the neéeieed to is
a member;

thef uncti on tuple in a WebCom name is a description of the operator of tden

i nput tuples in a WebCom name are the names of the operands to teeThede can be
multiple inputs, each of which can be referred to separately

out put tuples in a WebCom name are the names of the destinations abtlte. There can
be multiple outputs, each of which can be referred to seglgrat

<webcomane> :: =
(WebConmNane
[ (domai n <webcommane>) ]
[ (graph <webcomane>)]
[ (function <webcomane>) ]
[(inputs
{(i nput <webcomane>)}

)]
[ (out puts

{ (out put <webcommarne>)}

)]
)

<webcommane> :: =
(WebComNane S- Expression)

Figure 6.2: The structure of a WebCom name.

Using these attributes, Figure 6.2 defines a WebCom name-ag@ession. All parts of the
name are optional. A name can be represented by a combiratiany of these fields or by a
simple representative s-expression. There can be one @imgut and/orout put fields when
thei nput s and/orout put s fields, respectively, are present. This structure reptesahof the
aspects of a condensed node, including a representatioharewthat node executes.



6.2 Naming Condensed Graphs 89

Example 6.1 The condensed graph shown in Figure 6.3 defines a simple wébeseapplication
as a workflow of atomic actions, that implements a travel ageplication. The application op-
erates as a simple travel agent, using web services fromreiiff sites. Users of the application
are directed to fill in the details required to purchase ainaiticket Buy Seat ). Once this pur-
chase is completed, the relevant details are sent to hatetvagion Rent Room) and car rental
sites Rent Car ). The user can then fill in any extra details. Finally all thetails are collated and
printed out for the uselRf i nt).

ravel\ . _
gentAp e

Figure 6.3: A simple Travel Agent Web Services applicatgEpecified as a Condensed Graph.

From Alice’s perspective, a version of tient Car node from Figure 6.3 executing on her
computer, namedConput er ”, can be named using an s-expression as:

(WebComNane

(domai n Conput er)

(graph (ref: Computer Travel Agent Ap))

(function (ref: Conputer (ref: Travel Agent Ap RentCar)))

(inputs (input (ref: Conputer (ref: Travel AgentAp (ref: RentCar Input )))))
(outputs (output (ref: Conputer (ref: Travel AgentAp (ref: RentCar Qutput)))))

)

From Bob’s perspective, the components of the name mustfgpbe principal Alice, in whose
namespace these name-components exist. Bob’s name fee tti€Car node becomes:

(WebComNane
(domain (ref: Alice Conputer))
(graph (ref: Alice (ref: Conputer Travel Agent Ap)))
(function (ref: Alice (ref: Conputer (ref: Travel Agent Ap RentCar))))
(inputs (input (ref: Alice (ref: Conputer

(ref: Travel AgentAp (ref: RentCar Input ))))))
(outputs (output (ref: Alice (ref: Conputer

(ref: Travel AgentAp (ref: RentCar Qutput))))))



6.2 Naming Condensed Graphs 90

While the node’s name changes based on the perspective phther, it is immediately obvious
that the same node is being referred to. A

Local naming provides the ability to store the required ill&tédentify each portion of the node in
as much, or as little, detail as is necessary.

Example 6.2 Taking the noddRent Car from the condensed graph shown in Figure 6.3, we can
use information about the node’s inputs and outputs to eraathore contextual representation of
the node in terms of a specific airline (Aerlingus), car rentampany (Hertz) and travel agent
(eBookers), as shown in Figure 6.4.

(WebComNane

(domain (ref: Hertz (ref: Paris)))
(graph (ref: eBookers (ref: Dublin (ref: Alice Travel AgentAp))))
(function (ref: Hertz (ref: Paris (ref: Travel Agent Ap RentCar))))
(inputs (input (ref: Aerlingus (ref: EI220 (ref: Paris

(ref: Travel Agent Ap BuySeat))))))
(outputs (output (ref: eBookers (ref: Dublin (ref: Alice

(ref: Travel AgentAp Print))))))

Figure 6.4: A possible name for tiiBuy Seat Node.

In this example, th&ent Car node is executed in Hertz’'s Paris office. The web servicei-appl
cation (Tr avel Agent Ap) was launched by the eBookers travel agent in their Dublicafby a
principal called Alice. The flight involved is Aerlingus flig EI220 to Paris, and the details will be
sent back to eBookers Dublin office for printing.

This node has a single input and a single output. Both the iapd output node are referred to
concisely using their function tuple. How names are corgtidiin practice is examined in detail in
Section 6.4. A

As some nodes have multiple inputs and/or outputs, for el@ntipeBuy Seat andPr i nt nodes
in Figure 6.3, the names of such nodes must have the abiligféoto these multiple inputs/outputs.

Example 6.3 The output result of the execution of tBeiy Seat node acts as the input to three
other nodesRent Room Pri nt, andRent Car. The name for thduy Seat node could be as
shown in Figure 6.5

These names can be used directly in authorisation cretiersich as the SPKI credential shown
in Figure 6.6. This credential authorises a user to execsfeeeaificBuy Seat node, for example,
when the output is destined foHflton’s Paris’s TravelAgentAp’s RentRodmnd so forth.

In all of these cases, the names shown are not the only palteatines for these nodes. Node
names depend on the amount of information required for acpéat application. Credentials can
often be simplified, for example, when the input or outputstmints are not required and instead



6.2 Naming Condensed Graphs 91

(WebConmNane
(domain (ref: Aerlingus (ref: Dublin)))
(graph (ref: eBookers (ref: Dublin (ref: Alice Travel AgentAp))))
(function (ref: Aerlingus (ref: Dublin (ref: Travel Agent Ap BuySeat))))
(inputs (input (ref: eBookers (ref: Dublin (ref: Alice
(ref: Travel AgentAp E))))))
(out puts
(output (ref: Hilton (ref: Paris (ref: Travel Agent Ap Rent Room))))
(output (ref: eBookers (ref: Dublin (ref: Aice
(ref: Travel AgentAp Print)))))
(output (ref: Hertz (ref: Paris (ref: Travel AgentAp RentCar)))))

)

Figure 6.5: An extended name for tBay Seat node.

any BuySeat nodes from any input and going to any output is allowed. Wheletail is not
specified, the credential becomes more general. In Secdonéwill examine how we can control
the amount of information stored in a name.

A

Node names are dynamic in the sense that they can change rasi® pass through different
contexts and may, therefore, grow in size to record the tyisibtransited contexts. While these
names provide the contextual detail required to enablemgpulicies to be articulated before com-
putation takes place, it is clear that the size of these nanagscause them to become unusable in
computations of a non-trivial nature. A consistent systemequired to provide a compact reduced
form for these names, yet still containing enough detailllmaainformed authorisation decisions
to be made. For example, a more compact representation BetimeCar node from Example 6.2
might include less information, such as the simple s-exioas

(WebComName (ref: Hertz (ref: Paris RentCar)))

This represents a node that Alice refers to Hertz's Paris’ RentCadr In Bob’s namespace,
this would be referred to af\lice’s Hertz’s Paris’ RentCdtr How hames can be transformed and/or
simplified usingreduction ruless examined in Section 6.4.

6.2.1 Unique names

It may not be immediately possible to uniquely name node<onaensed graph. Consider a graph
with two nodes that are functionally equivalent, such asw®B nodes in Figure 6.7. Both nodes
are functionally identical, have the same input nodland the same nod€, receives their output.
For example, this behaviour may be desirable when repticadenponent executions are required.
On the one hand it can be argued that this is not an issue foca@ass control policy. If the
nodes are identical, then the security policy should alsioléetical. Consider, on the other hand, a
separation of duties style policy [40, 58, 180] that stat€si1ly one nodeB may execute in any single



6.2 Naming Condensed Graphs 92

(cert
(i ssuer (hash shal | dsEFA73213j sDDF3784JDFj f sFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash shal |dasdk...|))))

(propagat e)
(

(tag
(execute
(WebConmNane
(domain (ref: Aerlingus (ref: Dublin)))
(graph (ref: ebookers (ref: Dublin
(ref: Alice Travel AgentAp))))
(function (ref: Aerlingus (ref: EI220 (ref: Paris
(ref: Travel Agent Ap BuySeat))))
(i nputs
(input (ref: ebookers (ref: Dublin (ref: Alice
(ref: Travel AgentAp E))))))
(out puts
(output (ref: Hilton (ref: Paris
(ref: Travel Agent Ap Rent Room)))))
(output (ref: ebookers (ref: Dublin
(ref: Alice (ref: Travel AgentAp Print)))))
(output (ref: Hertz (ref: Paris
(ref: Travel AgentAp RentCar))))))

)
)
)

)
(not -before "2006-01-01_00: 00: 00")

(not-after "2006-12-31_23:59:59")

)

Figure 6.6: A SPKI credential authorising a user to execlBaySeat node.

domain”. On first examination, this contradicts our previous arguintigat the security decision for
two identical nodes should be identical. However, in pcagtihis is not the case with dynamic
names as such names contain a context. Once aB@assigned to a domain, its name changes.
Dynamic names are updated continually as their contextgd®an

It is possible for two nodes to have the exact same name etantlady have been assigned to
a domain. If, for example, the twB nodes from Figure 6.7 are scheduled to the same domain, then
the names of these nodes would be identical. However, weal@i the responsibility lies with
the application developer to avoid such situations. Oneaggt would be to use different function
names to refer to the nod8s

While it is possible in most cases to generate unique dynawamices for nodes, this is often
undesirable. For example, when specifying a security poifovould be easier to refer to more
“generic” names that can refer to many nodes rather tharirmeguvery possible node name to be
uniquely identified.



6.3 A Naming Model for Condensed Graphs 93

&
@ OO
(&

Figure 6.7: A condensed graph with non-unique nodes.

6.2.2 Self Referencing Names

An important aspect of a naming architecture for condensegdhs is how these names are gener-
ated. As every node in a condensed graph is potentiallyréotily) connected to every other node,
then a single node’s name may potentially reference evéigr otode in the graph. In the examples
of node names provided up to this point in this dissertatiomhave referred to other nodes simply
by the name of their function tuple. We will see in Section #hadt this corresponds to “de facto”
name reduction. If instead, we use the full name of the cdedecodes, then the node’s name
becomes infinite.

Example 6.4 In Figure 6.8, theRent Car node has been defined in a self referential manner with
one round of unfolding, that is, WebCom names of the inpuesate included in the node name.
One of the inputs to thRent Car node is theBuy Seat node. Consequently if this node’s name
is constructed, then one of its outputs is Bent Car node.

A

This increase in name complexity is not necessarily disadggeous. With increased com-
plexity in a name comes increased precision. For exampésutingB can be distinguished from
executingB using input that came frorft. Name complexity can be addressed when generating
names for nodes. When a node is being named, reduction melegplied to that name in order to
simplify the name of the node.

6.3 A Naming Model for Condensed Graphs

SDSI-like local names provide an adequate means to refexdesin condensed graphs. In the im-
plementation of the naming architecture for WebCom, s&sgions are used to provide the internal
representation of node names. For the sake of compact érposather than use s-expressions, we
use haskell [98] in this dissertation to describe the namiaglel. Haskell provides a precise and
concise way to specify WebCom names and reduction rules avitdps a rigorous notation that
can be type-checked and executed to confirm consistency.



6.3 A Naming Model for Condensed Graphs 94

(WebConmNane
(domain (ref: Hertz (ref: Cork)))
(graph (ref: eBookers (ref: Dublin (ref: Alice Travel Agent Ap))
(function (ref: Hertz (ref: Cork (ref: Travel Agent Ap Rent Car))
(i nputs
(i nput
(WebConmNane
(domain (ref: Aerlingus Cork))
(graph (ref: eBookers (ref: Dublin (ref: Alice Travel AgentAp))))
(function (ref: Aerlingus (ref: EI220 (ref: Paris (ref: BuySeat)))))
(i nputs
(input (ref: eBookers (ref: Dublin (ref: Alice (ref: Travel AgentAp E)))))
)
(out puts
(output (ref: Hilton (ref: Paris (ref: Travel Agent Ap Rent Roon))))
(output (ref: Hertz (ref: Paris (ref: Travel AgentAp RentCar) )))
(output (ref: eBookers (ref: Dublin (ref: Alice
(ref: Travel AgentAp Print))))

))
))

)
)
)

(out puts

(output (ref: eBookers (ref: Dublin (ref: Alice (ref: Travel AgentAp Print)))))
)
)

Figure 6.8: A recursive definition of tHeent Car node.

Figure 6.9 gives the haskell definition of a WebCom name. AasnaPnam(primitive name),
Snam (structuredname) orLnam(linked name). There is also a zero-arity constructor function,
Enpt y, that represents an empty, or null, name. Primitive namestaings that cannot be reduced
any further. Structured names consist of the familiar fiygdd, domain dom), graph gr ph),
function § un), inputs { ns) and outputs dps). Each of these tuples can themselves contain
completeNane objects. As there can be multiple inputs and outputs, thgdeg can hold lists of
Nane objects.

The linked name constructor functiobr(am is used to hold representations of SDSI-like local

data Nane =
Empty

| Pnam {pnam:: String}

| Snham {dom :: Nane,
grph :: Nane,
fun :: Name,
ins :: ([Nane]),
ops :: ([Nane])}

| Lnam {Inam:: [String]}

deriving (Eq, Show)

Figure 6.9: Haskell representation of WebCom names.



6.3 A Naming Model for Condensed Graphs 95

names. These local names form lists of linked names, for pkam
(Lnam ["Hertz","Cork","RentCar"])
is equivalent to the s-expression:
(ref: Hertz (ref: Cork RentCar))

The definition of a linked name could have been given as aflibhked Nane objects. However,
while such a definition allows for a more expressive syntaingilinkedSt r i ng objects allows
for a clearer presentation, and avoids having lists of gérimith embedde@®namconstructors. For
example, the name #ent Car from above would instead be specified as:

(Lnam [ (Pnam "Hertz"), (Pnam " Cork"), (Pnam"RentCar")])

Linked names consist of irreducible primitives and so apeagsented as a list of strings.

Example 6.5 Figure 6.10 gives a haskell representation of the name @dhdé&ent al node from
the Condensed Graph shown in Figure 6.3. In this dasam(linked names) are used to represent

(Snam
(Lnam [ "Hertz", " Cork"])
(Lnam [ "eBookers", "Dublin","Alice", "Travel Agent Ap"])
(Lnam ["Hertz", " Cor k", " Travel Agent Ap","Rent Car"])
[ (Lnam [ " Aerlingus", "El 220", "Pari s", " Travel Agent Ap", "BuySeat "] )]
[ (Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap","Print"])]

Figure 6.10: Representation of tRent Car node

the linked local namespace of each of the components of the.nBor example, the domain of the
node is Hertz’s Cork office. A

Haskell provides three basic derivations for each data, tggeality €q), display Show) and
ordering Or d). Eq defines how values are tested for equaliBhow defines how the value is
represented on outpu€r d defines how objects are ordered with respect to each otharthEo
moment, we will use the default definitions for bd&y andShowrelations, but will define thér d
relation separately.

The default definition of the ordering relatio@r(d) for the Nane data type does not operate as
we require. The standafd d relation generated automatically by Haskell does not gé/tna level
of control over name ordering that we desire. For examplecowd not support a naming policy
that does not want to consider differing domain tuples asioguwo node names to be different.
For this reason, we define our own ordering flamre in Figure 6.11.

In our ordering for names, thenpt y name is the lowest name in the ordering; a structured
name is less than another when the components of the formmaeragh less than their respective



6.4 Reduction Rules 96

i nstance Ord Nane where

Enmpty <= X
(Snama bc de) <= (Snamv wx vy z)

True
(a <=v) & (b <= w) &&
(c <=x) && (d <=y) && (e <= 2)

(Pnam p) <= (Pnam q) = p==49q
(Lnam 1) <= (Lnam m = | <=m
X <=y = X ==y

Figure 6.11: Definition of th€r d relation.

components in the latter; primitive names are either disjar are equal, and so are not ordered,;
one linked name is less than another when the former is a fofdfie latter. In practice, this relation
is redefined based on the requirements of particular apiolica

As WebCom names can be self referencing, evaluating thiriogl may not terminate when
one or more self referencing names are compared. Theresmeemust be taken to avoid this when
writing names; one strategy is to design reduction rulesghsure finite names.

6.4 Reduction Rules

The design of a WebCom name provides the flexibility to refeatnode with as much, or as
little, contextual detail as needed. The ability to storetaof contextual detail comes at the cost
of possible redundant information stored in the name. Tb& can be lessened through the use
of reduction rules A reduction rule is a function that converts a complex naoreafnode into a
simpler representation. The writer of these rules mustrertsiat consistent names are produced.

Having a unigue reference to an node is not always ideal. ti@geapplication policies some-
times requires genericity of the node references. For el@ntpmay not be desirable to have to
specify a security policy in terms of the path that an execukias taken to some point. This would
require knowledge of all potential paths that the compaitatirould be allowed to take. Reduction
rules are used to create more generic names for use withiicaiym policies. For example, rather
than refer to the name in Figure 6.10, it may be preferablaplyg refer to:

(Lnam ["Hertz", " Cork", " Travel Agent Ap", "Rent Car"])

Another aspect of name reduction is how these reduced namesaintained. There are two
options: store the original unreduced name and a list ofatiolu rules to apply to the name, or
store the reduced form of the name. Storing both the origiaale and the reduction rules allows
different reduction rules to be applied, when necessammgduhe lifetime of the name. We argue
that it is easier to simply store the reduced name. The mamksl dot ensure name consistency, for
example, one reduction rule could remove information fromame that another requires. Ensuring
that inconsistencies do not occur are the responsibilith@fleveloper.



6.4 Reduction Rules 97

While the storing of reduced names approach is more optitmakonsistency argument applies
only to static names. As a condensed graph executes, thesrarttee nodes change. In order to
use dynamic names, reduction rules must be applied to ndratkdve changed. Achieving this
requires that we use the first approach: store the name atidttbereduction rules to apply to that
name.

Reduction rules form two classes: tuple reduction rulesdahaapplied to the tuples that make
up a WebCom name and tuple elimination rules that are apmitite whole name to remove one,
or more, of these tuples. We examine these types of reductiea separately.

6.4.1 Tuple Reduction

Tuple reduction operates on the individual tuples of Web@ames. It reduces that tuple to what
is considered an equivalent form. Reducing the compondnasname is an application specific
process, as, for example, the type of the inputs and resutisdes are potentially unique to a single
application. For example, in the Travel Agent applicatibig(re 6.3), we are interested only in
the airline name and the destination of the flight. Therefargy name should be reduced to just
these components, for instan¢d,nam [ " Aer | i ngus", " El 220"]) from the name shown in
Figure 6.6.

We can define aupl eReduct i on function to represent generic tuple reductions as follows:
Lett upl eReduction :: Nane -> Name be a name rewrite rule that defines the tuple re-
duction rules used by an application. We use this constoustfresent tuple reduction that is made
up of a series of specific rules.

6.4.2 Tuple Elimination

A Tuple Elimination reduction rule is a rule that eliminatase of the component tuples—domain,
graph, function, inputs or outputs—from a WebCom name.

tupl eDEl i mi nation :: Nane -> Nane
tupl eDEl i m nation n = n{dom=Enpt y}

Given a namen, thent upl eDEl i mi nati on(n) replaces the domain tuple of the namevith
an empty name. Equivalent rules can be easily created fdr efathe tuples, as shown in Fig-
ure 6.12. We can use these basic rules, along with applicaecific rules to build complex
security policies.

We define & upl eEl i mi nat i on function to represent generic tuple eliminations as foipw
Lettupl eElinmnation :: Name -> Nane be a name rewrite rule that defines the com-
bined tuple elimination rules used by an application.

Example 6.6 Figure 6.10 shows the name ofRent Car node. We can refer to this node as
r ent Car Name, as shown below.



6.4 Reduction Rules 98

tupl eGEl i mination :: Nane -> Nane
tupl eGEl i m nati on n = n{grph=Enpty}

tupl eFEl i mi nation :: Nane -> Nane
tupl eFEl i mi nation n = n{fun=Enpty}

tuplelElimnation :: Nane -> Nane
tuplelElimnation n = n{ins=[]}
tupl eCEl i mi nation :: Nane -> Nane
tupl eCEl i mi nation n = n{ops=[]}

Figure 6.12: The Remaining Tuple Elimination Rules.

rent Car Nanme =

(Snam
(Lnam ["Hertz", " Cork"])
(Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap"])
(Lnam ["Hertz", " Cork", " Travel Agent Ap", "RentCar"])
[ (Lnam [ " Aerlingus", "El 220", "Pari s", " Travel Agent Ap", "BuySeat"])]
[ (Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap","Print"])]

)

Applying the tuple elimination ruleupl el El i mi nati on(r ent Car Nane) results in the name:

(Snam
(Lnam ["Hertz", " Cork"])
(Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap"])
(Lnam ["Hertz", " Cork", " Travel Agent Ap", "Rent Car"])

[]
[ (Lnam [ "eBookers","Dublin","Alice","Travel Agent Ap","Print"])]

A

Example 6.7 We can take the node nament Car Nane, from Example 6.6, and apply the fol-
lowing tuple reduction rule.

doniTupl eRedux :: Nanme -> Nanme
donTupl eRedux (Snamd g f i 0)
| d == (Lnam["Hertz","Cork"]) = (Sham (Lnam "Ryans","Cork") g f i 0)
| otherwi se

(Snamd g f i 0)

ThedoniTupl eRedux tuple reduction rule checks the domain tuple of a name ardesep any
instance of( "Hert z", " Cor k") with Hertz's Cork agent( " Ryans", " Cor k") . Applying
domTupl eRedux(rent Car Nane) results in the name:

(Snam
(Lnam [ "Ryans", " Cork"])



6.4 Reduction Rules 99

(Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap"])

(Lnam ["Hertz", " Cork", " Travel Agent Ap","Rent Car"])

[ (Lnam [ " Aerlingus", "El 220", "Pari s", " Travel Agent Ap", "BuySeat "] )]
[ (Lnam [ "eBookers", "Dublin","Alice","Travel Agent Ap","Print"])]

We can then apply the tuple elimination rukegpl eCGEl i mi nati on,tupl el El i mi nati on
andt upl eCEl i mi nat i onin turn to result in the reduced name:

(Snam
(Lnam [ "Ryans", " Cork"]) (Enpty)
(Lnam ["Hertz", " Cork","Travel Agent Ap","RentCar"]) [] []

6.4.3 Name Equivalence

Determining whether two names are equal is an importantcagfpeiny enforcement mechanism
using WebCom names. There are two basic approaches for cognpemes. The first approach
entails a simple comparison of unreduced names.

In contrast, the second approach is to apply reduction talése names and then compare the
names. Figure 6.13 shows a definition of name equality basedducing the names of nodes first,
and then checking for equality.

i nstance Eq Nane where

Empty == Enmpty = True
Empty == x = Fal se
n == m = tupl eEli m nati on(tupl eReduction(n)) ==

tupl eEl i m nati on(tupl eReducti on(m)

Figure 6.13: Equality defined in terms of Reduction

Example 6.8 Consider comparing the (original)ent Car Nanme name described in Example 6.7
to the namédobRent Car using the definition of equality shown in Figure 6.13.

bobRent Car =
(Snam
(Lnam [ "Ryans", " Cork"])
(Lnam ["USI T, "Li neri ck", "Bob", " Travel Agent Ap"])
(Lnam [ "Ryans", " Cor k", " Tr avel Agent Ap", "Rent Car"])
[(Lnam ["Ryanair","FR776","Berlin","Travel Agent Ap", "BuySeat"])]
[(Lnam ["USIT", "Li neri ck", "Bob", " Travel Agent Ap","Print"])]



6.4 Reduction Rules 100

These names initially appear very different, as they refefifferent travel agents, airlines and
rental companies. However, a haming policy might only berggted in specific aspects of these
names. If we first apply the tuple reduction rutgniTfupl eRedux, and then apply the graph,
function, input and output tuple elimination rules to bo#nt Car Nane andbobRent Car , both
of these names are reduced to the name:

(Snam (Lnam ["Ryans”, " Cork"]) (Empty) (Enpty) [] [])

A

While we can define equality in this manner, in reality, it & necessary to apply reduction
rules to determine equality. Instead, we can effectivelglament equivalence within the definition
of Eq.

Example 6.9 An application makes a policy decision based on the domaierevia node is to
execute. In this case, we redefine the derivation ofBhgFigure 6.14) or equality property of
Nane to check only this information.

i nstance Eq Nane where

Empty == Enpty = True
Empty == X = Fal se
(Snama b c d e) == (domf) = (a==f)
(Pnam p) == (Pnamq) = (p == Qq)
(Lnam 1) == (Lnamm = (I ==m
X =y = Fal se

Figure 6.14: A definition of the Equality relation.

This definition of equality acts implicitly as a reductiorleu Primitive and linked names are
compared based on their text, while structured names ar@am@ue based only on their domain
tuple. The result is that any structured name is impliciéigiuced to its domain tuple.

A

Example 6.10 We modify the definition of equality from Example 6.9 to:

i nstance Eq Nane where

Empty == Enpty = True
Empty == X = Fal se
(Snama b c d e) == (domf) = (a == f)
(Pnam p) == (Pnam q) = (p == q)
(Lnam ["Hertz","Cork"]) == (Lnam "Ryans","Cork") = True
(Lnam |) == (Lnam m =(l =m

X =y = Fal se



6.4 Reduction Rules 101

In this definition, we have embedded the tuple reduction aptetelimination rules used in
Example 6.8. This definition compares names based on theiaikhatuples, and implicitly replaces
any instance of Lnam [ "Hert z", " Cork"]) with (Lnam [ "Ryans", " Cork"]) . In this
case comparing the namesnt Car Nanme andbobRent Car will again determine that they are

equivalent according to this definition of equality.
AN

Note that there is no canonical definition for the name of aeno@his means that a node
could be referred to using two, or more, different (non-egjgnt) names. Further research work is
required to develop a naming theory whereby two differemesthat refer to the same object can
be reduced to a canonical form.

6.4.4 Reduction Rule Application Order

The order in which tuple reductions take place is significantple reduction rules are not neces-
sarily commutative, that is if we have two tuple reductioteslS and7” and a name n then

does not necessarily hold. Thus, applications must spéuwifyrder that tuple reduction rules are
applied. However, tuple elimination rules are commutatiVaples are atomic, in that applying a
tuple reduction rule on one tuple does not effect any othetu Removing any one tuple also does
not effect any other tuples.

6.4.5 Creating and Updating Names

Node names in a condensed graph are continually being updateng the execution of the graph.
There are several conditions under which a node name cagehan

1. When the name of a node is first created, it contains the lr@sirmation available at that
time, namely the function and graph tuple of the node. Tloeeefan initial node name
appears ag . Snam (Enpty) g f [] []). Inputs and outputs may also be represented
by the name of the node(s) that the input arrives from, andhéime of the node(s) that the
result of this node is sent to, respectively.

2. When input arrives to a node, the name of the node is upttatefliect this change. The name
can be changed to the value of the input. Alternatively, @& of the node that provided the
input is retained. This decision depends on the namingyadlicmaming policy could require
that values replace node names whenever a node executdtgroatdvely, that the name of
the node that has executed is retained.



6.5 History-based Names 102

3. When a node executes and returns a result, the name ofdeemay be updated to represent
the value that has resulted from the execution. The resuhtrbe incorporated into the
function tuple. For example, the result “5” of a divide og#&ma could be represented in the
function name( Lnam [ "di vi de", "result","5"]).

4. When a node is scheduled to a domain, the name of the noddasad to include this domain
name.

In each of these cases, when the name of a node in a graph tedpitiés update may potentially
effect every other node name in the graph.

6.5 History-based Names

Frequently, policies are constructed to consider the héstbocontexts of a computation. For exam-
ple, access control mechanisms, such as Separation os[PLE®], Chinese Walls [40, 58, 106] and
High Watermark [180] policies, all depend on the historytaf tomputation in order to make deci-
sions. Other types of policy, such as a reactive load balgmublicy that bases its future scheduling
decisions on the load of the resources utilised to date, lsanrely on the contexts that a compu-
tation has passed through. With condensed graphs, thextamfigrmation is stored in the node
names. Thus, in order to make an history-based decisiondondensed graph, the relevant con-
textual information must be extracted using history-baselliction rules

Anodenhasanam¢Snamd g f i o) whose attributes provide the names of execution
contexts for domaind), application graphd), function § ), list of inputs () and list of outputsd),
respectively. Thaistoryreduction of the name of nodeis defined as

tupl eElimnation(Snamd g f (map tupl eReduction i) o)

wheret upl eEl i ni nati onandt upl eReduct i on represent the application of tuple elimina-
tion and tuple reduction rules, respectively. The tuplaiotidn rule is only applied (using theap
function) to the inputs. Themp function applies the function, in this casapl eReducti on,in
turn to each member of a list. This characterises historyatioh as the inputs to a node specify
the path that the execution has taken to this point.

Example 6.11 To perform a history based policy decision, we take the mpat node and reduce
their execution contexts. Figure 6.15 shows a representafisuch a rule in the form of a function
saveDonHi st .

This reduction rule defines that an execution context shoaidain the context(s) of the in-
put(s). The relevant details, in this case the domain tupben the input tuple is extracted and



6.5 History-based Names 103

saveDonHi st :: Nane -> Nanme
saveDonH st (Snama b ¢ [(Snamv wx y z)] e) = (Snama b c [v] e)

Figure 6.15: A simple Reduction Rule to retain domain histor

integrated into the name of the current context. This regddbe domain tuple of the current con-
text with the domain of the input. This reduction rule is agglto the input tuple of the name, that
istupl eEl i m nation(Snamd g f (map saveDomHi st i) 0). Thisisaverysimple
example of & upl eReduct i on reduction rule.

A

Example 6.12 A more useful example of this type of reduction rule can baengad-igure 6.16.
In this example, the domain of the input replaces the domiiheocurrent context only when the
domain of the input is strictly “greater” than the domain bétcurrent context. TheaveDom
function acts as filter. If it is applied to each node in thepgrén turn, then it ensures that the
“greatest” domain is retained in every name.

saveDom :: Nane -> Name

saveDom (Snama b ¢ [(Snamv wx y z)] e)
| a<v (Snamv b ¢c [(Snamv wXx y z)] e)
| otherwi se (Snama b ¢c [(Snamv wx y z)] e)

Figure 6.16: Domain ordering rules

In Section 6.3, we described how to define an ordering betweaemes using th€x d rela-
tion. In Figure 6.17, we explicitly define the orderig@nam " Al i ce") < (Pnam "Bob") <
(Phnam"Claire").

instance Ord Nane where

Empty <= X
(Snama b c de) <= (Snamv wx vy z)

True
(a<=v) & (b <= w &&
(c <= x) && (d <=vy) && (e <= 2)

(Pnam "Alice") <= (Pnam " Bob") = True
(Pnam " Bob") <= (Pnam"Cd aire") = True
(Pnam p) <= (Pnam q) = p==4q
(Lnam |) <= (Lnam m = | <=m
X <=y = X ==y

Figure 6.17: Definition of th€r d relation.

Example 6.13 A node that is to be executed in dom&hai r e has the name:

(Snam (Pnam "d aire") (Pnam "MathG aph") (Pnam "Ml Function")
[((Pnam "Bob") (Pnam "MathG aph") (Pnam "Di vFunction") [] [1)] []1 )



6.5 History-based Names 104

If we apply thesaveDomreduction rule to this name, then the reduced name becomes:

(Snam (Pnam "Bob") (Pnam "Mt hG aph") (Pnam "Ml Function")
[((Pnam "Bob") (Pnam "MathG aph") (Pnam "Di vFunction") [] [1)] []1 )

This means that the node will now be executed in dorBaib. Such reduction rules could be used
to help ensure data. For example, results of executionsptisent to inappropriate domains, or
computations executed on inappropriate resources. Howertorcing such requirements is the
responsibility of the relevant policy enforcement mechani A

6.5.1 Naming Grid Submissions

The computational Grid allows the sharing of compute ressibetween different organisations.
WebCom, using condensed graphs, can be used to create @licatipns [124]. As Grid appli-
cations execute across many domains, it is important toreribat application components can be
referred to properly wherever they execute.

Example 6.14 A national compute Grid is organised in a tiered structuneartler to support system
policies, the name of context where every job (graph) is stibchmust be retained in every node
name. The Grid resources are structured to allow job sulmmisd various layers in the overall
architecture, shown in Figure 6.18.

National
Portal

[ Local | [ Local | [ Local | [ Local | [ Local | [ Local |

Figure 6.18: GRID Portal Structure.

In this architecture, jobs can be submitted at nationaliored or local portals. The specific
policy requirement is that a computation launched at a regior local portal must not move up
the architecture, even though the portals are intercoadeétor example, when a job is submitted
on a regional portal, it can move down to local resources uneddh that regional portal, but not up
to the national portal or across to other regional portals.c@ll this a teiling’ restriction and can
specify it in a naming policy.



6.5 History-based Names 105

This requirement can be described by a reduction rule thattenas the submission portal as
part of each node’s name. For example, the travel agent needegraph application shown in
Figure 6.3 can be submitted to a Regional portal. The nameegbortal becomes part of the name
of every node in the submitted graph.

(Snam
(Lnam ["Gid Irel and", "Munster","UCC', " Conpute Cluster"])
(Pnam "eBookers")
(Lnam [ "eBookers", "Rent Car"])
[ (Lnam [ "eBookers", "BuySeat "] )]
[ (Lnam [ "eBookers","Print"])]

Figure 6.19: The name for tHeent Car node, executing on a particular GRID resource.

Normally the domain portion of a name is defined as the contipn&l resource that is execut-
ing, will execute, or has executed, the node, when this isvkndVhen making a naming policy
decision about a node, tlweiling reduction rule is applied to the name of the node.

saveDom :: Nane -> Nanme

saveDom (Snama b ¢ [(Snamv wx y z)] e)
| a<v = (Snamv b ¢c [(Snamv wx y z)] e)
| otherwi se = (Snama b c [(Snamv wx y z)] e)

Figure 6.20: Ceiling Reduction Rule

The tuple reduction rulesaveDom shown in Figure 6.20 is an example of such a reduction
rule. When applying this rule, we assume that the names wemlying it to are of the correct
form. When used with an appropriate definition of @rad relation, this rule ensures that the parent
graph’s domain is maintained within the node name and theicéiling is never exceeded. The
Or d relation would be similar to the relation shown in Figure7.fut with Local< Regional<
National A

6.5.2 Web Services Policy

Up to this point, we have seen how reduction rules that carpphkea to names to ensure existing
information is retained. However, this is only one applimatof such rules. Reduction rules can
also be used to inject new information into a name.

Example 6.15 Airlines have business relationships with specific hotel aar rental companies.
For example, in Ireland the Hertz car rental company givexifip discounts to customers who
fly with either Aerlingus and Ryanair; in contrast, Easyjetcdunts Europcar. Another example
is when flying into London on an lIrish airline, customers axeommended to stay in one of the

1This is the same reduction rule as shown in Figure 6.16.



6.6 An API for Naming in WebCom 106

Jury group’s hotels. We can represent these types of ne$dtip using reduction rules in the web
services graph shown in Figure 6.3.

selectCarCo :: Nane -> Nane
selectCarCo (Snama b ¢ [(Snamv wx y z)] e)
| ((v == (Pnam "Aerlingus")) && (¢ == (Pnam "RentCar"))
= (Snama b ¢ [(Snam (Pnam "Hertz") wx y z)] e)
| ((v == (Pnam "Easyjet")) & (¢ == (Pnam "RentCar"))
= (Snama b ¢ [(Snam (Pnam "Europcar") wx y z)] e)
| otherw se = (Snama b c [(Shamv wx y z)] e)

Figure 6.21: Airline Car Rental preference rules

Figure 6.21 defines such a reduction rule. ®w ect Car Co reduction rule matches the
domain that an input node has executed in with known airlitfethe current node is Rent Car
node, then it updates the domain name of the current nodetotlthe airline’s car rental partner.
If an unknown airline is selected, then no change is madectoititle name.

A

This example identifies some interesting possibilities. ties naming model is outside of the
condensed graph model, it is possible to use the namingmsytsteffect where nodes in the graph
are scheduled. WebCom can use these names to help deteriméne i@ schedule nodes. The
flexibility of the naming system is of the order of an addiabprogrammable system outside of the
condensed graph model. The question now arises: are trmgpapmable side-effects an advantage
or a hindrance to the condensed graph model? Traditionaliigeé condensed graphs model, side
effects are frowned upon. However, a number of featuresdivittual applications rely on side
effects. For example, a side effect can be used to suppocuo@mcy in condensed graphs [134].
Another example of a common side effect is how files are teandf between resources for certain
condensed graphs applications. This is also provideddmutsithe model.

6.6 An API for Naming in WebCom

In this Section, we outline an implementation of the namingded for WebCom. We provide an
API to support WebCom names throughout the entire WebCohitacture. Maintaining the names
of the nodes is the responsibility of WebCom’s naming managedule. The naming manager
maintains a representation of each node in the executingthgrad updates this name during the
graph’s execution. As the graph executes, the names of ttesrevolve, representing changes that
occur in the graph itself. For example, when a node execugsedurns a result, the names of the
nodes receiving that result are updated to reflect this @ang

The implementation of the naming system in WebCom consfdtsemaming manager module,
a number of name generators, an abstract name type, and tascebspresentation of reduction



6.6 An API for Naming in WebCom 107

rules. These classes provide the ability to define and matifye names for use by the other
WebCom modules.

— Name

Naming Manager
g g Generator

Module

Reduction
Rules

Operand N.G. ||Destination N.G.

Figure 6.22: WebCom’s Naming Architecture

Figure 6.22 shows a representation of the naming softwalataecture. The main component
of this architecture is th&lamingManagerModule. However, we will first describe the other
components of the architecture, as they are all used biameingManagerModule.

6.6.1 webcom.core.naming.ReductionRule

ClassReductionRule is the abstract definition of a name reduction rule. It is pdss WebCom
name (described in Section 6.6.3) and returns the reduaged &b that name. Reduction rules
are application (graph) specific. Each application hasvits security policy requirements. These
requirements drive the requirements for the reductiorsrule

publ i c abstract SexpList reduce(SexpList Name);

ReductionRule is a simple class with one major methodr educe( N) . This method takes a
list of s-expressions and performs (rule dependent) axtonthat list. The reduced form of the s-
expression is returned to the caller. The default reductidmis definedabstractly that is, it has no
implementation code. Instead, it must be inherited so thiatlasses provide the implementation.

A simple reduction rule can take a WebCom name and returnrageptation of the node that
describes the function of the node. This emulates of theatipar of the early Secure WebCom
prototypes [66]. A sketch of this reduction rule is shown igufe 6.23.

While we typically associate naming policies with accesstiad policies, WebCom naming
policies can also be used to address other concerns, suchdabdlancing or fault tolerance. The
enforcement mechanism remains the same. In these casesgd@stion rules must be defined for
such policies.

6.6.2 webcom.core.naming.NameGenerator

Node names can be generated either a priori by the develbgez graph or, more typically, when
the name is needed to make a security decision about the Geterating names for nodes entails



6.6 An API for Naming in WebCom 108

public class Sinpl eReductionRul e extends Reducti onRul e

{
publ i ¢ SexpLi st reduce(SexpLi st Nane)

{
[/ Extract Function tuple from Nane and return this as a new
/'l S-Expression.
SexpLi st newname = new SexplLi st (extract Functi on(Nane));
return (newnane);

Figure 6.23: The implementation of a simple reduction sueduce(n)

examining the node at a particular point in time and extngcthe relevant details.

The name of a WebCom node is returned by its name generatemdrhe generator examines
an instance of a condensed node and extracts the relevaitt difame generators are used to create
fresh names for nodes. When WebCom loads a graph for execthieNamingManagerModule
identifies the nodes without nhames in the graph and genenaregs for those nodes. A node’s
name is generated using an internal condensed graph exaf@se. This examiner can investigate
the internals of a loaded condensed graph on a “read-onkisba

As nodes in condensed graphs refer to each other, their naitiedso contain references to
other node names. In Section 6.2.2 we discussed the pdotemtgelf-referencing names. As each
node’s destination can be another node operand, the nante afestination node must also be
included in the original node’s name. However, as the dattin node will also have a reference to
the original node, care must be taken to avoid recursiveslodfhen a node name is generated, this
situation must be addressed.

The solution is to apply specific reduction rules when geirardhe name of a node’s operand
and/or destination. We use, respectively, @perandNameGenerator class and th®estination-
NameGenerator class to accomplish this goal. These name generators aetisdecial reduction
rules that are only called by the name generator. Their §peask is to prevent name recursion.
For example, the simplest approach to preventing hamegiecuis to apply tuple elimination rules
to the inputs and/or outputs of a node, removing any referémthe current node.

publ i ¢ WebConmName gener at eNanmeFor Node( Node node, Reducti onRul e reduxrul e,
String Donai n)

public void set OperandGener at or (Oper andNanmeGener at or oper andCGener at or)
public voi d set Dest Gener at or (Desti nati onNanmeGener at or dest Gener at or)

NameGenerator classes are called hyamingManagerModules to generate new names for
nodes. The application interface for this class is relftigenple, with the most significant method
being theng. gener at eNanmeFor Node( n, r, d) performing the name generation. Name gen-
eration can be potentially application specific. In mostsagpplication requirements are handled
by customised reduction rules. In Chapter 8, we will exansimme specific WebCom applications.



6.6 An API for Naming in WebCom 109

webcom.core.naming.DestinationNameGenerator

Destination name generators generate representive nam#dgefdestination of a node. When a
node’s name is generated, it is important to prevent reourisi the destination. In Section 6.2.2,
we identified the problem of self referencing names. Destinaand operand name generators
address this problem by explicitly preventing recursiorhe§e name generators act as reduction
rules that are applied to the names of destination nodesrigede non-recursive representation of
that node. However, they are called name generators asréndisetion rules are only used during
name generatiorDestinationNameGenerators are exclusively called bilameGenerators.

protected String generat eNanmeFor Desti nati on( CondensedG aph cg,
i nt DestinationNodel D);

Thedng. gener at eNanmeFor Desti nati on(g, did) isthe only major method in this
class. Asitis only called from a name generator, condensmghgnternal representation is used to
identify the specific destination node. The reference warsf this class simply returns the function
tuple of the destination node’s name, such as shown in Fg@® This is equivalent to applying
the haskell reduction rule functiaest ReduxRul e shown in Figure 6.24.

retai nFunc :: Nane -> Nane
retai nFunc (Snamd g f i o) =f

dest ReduxRul e :: Name -> Nane
dest ReduxRule (Snamd g f i o) = (Snamd g f i (map retai nFunc 0))

Figure 6.24: A destination reduction rule retaining thection tuple

In this example, the et ai nFunc function is used instead of applying the domain, graph,
input and output tuple elimination rules. However, as desibn name generators use the inter-
nal condensed graph API to determine the nodes in questiandard reduction rules cannot be
substituted.

webcom.core.naming.OperandNameGenerator

Operand name factories are the corollary to destinatiorerfantories. They are specific reduction
rules that address the potential for mutual recursion im#rees of operand®perandNameGen-
erators are also exclusively called byameGenerators.

protected String generat eNameFor Oper andNode( CondensedGr aph cg,
i nt Qper Nodel D) ;
public String generateNanmeFor Oper andVal ue( Cbj ect | nput);



6.6 An API for Naming in WebCom 110

As with destination name generators, the main method in @naop name generator is the
ong. gener at eNaneFor Oper andNode( cg, oi d) method. This method investigates the
operand node and extracts a representation of the operaled no

Unlike Destinations, operands may, when the operand noslexecuted, consist of the result
of the operand node. In condensed graphs, a result can berapytanging a simple numerical
value to complex objects such as a spreadsheet. When amdperareturned a result, the operand
name generator can use theg. gener at eNaneFor Qper andVal ue(i) method to extract a
representation of this result and use this to refer to theamuke

In some cases, it is more important to specify where the oplerasult came from rather than
the value itself. In Section 6.5, we described some histagetd naming policies. The operand
name generator is an important part of such policies. In sasles, the operand name generator
has the ability to look at the historical path the operandthkesn to this point. A representation of
this historical path can then be used as the name of the apefidns capability can be used, for
example, to enforce history-based security policies, sascchigh watermark or Chinese wall [40]
policies.

6.6.3 webcom.core.naming.WebComName

Recall from Section 6.2 that a node’s name consists of a fipket thedomainit is (or will be)
executing in; thegraphit is a member of; itfunctiont the operand(s)to the node; and itBesti-
nation(s) WebComName stores a representation of a node’s name. When a node hasemt b
selected for execution, its domain may not be a priori defirledhis case, only when a node is
scheduled will the domain be known, and thus be reflected dypéime the naming manager mod-
ule stores. Alternatively, a user could define the domainhitiva node must execute. In this case
the naming manager would store this information within tbdais names. When no domain name
has been assigned to a node, the domain tuple is unassignisds €quivalent to aknpt y name

in the naming model.

TheWebComName class stores the details defining a node. All component $ugfleheWe-
bComName can be individually set and retrieved. In the current impatation of awWebCom-
Name, s-expressions [153] are used to store this informatiore Jdva s-expression library from
the JSDSI project is utilised [5]. A s-expression contajrinrepresentation of the node’s name can
be retrieved from the class. This representation can befreddiy applying one or more reduction
rules to the name. These reduction rules are specified vRbductionRule classes. The number,
type and the order of reduction rules to apply are applioagjmecific settings and are specified when
configuring WebCom.

TheWebComName API is split into two categories, the simple string-basegriface and the



6.6 An API for Naming in WebCom 111

more complex s-expression based interface. The stringlhaissface is used to convaitlebCom-
Names into simple text and to parse text to represent it as s-exjmes. However, this interface
does not maintain the full name of a node. S-expressiondde@ontext to a string. Extracting the
string implies losing this contextual detail.

public void setDomai n(java.lang. String donai n)

c
public void setGraph(java.lang. String graph)

public void setFunction(java.lang.String function)
public void setDestination(java.lang. String Destination)
public void setlnput(java.lang. String input)

public void addDestination(java.lang. String Destination)
public void addl nput (java.lang. String input)

The API has simple “setter” methods to store the detail of @encAs a node is investigated,
these methods are used to build up a representation of thee nbldere are equivalent “getter”
methods to extract a string-based representation of theufple.

The s-expression interface represents how informatiotagoed within theWebComName is
stored and manipulated. This interface allows the calliraglufe to retrieve the current name of
a node without losing any contextual detail. In this case \ilebComName class provides the
ability to retrieve the full name of the node as well as a reduorm, based on the reduction rule(s)
applied to the name.

public jsdsi.sexp. SexpLi st get Name()
public jsdsi.sexp. SexplLi st generateNane()
public jsdsi.sexp. SexpLi st reduceNanme(ReductionRule rule)

6.6.4 webcom.core.naming.NamingManagerModule

The naming manager module in WebCom maintains a repregentdiall the nodes in the currently
executing graph. As nodes become fireable and execute, rthgies evolve to represent these
changes. All nodes in a graph are linked and so changes tgla sinde effect every node in the
graph. The naming manager provides information about nfaat¢ke other modules in WebCom.

Node names reflect the current state of the graph along wjtipreaaefined policies within We-
bCom. For example, when a graph is created, specific namfagration can be embedded into
node definitions. Typically, predefined names are storedgusn XML representation of Web-
ComName? [127]. When WebCom is executing an application, emingManagerModule is
constantly updating the names of the nodes of that appitati

The NamingManagerModule class provides the following public interface:

2The XML representation of WebCom names is outlined in AppeAd



6.7 Discussion and Conclusion 112

publ i ¢ WebConmNanme get NameFor Node( Node n, ReductionRule r,
Descri ptor domain);

public void | oadProperties(String propertiesFile);

public void set NameGener at or ( NaneGener at or gener ator);

public void setReducti onRul e(Reducti onRul e rul e);

The NamingManagerModule is initialised by WebCom'’s scheduler, known as Backplane

As with all WebCom modules, it loads its initial propertie®rh a stored configuration file us-
ing thennm | oadPr operti es(pFil e) method. These settings include selecting the partic-
ular name generator and reduction rule(s) to use. Thesagsetin be changed at runtime using
thenmm set NaneGener at or (g) andnmm set Reduct i onRul e(r) methods. This func-
tionality is utilised when customised name generator addaton rules are needed for a specific
application.

Names for nodes are constantly changing as a graph exeéstedi.nodes are connected, each
node that is scheduled or executes causes the names of athfrenodes in the graph to change.
The NamingManagerModule manages how these names are modified and stores a representa-
tion of each nodes name inrmme cacheNode names are updated in two cases: when a node is
scheduled and when a node executes and returns a resulte attémns cause thidamingMan-
agerModule to update the names of all the nodes in the current graphy tlsinspecified reduction
rules. If a node does not have a current name, theN#reingManagerModule calls the config-
ured name generator to generate a name for that node. Thismgdor example, when a subgraph
is evaporated and no predefined names are present.

When another module asks for a name for a specified nodelNameingManagerModule
checks its name cache for the current name of that node. litheih update the name when re-
quired. Updating the name is needed when, for example, ttie isdo be scheduled to a particular
domain. The naming manager will then apply the specifiedatoiurule(s) on the name and return
the reduced name to the calling module.

6.7 Discussion and Conclusion

In this chapter, we have proposed a naming model for condegrsphs. This model allows the
creation of sophisticated policies using these names. Nathe nodes in a condensed graph entails
capturing a representation of the context in which the nsdexecuting, as well as the specific
details regarding that node, such as function, inputs atplitai These names are dynamic: as the
computation progresses the names of the nodes evolve.
WebCom names are structured so that they can represent wigHesgbitrary precision. How-

ever, using these names requires having the ability to e¢bthem to a more usable form. Reduction
rules are used to take complex names and remove unneceas&amation. We use reduction rules



6.7 Discussion and Conclusion 113

to help create specific policies, such as history-basedipsli A history-based policy is one where
information about what has transpired during the executicthe graph is stored within the names
of nodes. For example, we can use history-based policigsi® the names of the domains that the
nodes have executed during the computation.

Complex distributed systems, such as CORBA, use abstrawtsito hide underlying detail of
the operating system from application developers. Howehiding operating system details can
cause problems when developing security policies for tsgseems [111]. Names in WebCom are
not abstractions. The contextual details of the operatystes that are considered important can
be made available within the name.

WebCom policies are limited to a single execution contextwill not effect future executions
of the same graph, nor the authorisation of any other grapimgykexecuted concurrently. Work is
ongoing towards providing support for concurrency withion@ensed Graphs [134].

The definition of reduction rules is also limited in the cutrenodel. The model does not
guarantee name consistency. For example, one reducteeauld remove information that a later
reduction rule relies upon.

Example 6.16 Recall the tuple reduction ruldomrupl eRedux applied to the ent Car Nane
from Example 6.7. TheonmTupl eRedux rule modifies the rental company name so that Hertz's
local agent, Ryans, replaced Hertz when renting a car in.C8dasider a second reduction rule,
upgr adeCar , that is applied to Aerlingus customers who rent from Hertz:

upgradeCar :: Nanme -> Nanme

upgradeCar (Snamd g f i 0)

| (d == (Lnam["Hertz","Cork"]) &&
== (Lnam [ "eBookers","RentCar"]) &&

True ‘elem [ip <= (Lnam["Aerlingus"]) | ip < i])
= (Snamd g (Lnam ["Rent Car", "Upgrade"]) i o)
| otherwi se = (Snamd g f i 0)

This reduction rule upgrades qualifying customers to eebetthicle. IfdoniTupl eRedux is
applied beforaipgr adeCar , then Hertz customers renting in Cork will never receive tipgrade.
However, wherupgr adeCar is applied, and thedomTupl eRedux, customers will receive the
upgrade, and the rental company name will be updated to éoyEait, Ryans.

A

Our position in this dissertation is that it is the respoitisjbof the specifier of the rewrite
rules to ensure these inconsistencies do not occur. Howheedevelopment of a formal model
to prevent such inconsistencies is a potential topic ofreutuork. Such a model could be used
to prove the consistency and completeness of a set of reduailes. There has been substan-
tial research [51] into rewrite systems. Such systems geoformal analysis and proof for name
rewriting. Developing such a model for names is a topic dfifeitresearch.



6.7 Discussion and Conclusion 114

This chapter outlines the current implementation of theingqmodel in WebCom. Chapter 7
uses this naming architecture as a basis for WebCom'’s accegol model. In Chapter 8, we
examine some complete case studies using WebCom'’s namingcaass control architectures.



Chapter 7

WebCom Security Model

In Chapter 5, we introduced the WebCom distributed metacimg environment. In this chapter
we describe the security model and architecture of WebCamire detail. WebCom'’s architecture
provides the ability to make security policy decisions dbibwe execution of computations. The
enforcement of security policy decisions is the respolisitif WebCom'’s security architecture.

Threats to a distributed computing environment includeiltioé modification of data used in a
computation; the modification of the computation itselg tmauthorised access of data by princi-
pals; the unauthorised execution of computations, anditgi¢heft. These threats are addressed in
WebCom through the provision of data and computation iitiegnd by authenticating the princi-
pals using the system.

Data and computation integrity involves ensuring that kthth data used in the computation
and the computation itself are not modified illicitly. Intég is important as computations can
potentially execute across compute resources that areolledtby many different entities. For
example, spoofing of results is a common problem in voluritaeed distributed computations [45].
An authorisation mechanism to ensure that computationuicecand data access is only performed
by authorised principals is needed. Such a mechanism veilirerthe integrity of both computations
and data.

Managing and verifying the principals using a distributedhputing environment entails ensur-
ing that there is a systematic way to determine the auttignti€the principals and the resources
used in the computation. This can be provided through the@fiaethentication mechanisms.

The WebCom security architecture is designed to addressdatihorisation and authentication.
The authorisation mechanism is access control based. We #rgt the goal of access control for
distributed computations is fourfold. It can be charasttias the need to ensure that: computations
will only be executed on resources that are explicitly atifeal; resources will only execute com-
putations that come from authorised servers, results opatation execution will only be accepted
from resources that are authorised, and these resultscaiged only by the authorised recipient. In

115



7.1 WebCom Access Control Model 116

an access control based security architecture, accessafgjert is authorised whether the subject
has been granted permission to use the object in the requeaie

The authentication problem in WebCom can be characterisdidearequirement of two princi-
pals to set up a communication channel whereby each prinogti@aves that they are communicat-
ing only with the other principal.

WebCom'’s security architecture addresses authorisatidraathentication separately:

» WebCom'’s authorisation architecture is supported by themg and Security Manager Mod-
ules. In Chapter 6, we described how nodes in condensedgcaptbe named. By specifying
the exact conditions under which a named node may execuytbisticated security policies
may be written for those nodes.

» Authentication is supported by WebCom’s communicatiorenager. This entails using a
secure authentication and/or communication protocoh stscSSL [92] or IPSec [172], and
providing support for a public key infrastructure (PKI), @hnecessary. Providing authentic
and secure connections between WebComs ensures that slaté is the correct destination,
and cannot be intercepted, or modified, by a third party.

We can regard the security manager as acting as a referemimmohecking security critical
actions and ensuring that these actions comply with thesaczentrol policy. In this chapter, we
examine the security model and architecture of WebCom.i@e¢tl describes WebCom'’s access
control model. In Section 7.2, we examine some examplesooiribg policies that can be enforced
using the WebCom security architecture. Section 7.3 dessrthe implementation of the security
architecture in WebCom. The architectural support for entilcation is outlined in Section 7.4.

7.1 WebCom Access Control Model

An access control model captures the set of allowed actisrgs @olicy within a system. Access
control addresses a primary concern for security in a systieciding whether access to a resource
is permitted or denied. Recall from Chapter 2 tha¢fe@rence monitoimplements access control.
A reference monitor typically operates as follows: a sdgumitical action is required, for example,
an access request for sensitive data, the reference monigarepts the action and checks whether
the action is authorised according to the security politi.i$, then the action proceeds. Otherwise
the security critical action is not authorised and the cadlaotified of this failure.

WebCom'’s security architecture follows this model of pplenforcement. Figure 7.1 shows a
representation of the WebCom reference monitor. When aisddébe executed, this “security crit-
ical” action is mediated by the “WebCom reference monitdn’this case, part of th8cheduler,
NamingManagerModule and SecurityManagerModule act in concert to decide whether the se-
curity critical action is authorised. Th®&cheduler module selects one or more potential WVM



7.1 WebCom Access Control Model 117

O—0O0

WVM

Load Balancer Fault Tolerance
Module Module

Communications
Manager
Module

Schedule

Execution Engine
9 Scheduler

WVMs
Naming Manager Security Manager| 1
Module Module |
A
Naming Policy Access Control Policy |

Reference Monitor

Figure 7.1: WebCom'’s Reference Monitor

(WebCom Virtual Machine) targets for the action (hode to kecated). TheNamingManager-

Module extracts the relevant details of this action. TecurityManagerModule then makes the

decision based on the security policy and the action’s Kdesaipplied by theNamingManager-

Module. If authorised, then the node is scheduled to the autho¢eé. Otherwise, the node is

rejected and the scheduler is informed.

7.1.1 WebCom Permissions

The security architecture in WebCom allows control overdkecution of applications running in
the system. Authorised actions are specified in the secpaligy, and the WebCom reference
monitor ensures that only authorised actions take placealRfeom Chapter 6 that the definition of
a WebComName is:

data Nane

Empty

Pnam {pnam :: String}

Snam {dom

grph ::

fun
ins
ops

Nane,
Nane,
Nane,
([ Nare] ),
([ Name] )}

Lnam {lnam:: ([String])}

Names in WebCom are defined in terms of Haskell [98] equations

The access control policy ensures that only authorised W¥idsassigned work. The names

of WVMs are represented within the WebCom naming scheme.s&hef all possible names for



7.1 WebCom Access Control Model 118

WVMs is defined as a subtype dane, and represented as:
type W/M = Nane

In a WebCom environment, nodes are assigned as work to WVhissét of all possible names for
nodes is defined by a subtypeNdne and represented as:

type Node = Name

Let Per mi ssi on denote the set of all permissions in WebCom. WebCom providesmain
capabilities: scheduling and execution of nodes. Thesealilies are considered as permissions
and are represented as follows:

data Pernission :: Sch Nane | Exe Nane

Example 7.1 Figure 6.19 showed the (reduced) namdrefit Car node. The permission to exe-
cute this node can be specified as follows:

(Exe (Snam
(Enmpty)
(Pnam "eBookers")
(Lnam ["eBookers","RentCar"])
[ (Lnam [ "eBookers", "BuySeat "] )]
[ (Lnam [ "eBookers","Print"])]

)

The permission does not constrain the WVM domain in whichribe is executed. A variation on
this permission for a specific WVM domain is as follows:

(Exe (Snam
(Lnam["Grid Ireland", "Munster", "UCC', "Conpute Cluster"])
(Pnam "eBookers")
(Lnam [ "eBookers","Rent Car"])
[ (Lnam [ "eBookers", "BuySeat"])]
[ (Lnam [ "eBookers","Print"])]

)

This permission specifies that the UCC compute cluster sosised to execute thRent Car
node.

A



7.1 WebCom Access Control Model 119

7.1.2 Ordering Permissions

A partial ordering (transitive, asymmetric, reflexive) efihed on the set of permissions, whereby;,
(pl <= p2) is interpreted to mean that holding permissimd implies holding the permission
pl. This partial ordering (thé€r d of datatypePer i ssi on) is used to specify the access control
policy. Ordering permissions is a traditional conventi@ed for access control. For example, both
the Java security model and RBAC also use a partial ordefipgronissions [78].

Example 7.2 Figure 7.2 shows an example of tled relation forPer mi ssi on. As Sch and
Exe permissions are disjoint, they are compared separatelpotim cases, permissions are com-
pared based on the names of the nodes they refer to. In thispéxaone permission is less than
another when the name of the second node is less than (ortejjtia name of the first node.

instance Ord Perm ssi on where

Exe n <= Exe m = m<=n
Sch n <= Sch m = m<=n
X <=y = Fal se

Figure 7.2: Definition of th&r d relation forPer i ssi on.

In this examplePer m ssi on partial orderings are functionally opposite Xamne partial or-
derings. Names are ordered such that when more informatipnesent in the name, that name
more precisely identifies the node. For example, a node nathdnput value “5” is more precise
than the same node name without this input information. Intrest, permissions are ordered so
that a less precise permission means that the holder hasrighte. For example, a permission
for the node that specifies the input value “5” is more rettecthan one that does not have this
requirement. Precision in the case of both names and péomsseefers to how much uniquely
identifying information is present in the name or permissi®he most precise name for any given
node will have all possible information stored within themea

In Per ni ssi on orderings, arEnpt y permission represents the greatest possible permission
in the ordering. Granting a&npt y permission to an entity is equivalent to granting the Java
permissiorAl | Per mi ssi ons to an entity in the Java security model. A

Example 7.3 The WVM permission shown in Example 7.1 shows a very specditnjssion. In
contrast, thénighestexecute permission for thteonput e Cl ust er WVM is as follows:

(Exe (Lnam ["Gid Ireland","Minster","UCC', "Conmpute Cluster"])
(Enpty) (Empty) [] [])

As this permission does not explicitly refer to any specificl®, or set of nodes, it is greater than
any permission that has the same references in its domdm tdjis permission authorises the
WVM to executeeverypossible node.



7.1 WebCom Access Control Model 120

Furthermore, the execute permission:

(Exe (Lnam["Grid Ireland"]) (Empty) (Empty) [1 [1])
is less precise again, and so is greater tharCrgut e Cl ust er execute permission. A

In principle, ( Per mi ssi on, <=) can have have any definition (provided it is a partial order-
ing). However, in practice, there are a number of conssdimat we place on the ordering. The
name of a WebCom entity changes only in accordance to thevioehanf the execution engine (to
reflect inputs arriving to nodes, node firing, and so forthy e rewrite rules; we must ensure that
any potential permission ordering is consistent with tkekdviour.

Many of the changes to a name simply extend it. For exampéeattival of an input value to
a node results in its name changing frémpt y to a name reflecting its value. Node names are
either increasing in detail, when, for example, new infdioraarrives, or decreasing in detail, for
example, when reduction rules are applied to the names. §juirecthat orderings on permissions
are monotonic with respect to the names that they refer &b ish

MonoNanes :: Name -> Name -> Bool

MonoNames nl1,n2 = if (nl <= n2) then
(Sch n2) <= (Sch nl) &&
(Exe n2) <= (Exe nl)

MonoNanes( nl, n2) defines the relationship between the names of two nodess tefrthe
permissions required to execute and/or schedule thosesntid#efines that as the name of a node
grows more precise, the permission based on that name becgoore restrictive.

Example 7.4 If the name of a node is:

(Snam (Empty) (Pnam "G aphA") (Pnam "FuncA") [] [])
then the permission required to schedule that name is simply

(Sch (Snam (Enpty) (Pnam "G aphA') (Pnam "FuncA") [] [1))
However, if the name of the node is updated to contain a damain

(Snam (Pnam " Donai nA") (Pnam "G aphA') (Pnam "FuncA") [] [1)

then, a schedule permission for this name only authoriseshtifider to schedule the node to a
specific domainPomai nA, while the original permission allowed the holder to scHedhe node
to any domain. A

This relationship is required aa e ordering andPer ni ssi on orderings between the names
of nodes are “opposite” to one another. As we have seen, naimesles grow more precise as they
increase in size. In contrast, permissions grow more otisias node names increase in size. This



7.1 WebCom Access Control Model 121

is similar to how the KeyNote trust management system [28}afes. In KeyNote, if a attribute is
not specified, then no restriction is placed on the valueatfdttribute. With WebCom permissions,
if any part of the name iEnpt y, then the permission implicitly authorisasyvalue in that part of
the name.

We argue that the ordering shown in Figure 7.2 meets thisnegeant. This ordering upholds
this requirement as one permission is considered greatemtfother when the node name contained
in the first permission iessthan the node name in the second permission. Thus pernmssgioa
specific node are of a lower order than those for a less speaifiee for that node.

Example 7.5 When theBuy Seat node has executed and a seat purchased on Aerlingus’ EI220 to
Paris, the name of thBent Car node changes to reflect this result. TBee permission for this
node on the UCC compute cluster is as follows:

(Exe (Snam
(Lnam["Gid Ireland", "Munster", "UCC', " Conpute Cluster"]))
(Pnam "eBookers")
(Lnam [ "eBookers", "Rent Car"])
[ (Lnam [ " Aerlingus", "El 220", "Pari s", " Travel Agent Ap", "BuySeat "] )]
[ (Lnam [ "eBookers","Print"])]

In order for permission monotonicity to hold, this permigsmust be less than (or equal to) the
WVM permission shown in Example 7.1 in the ordering of pesituss. As this permission is in
fact alower permission, in the respect that it refers to a more specifienthis property holdsA

7.1.3 Binding Permissions to Entities

Execute and schedule permissions are disjoint sets, atkusra@ot comparable. A WVM may hold
either execute or schedule or both permissions for nodesyafimen name. Every WVM and node
have associated schedule and execute permissions.

schedule :: W/M -> [ Perni ssi on]
execute :: WM -> [Perm ssion]

Given w. WM thenschedul e(w) returns the scheduling permissions associated with the
WVM wandexecut e(w) returns the execute permissions that WWiNiolds.

Given a noden: Node, then( Sch n) represents thiwestpermission that must be held by
a WVM in order to schedule the node ( Exe n) represents théowestpermission that must
be held by a WVM to execute the node The node permission shown in Example 7.1 shows a
permission for &ent Car node. However, thiowestpossible permission for any node is specific
to the inputs and outputs of that node. For example, the lopargnission for a node with input



7.1 WebCom Access Control Model 122

value “5” is different to the lowest permission for a nodehwitiput value “6”, as each permission
would specify the input value.

(Exe (Empty g f [] []))

(Exe (Alice g f [] [])) (Exe (Empty g f [1] [])

(Exe (Alice g f [42] [])) (Exe (Enpty g f [1] [Fn]))

Figure 7.3: Sample ordering of execution permissions

Example 7.6 Figure 7.3 shows an example of how permissions are ordereddimphg and Func-
tion f L. In this example, the permission that is the least prediss,is( Exe (Enpty g f []
[1)).is highest ordered permission. Lower permissions arereddaccording to the details that
are present in these permissions. For exan{s&e (Alice g f [] [])) is ahigher order
permission thaif Exe (Alice g f [42] [])), as the latter has additional information, that
is an input value of “42". A

We can define what is meant by a secure WebCom system as one &uszy schedule and
execute operation is authorised.

Definition 7.1 Secure Execution A WVM w should hold the permission to execute a nadbat
is scheduled to it, that isay Execut e(w, n) , where,

mayExecute :: WM -> Node -> Bool
mayExecute wn = any (\p -> (Exe n) <= p) (execute w)

may Execut e(w, n) defines that in order for a WVMy, to execute a noda), the WVM must
hold an execute permission for that node. &

Definition 7.2 Secure ScheduleWhen a node is scheduled to a child WVM for execution, the
scheduling WVM (in this case, the parent WVM that executesgitaph that containg) must hold
the permission to schedule that node, thatresy Schedul e(w, n) , where,

1The permissions shown use a simplified syntax for displagares



7.1 WebCom Access Control Model 123

maySchedul e :: W/M -> Node -> Bool
maySchedul e(w,n) = any (\p -> (Sch n) <= p) (schedule w)

may Schedul e(w, n) defines that in order for a WVMy, to schedule a node, the WVM must
hold an schedule permission for that node. &

Example 7.7 Consider éRent Car node with name:

(Snam
(Lnam ["Gid Ireland", "Munster","UCC', " Conmpute Cluster"]))
(Snam (Lnam [ "eBookers","Alice"]) (Pnam "Travel Agent Ap") (Empty) [] [1)

(Lnam [ "eBookers","Rent Car"])
[ (Lnam [ "eBookers", "BuySeat"])]
[ (Lnam [ "eBookers","Print"])]

)

We can use therayExecut e or maySchedul e functions to determine whether this node is
authorised to be executed or scheduled, respectively. @sdime of the WVM forms part of the
name of the node, we use this information to determine whétleeaction is authorised. Thus, in
this instance, th&ent Car node is to be scheduled to the UCC Compute Cluster. Thisraigio
authorised only when there exists a relevant execute pgioniseld by the WVM with (element of
execut e(w) ) name:

(Lnam["Gid Ireland","Minster","UCC', "Conmpute Cluster"])
and a relevant schedule permission held by the WVM (elemiesthedul e( w) ) with name:
(Lnam [ "eBookers","Alice"])

A

It is possible for a WVM to hold a permission that they canrsg.uFor example, consider the
permission

(Sch Lnam [ "eBookers","Alice"])

If Bob held this permission, then he would not be able to use it tecidle any nodes. However,
Bob could delegate this permissionAbi ce, who would be able to use it.

7.1.4 Implementing the Security Model in WebCom

We can interpret this model in WebCom in terms of attributedentials using a trust manage-

ment system. Each WVM holds cryptographic credentialsrigatesent their schedule and execute
permissions for various nodes. As these credentials ategrgphically signed, they are computa-

tionally infeasible to forge, and so provide a secure meamntode permissions.



7.1 WebCom Access Control Model 124

(cert
(i ssuer (hash shal | dsEFA73sahf dDF3784JDFj f sFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash shal |dasdk...|))))

(propagat e)
(

(tag
(execute
(WebConmNane
(domain (ref: Gid_lreland (ref: Miunster (ref: UCC
(ref: Conpute_Cluster)))))
)
)
)

)
(not - before "2005-11-31_17: 00: 00")

(not-after "2006-11-31_16:59:59")

)

Figure 7.4: SPKI Credential authorisit@pnput e_Cl ust er to execute any node.

Example 7.8 Figure 7.4 shows an execute permission, encoded as a SRi¢intiad, for a WVM
that authorises the WVM to execute every possible type oénod A

Permissions can be directly encoded as trust managemetgntias, as shown in Example 7.8.
The trust management compliance check directly corresptmgberformingmayExecut e and
may Schedul e checks on nodes that are to be executed and scheduled reslgedtor an in-
dividual WVM to be considered secure, every node that the Whébkives for execution from a
parent WVM, and every node that the WVM schedules, must bleosised. The security com-
pliance check required in order for a node to be schedulederacuted can be considered in two
parts:

» the WVM scheduling the node must perform a check to ensaetiie WVM that the node
is being scheduled to is authorised to execute it (Definifid).

» the WVM executing the node must perform a check to ensutethieaNVVM that scheduled
the node was authorised to do so (Definition 7.2);

In both these cases, if either, or both, of these conditids, flnen the action is rejected.

A critical requirement for a distributed implementation ®€cure WebCom is that a WVM
should only make mediation decisions about other WVMs aidlishnever be relied upon to me-
diate about themselves. A WVM cannot be trusted to decidehehé is authorised to schedule (to
itself) or execute a node that it holds.

These mediations can be performed using a trust manageysats When permissions are
cast as trust management credentials, the WVM schedulagdte provides the relevant schedul-
ing credentials to the child WVM. The child WVM can then perfothe trust management me-
diation. This is equivalent to the child WVM performingnay Schedul e check. Similarly, the



7.1 WebCom Access Control Model 125

child WVM provides the parent WVM with execution credergiaso that the parent can use the
trust management system to ensure that the child is autiloigsexecute a node. This is equivalent

to the parent performing mmy Execut e check. These separate, but linked checks are necessary
in order for the entire WebCom system to be considered sebussy implementation, every node
that is scheduled and executed must have these two chediedajopthem.

Each WVM maintains a local policy, consisting of a list of péssions held by both the local
and remote WVMs. These permissions are used to determintherteecurity critical actions are
authorised. In terms of a trust management system, thisypotinsists of a list of trusted policy
credentials. The global policy of the system is made up dhalllocal policies.

Example 7.9 Considering the name of theent Car node from Example 7.7, in order for the
WebCom system to be securepayExecut e check must be performed on the (parent) WVM
with the name:

(Lnam [ "eBookers","Alice"])

regarding the (child) WVM with the name:

(Lnam ["Gid Ireland", "Munster","UCC', "Conmpute Cluster"])

and amay Schedul e check must be performed on the (child) WVM with the name :

(Lnam["Gid Ireland", "Munster", "UCC', "Conpute Cluster"])

regarding the (parent) WVM with the name:

(Lnam [ "eBookers","Alice"])

The parent WVM must hold at least the permission:

(Sch (Snam
(Lnam ["Gid Ireland", "Munster","UCC", "Conpute Cluster"]))
(Snam (Lnam [ "eBookers","Alice"]) (Pnam "Travel Agent Ap") (Empty) [] [])
(Lnam [ "eBookers","RentCar"])
[ (Lnam [ "eBookers", "BuySeat "] )]
[ (Lham [ "eBookers","Print"])]

The child WVM also must hold at least the associated execetmigsion. Only when both of
these WVMs hold these permissions will the node be schediiddxecuted by a secure WebCom
system. A



7.2 Sample Security Policies for WebCom 126

(cert
(i ssuer (hash shal | dsEFA73sahf dDF3784JDFj f sFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash shal |dasdk...|))))

(propagat e)
(

(tag
(execute
(WebConmNane
(domain (ref: Gid_lreland (ref: Minster
(ref: UCC Conmpute_Cluster))))
(graph ebookers)
(function (ref: (ebookers RentCar)))
(i nputs
(input (ref: Aerlingus (ref: EI220
(ref: Paris (ref: Travel Agent Ap BuySeat))))))
(outputs (output (ref: ebookers Print)))
)
)
)

)
(not - before "2005-11-31_17: 00: 00")

(not-after "2006-11-31_16:59:59")
)

Figure 7.5: A SDSI/SPKI credential authorisingRant Car node.

Example 7.10 Figure 7.5 is an sample SPKI credential for Rent Car node discussed in Exam-
ple 7.5. In this case, the licensee is authorised to exeddenaCar node. The parent WVM uses
such credentials to determine whether a child WVM is ausiaarito execute a specific node. A

Proposition 1 The implementation of the security model in terms of creidésts valid. O

7.2 Sample Security Policies for WebCom

We now describe some specific application policies that essniforced using the WebCom security
architecture. Section 7.2.1 discusses a share tradinghaarlpplication that uses names to ensure
that only authorised users receive secured componentshéflesixamine a high watermark policy
style policy in Section 7.2.2. This policy uses historiagfiormation stored within node names to
ensure that executions do not travel to WVMs that are of loslessification than the application.
Finally, Section 7.2.3 examingmishauthorisation using WebCom names. Push authorisation en-
sures that future requirements are taken into account wineent authorisation decisions are being
made.

7.2.1 ShareTrader

We can configure Secure WebCom to support specific applicagourity requirements. In a work-
flow, application components may interact with specific ss€@ondensed graphs are ideally suited



7.2 Sample Security Policies for WebCom 127

to providing the necessary sequencing constraints. TheCéfbsecurity architecture can then be
configured to ensure that the correct users (domains) exepetific nodes.

Example 7.11 A workflow based WebCom application is shown in Figure 7.6sBpplication has
three application component8r i ceDeal (Figure 7.7)Veri fy (Figure 7.9) an€Capt ur eDeal
(Figure 7.8). The application is executed by customers wish @ purchase shares. The user passes
in the share symbol as a parameter to the application. A stadkr will check the price of the stock
and suggest a purchase using finé ceDeal component.

har e
rader) =
Cap-
t Br e
Deal
Price /\ T
Deal ' B@
har €
(Tr ader

Figure 7.6: The Share Trader Application

Price Deal
Share Symbol: SLm i
Price Per Share: 238

Number Of Shares: 246
0K

Figure 7.7: Thé’r i ceDeal Component

The customer verifies the transaction using¥ee i f y component.

Gapture Deal |=[O]X]
Share: SN
Price/Share: 23.8
Number: 246
Total 823480
Ok

Figure 7.8: TheCapt ur eDeal Component

If they approve of the transaction, then the stock is pumthdsr the agreed price using the



7.2 Sample Security Policies for WebCom 128

Capt ur eDeal component. If the customer does not approve, then the stwlabwill get a new
guote. TheShar eTr ader graph is defined recursively.

‘J\j.f': c

Approve Purchase of:
Share: SUMW
Price/Share: 223
Number 346
Totalk 8234.80

Figure 7.9: The/eri fy Component

When creating security policies for this application, westmepresent the requirements of the
stakeholders. For example, the customer’s security pédicthis application must consider which
stockbrokers they trust to make purchases for them. Théistokers will only accept requests
from trusted children. Both parties will only allow the cooments to execute in trusted domains.

Each user of the system stores their own credentials, anddpsthem as required to Web-
Com, in order to prove their authorisation. Nodes are sdeeddonly to authorised users. Using
application specific naming, very specific policies can Hereed by the security architecture. For
example, the stock-brokerage may allow a junior broker fuilga sales up to a certain value, say
€200. Once a sale over this value is requested, a tradinggeamnaust capture the sale. These
conditions are specified in the trust management policyaaadided by the naming system. When
aCapt ur eDeal node is scheduled for execution, the name of the node muttinanformation
about the input to the node.

In order to achieve this, when the node name is generatedsit contain the details of the stock
trade from the inputs to th@apt ur eDeal node. An application specifdaneGener at or class,
as shown in Appendix B, is implemented in Java and is useddrerthis takes place. Any required
reduction rules, again implemented in Java and shown in AgigeB, are then applied to the name
to convert it into reduced form. Such a node name is shownguarEi7.10.

The share trading policy is shown in Figure 7.11. This Key@Npolicy authorises the senior
trader to perform any operations @apt ur eDeal nodes in theShar eTr ader graph. The
senior trader then delegates part of this authority to thjurader by signing the credential shown
in Figure 7.12. This credential limits the junior trader i@eutingCapt ur eDeal nodes of value
less than€200.

A

(Snam (Enpty) (Pnam "ShareTrader") (Pnam "CaptureDeal ")
[ (Lnam ["stock", "SUNW, "210"])] [] )

Figure 7.10: The name of@pt ur eDeal node before scheduling



7.2 Sample Security Policies for WebCom 129

KeyNot e- Ver si on: 2

Comment : ShareTrader Policy File for Sales Team

Local - Const ants: seniortrader =
"rsa-base64: M G MAl b3DQEBAQUAA4AGNADCBI QKBg\
skpav8kf r w7 OKnNgFMHDuUVc69wi DAQAB"

Aut hori zer: "POLI CY"

Li censees: seniortrader

Condi tions: App_Domain == "WebConm' &&
Graph == "ShareTrader" &&
Functi on == "CaptureDeal ";

Figure 7.11: The ShareTrader policy authorising the Sehiader.

KeyNot e- Ver si on: 2

Comment : ShareTrader Juni or Trader Credenti al

Local - Const ants: seniortrader =
"rsa-base64: M G VAl b3DQEBAQUAAAGNADCBI QKBg\
skpav8kf r w7 OKnNgFMHDuUVc69wi DAQAB"

juniortrader =

"rsa-base64: M GG MASDJASD123d3DDd932J3kk32f \
yy123kJJ2304kbwgi MaAl wpo8r JKWEQT"

Aut hori zer: seniortrader

Li censees: juniortrader

Condi tions: App_Domain == "WbConm' &&
(G aph == "ShareTrader" &&
Function == "CaptureDeal " &&
I nput < 200) &&
operati on == execute;

Si gnat ur e:

Figure 7.12: The ShareTrader credential authorising theoddrader.

7.2.2 High Watermark style policy

Many traditional authorisation policies are based on thged in which computational components
have been executed in the past. For example, SeparationiesPL35], Chinese Wall [40, 58, 106]
and High Watermark [180] policies. With such history baseticies, the access control state
needed to make decisions must be gathered from all theldittd mechanisms that are involved
in the computation in the past. For example, in the case ef management based authorisation,
this means that all relevant credentials issued must beegatho accurately determine the access
control history of a user. With condensed graphs, the contdarmation is stored in the node
names. Thus, in order to make an access control decision éondensed graph, the relevant
contextual information can be preserved using histongthasduction rules.

In a high watermark policy component levels (names) riseeftect the classification of the
data written to it. High watermark policies incorporate twmcept of ordered classifications from
multi-level security (MLS) policies. In the case of a conseth graph application, this is cast as
a policy where a node may only execute on a resource of “equdihigher” classification. The
classification of a node will depend on the path that the di@tihas taken to this point. In a
distributed computation, such a policy may be informallpmssed as: “once a computation is



7.2 Sample Security Policies for WebCom 130

executed on a resource running at a certain security lesdurces that are of a lower security level
are never again used in the future execution of the computati

We use node names to store security state in a decentralisedemduring application exe-
cution. In Chapter 6, we described how the WebCom namingtaottire has the ability to store
information in the names of the nodes, and ensure, usingpppate reduction rules, that this in-
formation is stored in the names of all the nodes in a graple.cbimtextual detail required to make
authorisation decisions is “pulled” from the nodes thatehexecuted.

The reduction policies applied to the names must encodeigjiest security clearance of the
resources that the execution has used to this point. In the @fa distributed computation, the
resources that are used to execute components in the figpemds on the resources used to date.

Example 7.12 Figure 7.13 shows a condensed graph that defines an implatmoanof a flight
reservation application. This graph can be considered @mplementation of th®uy Seat node
from Figure 6.3. The airline’s security policy includes aigaordering of domains, shown in Fig-

ReserveFlight)::=
Gues|| User

Figure 7.13: Reserving a Flight specified as a CondensechGrap

Customer
Services

Finance

ure 7.15. Under this orderingiinance > CustomerService- Guest For example, if a node exe-
cutes on a resource that is classififédance then no subsequent node should execute on resources
classifiedCustomerServicer lower.

If this graph executes on the Airline’s network, and in thendins shown, then the security
policy requires that thAccept node should only be executed in thimancedomain. This can be
achieved using reduction rules that maintain the high wadek within a node’s name.

We use the high watermark reduction rule shown in Figure.7.THis is the original input
reduction rule from Figure 6.15 in Chapter 6. However, fadfic applications, we need to redefine

saveDom :: Nane -> Name

saveDom (Snama b ¢ [(Snamv wx y z)] e)
| a<=v = (Snamv b ¢c [(Snamv wx y z)] e)
| otherwi se = (Snama b ¢c [(Snamv wx y z)] e)

Figure 7.14: High watermark reduction rule.



7.2 Sample Security Policies for WebCom 131

the O d relation from Chapter 6. Recall that permission orderirgy@posite to name orderings.

instance Ord Nane where

Enmpty <= X = True

(Shnama b c d e) <= (Snamv w x y z) = (a<=vVv) & (b <=w &&
(c <= x) && (d <=vy) &&
(e <= 2)

(Pnam " Fi nance") <= (Pnam "Cust oner Service") = True

(Pnam " Fi nance") <= (Pnam "CGuest") = True

(Pnam " Cust oner Servi ce") <= (Pnam "Guest") = True

(Pnam p) <= (Pnam q) = p==gq

(Lnaml) <= (Lnamn‘) = (| ==

X <=y = X ==y

Figure 7.15: Company Domain orderings.

Permission orderings (shown below), use these name ogderin

i nstance Ord Perm ssion where
Exe n <= Exe m = m<=n
Sch n <= Sch m = m<=n

In this case, we use some application specific rules to stupperequired domain ordering.
When thesaveDomfunction reduces names, the name ordering from Figure 8.U5dd.

(Snam
(Pnam " Cust oner Servi ce")
(Pnam "BuySeat ")
(Pnam "Accept")
(Snam [ (Snam (Pnam " Cust oner Servi ce") (Enpty)
(Pnam "PassDetai l") [][])
(Snam (Pnam " Fi nance") (Enpty)
(Pnam "PayDetail ")[][])

1)
[ (Pnam " X")])

(a) Before Reduction

(Snam (Pnam "Fi nance") (Enpty) (Pnam "Accept") [] [1])

(b) After Reduction

Figure 7.16: The name of thliccept node: (a) before and (b) after reduction.

In the names shown in Figure 7.16, prior to the applicationthef reduction rule, the node
Accept is considered to be permitted to execute on a resource fdasSust omer Ser vi ce.
However, as one of the previously executed nodReg;Det ai | , was executed on a resource of
classificationFi nance, the reduction rule modifies the name of the node and chahgefomain
tuple toFi nance.



7.2 Sample Security Policies for WebCom 132

This can be used to enforce a high water mark authorisatibayponce any node in the com-
putation reaches a higher security level, all subsequet¢simust execute on resources that hold
permissions for nodes to be executed at least at that setewdl. The parent WVM must apply
these reduction rules to any node that is to be scheduledhanderform aray Execut e check,
using the high watermark policy, to determine whether cWitdMs hold sufficient permissions to
execute subsequent nodes.

We could also make decisions based on the type of custommay tis¢ service. If a known
customer, whose details are retained by the airline, logsthe site, then the name of the node
could be set to reflect this. When the payment details arareljuhat node would be directed to
specific resources that hold saved customer financial detail A

7.2.3 Pull and Push Access Control

The history based access control strategy works well in #3e of a simple ordering of, for ex-
ample, domains. With history based access control, we mat&sa control decisions regarding
the contexts that a node has gone though. We consider thiegjrto be dpull’ authorisation
strategy in that contexts are pulled from the relevant namfaghorisation decisions often have
consequences that alter the possible future authorisdgoisions that may occur. Consider the
case where we have a mutually exclusive ordering such asawstparation of duties policy [135]
or Chinese wall policies [40]. In a Chinese wall policy, orceomputation executes on a particular
company’s resource, it should never be allowed execute swurees belonging to a competitor.
With a Condensed Graph application, it is possible thatiplalhodes execute in parallel, and the
results from these parallel executions are integratedafiuture. When we use a pull strategy to en-
force a separation of concerns policy, we can encounteraldqdvhere the computation can never
finish due to a policy conflict. We could address this conceumatly, with a policy that dictates
all computations must execute in one domain. However, symbliay will force the computation
to be assigned a priori to a specific domain. This approacitslittne flexibility of the computation,
Instead we introduce the concept'plish’ authorisation to address this issue.

Traditionally, when such problems are addressed dynalyitia¢y use synchronisation between
the components [19]. However, such synchronisation isxaftelesirable and requires extra infras-
tructural support. Ideally, we want to be able to identifggutial conflicts and address them within
the authorisation policy. Instead of pulling the infornoatirequired to make a decision from the
source, we instead push this information from the sourchea@bints where it will be needed. We
refer to these as “push”, or future based, authorisatioitipsl

We can use push authorisation to force a computation to &xécuhe future on specific re-
sources based on the authorisations that the computat®rnebaived in the past and on the po-
tential conflicts that must be avoided in the future. Thiswal, for example, the enforcement of



7.2 Sample Security Policies for WebCom 133

dynamic separation of duty policies, without an externalcéyonisation infrastructure. The details
required to identify potential conflicts are stored in thenpaitational context of the nodes. In Web-
Com, push authorisation policies are then written in terfrtsust management credentials and are
enforced using the existing security architecture. Notamithl architecture is required to support
these policies, the only change is in how the names of the amzlereated.

Push reduction can be defined in a similar way to history beesdlction. The subtle difference
between them exists in the part of the execution contextishetpanded, inputs for pull reduction,
and outputs for push reduction.

Definition 7.3 Push Reduction:.A noden has a name (execution context)
(Snamd g f i 0)

whose attributes provide the names of execution contextddmain ), application graphd),
function ), inputs { ) and outputsd) , respectively. The push reduction of the name of nede

tupl eElimnation(Snamd g f i (nmap tupl eReduction o]))

wheret upl eEl i mi nati on andt upl eReduct i on represent the application of tuple elimi-
nation and application reduction rules, respectively. dntrast to the history-based reduction de-
scribed in Chapter 6, theap function applies thé upl eReduct i on function to each member
of the list of outputs, rather than the list of inputs. &

To make a ‘push’ authorisation decision about an executmmext, first we expand the ex-
ecution context to examine the destination contexts thhtb&iused. Next, application specific
tuple reduction rules, upl eReduct i on are used to extract the relevant details. Tuple elimina-
tion rules,t upl eEl i m nati on, are then used, when required. Finally the reduced names us
with the authorisation mechanism.

Example 7.13 The rental company’s separation of duties policy statet tt&ales and Finance
Data should not be processed on the same resource”. OncedbBay Det ai | , from Figure 7.17,
has been scheduled to a computational context, the naiGardfbdel node must be updated so
that when it is to be scheduled, it is sent to a non conflictiomalin. This ensures that when the
results from both of these nodes reachesAbeept node, it can be executed in accordance with
the separation of duties policy.

Updating theAccept node could be achieved with pull authorisation; howeveratipd the
Car Mbdel node would require communication between nodes that cacuexén parallel to en-
sure synchronisation. Instead, when the result ofGhet Det ai | node is to be integrated into
the computation, the details of the computational contthas it will be sent to is pushed to the
Car Mbdel node.



7.2 Sample Security Policies for WebCom 134

Finance / Sales

Figure 7.17: Reserving a Car specified as a Condensed Graph.

(Snam (Enmpty) (Pnam "RentCar") (Pnam " Car Mbdel ")
[ (Snam (Pnam " Cust omer Servi ce") (Enpty) (Pnam"CustDetail") [] [])]

) [(Snam (Enpty) (Enpty) (Pnam "Accept”) [] [])]

Figure 7.18: Name of th€ar Model node before the Push Authorisation decision.

Figure 7.18 shows a representation of the node’s name bafpresh authorisation decision
has taken place. In particular, the node’'s domain has nat bpecified at this point. When the
PayDet ai | node is scheduled to execute, the authorisation policyreastis sent to th&inance
domain. Thus, all subsequent nodes must adhere to the Sepasé duties policies. Once this
requirement is apparent, the name of @a& Model node is modified to contain a specific domain,
Finance This push action ensures that no policy conflicts will occur

pushDom ::Nane -> Name
pushDom (Snama b ¢ [(Snamqg r st u),(Snamv wx y z)] e)
= (Snama b c [(Snamqgr st u),(Snamqg wx y z)] e)
= C[

(Snama b (Shamv r st u),(Snamv wx y z)] e)

| v<=q
| q<=v

Figure 7.19: Push reduction rule, for a node with two deitnadomains, g and v.

This push action is implemented in the form of a reductioe.ridigure 7.19 shows such a rule
where a node’s result may be sent to conflicting domsim®dg . The pushDomreduction rule
defines that where the result of this node could execute iradt®wandq, then they should both be
forced to be executed in the higher order domain. These anéeapplied to the names of the nodes
that will execute in the future and the authorisation metdmarensures that they are scheduled to
the correct domains. Figure 7.20 shows the node name aftguigh. A

Push authorisation allows a more dynamic control over orgg@omputations and provides
support for pushing computations to specific resourcesgusia security policy. This allows the
implementation of distributed separation of duty policiasthout requiring ongoing synchroni-
sation or communication between atomic nodes. Changingainees of the nodes requires no



7.3 Secure WebCom Software Architecture 135

(Snam (Pnam "Fi nance") (Pnam "CarRental") (Pnam "Car Mdel ")
[ (Snam (Pnam " Cust omer Servi ce") (Enpty) (Pnam"CustDetail") [] [])]

) [(Snam (Enpty) (Enpty) (Pnam "Accept”) [] [])]

Figure 7.20: Name of th8electModehode after the authorisation decision.

changes to the existing pull-based security architectline.same security policies are used to pro-
vide authorisation. The only change is in how the relevaiarmation is provided to the protection
mechanism.

With this push mechanism, we can provide the communicatidmmthe existing framework.
However, providing a push authorisation model limits thegdole contexts that a computation may
execute in the future. The fact that decisions are pushemtdekecution means that some potential
future information cannot be used when making a decision. avijeie that the advantages that
simplification of the architecture bring, outweigh this guatial downside.

Push authorisation can also suffer from deadlock. If a nedaires that it execute on a specific
resource, and a push authorisation decision has excludedesource, the computation will never
complete. As with a pull deadlock condition, this would regguhat the computation is “rolled
back” and nodes re-executed.

Push authorisations can be modelled within the pull archite, however, this requires a cen-
tralised synchronisation mechanism. When a pull reduct&as place, the node names on parallel
paths must be synchronised. Such a centralised mechaniahd ave to exist outside of the exist-
ing trust architecture.

7.3 Secure WebCom Software Architecture

The reference implementation of WebCom provides a softwachitecture that implements the
security model described in Section 7.1. Currently the em@ntation is written in Java, using a
Java s-expression library [5] to support the naming modéke feduction rules are also currently
specified in Java. This section outlines the software achite of the security systems in WebCom.

The security manager module is used in several situatioesgore that the WVM'’s local secu-
rity policy is upheld. These situations can be describedrims of scheduling and executing actions
performed by parent WVMs (WVM) and child WVMs (WVM:), as shown in Figure 7.21, and
enumerated below.

1. When a node is selected for execution by WebCom, it willispatched to the scheduler in
order to find a suitable child WVM (WVM). The child is selected by the load balancing and
security modules based on their policies. This authodeatian be represented as: W¥M
is authorised to execute nodewhenmayExecut e( WV Mg, n) holds. While the load



7.3 Secure WebCom Software Architecture 136

WV Mp WV Mc

(1) mayExecut e( WM, n) n : Node (2) may Schedul e( WMp, n)

(3) may Execut e( WM, n) n : Result

Figure 7.21: Authorisation Steps in Secure WebCom

balancer works with the security manager to pick suitahigeta, the security manager has
priority. That is, the load balancer will select its preéfroption from the list of authorised

children. The WVMs on this list are determined by the segumtanager. If no authorised

children are found, then the node is rejected by the secoréiyager for later rescheduling.

Once a child is selected, the node is dispatched to that. child

2. When children receive nodes for execution, the child WMWMM ) will first consult its
security manager to ensure that the parent WVM (WMMs authorised to schedule that
Node. This authorisation can be represented as: W\édecutes node from WVM p when
maySchedul e( WV Mp,n) holds. If the WVM is not authorised according to the child’s
local security policy, then the node is rejected and themianéormed.

3. When a willing child does execute a node and the resultusrred to the parent, the result will
be sent to the parent’s security manager for verificatioris @tithorisation can be represented
as: WVM is authorised to execute nodevhenmayExecut e( WV Mg, n) holds. If the
result of an execution does not correspond to the securiigypdhen it will be rejected
and the node will be rescheduled. This authorisation chepkesents the reality that the
mayExecut e( WV Mg, n) operates on an approximation of the name adis not all of the
information is available until the node has executed. Amarisation policy can require that
results of the execution of a node fall in specific ranges.hSadicies cannot be enforced
before execution. For example, a clerk in a share trading ffivay only be authorised to
capture deals worth less th&il00. If such a clerk attempts to capture a deal greater than
this, then tharay Execut e check on the result will discover it, and inform WebCom sd tha
the result can be discarded.

These security mediations correspond exactly to the sgamodel described in Section 7.1.
However, the secondayExecut e step is not explicitly specified in the model, as the model
does not directly consider the dynamic nature of node ei@tutWhen a node executes, its name



7.3 Secure WebCom Software Architecture 137

changes. Therefore, a child WVM may not have been authottsegecute the node.

7.3.1 webcom.core.security.SecurityManagerModule

The SecurityManagerModule provides the ability to control the execution of nodes arapbs
in the WebCom system. Providing a different type of acces#robentails creating a custom
security manager module. The security manager can be ingpliexth using different enforcement
mechanisms. The primary difference is in how the accessaqgulicy is specified. However, the
WebCom access control model is always upheld, as every inguitation of the security manager
must provide a standard interface, as detailed below.

publ i ¢ bool ean i sAuthorised(Descriptor client, Instruction Instr);

publ i ¢ bool ean i sAuthorised(Descriptor client, Result Rslt);

public Object getAuthoriseddient(Vector clients, Instruction Instr);
public Vector getAuthorisedList(Vector clients, Instruction Instr);

This interface provides the ability to ask four basic acaesdrol questions:

1. smisAut horised(c,i):is a specific child¢) authorised to execute a particular node
(instruction) ( ?);

2. sm i sAut hori sed(c, r) :isthe resulti(), that a specific childq) is returning authorised
to be included into the computation?;

3. sm get Aut hori sedC i ent (vc, i) : can a child be found from a list of children)
that is authorised to execute a particular instructioy?{

4. sm get Aut hori sedLi st (vc, i ) :canallist of children\c) be found that are all autho-
rised to execute a particular instructian?;

These methods target instructions (processed nodes) amdghlts of the execution of a node.
These methods provide the implementation of bothnthg Execut e andmay Schedul e func-
tions; may Execut e, when the methods are called on the parent WWM@aagSchedul e, when
the methods are called by the child WVM that is to execute taen

Security managers can be used to perform specific tasks. xeorme, the security manager
shown in Figures 7.22 and 7.23 makes access control degigfing the KeyNote trust management
system. Figure 7.22 shows how the public key is retrieveah fitte secure communications manager
(lines 21-39). This public key is then sent with the name efribde to theheck function (line
40), shown in Figure 7.23, which performs the actual trushagement check. In this function,
the tuples are extracted and used as attributes for therraisagement query (lines 3—10). Next
policy and user credentials are loaded into the trust manageengine (25-30). Finally, the trust
management engine attempts to find a link between the sdppliblic key and the local policy
(line 32).



7.3 Secure WebCom Software Architecture 138

1 public boolean isAuthorised(Descriptor cd, Instruction I)

{
t hi s. backpl ane = get Backpl ane();
if ( (currDomain == null) &&
(get Backpl ane() . get ConMan() i nstanceof SecureConnecti onManager Modul e)){
SSLSettings settings = ( (SecureConnecti onManager Modul e) get Backpl ane().
get ConMan() ). get SSLSetti ngs();
KeyNot e kn = new KeyNote();
10 currDomain = (kn. get PublicKeyString(kn. get KeyPair(settings. getKeyStore(),
settings.getAlias(), settings.getPassword()))).trim);
}
Node currNode = |. get Sour ceNode();
WebComNane nodename = (WebComNane) current Node. get Name() ;
if (nodename == null) {
nodenane = nGener at or. gener at eNaneFr omNode( cur r Node, redrul e, currDomain);
}

20 nodenane. r educeNane( get Reducti onRul e());
Publ i cKey cli ent key;
if (cd == null) {
i f (getBackpl ane().get ConMan() i nstanceof SecureConnecti onManager Modul e) {
SSLSettings sslset = ( (SecureConnecti onManager Modul e) get Backpl ane().
get ConMan() ). get SSLSettings();
KeyNot e kn = new KeyNote();
kn. set KeyPai r (ssl set. get KeyStore(), sslset.getAlias(),
ssl set. get Password());
clientkey = kn.get PublicKey();
30 }
el se
clientkey = null;
}
else if (cd instanceof InetDescriptor) {
String hostnane = ((lnetDescriptor) cd).connectedTo(). get Host Nane();
clientkey = ((InetDescriptor) cd).getPublicKey();
}
el se
return fal se;
40 return (check(nodenane, clientkey));

Figure 7.22: The Trust Management based security manag&/dbCom.

7.3.2 Trust Management Based Security Manager

In Section 7.1 we described WebCom'’s security model. In $leigtion, we examine a specific
implementation of the security manager module. Theregiigblementations of security managers
using both the KeyNote [29] and SPKI/SDSI [56] trust managetsystems. Both these security
managers use Java based implementations of the requisstentanagement systend&eyNotg90]
andJSDSI[5] respectively. However, the security manager could usedd the trust management
systems described in Chapter 2.

The trust management security managers work in essentiglgame manner. When a trust



7.3 Secure WebCom Software Architecture 139

1 private bool ean check(SecureNane instrname, PublicKey dientKey)

{

KeyNot e kn = new KeyNote();

String Domai n = instrnane. get Domai n() ;

String Graph = instrname. get G aph();

String Function = instrnane. getFunction();

if (Domain !'= null) vL. addStri ngVar (" Domai n", Domain);

if (Gaph !'= null) vL. addStri ngVar (" G aph", G aph);

if (Function !'= null) vL.addStringVar("Function", Function);
10

Vector inputs = instrnane.getlnputs();

for (lterator iter = inputs.iterator(); iter.hasNext(); ) {

String input = (String) iter.next();
vL. addStringVar ("I nput", input); }
Vector dests = instrnane. getDestinations();
for (lterator diter = dests.iterator(); diter.hasNext(); ) {
String destination = (String) diter.next();
vL. addStringVar (" Destination", destination); }

20 knf . addVari abl esLi st (vL);
knf . set Conpl i anceVal ues("untrusted, trusted");
KeyNot eNavi gat or nav = knf. get Navi gator();

try {
for (lterator polsiter = pols.iterator(); polsiter.hasNext(); ) {

String pol = (String) polsiter.next();
trust edPar ser. parse(pol); }
for (lterator iter = creds.iterator(); iter.hasNext(); ) {
String cred = (String) iter.next();
30 untrust ed. parse(cred); }

int resl = nav.findAuthorizer(dientKey);
if (resl > 0) {
RGLog. | ogFi ne(" TMSecurityManager: Cient is authorised to access "
+ instrnane);
return true;}
el se {
RGLog. | ogFi ne(" TMSecurityManager: Cient is not authorised to access "
+ instrnane);
40 return fal se; }
}
catch (Exception e) {
RGLog. | ogSever e(" TMSecurit yManager: Exception caught: " + e.toString());
return fal se; }

Figure 7.23: Trust Manageme@heck function used by the Security Manager.

management decision is required, the reduced name of theis@atquired from the naming man-
ager module. This name is then used as part of the query @mglib the trust management system.
Both the generation of node names, and how these names acededepend on the configuration
of the naming manager module. Changing the reduction rided ar the name generator alter the
conditions of access control decisions.

The trust management security manager extracts the infamm&om the name provided to



7.4 Secure Authentication between WebCom Virtual Machines 140

perform the trust management check. How this is achievedrdigpon the trust management sys-
tem in use. For the KeyNote based system, each tuple is thdilly represented in theondition
field. This allows contextual information to be separatedgessed. In the SPKI/SDSI based trust
management system, the s-expression is used in its endisepart of thaag field. An example
SPKI/SDSI credential can be seen in Figure 7.5.

7.4 Secure Authentication between WebCom Virtual Machines

WebCom communication is managed by the connection man&geuring these communication
channels is accomplished through the implementation aféheection manager module. WebCom
can only securely schedule nodes when it can identify itkli@m. This entails providing entity
authentication for WebCom.

Identities in the communication manager are linked to tleafidies used by the security man-
ager. For example, when selecting a child WVM to execute atfabparent WVM must be able to
associate the authorised entity with a physical IP addfegklic keys are typically used to provide
this link. However, any authentication token could be ptadly used. For example, WebCom
names can be used to provide a more contexual rich refererscé/z\VM.

In Chapter 2, we examined some authentication technologieh as Kerberos [138] and the
SSL [92] protocols that provide entity authentication. ndssuch authentication protocols in a
secure connection manager allows WVMs to authenticate @aein The reference implementation
of WebCom uses SSL to provide two-way authentication betw&®'Ms. WVMs are identified by
the security manager using their public keys. For examplengver the trust management based
security manager selects a child for node scheduling, thdicpliey of that child is used as the
child’s identifier.

7.4.1 webcom.core.conman.SecureConnectionManager

The secure connection manager ensures that communicatoredn one WVM and another is
secure. It uses an implementation of a security protocokxtample SSL [92], to provide authentic
and crytographically secure communication links. The déf&ecureConnectionManager class
extends the standard CommunicationManagerModule classe@SL sockets. However, in most
cases, the inherited methods from the standard IPv4-bas@®@ connection manager are used.
The methods that are overridden provide the implementafi@SL using Sun Microsystems’ Java
Secure Sockets Extension (JSSE).

publ i ¢ bool ean connect To( | net Addr ess addr ess)

publ i ¢ bool ean connect To(I| net Address address, int port)
public void setPort(int cpPort)

public void processMessage(Message nsg)



7.5 Discussion and Conclusions 141

Thescnmm connect To(addr) andscrmm connect To(addr, p) connect to a SSL se-
cured socket at the provided address (using the port numien provided). These methods set
up a secure connection between the local and remote WVMsstThen set Port ( p) method
specifies the port number that the SSL server socket on taeWd¢M should be listening on. This
port is normally specified in the module properties file arldasled by the super class. This method
allows the port number to be changed at runtime. Finallysttiem pr ocessMessage( nsg)
method adds some additional supported message types tgpie supported by the superclass.
These message types include the ability to query the publipkovided by connecting WVMs for
use by the SecurityManagerModule.

Providing secure communication also entails using a pWdicinfrastructure to manage the
keys used by WVMs. A public key infrastructure is necessamroperly determine validity of cer-
tificates, provide for certificate revocation, to provide @ams to issue new and renewal certificates
and to act as a repository for user certificates. There dlyrenno specific PKI implementation
available for WebCom. Instead each WVM must have all the s&aog certificates locally in order
to support secure communication. The provision of a propdrifplementation is the topic of
future work. As work on WebCom is currently aimed towardsigst as a Grid middleware [124],
support of federated identity management [6, 117] is alsioguortant topic of future work.

7.5 Discussion and Conclusions

In this chapter, we have introduced the access control niodélebCom. WebCom'’s access control
model is designed to address specific threats to a distdlmateputing environment including illicit
data and computation modification and unauthorised acoedaté or computations by principals.
These threats are addressed by WebCom through the proafsim authorisation mechanism to
ensure that computation execution and data access is arityped by authorised principals.

WebCom provides a distributed model to support access aamgcisions. This model uses
the naming architecture described in Chapter 6 in detengittie authorisation of security criti-
cal actions to be performed by WVMs. These actions consithe&cheduling and execution of
condensed graph nodes.

WebCom is a closed system, in that a WVM has access to the nfegmery node in an applica-
tion executed by that WVM. Therefore, a WVM can potentialty as a central repository of policy
decisions. For example, we can use the parent WVM to ensat@thaccess permission granted to
a particular child does not cause a conflict in a separatiatutiés, or Chinese wall-style policy.

Although the entire access control system can be implerdargimg the Haskell primitives de-
scribed in this chapter, for both simplicity and efficieneasons, the reference implementation is
implemented using the Java programming language andrexeticess control logics, JKeyNote [90]
and JSDSI [5].



7.5 Discussion and Conclusions 142

In this chapter we have discussed a particular form of acg@#sol, using trust management to
make security decisions: the design of WebCom supportstilagement of this system with a dif-
ferent enforcement mechanism. However, any implememtatidhe security architecture will fol-
low the model proposed in Section 7.1 as any implementafidmecssecurity manager modufeust
support tharay Execut e andmay Schedul e checks, implemented using the Aut hor i sed
function. For example, the security model could be implet@@msing access control lists (ACLS).
In this case WebCom names would allow contextual infornmatiiobe stored in the ACLSs.

The naming approach to specifying security policies allawssparation of security checks from
functional code. This provides a loosely-coupled architex; where maintaining security policies
does not require changing functional code. Other work hakdd at codifying protection mecha-
nisms as condensed graphs [62]. This work proposes implimgeimagile, tenacious and emergent
protection mechanisms using triple manager primitives$ tledermine whether nodes should be
executed in particular domains.

In the current implementation of WebCom entities are idiexttiby their public key. A critical
requirement in a distributed computing environment is tl@agement and verification of these
identities. This entails ensuring that there is a systanvediy to determine the identity of both the
users of the system and the resources used in the computalémity verification and management
can be provided through the use of authorisation mechanisms

In order to fully support identity in WebCom, some form of éedted identity system is re-
quired, such as Liberty Alliance [6] or Microsoft's Pasdp(drl7]. Federation of identity allows
each resource in the system to have an assembled identitphé¢hentire distributed system can use
to refer to that resource. For example, a user can be a maimagee domain and a clerk in an-
other. Each domain refers to the user in the context theymstpgith a federated identity, the two
domains share a context when they are referring to the user.piiovision of a federated identity
system is a topic of future work.

Another important topic of future research is the provisidm public key infrastructure (PKI)
for WebCom. In its current form, WebCom uses an ad-hoc methalistribute both identity and
authorisation certificates. It is envisioned that a PKI deciure should be constructed to provide a
distribution mechanism for such certificates. PKIs alsgsuipconcepts such as certificate revoca-
tion, which is also not currently addressed.

WebCom also includes a messaging architecture, where e®dah send messages to other
modules, both in the same or to other WVMs. The security mpoedented does not address this
architecture. In practice, a security check is performeclbmessages. Security policies can be
written about messages, allowing users to control what agessare authorised to be acted upon.
These policies could be specified in terms of the WVMs thatriquaar entity trusts. However, this
only supports coarse-grained policies. More precise cheokld specify the modules in a WVM
that are trusted to send or receive specific messages. Sackscivould require a naming system



7.5 Discussion and Conclusions 143

for messages. Extending the WebCom security model to reprélse messaging architecture is a
topic of future research.

While WebCom'’s messaging architecture provides sevenardeges, the potential for illicit
behaviour using messages causes concern. It can be arguekishmessaging system should not
be allowed, or at least only allow a predefined set of vettedsages. However, it is possible to
implement a general messaging system in a manner that litbgwhe security model. Messages
could be implemented as condensed graph applicationsharekisting security architecture used
to enforce specific policies.



Chapter 8

Case Studies

We have seen, first in Chapter 5, and in more detail in Chaptdraf WebCom is a modular and
“pluggable” distributed execution system. WebCom'’s fléxithesign allows the creation of specific
applications, such as the ShareTrader application destiibChapter 7. In this chapter, we will
examine the advantages of Secure WebCom in more detail aedluk some specific case studies
that use the architecture.

WebCom'’s pluggable architecture allows the creation dediint implementations of its core
modules. Specifically, in this dissertation, we have exaahithe implementation of the security
manager module. Changing security managers allows thecemi@nt of completely different se-
curity policies, while still adhering to the security modkdscribed in Chapter 7. This allows the
creation of new applications that use Secure WebCom astiheé.

This chapter describes applications of Secure WebCom .eTdqmdications are developed using
the security architecture to support specific security irequents. In Section 8.1, we examine an
early Secure WebCom prototype [65, 66] and describe howrisgqolicies from this prototype
can be enforced in the current system. Section 8.2 desaikesurity manager for WebCom that
incorporates micropayments, using the naming and se@urityitectures to enforce pay-per-execute
policies. This system uses trust management to supportiartial-based payment system.

We analyse a grid administration extension for WebComedaBridAdmin, in Section 8.3. This
system uses WebCom to provide a secure administratiomsystecomputational clusters. Admin-
istration tools are provided using workflow applicationattexecute on demand on the machines
being administrated. Applications for this system rangenfadding users to enforcing exclusive
access to a cluster. The WebCpnt- case study is described in Section 8.4. Webgam is a se-
cure workflow system to control security policies on heterapus systems. We use WebGorp
to view, modify and enforce a unified security policy acrosdtiple systems and domains. Sec-
tion 8.2, Section 8.3 and Section 8.4 are the result of cotktibns with other members of the
Centre for Unified Computing in UCC.

144



8.2 Classic Secure WebCom 145

8.1 Classic Secure WebCom

WebCom was originally developed [65, 66] using a hybrid & ftava and C programming lan-
guages. The distributed system was implemented in Javée thiei execution engine was written in
C. A consequence of this design was that, as the internateafraphs were not available for exam-
ination by the distribution system, node names were basedypon the function name of the node.
The KeyNote trust management system was used to providegoaaifile access control. This ac-
cess control mechanism was only able to make decisions loasbe function of a node. However,
with the development of the current WebCom architecturig, litmitation no longer exists.

Security policies from the original WebCom prototype candeaoted in terms of reduction
rules for the current WebCom system. This entails usingetefimination rules to reduce a hame
to contain only the function tuple. This rule can be exprdsaéHaskell as follows:

retai nFunc :: Name -> Nane
retai nFunc (Snamd g f i o) =f

The r et ai nFunc? reduction rule extracts the function tuple from the prodideame and
discards the remaining entries. This allows traditionab@®em trust management policies to be
enforced. A credential used with such a policy is shown iruFge. 1.

KeyNot e- Ver si on: 2
Comment :
Local - Constants: Alice =
"rsa- base64: M f MAOGCSqGSh3DQEAQUA4AGNADCBI Q
Sr 8xMBgBGuvbXGlel ZMB1 cYTxQ DAQAB"
Bob =
"rsa- base64: M f MAOGCSqQ3 3DQEBAQAGNACBI QKBg\
CKPI9TXQE/ zI C+poPr KHr / S7yHQ DAQAB"
Aut hori zer: Alice
Li censees: Bob

Condi ti ons: App_Domain == "WbConl' &&
(Function == "checkprine.isPrime®")
&& operation == "execute");

Si gnature: "sig-rsa-shal-base64: HOYZV5yvCVNpLi VbyWWcl E\
bnLbPdvYEzCY2nkVCX35f eMasCPr O Vf +ol ugj JGqY="

Figure 8.1: A function only KeyNote credential.

This credential defines that Alice delegates the execuld tignodes with the function name
checkprime. i sPri neto Bob. Providing such general credentials is, howeverneoessarily
advantageous. This credential allows Bob to execliteckpri nme. i sPri ne nodes in any pos-
sible graph, regardless of input or output or execution domiEhis was a significant disadvantage
of the original WebCom prototype. With the current implertagion, using different reduction rules
allows finer granularity policies to be enforced within tla@re access control system.

We could alternatively use a combination of the tuple eliiion rules described in Chapter 6. However, in this case
it is simpler to use one reduction rule to retain a tuple,@athan applying four separate tuple elimination rules.



8.2 Micropayments 146

8.2 Micropayments

With the advent of computational grids, cluster owners aaking their compute resources available
to users outside of their own organisation. However, theipian of these resources is not without
cost, both in maintenance and overheads. Owners may waetaap these costs from their users.
One solution is a micropayments system where users pay gechased on the submitted compute
job. We can develop such a system on top of Secure WebCony tisinnaming and security
infrastructures as the base.

Micropayments schemes are intended to support very louevahyments, in the order of
€0.01, or less. Micropayment schemes [17, 35, 142] typicaly upon the notion of a digital
coin that represents a fraction of a pre-agreed contrach Eain is linked to this contract, and can
only be redeemed when the coin is presented with the contract

One means to support a micropayment system is through thefusee-way hash functions,
such as MD5 [151] or SHA1 [91]. These hash functions are desigso that they are easy to
compute, but computationally difficult to reverse. One wagtitbased micropayment schemes [17,
37, 142] typically operate as follows: a payer (the printipaking the payment) generates a fresh
random seed, and compute$,,(s), whereh() is a cryptographic one-way hash function.slfs
known only to the payer, thetjh,_1(s),n — 1,val]...[h1(s),1,val]) provides an ordered chain
of micropayments, each one worthi. Initially, the payer provides a payee with,,(s), n,val],
which acts as a contract forn — 1) micropayments.

As the seed is known only to the payer, and the hash functi@ongputationally difficult to
reverse, coins cannot be forged. Furthermore, as contieetsrytographically signed, presumably
with strong cryptographic algorithms, they cannot be fdrg&herefore, once a coin is presented
for payment, the payer cannot repudiate the payment; onbobkl have given the payee the coin,
and so the coin should be redeemed.

A payee (the principal receiving the payment) who has sécuezeived: micropayments,
([hn-1(s),n—1,val]... [h,—;i(s),n—1i,val]), can use the hash functidn) to check their validity
against the initial contract. Sindg) is a one-way hash function it is not feasible for the payee to
forge or compute the next + 1)** payment (before it is paid). Micropayments may be cashetl in a
any time; the payer keeps track of contracts issued, andanignts made, to guard against double
spending.

Example 8.1 Consider an online business where a company, representedblig key Ko, is
providing a service to a customer, represented by Key,s;. Figure 8.2 shows a simple micro-
payment protocol. The customer is trusted by the companydate payment contracts that the
company will later redeemic,,,, has received a contract frofic.,s¢. Kcust SENASK comp 1 — 1
micropayments using this contract.



8.2 Micropayments 147

Kcust KComp
{KCOm;m h™ (3)}K0ust

h"_l(s)

R 2 (s)

hn—i(s)

Figure 8.2: Making Micropayments

The company will later redeem these payments by presertmgdntract along with the last
coin received by the customer.
A

This approach to micropayments has been proposed and upagnrent schemes proposed by
[17,37,142]. For example, in [17], the payer threads digitdns (issued by a bank) through the
hash chain such that each micropayment reveals an autldégited coin that can be reimbursed by
the original bank.

8.2.1 Micropayments in KeyNote

We use the KeyNote trust management system [29] to provigpastfor micropayment authori-
sation of services between public keys across networks drshitecture writes the micropayment
contracts in terms of KeyNote credentials. The payer widteontract credential for the payee,
stating the terms of the contract, for example the value dfi€ain. This credential is used by the
payee to ensure the validity of any coin received and is ptege along with the coins received, by
the payee, when redeeming the contract.

Example 8.2 A company (public keyKc.,,) expects payments for providing services X and Y.
They trusts banks Bankl or Bank2 to guarantee paymentsdarustomers of their services up to
a certain limit €50.00). This is expressed by the KeyNote policy credeirtigigure 8.3.

Aut hori zer: "PCLI CY"

Li censees: "kBank1" || "kBank2"
Conditions: @al * Num <= 50.0 &%&
Service == "X" || Service == "Y";

Figure 8.3: The Company’s Policy



8.2 Micropayments 148

This policy credential defines the conditions under whighghblic keysK g,n11 and K ganko
are trusted by the company. These conditions are definedhis tef attributed/al (micropayment
value val), Num (number of micropayments in contract) and Service. Figure 8.4 provides a
micropayment contract credential that a customer (pulayci,s:) buys from Bankl. It is signed
by the owner of public ke g.,.x1, delegating authority over the contract to the customer.

Aut hori zer: "kBank1l"

Li censees: "kCust"

Condi tions: @/al ==0. 01 &% Nunr1000 &&
Contract == "tlyJel ErKyLt Yol JQPwW bQ==";

Si gnat ur e:

Figure 8.4: Customer’s Contract Credential

Attribute Cont r act provides the initial contract valug,(s),n,val] wheres is the secret
seed known only to the bank and customer. This particulatraciis for a maximum of 1,000
micropayments valued a&£0.01 each. Alternatively, the bank could decide to writeifeeidnt
credential that delegates authority to generate contdirestly to the customer.

When requesting service X, the customer proviftago,_;(s), ...] as thei’® micropayment to
Alice; in this case we assume tht,s; has already made paymemtsgg (s), ...] to [hogg—i(s), ...]
to the company. The company uses the trust management sisgtermine, given the creden-
tials, whether the customer is authorised for the partictéguest. Attribute binding$§l/al =
0.001; Num = 1000; Service = X; Contract = h;(v)] define the circumstances of the request.
The company uses the KeyNote query engine to search for gadiele chain that links the trusted
key Kgqni1 (from her policy credential) td{c,,: (the requester) and satisfies the circumstances of
the request. A

By casting micropayments in terms of trust management, &l framework that provides
flexibility in managing complex payment and service authation trust relationships. For exam-
ple, the company might decide to out-source their supparséovice X to Alice by writing an
appropriate KeyNote credential that delegates their ailyh@ontract with the customer) to Alice.
Similarly a bank can create contract credentials for custsimwho can then delegate these contract
credentials to their service providers. In such an architec the service provider can then invoice
the bank directly, by providing both contract credentials.

Example 8.3 Figure 8.5 shows a simple payment invoicing protocol. Aobef ., has re-
ceived a contract fronk c,s;. K st SENASK comy n—1 Micropayments using this contra@tc o,
wishes to claim for these payments and so must invéigg,:. Kcomp generates an invoice detail-
ing the last hash received, the number of payments that &rg blaimed, and a time-stamp of this
transaction.K com, Signs this invoice and sends it 6,5, With a copy of the original contract.



8.2 Micropayments 149

KBank KCust
{KCUSt7 hn(s)}KBank

h"_l(s)

R 2 (s)

hn—i(s)

{KBank, h"~(s),n — i, timestamp} ..,
{Kcust, hn(s)}KBank

Figure 8.5: Invoicing

Kcust NOw checks the validity of the contract, and that no claimgrigoiced payments have
been made before. Ondec,,.: is happy with the transactiof ¢, is credited with the required
payment. A

8.2.2 Security Analysis

There are several security risks associated with the magmoent scheme outlined above. These
include the risk of double spending, where a bank’s custattempts to use the same contract to
pay multiple service providers; and the risk of double icimg, where the service provider attempts
to cash in the same contract multiple times.

Double spending is difficult to prevent in a distributed eosiment. However, this can be de-
tected after the fact when the second service provider ptteto redeem the contract. At this point,
a dispute resolution protocol will be used. In the case ofsaraer attempting to spend the same
contract multiple times, the fact that both of the serviaevfaters hold a signed credential from the
customer, delegating the contract to that provider, préivasthe customer is attempting fraud.

Double invoicing is a simpler problem to address. As eachiaavis presented to the bank, the
bank can check to ensure that this contract has not beeropstyiredeemed. This requires that the
bank must store all redeemed contract credentials formé.tiHowever, this cost can be reduced
when the contract credentials are only valid for a fixed tiragqal. The bank must only then store
redeemed contracts that are still valid.

8.2.3 Micropayments in Secure WebCom

We can implement this scheme in Secure WebCom by modifyiadrtist management-based se-
curity manager so that it explicitly supports micropaynsef@4]. The micropayments security
manager maintains a database of received coins, along Visthod current contracts. When a node



8.2 Micropayments 150

is scheduled to a WVM for execution, it must be accompanie@ loygital coin, called ayclot
This coin forms part of the domain tuple of the node name, sisctine name shown in Figure 8.6.
The information contained in such names is used by the acoesml mechanism to enforce the

(Snam
(Lnam [ "kBank1", "kCust", "Contract 9LI whTql s1ZuKdgf gHcSzQ=="
"lter 10", "Cyclot Xnd5ft1gH EoWk91/rf 1A=="])
(Lnam [ "kBank1", "kCust","kAl i ce", " Sanpl eAp")
(Lnam [ "kBank1", "kCust", " Sanpl eAp", " Sanpl eOp"])
[ (Lnam [ "kBank1", "kCust", " Sanpl eAp", " | nput Op"])
]

]
[ (Lnam [ "kBank1", "kCust", " Sanpl eAp", " Qut put Op"] )]

Figure 8.6: A Node Name including a digital coin

pay-per-execute requirement. In this exame;,.x.1 has created a contract féf -, Who is
using this contract to pak 4;;.. t0o execute applicatioBanpl eAp.

The security manager extracts the contract, iteration godtinformation from the name. This
information could form the base of a trust management claec#iescribed in Section 8.2.1, or using
a very simple access control mechanism, calculate whe#isdimg theCycl ot valuel t er times
results in theCont r act hash.

Using the trust management mechanism, the initial overlimadred by a WebCom server
when computing a micropayment contract for a client is offsethe subsequent computational
burden that is off loaded (and paid for, task by task) to tientl Client side checking of payments
carries minimal overhead, becoming part of the existing@ndial based authorisation check. It is
possible that the child can cache the last valid coin thegiveand, therefore, only need to compute
one hash to ensure the next coin is valid, without requiritgist management check.

8.2.4 Discussion

Blaze et al [35, 95] use KeyNote to manage trust for a michmbibased payment scheme. Their
scheme is similar to IBM’s minipay scheme [86], whereby aderdial represents an electronic
cheque issued by the authoriser to the licensee. KeyNoteeid by the payer (merchant) to deter-
mine whether or not an off-line payment from a particular ggycustomer) should be trusted, or
whether the payee should go online to validate the paymehpapee. The scheme is intended for
small value payments (under $1.00). Since each paymersiaitian requires a public key crypto-
graphic operation it may not be practical for very small papts where the cost of processing is
high relative to the value of the payment.

In [163], Shirkly argues that micropayments struggle taiattvidespread usage because of their
very nature. He states that users require “predictable immgles pricing” whereas micropayments
“waste the user’s mental effort in order to conserve cheapurees”. When a user interacts with



8.3 GridAdmin 151

a micropayment system, they still have to make a choice: enedr not item X is worth Y. For
example, imagine a website where a micropayment is reqfimredach page viewed. A user will
not automatically view each page without carefully conside whether that webpage is worth
spending a tiny amount of money for. The amounts being censitlare so small that this decision
is wasteful. The only case where a user is willing to acceprsaction automatically is where that
transaction is free.

In the system described, this is not an issue. Users do nat dedisions on which transactions
to accept; instead the decision to accept (trust) a trainsaistperformed by KeyNote. In effect the
user’s mental effort is represented in terms of a KeyNot&poRAnother criticism of micropayment
schemes is based on the ratio of setup cost versus the tetabicthe transactions. Ideally, the
relatively large cost of initialisation is offset by the dueent use of the low cost payment over time.
With the application described in this section, this isigatarly true. Relationships between payer
and payee are generally long term and this setup cost isifisent compared to the total cost of
the transactions processed.

In this section we have shown a hew scheme for micropaymesintg the KeyNote trust man-
agement system. This scheme has been implemented in thedivein@ta-computer, providing a
method of rewarding clients for work completed. Our progbseheme can be extended to provide
for an evolution of trust between the server and client. Tiiemtoriginally does not trust the server
to reimburse the micropayment, and might seek to (inefftigsash in each micropayment as it
arrives. Aftern such reimbursements have been made the client might writeva&kiryNote policy
stating that it is safe to seek reimbursement after eramjicropayments.

8.3 GridAdmin

GridAdmin [48, 147] is a WebCom-based system used to prozidemated support for adminis-
trative requests, such as resource reservation and usemacnanagement. We propose using trust
metrics to help judge the merits and suitability of each estjuWe outline how these metrics can
be implemented using trust management techniques.

Grids [7, 71, 181] consist of numbers of sites cooperatirghtive resources. These resources are
heterogeneous in nature and are maintained by a range ofiigthatiors, from full-time profession-
als to volunteers. The purpose of these sites is to shanertseiurces and knowledge throughout
the Grid. Grid middleware such as Globus [71, 72] facil#atee sharing of these resources and pro-
vides an identity based security infrastructure using ¥.6€rtificates. X.509 certificates provide
authentication support for users submitting jobs to rensites. However, this does not directly
address the issue of administration across the Grid: Iffisuli for an administrator to decide how
to react to a request from a different site, or to know whetreexecutable or configuration file
from another site should be trusted. This is a hindrancesimuree sharing.



8.3 GridAdmin 152

Facilitating inter-site administration requires the digfom of policies and some knowledge of
each principal in the Virtual Organisation (VO). A VO is atuial space across organisations that
allows its members to interact transparently. This is a mayerhead for system administrators.
GridAdmin is designed so that a request from a well-trusthdiaistrator at a different site would
be approved automatically, whereas a request from an upddified user (for example, a student
requesting a resource reservation) would require furthastigation.

It is also important to consider how automation of user retgjesoftware installation and up-
grades, resource reservation, both within, and acrossditeuld be achieved.

8.3.1 Administrating a Grid

There are several types of problems associated with gridréstnation. These problems form two
main categories: local problems within an organisation amds-site problems within a virtual
organisation. We will examine these problems separately.

Local Problems

At any site, administrators face several basic issues.sUesrd accounts to operate in that site. Each
user may have a different software requirement, and wiltlrteeir specialised software installed
on each resource they intend to use. Users may wish to reguassive use of the resource, for
example for critical timing, or simply to reserve accesshim tesource. The system administrator
will handle these requests according to his/her knowledtjfeeauser making the request, and within
the constraints of the local policy.

Example 8.4 Site A has a policy which states that only postgraduate stsdnd staff are allowed
to make requests on their compute cluster (for accountsyard installation and for resource reser-
vation and/or co-reservation). Priorities are assignezbtbaon seniority of the requester and the
urgency of the work. An undergraduate student could be gdsauth account by their supervisor, but
couldn’t request a cluster booking: such a request woul@ hawe brokered by their supervisor
directly. A

Cross-site Problems

When these local problems are translated to a Grid envirahntigey become more challenging.
The same decisions must be made with less information &l@ita the administrator.

For example, a user at site A wishes to use resources at sith@&ge both sites are in the
same VO (Virtual Organisation) and have a functioning G@lrrently, the procedure would be
to send an email to site B’s system administrator requegtiag the attached executable file be



8.3 GridAdmin 153

installed. This would be accompanied by a configuration Sleduto set up the executable file. The
administrator must now decide:

 does the user have a right to access resources on site B¢daweder the terms of the VO
agreement and handled by Globus);

» whether the user at site A is authorised to make such a refperbaps local policy dictates
that only senior staff members can make such requests);

« whether he should trust the executable file, or should theceocode be consulted, and
» whether the configuration file is trustworthy.

It is obvious that the ability to trust the user would greathprove cross-site cooperation, and
facilitate resource sharing. It is easier to accommodageests from system administrators of
different sites who have established relationships, aedetbre have some level of shared trust.
These decisions could be taken according to the establishsidrelationship and in terms of the
local policy.

In the absence of a trust model, it is tempting to take an aisthall, or authorise none approach,
to requests from outside the administrator’s domain. Thaggeoaches may hinder the spirit of the
agreement and reduce inter-site cooperation.

System administrators at different sites in a Grid tend fottaone another, even when only to
exchange the bare information required to set up a Grid §ample, machine names for firewalls
or user names for grid map files etc.). For this reason, somaé &€ trust (or history) is established
between them. This trust can be leveraged, along with theti@nts of the local policy, and the
VO agreement to interpret requests. This is rarely the cétbeondinary users. Itis more likely that
administrators will have little or no knowledge of indivialuusers from other sites, but will have
established relationships with their administrators. Tiker can normally only prove their identity
and their right to access the resources under the VO agreehtengh the Globus X.509 security
system.

Trust Management is used to help automate administratigisidas rather than replacing the
existing Globus security infrastructure. The contribntaf our approach is to provide a framework
in which Grid administration becomes more practical. I3 #@ction, we explore two approaches —
explicit and “fuzzy”— to supporting Trust Management in GAdministration. Explicit delegation
of authorisation requires full authorisation details togneoded within the Trust Management cre-
dentials. However, it does not capture the flexible nature refal system. To this end, we propose
alternative metrics to provide a means to make “fuzzy” datiegs. These allow administrators to
guantify the level of trust they apply to each of their users.



8.3 GridAdmin 154

8.3.2 Grid Administration using WebCom

Supporting automated administrative requests on a Gralires, requires an administrative helper
“daemon” running on that resource. These agents take astnaitive requests, such as node reser-
vation, and perform the low-level changes to the resourées.example, a successful request to
reserve compute nodes would call the agent in charge of tiades, and modify the system to only
allow that user to log in during the reservation period.

We can represent administrative tasks as condensed grafibagéipns [63]. The security in-
frastructure can then be used to decide whether these atirativie actions are authorised. Thus
WebCom becomes the administrative agent on the nodes. Th€ake system operates as a trusted
application on the nodes, and the security manager endwatthe tasks it executes comply with
the local security policy.

Example 8.5 A common problem for Grid Administrators is allowing usesglesive access on
Grid resources for a period of time. Typically the Admirggtr must go to each resource required
and prevent other users from accessing that resource falutiagion of the booking. This task can
be represented in an administrative condensed graph, shdvigure 8.7.

User Account Info

Figure 8.7: Condensed Graph Application to reserve Griduees.

This graph specifies the sequencing of the applicationt, Firs parameters are built up using
Bui | d Access Li st Node. This seeds theor Al | node with the number of machines needed
and the administrative action requested. Hug Al | node spawns copies of thm nTask
node, one for each resource that will be modified. Adei nTask node represents the admin-
istrative action to be applied on the Grid resources. In ¢hise, it executes the exclusive access
administrative request.

The policy credential shown in Figure 8.8 grants the Grid higer the authority to assign up
to 100 Grid resources exclusively to users. The Grid Manages this authority and signs the
credential, shown in Figure 8.9, that allows the User torkes82 machines. The user presents this
credential to WebCom to prove her authority when she wishesdserve the resources.



8.3 GridAdmin 155

Aut hori zer: "POLI CY"

|l icensees: "KGidMwanager"

Condi ti ons: App_Domain == "WebCon' &&
Resource == "UCC-GRI D' &&
(Graph == "Gi dAdm n" &&
Function == "Excl usi veAccess" &&
I nput <= 100);

Figure 8.8: Policy Credential allowing the Grid Manager $sigh exclusive access to up to 100
resources.

Aut hori zer: "KGi dManager"

| icensees: "KUser"

Condi ti ons: App_Domain == "WebCont' &&
Resource == "UCC-RI D' &&
(Graph == "Gi dAdm n" &&
Function == "Excl usi veAccess" &&

I nput <= 32) &&
_ACTI ON_AUTHORI ZERS == KUser ;

Si gnat ur e:

Figure 8.9: User Credential, delegated by the Grid Mandgellow reservation of 32 resources.

The Adm nTask Node takes two parameters, the first is the action to be peedr This is
either ‘grant’ or ‘remove’. The second parameter is the asepunt information. This consists of a
colon delimited string with the user name, encrypted pass$wiring, UID, gui and home directory.
The Node then starts or stops the NIS service as appropndteitner adds or removes the account
from the machine. The UID, GID and home directory are passéalavoid having to make changes
to the NIS and NFS servers. This allows ordinary users to majer changes without the need for
root access.

With GridAdmin the user need only specify a number of machized the account information
(readily available from the NIS server). To do the same taskdnd, the System Administrator
would have to log into each node, manually edit the passwoddgaoup files to include the neces-
sary information, and enable/disable RIS

Figure 8.10 shows the amount of time taken to grant exclusioess on 1, 2, 4, 8,16 and 32
nodes of the Boole Machine. The Boole Machine, owned by thR EBoole Centre for Research in
Informatics) machine is a 100-cpu Beowulf cluster. It isdubg over 70 researchers in 5 institutions
for research into fields including Computer Science, Matitirs, Applied Mathematics, Physics,
Astrophysics and Geophysics.

This time (in milliseconds) excludes the time to set up theabdes, such as the user name,
password, etc., for the entire run. This took 25 secondsaatugt However, this is a static per
request cost. For comparison, making these changes manzaitimed at 45 seconds per machine.

The advantage of this approach is apparent. The time takezxézution increases rapidly at

20f course these actions could be automated with scripts.



8.3 GridAdmin 156

Exclusive Access Timings
1100 T T T

1000 |-

900 -

800 -

700 -

600 -

Execution Time (ms)

500 -

400 -

300 | I I I | |
0 5 10 15 20 25 30 35

Number ot Machines

Figure 8.10: Timings to Execute Graph from Figure 8.7 on4l@16 and 32 Machines.

first, but as the number of client machines grows, this cadugilly flattens out. In this case, the
administrator makes the request, but as the policy is eafbusing trust management, this is not
required. The administrator could write credentials dafieq) this authority to specific users. This
authorisation could specify the maximum number of machthas any one request could effect.
However, some external control should be applied in thie cas an unscrupulous user could avoid
this restriction by attempting multiple requests. A

8.3.3 Trust Paradigms for Grid Administration

We have outlined how WebCom'’s Trust Management infraairectan provide a basis for decen-
tralised security administration in the Grid. Such a system the ability to make authorisation
decisions about user requests. Considering the probleravotdadministrate islands of resources
on the Grid, we can readily recognise the advantages of ugingt Management credentials to
drive administrative actions.

Analysing the administrative problem further, we identifiyee common administrative trans-
actions:

1. Adding a remote user to a local Grid resource. Users in tesystems often request access
to local systems. The local administrators may have no patdmowledge of the remote



8.3 GridAdmin 157

user, and are forced to make blind decisions regarding tesudigibility and access level;

2. Providing the ability to book exclusive resource allawad, as described in Example 8.5.
Users often require exclusive access to resources forsdiverasons. The administrator
makes decisions regarding these requests based on sudtecatisns as past behaviour.
For example, when the user last had exclusive access, didifiegit properly?, and

3. Providing an infrastructure for users to request custoftware installation. Administrators
make decisions on new software installations again bas#iteaequesting user’s past perfor-
mance and the skill level of that user; An experienced uskoftén receive a more positive
response than a novice.

There are several potential approaches to solving thedsdepne with a Trust Management
framework.

Reputation based metric

Figure 8.11: A Virtual Organisation, with three organieas sharing resources.

Administration of different domains, such as the VO showrrigure 8.11, rely on informal
relationships between the administrators of those domainsmalising these relationships into a
model would provide a more consistent outcome for user gqué\n analogy can be seen in the
relationships between nightclubs in a locality. In gendtedy are competing businesses. However,
if a person misbehaves in one club, then their reputaticengftoceeds them to the other clubs in
the area, through the “network” of doormen. This is a moddl wuted to the administration of
Grid resources.

Using reputation based metrics for measuring trust is a astfblished technique [101, 156,
183]. Analysing the Grid architecture in order to use repotato promote data integrity has pre-
viously been explored [75]. Knowing the reputation of a usan provide an insight into what
access you give that user. Maintaining a measure of eacls usputation allows an administrator



8.3 GridAdmin 158

Aut hori zer: "KUCC- Admi n"

|l icensees: "KBob"
Condi ti ons: App_Domain == "GidAdm n" &&
Resource == "UCC-GRI D' &&

karma = 0.52;

Si gnat ur e:

Figure 8.12: Karma Credential for User kBob.

Aut hori zer: POLICY
i censees: "KUCC Adm n"
Condi tions: App_Domain == "GidAdm n" &&
Resource == "UCC-GRI D' &&
(node_request > 5) -> (karma > 0.6);

Figure 8.13: Karma Policy, allowing conditional access twrpute nodes.

to make decisions about allocating the resources of themsysi those users. We call this measure
a user's’karma”. Karma is a numerical value representing the level of ttet & user has attained
in the local system. This value represents the user’s pueviehaviour in the system. The higher
the value, the greater the user’s potential access. Agplinumerical weight to users allows cre-
ation of more user-understandable policies. For examglpeding on the karma level of a user,
automatic decisions regarding access to resources mayd® ma

We envision karma to be represented by a value between 0 &sskis could potentially receive
their initial karma leve( K ) depending on their introducer’s karma in the local don(aﬁ’rgl) and
the user’s karma in the introducer’s domdiliy ). An introducer is an authority in an associated
domain, trusted to some level by the authorities in the Idoahain. For example:

u ) U
Ky = K « K4

Over time, depending on the user's behaviour, karma wil @éad fall. Good behaviour, such
as properly using reserved resources, is rewarded witbased karma, and therefore access. Con-
sequently bad behaviour, such as requesting new softwatreob using it, will result in reduced
karma.

Karma could be encoded into trust management credentialh, as KeyNote credentials. For
example, Figure 8.12 shows a karma credential for user KBulis credential, signed by an ad-
ministrator of the UCC-GRID domain, sets his karma level & 0The flexibility of this system
is apparent when examining the sample policy shown in Fi§ut8. This policy indicates that if
a user wishes to reserve more than 5 compute nodes in thedoeelin, then their karma must be
over 0.6. Additional conditions could be placed in this pglisuch as, if a user was below 0.6, then
they would need to provide a request co-signed by another use

Other usage of karma could include assigning a karma lewektchines, based on their setup.
This would allow the creation of policies where machineg #re very stable (high karma) would



8.3 GridAdmin 159

be reserved for users who also have high karma. When madhenesproblems, their karma drops.
Consequently a high availability increases the machina‘ala level.

Difficulties with a karma-based metric are in the administraof updates to the user karma
values. How are changes to the user’s karma level stored r@ndced? Users will probably be
willing to throw-away an old credential, where the replaeairhas a higher karma level. However,
getting them to use a new credential with lower karma is mdfiewlt. This issue can be addressed
in a number of ways. Expiry dates could form part of the usemiacredential, forcing the user
to obtain a new credential periodically to continue usirg tiistem. Unlike Certificate Revocation
Lists (CRLs), this places the burden of proof of author@atn the user [154]. Another solution
would be to store changes to each user’s karma in a céktraha server”. This, however, intro-
duces a single point of failure into the system, and does aat the advantages of a decentralised
approach.

Furthermore, we must consider how to handle multiple intoed credentials for a given user.
How do we aggregate different karma levels from differetroiducers? Also should changes to the
introducer’s karma reflect on the karma of the user? An exawiduch a system can be seenin [1].
Finding adequate solutions to these problems is importaatder to create a useable system, and
is a topic for future research.

Reputation based metric in WebCom

Supporting a reputation based metric in WebCom requireskifg the requesting user’s karma
level, compared to the level required by the system policyttie requested administration action.
If the user’'s karma is high enough, then the request is aedefitnot, then either a request for con-
firmation is made to an administrator, or, if the policy soalies, then the request is automatically
denied. These administrative actions are specified as nsadegraph workflow applications.

Example 8.6 Reservation of Grid resources is specified in a condenseuth gvarkflow application
shown in Figure 8.14. When a user wishes to reserve suchroesphis workflow is launched and
the components executed on the relevant resources.

This security policy of the environment, in which the workflapplication is running, defines
that theBook Resour ce operation should be scheduled to a principal whose karmeestey
than 0.4; TheGrant Request operation is only allowed to be scheduled to a principal with
karma greater than 0.6; Tie spl ay Resul t operation can be scheduled to any valid user. This
policy is defined in a policy credential, such as in Figure38.1

KBob's credential (shown in Figure 8.12) indicates that &g $ufficient karma to make a request
to book a resource, however he would need someone else tovapihiat request, as he does not
have enough karma to do so by himself. The result of the réquasld be displayed on KBob'’s
machine, as he is a valid user of the system (i.e. his karma&tey than zero). A



8.3 GridAdmin 160

ReserveResource ::=

karma > 0.4

Display
Result

karma > 0

Grant
Request

karma > 0.6

Figure 8.14: Condensed graph workflow application to resarkesource

WebCom’s naming architecture must ensure that the karna #ssociated with every node
is retained, enabling the security manager on both the parah child WVMs to make proper
reputation decisions. The karma level is stored in the dorgile of the node name. Furthermore,
the karma levels for users may be supported by a karma usareniodVebCom (see Chapter 5).

Using this combination of the workflow abilities of condedsgraphs, and the security man-
agers of WebCom we can construct a flexible automated sgadhrninistrator. As the GridAdmin
application, described in Section 8.3.2, already uses Wabt® schedule the administrative tasks,
there is no additional overhead. Instead different cradisnfiorm part of the existing authorisation
checks. However, this does not address the accountinggmnshlvith such a reputation metric.

Assurance based metric

Using money as a trust metric has been growing in popularitgéent years. In Section 8.2, we de-
scribed how we can use micropayments within WebCom to pathtéoexecution of nodes. We can
use a similar technique towards paying for administratistioas in GridAdmin. Applying mone-
tary or assurance [119, 150, 162] terminology to trust di@essis appealing as the stakes involved
in a system are readily understandable. Unlike the repm&@sed metric, a monetary based metric
requires no storage of the changes in each user’s fortusess take care of their own money.

In a monetary based system, money is exchanged betweerppincTo use a resource, an
agreed sum must be paid to the owner of the resource. It isriamathat the trust mechanism
has a low computational and administrative cost, and alabdbntracts between users must be
both verifiable and subject to conflict resolution. Such desyscan be implemented using a trust
management system [35, 59, 64]. These systems work on tietbaseither the payments act as
electronic cheques, that are reimbursed later, or are ssadlased currency. In a closed currency
system, payments take the form of coupons, traded for ressurldeally principals must either



8.3 GridAdmin 161

“save up”, or several principals must combine, to requeseapensive” resource. Such a system
discourages bad behaviour, as the abuser will lose monégitransaction.

A difficulty with such a metric becomes apparent when congideproblems experienced in
economics. For example in [108], Krugman introduces th&lpros with Babysitter clubs, that are
common in the US. In these clubs, each set of parents arallyissued a fixed number of seed
coupons. These coupons are used to pay other parents whbysittes is required. When a parent
wants a night out, they spend a coupon and another parensiteafiyr them. However over time,
the system collapses due to hoarding of coupons by pareat@ntsup” for a special occasion.
Other parents noticing the lack of babysitting jobs alsg stapreferring to save their coupons for
emergencies. Applying this behavioural result to the pseplometric, leads to the conclusion that
similar problems may well be experienced.

Instead of a coupon based metric, consider instead a ddjasstl system. In such a system, a
“promissory note” is signed by the principal requesting rissource. If they behave properly, then
the contract is returned after some period. However, if @almighe resource takes place, then the
owner of that resource cashes in the contract, reducinguthesfpurchasing power of the principal.
This is analogous to an insurance policy. This is in effectfesurance” policy. If the user abuses
the resource, then the assurance policy is invoked, and @asagion is paid.

Seeding the system requires that a trusted source, for dgaaripank, must set limits on all
the principals using the system. This can be achieved ustngsamanagement system. Initially
authorities in a Virtual Organisation are delegated a gegmount of credit. These authorities can
then pass on portions of this credit to their local users.

Example 8.7 In the Virtual Organisation shown in Figure 8.11, there Are¢ component domains,
A, B and C. The KeyNote policy shown in Figure 8.15 assignsealitrof 1000 to KAngela, the
Administrator of domain A's key.

Aut hori zer: PQOLICY

i censees: "KAngel a"
Condi ti ons: App_Domain == "GidAdm n" &&
Resource == "UCC-GRI D' &&

Credit = 1000 &&
Validity <= 200404312359;

Figure 8.15: Administrator Angela is delegated a credit@dQ.

These credentials have a validity date, up to when the ctiadieare valid. These validity dates
allow the legitimate reuse of the credit that a user holdshout requiring the administrator to
explicitly return the deposits. KAngela can then delegategspof this total to users in her domain.
Such a delegation is shown in Figure 8.16.

This credential delegates a credit of 100 to KBob. KBob cawd use this credential to gen-
erate a contract, guaranteeing good behaviour when réggestesource in domain B. As each of



8.3 GridAdmin 162

Aut hori zer: "KAngel a"

|l icensees: "KBob"
Condi ti ons: App_Domain == "GidAdm n" &&
Resource == "UCC-GRI D' &&

Credit = 100 &&
Validity <= 200404142359;
Si gnat ur e:

Figure 8.16: Administrator Angela delegates a credit of tO0ser KBob

the domains would trust administrators in the other domainsh a contract would be honoured in
domain B. A

The metric outlined is essentially the opposite of a repanabased metric. Good behaviour
simply guarantees continual access to resources. Badibahatould result in default of the con-
tract, reducing the amount of money available in the futlfra principal misbehaves, then a conflict
resolution process would be enacted. Using this process;amplainant would furnish the con-
tract credential, and some proof of the bad behaviour. Ifcthmplaint is upheld, at the start of
the next renewal period for the user credit credentials) the credit of the misbehaving principal
would be reduced, and the credit instead issued to the comapla If principals can show good
behaviour in terms of contracts successfully completezh their issuing authority could choose to
raise their credit limit. This is comparable to a credit caothpany increasing the credit limit of a
good customer.

There is a potential problem with such a metric. Due to thed&alised nature of the proposed
system, double spending, or promising the same deposit te than one principal, becomes pos-
sible. A principal could make guarantees in domains B andiyubte same collateral. However,
we propose that this is, in fact, a desirable characteridtia principal acts properly in both do-
mains, then the double spending will never become appakdmivever, when a default occurs in
both domains, the digital signatures will prove the guiltinpipal, and a conflict resolution process
would take over. Such a system will reward a principal wh@satore risks, yet whose behaviour
is good. Good behaviour is likely to be increased, as praisipre risking potential disaster when
discovered.

Assurance based metric in WebCom

Alternatively, supporting a assurance based metric in Vdab@quires a different type of creden-
tial infrastructure. When a user wishes to make an admatieér request, they create and sign a
contract credential. This credential is then sent to the iztstrator of the resource requested. If
the Administrator accepts the contract, then the requaptisted. These decisions are taken based
on the local policy of the resources requested. For exariffles policy stated the cost per minute



8.3 GridAdmin 163

of reserving a node, then the user would have to offer at laéstamount for the request to suc-
ceed. Even though this metric is in practice the oppositd®fréputation metric: principals must
prove their worth, the system is not required to maintaitestihiese administrative requests can be
specified in the same form as those used with the reputatidmcme

Example 8.8 Principal KClare wants to reserve 15 compute nodes for 1@shimuorder to gen-
erate some accurate results. In order to achieve this, slaesra contract credential, shown in
Figure 8.17.

Aut hori zer: "KC are"
i censees: "KUCC- Adm n"

Condi tions: App_Domain == "GidAdm n" &&
Resource == "UCC-GRI D' &&
Request == "BookResource" &&

Nodes = 15 &&

Time = 600 &&

Deposit = 100 &&

Validity <= 200404142359 &&
[...];

Si gnat ur e:

Figure 8.17: KClare contract for reserving 15 compute ndde$0 hours.

This contract credential allocates a deposit of value 1001€C-Admin to guarantee KClare’s
good behaviour while using the requested compute nodeghismequest to be successful, KClare
would have to provide a credential from a source trusted byCKLAdmin, giving her the right to
create such a contract credential. Figure 8.18 shows artiaebilfilling these requirements.

Aut hori zer: "KUCC- Fi nance"

|icensees: "KC are"

Condi tions: App_Domain == "Gi dAdm n" &&
Deposit <= 250 &&
Validity <= 200404312359;

Si gnat ur e:

Figure 8.18: Credit Credential from UCC'’s Finance Departingiving KClare’s Credit limit.

This credential, signed by a key belonging to the Financaude@nt in UCC, gives KClare the
right to sign contracts up to value 250, in the GridAdmin &ailon. Finally, KUCC-Admin’s local
policy must declare what price the Administrator is willitmgaccept for reservation of nodes. The
policy must also trust the KUCC-Finance key for this requedte successful.

Figure 8.19 shows such a policy. In this policy credenti@ #uministrator has defined the
conditions under which certain administrative requests arceptable. Specifically, in order to
reserve nodes, principals must provide a deposit basedeonuimber of nodes required and the
length of time (in minutes), they are required for. A



8.3 GridAdmin 164

Aut hori zer: POLI CY
i censees: "KUCC Finance" ||\
"KNUl G Fi nance" ||\
" KTCD- Fi nance"
Condi tions: App_Domain == "Gi dAdm n" &&
((Request == "BookResource" &&
(Deposit >= Tine * Nodes * 0.01)) ||
(Request == "Install Software" &&
(Deposit >= Nodes * 100)));

Figure 8.19: KUCC-Admin’s policy, trusting the keys of sesleFinance departments to assign
credit limits. It also dictates the terms acceptable to tdenfistrator.

This system can be extended to encompass all the admiivisteadtions concerning the ad-
ministrator. Placing a monetary value on the actions allthesadministrator to discourage certain
actions, without outright refusal. For example in Figuré9.the administrator has defined the
value 100 as the price to install a new piece of software oh eade. These conditions can be as
fine-grained as the administrator requires. For exampderveng an SMP machine could be much
more expensive than a uni-processor node.

Additionally, using the architecture of the WebCom systerma can implement thtNightclub”
model previously discussed. Using the communication dhped of WebCom, advisory creden-
tials, written by administrators, could be distributedotighout the system and integrated into the
trust management decision. These credentials could ggbeif a higher “Entrance fee” is required
from users who have misbehaved on other systems. This g®w@dneans to instantly reduce the
purchasing power of individual users, without waiting foetrenewal of credit credentials. This
concept is similar to the idea of Certificate Cancellatiorités (CCN) in SPKI [94]. CCNs are an
informal version of Certificate Revocation Lists (CRLs) winost of the benefits, but at reduced
cost.

These decisions take place in a fully decentralised marifflerent administrators have dif-
ferent priorities, and so the policies will vary from domaindomain. Another advantage of this
decentralised architecture is the ability to “sub-corttragork. It would be possible that KUCC-
Admin decides to sub-contract some work to another domaiis i achieved by the creation of a
new contract credential by KUCC-Admin to another admiaigtr, delegating the deposit from the
received contract credential. The original contract aideéwould be passed along to preserve the
delegation chain.

8.3.4 Discussion

In this section we have introduced GridAdmin, an automathdinistrator, empowered to handle
the tedious administrative requests, such as the resamvaticompute nodes, common in grids
today. This system provides a “value-added” service to @dnhinistration, sitting on top of the

existing Grid architecture rather than replacing the exgssecurity architecture. For example, the



8.4 WebComyac 165

cryptographic keys used to sign credentials are the sanseusad by the principals to authenticate
themselves to the Grid management software, such as Globus.

Section 8.3.2 described how we use the WebCom system tadgrautomated administration of
Grid resources. Our experimental results show the valukigfapproach, dramatically decreasing
the amount of time required to perform common administeatidsks.

However, this implementation does not capture the flexibleds of a real users. To this end,
Section 8.3.3 proposes alternative trust metrics thatigeoa “fuzzier” notion of trust. Each ap-
proach was found to have advantages and disadvantagesasyehbblems of aggregation in the
karma system and conflict resolution in the assurance system

The metrics proposed encompass alternative ends of thiblgodesign of such a system. How-
ever we believe that the assurance metric provides an stitege yet useful simulation of the real-
life situations administrators find themselves in. Oftenask ourselves: “what'’s in this for me?;
what guarantees do | have that this will not break our systdm@se questions are addressed using
an assurance system, with the cost/benefit analysis beadgyeinderstandable.

We are in the process of deploying such an automated systeggands to the Cosmogrid [10]
project. This will reduce the time required to administrabed increase both flexibility and sharing
of resources between the component sites. We have impletharnirototype system on the Boole
machine in UCC. Users have the ability to perform automagsdurce reservations.

In the future, we intend analysing both the usability of thed@&dmin architecture, and the
suitability of the proposed metrics over time. The flexigilbf a trust management based approach
allows each site to alter their policies to suit local coiadis, while providing a consistent infrastruc-
ture throughout the sites. Integrating some of the featnfrbsth proposed metrics into a combined
metric also may provide some interesting results. Moreareseinto these metrics is required.

8.4 WebConpac

WebComp 4 [63, 134] is a security orientated heterogeneous admatiiatr tool based on the We-
bCom architecture. WebCamy~ (WebCom with dynamic administrative coalitions) acts as an
administrative interface to an organisation’s heterogasesystems. Dynamic administrative coali-
tions are virtual administrative spaces where administnaiasks are carried out for users. These
tasks are specified as condensed graphs and are coordigatadtbd instances of WebCom, called
DAC coordinators.

WebConm 4 provides an activity-centred model for structuring andaoiging administrative
workflows on a heterogeneous network. These administratiwé&flows are described activity
sets[60, 61]. These activity sets are then translated into coseld graphs and executed by Web-
Com. Activities can be represented visually, as shown inifei@.20. This shows the template for
an activity set. Activities are made up of a number of acti®isar t to start the activityfi ni sh



8.4 WebComyac 166

to conclude the activityJoi n to join the activity;Leave to resign from the activity; ando to
perform some action. Activities support multiple actiogach of the different action types. In the
implementation of activity sets, only join, leave and ddatd are supported.

Join
Start
Activity —— Do
Fi ni sh
Leave

Figure 8.20: The Template for an Activity.

Activities can be linked together, for exampleDa action in one activity could be linked to a
Joi nor St art action in another activity. Activity sets can representihess rules; each activity
represents a different principal’s duties. Example 8.%udless a share trading activity using a
number of linked activity sets.

Example 8.9 Figure 8.21 shows a share trading application cast as a nuofhlaetivities. Each
activity set corresponds to a user’s view of their actiore. @&xample, the CEO can appoint trading
managers, sales managers, and can resign. The join actitef€@EO’s duties starts the activity
by the appointment of the CEO.

- AnalyzeRisk
&?nd;ggr PriceDeal
Appoint
Trading )
Manager Resign Appoint
Clerk
Appoint
g?io CEO Clerk CaptureDeal
Appoint Appoint .
Resign Sales Clerk Resign
Manager
Sales .
PriceDeal
Manager CaptureDeal
Resign

Figure 8.21: A Share Trading Activity Set.

The CEQO’sdo actions entail appointing trading and sales managers. &dtiese mangers can
appoint clerks. Their other duties include analysing resid pricing deals for the trading manager
and pricing deals and capturing deals for the sales man@tgrks can capture deals. A

The aim of the WebComs ¢ system is to implement this activity model using condengeaglts



8.4 WebComyac 167

to support the sequencing constraints. We use activitytsedpecify the business rules for an or-
ganisation. These rules are then automatically translateccondensed graph workflow applica-
tions [134]. We securely execute these workflows using WetCo

8.4.1 WebConp 4 Architecture

We have examined how administrative workflows are specibedfebCom, 4. However, this is
but one aspect of the system. In order to provide adminigtratipport in WebCom we also require
the ability to view and modify authorisation policies on tresources of the system. DAC policies
are specified and controlled by the DAC policy tool.

Coordinator

Server

J >;
/

~
\
= [ Authorisation ‘( DAC }
i
/

Figure 8.22: The DAC Architecture

The DAC system operates though the use of DAC coordinatsshedule administrative tasks,
and authorisation servers to perform those tasks on theiesmonding servers. Figure 8.22 shows
a representation of a network containing a number of adindtirge coalitions. Implementation of
authorisation servers exist for a number of architectinetyding DCOM/.Net (KeyCOM), Linux
(KeyLin) and Enterprise Java Beans (KeyBean). We examiegethuthorisation servers later.

The DAC coordinators are implemented as trusted instarfc@&bCom, called WebCopc.
WebComp 4 is used by the DAC policy tool to coordinate administrativerkflows on legacy
systems. These systems provide executable componentsrtgpart of applications. The autho-
risation servers can be used to view and/or update the dsation policies for these components.

DAC domains can overlap, for examdAC1andDAC2in Figure 8.22. This could potentially
cause an issue where an administrative update on one aattiami server by one DAC conflicts with
the requirements of another DAC. We do not believe this igaifitant problem as WebCopy ¢ is
a closed system and a single workflow is executing at any tihaechange is made to a authorisation
server policy, that policy update is reflected in the DAC pptiool.



8.4 WebComyac 168

8.4.2 Implementing WebConp 4¢

The WebComp 4 architecture is shown in Figure 8.23. It is broken down inftmeber of compo-
nents. The middleware systems, such as COM or EJB, provideaimponents that can be used by
WebCom applications. Both the components and the secwligypare discovered binterroga-
tors. These interrogators determine the services that areabl@ibn a middleware server and input
this information into a database. This database is usededowdbCom integrated development en-
vironment (IDE) to allow developers to create applicatiaasg these services. During component
interrogation, the interrogators also extract the segputicy for these middleware components and
also store this information in a database. This informaisaepresented in a palette in the WebCom
IDE.

Use Middleware Services

Select M/W
Services

] o

Update
Security

KeyStar quiCy on
| Client | Clients

Interrogates Services Interrogator Databas¢
wepgem

Middleware
System

Sec Polic)}

Middleware
I System

Sec Pnlicy}

L KeyStar

[KeyStar| Server RBAC to
e Generate T.M.
| Client | Trust Management

Transation
]

Middleware
System

Sec Policy}

Credentials

Update Server Policies

Figure 8.23: The WebCopy¢ Architecture.

Once an application has been created, an access controy polist also be created for this
application. Typically, this takes the form of a trust masagnt policy. This may require changes
to the authorisation policies of the middleware systemshikhcase, th&eyStarsubsystem is used
to make these updates.

Middleware systems typically use a type of role based accessol (RBAC) for authorisa-
tion. RBAC-like policies can be encoded in terms of equirleryptographic certificates/policies
[109, 152]. In addition to supporting ad hoc KeyNote poligigVebCom 4 supports middle-
ware RBAC-like security policies within KeyNote authotiem credentials. This is unlike [109],
where authorisation certificates are only integrated asqiahe lower-level middleware system.
WebCom 4 uses KeyNote to determine whether it is safe to execute alewdde component.

A WebComp 4¢ environment can automatically convert middleware RBAGqie$ to their
equivalent KeyNote policies/credentials, and vice-ver3dis provides a high degree of policy



8.4 WebComyac 169

interoperability, both between the middleware and trushage@ment layers, and within different
Middlewares. In addition to providing a uniform way of sggitig RBAC policies for different
middleware systems, it also becomes possible to enforogatdised RBAC middleware policies
across middleware systems that do not have a configured RBAY.p

Role-based access control (RBAC) [158] is widely used taideaccess control in Database
management systems, operating systems and Middlewarieatahes. In RBAC, access rights
(permissions) are associated with roles, and users are ererobthese roles. When a user is as-
signed to a role, they gain all the permissions of that rokaénsystem. This allows an organisation
to model its security infrastructure along the lines of itsiness. For the purposes of this disserta-
tion we extend the conventional RBAC modelldders RolesandPermissionsto includeDomain

» Permissionrepresent actions, capabilities, applications or angradiative behaviour that can
be “performed” and, to which, we intend to control authdi@ma

» Domains administrative boundaries that group permissions andagerheir underlying
resources. In general, domains do not intersect in theienlyidg permissions.

* Roles roles are logical groupings of permissions that reflect diqudar task that can be
assigned to some user. We assume that roles do interseeirimitiderlying permissions.

» Users include humans or any other entity that can be assigneda rol

An RBAC policy is defined in terms of the following relations.

RolePerm : (Domain x Role) < Permission

RoleUser : (Domain x Role) < User

where RolePerm((d, ), p) means that the role (in domaind) holds permissiornp (on some ob-
ject), andRoleUser(d,r,u) means that uset is assigned to domain-role p&id, ). Table 8.1
uses this model to provide a uniform interpretation of b&@M+, EJB and CORBA middleware
RBAC policies.

There are a variety of approaches to supporting roles in i&yNEncoding the fixed relation-
ships from the Domain-Role-Permission table as a singleNiéy credential provides a simplistic
representation of the RBAC policy. Individual credentiate then issued, associating users to roles.

Example 8.10 The ShareTrader Domain-Role-Permission table can be edcasl the following
policy credential.



8.4 WebComyac 170

| Type | Domain | Role | User | Permission \
EJB Combination of| Application Spe-| Exist globally on| Method calls (of
Host, EJB Server| cific for each| each server, can bean object type) that
relevant bear| server. members of differ-| roles are permitted
container. ent roles. to make.
COM Windows NT Do-| Uniqgue to Do-| Windows Users, Considering only,
mains. mains. Unique to each Launch, Access
Domain. andRunAs.
CORBA | Machine name and Unique to Do-| Can be members Relate to method
ORB server name.| mains. of different roles,| calls on objects of
unique to each the given object
server. type.

Table 8.1: Interpretation of Middleware RBAC Models

Aut hori zer: POLI CY
Li cencees: "Kwebcont
Condi tions: app_donai n="ShareTr ader" &&
(Domai n=="ngm " &&( r ol e=="TraderMgr") ->
(perme="setlimt"|| perm=="anal yzerisk"|]|...);

(Domai n=="st af f " &&(rol e=="sal es") ->
(perme="pri cedeal "| | per mr="capt ur edeal ") ;

This specifies that the WebCom administration keyebcomis authorised to administer rights in
connection with this policy.

Aut hori zer: "Kwebcont
Li cencee: "Kj oe"
Condi tion: app_domai n=="ShareTrader" &&

rol e=="Trader";

This credential authorises Joe as a Trader. AN

The above approach promotes a more centralised policy &traiion, with the WebCom envi-
ronment (administrator) managing delegation and is coaiparto the conventional middleware
approach.

Alternatively, the Domain-Role-Permission table can beetdéralised and spread across a num-
ber of credentials and additional authorisations and raenberships delegated to other keys. A
common strategy is to represent roles (from domains) ingesfrpublic keys; delegation is used
to create the role-permission and role-user relationshippractice, roles are best supported using
SDSI-like local names [152], however, we can approximagertie membership effect in KeyNote
as follows.

Example 8.11 Public keyskRt r ader andKRsal es, etc., are used to represent roles. Credentials
associate authorisations to the roles. For example,



8.4 WebComyac 171

Aut hori zer: KRtrader

Li cencee: KRsal es

Condi tion: app_donai n=="Shar eTrader" &&
perm=="pri cedeal "| | per m=="capt ur edeal ";

Sally is assigned this role using a credential, signe&®Riyr ader , authorisingKksal | y. In prac-
tice, if Joe is a member of théRt r ader and is permitted to further delegate the associated per-
missions, then Joe could authorise Sally to be inkRsal es role. A

A disadvantage of this more flexible and decentralised ambrds that, in giving administration
authority to individual users, it provides only limited dowl of how these users subsequently del-
egate their authority; trading manager, Mandy, can de@d#rectly authorise salesperson, Sally,
to setlimit, regardless of the intended role hierarchy. In [63], we destow distributed workflow
rules supported by WebCom are used to place constraintseatethgation actions of such users.

8.4.3 KeyStar

KeyStar is the administrative update system for Webgam and is shown in Figure 8.24. It
is implemented using a client/server architecture. Thediaigare systems that support KeyStar
implement a simple client API that listens for update ordess the KeyStar server.

KeyStar// Middleware

Client System
[ .
Request, Credentials KeyStar Update |
o Server Order :
|
KeyStar// Middleware
Policy —»| T.M. | Client System

Figure 8.24: The KeyStar Architecture

The KeyStar server listens for administrative requestmfiebConp 4. When a request
is received, it is accompanied by trust management credgritiat should authorise the request.
These credentials are used as part of a query to the trusgeraeat system to ensure the request is
authorised according to KeyStar’s policy. If the requesiLighorised, then an update order is sent to
the relevant KeyStar client(s). When this order is receitied middleware authorisation policy is
updated to reflect the order. For example, the KeyNote ctedesmown in Figure 8.25, authorises
the uself sm t h to add new users on the sengsr es. ucc. i e.



8.4 WebComyac 172

KeyNot e- Ver si on: 2
Conment: Authorises jsnmith to Add Users on Ceres
Local - Constants: manager =
"rsa- base64: MGAOGCSGSI b3DQEAQUAAAADCBI QKBg\
Tk162GCQN c5gy ACuZr XaHZp2Q DAQAB"
jsmth =
"rsa- base64: M G MAOGCSql h3DQEBAQUAGNADCBI Q
YhDr r Hn/ e JqOXFRYY8hOBANf JQ DAQAB"
Aut hori zer: manager
Li censees: jsmth

Condi tions: App_Domain == "KeyStar" &&
(Domain == "ceres.ucc.ie/BULTIN' &&
Task == "AddUser");

Si gnat ur e:

Figure 8.25: A KeyNote credential used by KeyStar.

Implementations of KeyStar clients exist for a number of diedvare systems, including Mi-
crosoft's DCOM/.Net (KeyCOM) and EJBs (KeyBean). There aneumber of standard RBAC-
based administrative requests that are supported ingudin

» adding new users to the system;
 adding new roles to the system,;
 adding a user to a role;

* assigning a permission to a role.

These administrative requests are used to support adrainistworkflows that are coordinated by
WebConp a¢.

8.4.4 Stacked Authorisation

A Secure WebCom environment uses KeyNote to help managee¢tasonships with other Secure

WebCom environments. This approach requires the WebCoiroanvent to be trusted in the sense
that the security mediation (authorisation) is done by tleb@bm environment and not the under-
lying operating system. An advantage of this approach is #lirzce it is independent of the security
architecture of the underlying system, then it provides teeb®pportunity for interoperation be-

tween heterogeneous platforms that run the WebCom enventirilowever, since it does not rely
on the underlying operating system and/or middleware aigidiion mechanisms, a result is that it
increases the software in the trusted computing base.

In this section we address this issue by considering howetergy mechanisms of the underly-
ing middleware and/or operating system can be used to pdhiel basis of security mediation and
form a part of the overall WebCom security architecture.sTgrovides a stack of security layers,
as depicted in Figure 8.26. Note that Level 3 security cpoeds to mechanisms encoded within



8.4 WebComyac 173

the condensed graph that is used to coordinate the apphcatimponents. This is examined in
Chapter 7.

Stack Security Mechanisms Interoperability

L3 | Application Security

L2 | Trust Management

WebCom

L1 | Middleware Security

LO | OS Security

Figure 8.26: Stacked Security Architecture in WebGom

These stacked layers of secure WebCom are ‘pluggable’ is¢hee of [96, 157]; for exam-
ple, in the absence of CORBASec support for a particular CR®&gbCom environment could be
configured so that authorisation is based only on a combimaif KeyNote (trust management)
and underlying operating system policy. A Secure WebConiremment can automatically con-
vert middleware RBAC policies to their equivalent KeyNotigies/credentials, and vice-versa.
This provides a high degree of policy interoperability,vibegn the middleware and trust manage-
ment layer, and also within the different middleware. Inifdd to providing a uniform way of
specifying RBAC policies for different middleware systenitsalso becomes possible to enforce
standardised RBAC middleware policies across middlewgstems that do not have a configured
RBAC policy.

As one may not have access to the source code of these legdeynsy it is not always possible
to change their security policies. WebCom provides thetgld enforce a different security policy
at a higher layer. The same argument can be made for faulatae and load balancing policies.
This architecture provides a clear separation of functiand control code.

8.4.5 Discussion

WebCom 4 provides a framework to support automated administratsngworkflows. In Sec-
tion 8.3, we examined GridAdmin, an administration toolkit Grids. In effect, GridAdmin is
an extension of the WebCagm ¢ system. We could implement these administrative taskgyusin
KeyStar, specifically KeyGrid'.

The WebCom 4 framework allows the development of business rules in awigetentric
manner. First the activities of a user are specified and tieeaiction between users noted. These
sets of activities are then translated into condensed grapkflows. These workflow applications
can be then executed (or coordinated) by WebCom.



8.5 Discussion and Evaluation 174

WebComp 4¢ is used to provide a central view of different legacy systerAs each legacy
system’s security policy is specified, modified and enforagiduely to that system, interoperability
between these systems is a difficult prospect. Webggmprovides a higher-level view of these
systems. As security policies are interrogated and a reptatson of those policies are formed,
it is possible to use the WebCom security mechanisms to éentila security policy of a legacy
system. In this way we can take an application security pdliom one system and enforce an
approximation of that policy on a different system, usingstrmanagement as an intermediate
language.

Naturally, this approximation is not perfect. However, \pding even simple translations,
such as the creation of the same users, roles and permissioasnew system is useful. The
WebCom 4 framework provides the tools to view, modify and enforcessrplatform security
policies using a single mechanism.

In [23], the authors propose a method to constrain the didegaf authority using regular
expressions that are embedded into the authorisationrtialde This allows the chain of delega-
tions to be restricted, in the sense that the ability to dakegoesn’t necessarily imply the holding
of the authorisation. WebCopy¢ provides similar functionality using workflow to sequenbe t
delegation operations. In this way, the delegation opanatare performed in a well defined and
controlled manner. However, this approach requires ailolis&d architecture unlike the credential
based system described in [23].

8.5 Discussion and Evaluation

This chapter discussed several application case studigg 8scure WebCom. We have described
how the security architecture of WebCom can be used to sugpecific applications, such as
micropayments, administrative workflows and Grid admiatibn. We have examined the extensi-
bility of WebCom and in particular the naming and securitghéectures.

As WebCom is designed as a modular system, it can be extendegport different application
requirements. This has the advantage that specific regaimsncan be quickly implemented using
the security system. For example, the micropayment sgaudinager can be used by any applica-
tion to provide a payment system where every execution mugtaid for. This could be used as
an auditing tool, where we do not attempt to recover paymaritinstead analyse where and how
many nodes have executed in any given domain.

Recall in Chapter 5, we argued that the WebCom architecsurdnerently loosely coupled, that
is, functional and security requirements are implemenggzhiately. However, experience gained
developing these case studies has shown that this is neglgrituie. While in theory, information
can be abstractly represented in the name of a node, ingeaittis often easier to embed this infor-
mation within the implementation of the security managdrergfore, the case studies demonstrate



8.5 Discussion and Evaluation 175

that custom security manager implementations are reqtorespecific applications.

The case studies presented in this dissertation serve litagydhe effectiveness of WebCom'’s
security model and the software architecture. Severallgsions can be drawn from experience
gained through the development and implementation of tappkcations. For example, represent-
ing hash-based micropayments requires implementing afigpadcropayment security manager
for WebCom. This security manager handles the contractpenddes the logic to ensure that the
hash coins are valid. However, an extension of the KeyNa&t tnanagement systems to support a
hashing function has been proposed [59]. This would remiogeneed for the hashing logic in the
security manager. Regardless, a separate contract mecheamiuld have to be retained.

Interacting with Grid resources is also not as straightéodvas initially believed. As Grid
security is based upon the identity of the users submitbbg.j These identities allow Grid resources
to determine whether, and indeed when, to execute userAad/ebCom identifies users in terms
of public keys, user jobs can at best be identified to the daaityiof the WVM submitting the Grid
job. While the naming architecture is technically capafl@mbedding user certificates as part
of a node’s name, implementing such a system would agairireeguspecific “grid job” security
manager. The provision of a federated identity system [Glldidelp greatly towards addressing
this particular problem.

This experience has resulted in the belief that any nomtréecurity application would require
the creation of a specific security manager for WebCom. HewallebCom supports the use of
several implementations of any module. For example, theapiyment security manager could
be used in conjunction with the standard trust managemesddbaecurity manager so that the
micropayments were processed, while a standard trust reareay policy could also be enforced.



Part IV

Discussion and Conclusions

176



Chapter 9

Conclusions

In this dissertation, we have introduced the WebCom digteidd computation environment, and
the condensed graph computation model that it utilises. ViabBCom architecture is a distributed
computation environment provides the basis for securdt falerant, load balanced distributed
applications. The pluggable nature of the WebCom architedllows the development of modular
components. The reference implementations of the core le®dan be replaced, allowing different
implementations of those modules to be used.

Applications in WebCom are specified as condensed grapherewthe nodes in the graphs rep-
resent atomic actions. WebCom’s modules control the sdimgdaf these nodes. This provides a
clear separation of function and control code. This sejmaratf concerns is not security specific;
every module in WebCom enjoys the same advantage. Thissapolicies to be written indepen-
dently of the functional code.

From a security standpoint, the architecture of WebCom ptersome interesting challenges.
The security requirements of WebCom are managed by the i8eManager Module. Different
implementations of the security manager can be used toa@ndifferent types of access control. As
WebCom is a distributed environment, enforcement of theréiggoolicy must also be distributed.
WebCom can exist outside of the control of a single admiaistr Instances of WebCom running
on different resources can have different administrafbh& security system must support this type
of architecture.

Developing a security architecture for WebCom necessittite investigation of the nature of
condensed graph applications. In this dissertation, we hayued that in order to properly specify
security policies for nodes in a condensed graph, we firsl teproperly name these nodes.

Naming condensed graph nodes requires capturing the ¢oatadetails that describe these
nodes. This context includes details such as the functicghefode, the domain where it is ex-
ecuting, and the history of the node. Using this context, ingrpolicies can be constructed that
can be used by enforcement mechanisms to help direct thdwdotgeand execution of these nodes.

177



9.2 Results and Contributions 178

Chapter 6 explored naming issues and developed a modelrdangan WebCom.

The WebCom naming model can also be used to support the otbbCo¥h modules. For
example, using WebCom names in the fault tolerance modulefeo to WVMs would allow more
contextual information about these WVMs to be provided. A¥M¢ were referenced by their
IP address in the original implementation of WebCom, onlg orstance of WebCom on a single
resource was permitted. The greater contextual informati@ilable within WebCom names allows
multiple instances of WVMs on a single resource.

Reduction rules are used to take complex hames and remoeeessary information. We use
reduction rules to help create specific policies, such dergidased policies. For example, we can
use history-based policies to store the names of the dorttehthe nodes have executed during the
computation.

We investigated WebCom'’s security architecture in ChapteSecure WebCom provides the
ability to specify access control policies in terms of WebhCoames. These security policies are
enforced by WebCom'’s security manager. We argue that ifcserffi context is provided within the
names, then a wide variety of authorisation requirememteacaptured as access control policies.

Finally, we explored some extensions to WebCom in ChapteFtgese case studies demon-
strate the extensibility of the Secure WebCom architecamat provide some practical examples of
applications that can be developed using WebCom.

9.1 Results and Contributions

There are four main contributions contained within thissditation. We have defined a naming
architecture for condensed graphs, that specifies thexdaateletail required to properly name a
distributed component. Using this naming architecturehase developed an access control-based
security architecture for WebCom that allows applicatienalopers to specify security constraints
regarding their applications. This architecture has bessldmented in terms of a software archi-
tecture that support names in practice. Finally, we haveldped a number of case studies that
examine the capabilities of WebCom and explore some of tharddges of WebCom'’s security
architecture.

9.2 Limitations and Future Work

The naming architecture described in this dissertatiofesufi number of limitations. Primarily, as
the naming model is not formally specified, no consistenarguotees can be made. Furthermore,
we have seen in Chapter 6 that when multiple reduction rulesreated and used in conjunction
can contradict the goal of the policy, even though they dpesarrectly when used separately. The



9.2 Limitations and Future Work 179

order that reduction rules are applied to names must beutigrebntrolled by the developer. There
is no current means to address reduction rule inconsigtenci

A topic of future research would be to develop a formal model\WebCom names. This
model could provide proofs of name consistency and commpéste Such a model could provide
assurances about the application of reduction rules anorties that they are applied.

Identity management is another limitation in the currentuse WebCom prototype. Each We-
bCom domain has its own view of the names of entities. Feidaratf identity allows entities in
different domains to have a common point of reference. Impleting some form of federated
identity management [6] would help support large, crossiia applications, particularly when
considering Grid applications for WebCom.

Federation of identity allows each resource in the systehate an assembled identity that the
entire distributed system can use to refer to that resolioeexample, a user can be a manager in
one domain and a clerk in another. Each domain refers to #rdmuthe context they support. With
a federated identity, when the two domains are discussimguser, they both know which user the
other is referring to.

While the Naming architecture described in Chapter 6 pexwia framework that could be used
to store the necessary contextual detail to identify recesyrit does so from a local perspective.
Identity federation allows the linking of these local parsiives into a global identity. WebCom
names could be used to provide this link. It is envisioned tWabCom will be used on the
Grid [123]. Supporting an existing federation scheme wquidmote integration with existing
infrastructures and helps gain acceptance within the gtmramunity.

WebCom provides a messaging service that is independené abhdensed graph model. This
messaging service provides the ability for both WVMs andcttmponent modules to communicate
and perform tasks on request. Messaging is possible bettmaity to a WVM and between WVMs.

Each module in WebCom defines the messages it can handlexdfopke, the security manager
module could define a message that allows remote querying eécurity policy. Remote querying
has the advantage that a parent can ask its children that take they were sent a particular node,
would they allow it to be executed.

However, this can have security implications. For exanmipke\WVM wanted to surreptitiously
execute a dangerous node, it could ask each of its childréhitureceived a positive reply. The
security manager should provide the capability to vet threessages so that dangerous messages
can be prevented from reaching their destinations. Thiedsyd WebCom is not addressed in the
current access control model. It is foreseen that some fénmpConmuni cat e check could be
defined in terms of the WebCom access control model. Thisdsempal avenue for future research.

Another important topic of future research is the provisidm public key infrastructure (PKI)
for WebCom. In its current form, WebCom uses an ad hoc methatistribute both identity and
authorisation certificates. It is envisioned that a PKI decliure should be constructed to provide a



9.2 Limitations and Future Work 180

distribution mechanism for such certificates. PKIs alsgsupconcepts such as certificate revoca-
tion, which is also not currently addressed.

We suggest that a PKI system could be constructed on top ofcéfmb A WebCom could
implement a certificate query system. This system couldfosexample, a Chord [168] like peer-
to-peer structure to maintain the certificates across thteilolited network. WebCom’s messaging
system could be utilised to support the storage and retridwhe certificates. PKI queries could be
expressed in terms of condensed graph applications. Howaeaeloping a PKI infrastructure for
any architecture is a significant task.



Part V

Appendices

181



Appendix A

WebCom Names XML Definition

The following the the XML definition of a WebCom name. Theggresentations are used to define
names for nodes a priori. The Naming Manager reads in thasesiand uses them during graph

execution.

<l-- c¢g.dtd - an XM. Docunent Type Declaration for XM. docunents -->
<!-- describing sets of Condensed G aphs. -->
<l-- Copyright (C) 2003 The Centre for Unified Computing -->

<!-- DOCUMENT HI STORY -->

<l-- Date Per son Action >
<l-- 06/3/2004 Philip Healy Created -->
<l -- secnane: securenane el enent -->

<! ELEMENT secnane: secur enane
(secnane: domai n?, sechane: graph?, secnane: oper and+,
secnane: operator?, secnane: destinationx)>
<! ATTLI ST secnane: secur enane
xm ns: secname CDATA #FI XED "http://cuc. ucc.ie/xm/secnane">

<l-- secnane: domain el enent -->
<! ELEMENT secnane: donai n EMPTY>
<! ATTLI ST secnane: dormai n name CDATA #REQUI RED>

<! -- secnane: graph el enent -->
<! ELEMENT secnane: gr aph EMPTY>
<! ATTLI ST secnane: gr aph nane CDATA #REQUI RED>

<! -- secnane: operand el enent -->

<! ELEMENT secnane: oper and EMPTY>
<! ATTLI ST secnane: oper and name CDATA #REQUI RED>

182



A.0

183

<!-- secnane:operator element -->
<l ELEMENT secnane: oper at or EMPTY>
<I ATTLI ST secnane: oper at or nanme CDATA #REQUI RED>

<l -- secnane: destination elenent -->
<! ELEMENT secnane: desti nati on EMPTY>
<! ATTLI ST secnane: desti nati on nanme CDATA #REQUI RED>



Appendix B

Naming System for the ShareTrader
Application

B.1 Generating Names for ShareTrader Nodes

public class ShareTrader NameGener at or ext ends NaneGener at or
{
publ i ¢ Secur eName gener at eNameFr onNode( CondensedGr aph cg, Node node,
Reduct i onRul e reduxrul e,
String Domain) {
Secur eNanme nodenane = new Secur eNane();
CGExam ner exani ner = new CCGExami ner (cg);
i nt Nodel D = exani ner. get Nodel D( hode) ;

nodenane. set Domai n( Donai n) ;
nodenane. set Functi on( exam ner. get QOper at or (Nodel D)) ;
nodenane. set Gr aph(exam ner. get Nane());

int destports = exam ner.get NunDesti nati onPort s(Nodel D);
for (int i =0; i < destports; i++) {
int[] destids = exam ner. get NodeDesti nati onl Ds( Nodel D) ;
for (int j =0; j < destids.length; j++) {
String operator = exam ner.get Qperator(destids[j]);
nodenane. addDest i nati on( operator);

Vect or NodeQperands = exami ner. get NodeOper ands( Nodel D) ;

int[] inpnodeids = new int[NodeQperands. size()];

int pos = 0;

for (lterator iter = NodeQperands.iterator(); iter.hasNext(); ) {

184



B.1 Generating Names for ShareTrader Nodes 185

hject[] item= (Object[]) iter.next();
if (itenf0] instanceof String) {
String type = (String) iteniO];
if ( (type.equals("NodelD')) && (itenf1] instanceof |nteger))
i npnodei ds[ pos] = ( (Integer) iten{1]).intValue();
else if (type.equal s("Value"))
i npnodei ds[ pos] = -1;
el se {
t hr ow new webcom cgengi ne. I nval i dl DExcept i on(
"I'nvalid Operand type in Node ID" + NodelD +
" QOperand " + pos);

pos++;

if (inpnodeids.length > 0) {
for (int j = 0; j < inpnodeids.length; j++) {
if (inpnodeids[j] == -1) // Node is a value. {
oject[] item= (Object[]) NodeQperands. el enent At (j);
String type = (String) iten{0];
if (type.equal s("Value")) {
if (itenf1] instanceof Trade) {
Trade trd = (Trade) itenf1];
nodenane. addl nput ("" + trd.getTotal ());

}
nodenane. addl nput (iten{1].toString());

}
el se
t hr ow new webcom cgengi ne. | nval i dl DExcepti on(
"Invalid Node ID" + inpnodeids[j] + " in Node ID"
+ NodelD + "'s Qperand " + j);
}
el se
nodenane. addl nput (exani ner. get Oper at or (i npnodeids[j]));

}

nodenane. reduceNane(reduxrule); // Apply the Reduction Rule specified.
return (nodenane);



B.2 Reduction Rules for ShareTrader Nodes 186

B.2 Reduction Rules for ShareTrader Nodes

public class ShareTrader Reducti onRul e extends ReductionRul e {
publ i c SexpList reduce(SexpList Nane) {
SexpLi st Function = null
SexpLi st Inputs = null

if (Nanme == null)
return null;
int pos = 0;
for (lterator i = Name.iterator(); i.hasNext(); ) {
if (pos == 0) {
pos++;
i.next();

SexpLi st part = (SexpList) i.next();

if ( (part.getType()).conpareTo("Function") == 0)
Function = part;

else if ( (part.getType().conpareTo("Inputs") == 0))
I nputs = part;

pos++;

Sexp list[] = new Sexp[ Function.size() + Inputs.size()];

pos = O;

for (lterator iter = Function.iterator(); iter.hasNext(); ) {
SexpString item= (SexpString) iter.next();

list[pos] = item
pos++;
}
for (lterator iter = Inputs.iterator(); iter.hasNext(); ) {
Sexp item = (Sexp)iter.next();
list[pos] = item
pos++;
}
SexpLi st newname = new SexpLi st (new SexpString("WbComNanme"), list);

return (newnane);



Afterword

The story of the writing of this Ph.D. thesis is rather biearAs | mentioned in the dedication, my
maternal Grandfather passed away during the writing oftttésis. | spend many interesting days
sitting by his hospital bed in the weeks before his death. &kdome wonderful stories, and many
of my funniest stories involve him. He interrogated me on ynaccasions about when he would
see this thesis.

After he passed away, on August’22005, | returned to the full time writing of this Thesis.
One month later, during the anniversity service, my pasdmuse in Galway was broken into. The
thieves were disturbed during the theft, and only made dffiwome cash, a playstation and the
laptop | was writing this thesis upon. They also took all af ttackups. These included two usb-
pendrives, a usb harddrive and a recent printout. As | had lidiag in Galway for nearly three
months at this point, | was only backing up the thesis locatlgase of hardware failure. The most
recent remote copy | was left with was a three months old cogyark.

The Gardai were not hopeful about the return of the laptayp.willing to give up, we contacted
the local radio station and they kindly made an announcenegpiesting the return of the laptop. A
local paper, the Galway Sentinal, called and asked if theydcbelp. They wrote an article about
the theft, and left a contact number where we could be reacHezlfollowing day, someone called,
stating they had “purchased” the laptop #1000 and would “sell” it back to us for that price.

My mother,Aine, haggled with the thieves and brought the price downi@antly. Eventually,
after many phonecalls, a meet was arranged where the morssipwa swapped for the laptop. As
| was in Cork at the time, my mother and brother, Cormac, wertdgraveyard to meet the thieves.
The laptop was retrieved and given to the Gardai for fingatipg. | have some advice in this
regard: Never let your LCD screen be fingerprinted, the dusekt to impossible to remove! | am
extremely grateful to both my mother and my brother for tlediorts on my behalf. At this point
my mother believes that she deserves the Ph.D. more than | do!

187



Bibliography

[1] Advogato’s trust metrichttp://www.advogato.org/trust-metric.html.

[2] Apache-ssl release version 1.3.6/1.36. Open sourcetwaxd distribution.
http://ww. apache. org.

[3] ClimatePrediction.nethttp://www.climateprediction.net/.

[4] Distributed.net http://www.distributed.net/.

[5] The JSDSI Projecthttp://jsdsi.sourceforge.net/.

[6] Liberty Alliance http://www.projectliberty.org/.

[7] The Message Passing Interface (MPI) standdrtdp://www-unix.mcs.anl.gov/mpi/.

[8] The Object Management Group. http://www.omg.org.

[9] Parallel Virtual Machine (PVM) http://www.csm.ornl.gov/pvm/pvomome.html.
[10] The Cosmogrid Projec004. http://www.cosmogrid.ie/.

[11] M. Abadi, A. Birrell, and T. Wobber. Access control in aoud of software diversity. In
Proceedings of the Tenth Workshop on Hot Topics in OperaggtemsUSENIX, June
2005.

[12] D. A. Adams. A computational model with dataflow sequencinBhD thesis, Stanford,
California, 1968. TR/CS-117.

[13] Formula One Administration. Formula 1 Ilive timing javaapplet.
http://www.formulal.com/archive/grandprix/livetingifpopup/757/8.html.

[14] A. V. Aho, B. W. Kernighan, and P. J. WeinbergefThe AWK Programming Language
Addison-Wesley, 1988.

[15] P. Ammann and R. S. Sandhu. The extended schematiccposteanodel. Journal of Com-
puter Security1(3—4):335-384, 1992.

188



BIBLIOGRAPHY 189

[16] M. Blaze and. The role of trust management in distridusystems security. li$ecure
Internet Programming: Issues in Distributed and Mobile &dij SystemsSpringer-Verlag
Lecture Notes in Computer Science, 1999.

[17] R. Anderson, H. Manifavas, and C. Sutherland. Netcaxgractical electronic cash system.
In Cambridge Workshop on Security Protogdl995.

[18] Arvind and K. P. Gostelow. A computer capable of exchiaggprocessors for time. In
Proceedings of IFIP Congress 194Yages 849-853, Toronto, Canada, August 1977.

[19] V. Atluri, S. Ae Chun, and P. Mazzoleni. Chinese wall wéty for decentralized workflow
management systemdournal of Computer Securityt2(6):799-840, 2004.

[20] J. Backus. Can programming be liberated from the vonrman style? a functional style
and its algebra of program&ommunications of the ACN1(8):613-641., August 1978.

[21] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, andASHaghighat. A domain
and type enforcement UNIX prototype. Rroceedings of the Fifth Usenix UNIX Security
SymposiumSalt Lake City, Utah, USA., June 5-7 1995. USENIX.

[22] D. Balenson. Privacy enhancement for internet eledtraail: Part Ill: Algorithms, modes
and identifiers. Request for Comment (RFC) 1423, Interngirigering Task Force, Febru-
ary 1993.

[23] O. Bandmann, M. Dam, and B. S. Firozabadi. Constrairedgation. InProceedings of the
IEEE Symposium on Security and Privapages 131-140, Oakland, CA, USA, May 2002.
IEEE.

[24] A. Baratloo, M. Karul, Z. Kedem, and P. Wyckoff. Chatkt metacomputing on the web. In
K. Yetongnon and S. Hariri, editor8th International Conference on Parallel and Distributed
Computing SystembBijon, France, September 25-27 1996.

[25] D. E. Belland L. J. La Padula. Secure computer systerifiednexposition and MULTICS
interpretation. Report ESD-TR-75-306, The MITRE CorpiaratMarch 1976.

[26] E. Bertino, B. Catania, G. Guerrini, M. Martelli, and Bontesi. A bottom-up interpreter for
a database language with updates and transactions. In MeAip R. Barbuti and I. Ramos,
editors, 1994 Joint Conference on Declarative Programminglume 1l, pages 206220,
Peniscola, Spain, September 1994.

[27] K. J. Biba. Integrity considerations for secure congplgystems. Technical Report MTR-
3153 Rev 1 (ESD-TR-76-372), MITRE Corp Bedford MA, 1976.



BIBLIOGRAPHY 190

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

B. Blakley. Corba Security. An Introduction to Safe Computing with ©tgeObject Tech-
nology Series. Addison-Wesley, 2000.

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromyfibie KeyNote trust management
system version 2. September 1999. Internet Request For @atar704.

M. Blaze, J. Feigenbaum, J. loannidis, and A. Keromyttlsing the KeyNote trust manage-
ment systemht t p: / / www. crypt o. com t r ust ngt , December 1999.

M. Blaze, J. Feigenbaum, J. loannidis, and A. D. Keramythe role of trust management in
distributed systems security. In Jan Vitek and C.tl. Jenséitors,Security Issues for Mobile
and Distributed ObjectsFourth International Workshop, MOS’98, Brussels, Belgjuuly
1998. Springer-Verlag Inc.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralizest management. IRroceedings of
the Symposium on Security and PrivalyeE Computer Society Press, 1996.

M. Blaze, J. Feigenbaum, and M. Strauss. Complianceckthg in the policymaker
trust management system. Rroceedings of the 2nd Financial Cryptography Conference
Springer Verlag LNCS, 1998.

M. Blaze, J. loannidis, and A. D. Keromytis. Trust maeagent and network layer security
protocols. InSecurity Protocols International Workshoppringer Verlag LNCS, 1999.

M. Blaze, J. loannidis, and A. D. Keromytis. Offline migrayments without trusted hard-
ware. InFinancial Cryptography Grand Cayman, February 2001.

W.E. Bobert and R.Y. Kain. A practical alternative taetarchical integrity properties. In
Proceedings of the National Computer Security Conferepages 18-27, 1985.

J. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. Folsfjes, F. Muller, T. P. Pedersen,
B. Pfitzmann, P. de Rooij, B. Schoenmakers, M. Schunter, lle&aand M. Waidner. The
ESPRIT project CAFE - high security digital payment systeln&SORICSpages 217-230,
1994,

M. Branchaud. A survey of public key infrastructures.aster’s thesis, McGill University,
Montreal, Quebec, Canada., 1997.

S. A. Brands. Rethinking Public Key Infrastructures and Digital Certiftes; Building in
Privacy. The MIT Press, Cambridge, Massachusetts, 2000.

D. F. C. Brewer and M. J. Nash. The Chinese Wall securijcp. In Proceedings of the
1989 IEEE Symposium on Security and Privaggges 206-214. IEEE Computer Society
Press, May 1989.



BIBLIOGRAPHY 191

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

CCITT Draft RecomendationThe Directory Authentication Framework, VersionNovem-
ber 1987.

Y. Chu. Trust management for the world wide web. Masténesis, Massachusetts Institute
of Technology, June 1997.

Y. Chu, P. DesAutels, B. LaMacchia, and P. Lipp. PIC$weidlabels (dsig) 1.0 specification.
Technical report, World Wide Web Consortium, May 1998. ipvw.w3.0rg/TR/REC-
DSig-label.

Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and vauSs. Referee: Trust man-
agement for web applications. Bixth International World Wide Web Conferen&anta
Clara, California, USA, April 1997. http://www.farcastesm/papers/www6-referee/wwweo-
referee.htm.

M. J. Ciaraldi, D. Finkel, and C. E. Wills. Risks in anangus distributed computing systems.
In Proceedings of the International Network Confererflymouth, UK, July 2000.

D. D. Clark and D. R. Wilson. A comparison of commerciablamilitary computer security
models. InProceedings Symposium on Security and Privaages 184-194. IEEE Com-
puter Society Press, April 1987.

D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morca@s)d R. L. Rivest. Certificate chain
discovery in SPKI/SDSIJournal of Computer Securit@(4):285-322, September 2001.

B. C. Clayton, T. B. Quillinan, and S. N. Foley. Autonragisecurity configuration for the
grid. Journal of Scientific Programming.3(2):113-125, 2005.

S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDARctory caches. [iPODS '99:
Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGARipsgium on Principles of
Database Systempages 273—-284, New York, NY, USA, 1999. ACM Press.

Microsoft Corporation. Microsoft Kerberos specifica-
tion. http://msdn.microsoft.com/library/default.asg2/library/en-
us/secauthn/security/microsdferberos.asp, July 2005.

N. Dershowitz. A taste of rewriting. In P. Lauer and JcKer, editorsFunctional Program-
ming, Concurrency, Simulation and Automated Reasonwv@ume 693, pages 199-228.
Lecture Notes in Computer Science, Springer-Verlag, Betl993.

M. Donnelly. An Introduction to LDAR  April 2000.
http://www.ldapman.org/articles/intrto_ldap.html.



BIBLIOGRAPHY 192

[53] E. Dulaney, V. Sankar, and S. E. Sankhrtegrating Unix and NT Technology29th Street
Press, June 1999.

[54] C. Ellison. SPKI requirements. Request for Comment@RE692, Internet Engineering
Task Force, September 1999.

[55] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas¢ T. Ylonen. SPKI examples.
Internet draft, Internet Engineering Task Force, 1998.

[56] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomassd T. Ylonen. SPKI certificate
theory. Request for Comment (RFC) 2693, Internet Engingefiask Force, September
1999.

[57] L. Demalilly et. al Safe-TCL Sun  Microsystems Inc.
http://www.demailly.com/tcl/plugin/safetcl.html.

[58] S. N. Foley. Building Chinese Walls in standard Uniomputers and Security Journal
16(6):551-563, December 1997.

[59] S. N. Foley. Using trust management to support traablerhash-based micropayments. In
Proceedings of the 7th International Financial CryptogngpConferenceGosier, Guade-
loupe, FWI, January 2003.

[60] S. N. Foley and J. L. Jacob. Specifying security for CSGy¥8tems. InProceedings of
the Computer Security Foundations Workshagges 136-145, Kenmare, Co. Kerry, Ireland,
June 1995. IEEE Computer Society.

[61] S.N.Foleyand J.L. Jacob. Specifying security for catepsupported collaborative working.
Journal of Computer Security(4):233-254, 1994/1995.

[62] S. N. Foley and J.P Morrison. Computational paradignt@rotection. IPACM New Com-
puter Security Paradigm<loudcroft, NM, USA, 2001. ACM Press.

[63] S. N. Foley, B. P. Mulcahy, and T. B. Quillinan. Dynamidnainistrative coalitions with
webcomDAC. In WeB2004 The Third Workshop on e-Businadashington D.C., USA,
December 2004.

[64] S. N. Foley and T. B. Quillinan. Using trust managemergupport micropayments. Fro-
ceedings of the Second Information Technology and Telecomations Conferenggpages
219-223, Waterford Institute of Technology, Waterforéland., October 2002. TecNet.

[65] S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secuoenponent distribution using web-
com. InProceeding of the 17th International Conference on InfaioraSecurity (IFIP/SEC
2002) Cairo, Egypt, May 2002.



BIBLIOGRAPHY 193

[66] S. N. Foley, T. B. Quillinan, J. P. Morrison, D. A. Powemd J. J. Kennedy. Exploiting
KeyNote in WebCom: Architecture neutral glue for trust ngeraent. InProceedings of the
Nordic Workshop on Secure IT Systems Encouraging Co-aperdaReykjavik University,
Reykjavik, Iceland, October 2000.

[67] S. N. Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahgnd J. P. Morrison. A framework
for heterogeneous middleware security. Aroceedings of the 13th International Heteroge-
neous Computing Workshopanta Fe, New Mexico, USA., April 2004. IPDPS.

[68] S. N. Foley and H. Zhou. Authorisation subterfuge byedation in decentralised networks.
In Proceedings of International Security Protocols Worksh®epringer Verlag LNCS, April
2005.

[69] B. Fonseca. VeriSign  issues false  Microsoft digital rtifieates.
http://www.infoworld.com/articles/hn/xml/01/03/22/0322hnmicroversign.html, March
2001. Infoworld.

[70] Internet Engineering Task Force. Public key infrastioe (x.509) [PKIX].
http://www.ietf.org/html.charters/pkix-charter.html

[71] I. Foster and C. Kesselman. Globus: A metacomputingagtfucture toolkit. The Interna-
tional Journal of Supercomputer Applications and High Barfance Computindl1(2):115-
128, Summer 1997.

[72] 1. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. Argcarchitecture for computational
grids. In5th ACM Conference on Computer and Communications Seclii§8.

[73] International DOI Foundation. Digital object idengifs. http://www.doi.org/.

[74] L. J. Fraim. Scomp: a solution to the multilevel seaqunitroblem. IEEE Computer
16(7):126-143, July 1983.

[75] A. Gilbert, A. Abraham, and M. Paprzycki. A system forseming data integrity in grid
environments. 2004.

[76] D. Gollmann. What do we mean by entity authenticatid®®ceedings of the Symposium on
Security and Privacypages 46-54, May 1996.

[77] D. Gollmann.Computer SecurityWiley, 15¢ edition, 1999. ISBN: 0-471-97844-2.

[78] L. Gong.Inside Java™ 2 Platform SecurityThe Java» Series. Addison Wesley, June 1999.
ISBN: 0-201-31000-7.



BIBLIOGRAPHY 194

[79] L. Gong et al. Going beyond the sandbox: An overview @f tiew security architecture in
the java development kit 1.2. MSENIX Symposium on Internet Technologys and Systems
pages 103-112, 1997.

[80] T. Grandison and M. Sloman. A survey of trust in inter-
net applications. IEEE Communications  Surveys December  2000.
http://www.comsoc.org/livepubs/surveys/public/2@@/grandison.html.

[81] The Object Management Group. Common object requestkebroarchitecture
(corba/iiop). Technical report, The Object Management upro December 2002.
http://www.omg.org/technology/documents/formal/coiiop.htm.

[82] C. A. Gunter and T. Jim. Design of an application-levetwrity infrastructure. IDIMACS
Workshop on Design and Formal Verification of Security Protg September 1997.

[83] C. A. Gunter and T. Jim. Policy-directed certificaterimtal. Software: Practice & Experi-
ence 30(15):1609-1640, September 2000.

[84] M. Harrison, W. Ruzzo, and J. Ullman. Protection in @igrg systemsCommunications of
the ACM 19:461-471, 1976.

[85] P.D. HealyArchitecture and Implementation of a Distributed Recomfigle Metacomputer
PhD thesis, University College Cork, April 2006.

[86] A. Herzherg and H. Yochai. Mini-pay: Charging per click the web. IrSixth International
World Wide Web Conferenc8anta Clara, California, USA, April 7-11 1997.

[87] R.Housley et al. Internet X.509 public key infrasture certificate and CRL profile. January
1999. Internet Engineering Task Force, Request for ConsrizH9.

[88] J. R. Howell. Naming and sharing resources across administrative boriadaPhD thesis,
Dartmouth College, Hanover, New Hampshire, May 2000.

[89] T.Howes, S. Kille, W. Yeong, and C. Robbins. The stringnesentation of standard attribute
syntaxes. Request for Comment (RFC) 1778, Internet Enginte&ask Force, March 1995.

[90] E. Huggard. JKeyNote. Fourth year computer sciencéeptoUniversity College Cork,
Ireland, April 2003. http://kargellan.ucc.ie/JKeyNote.

[91] D. Eastlake Ill and P. Jones. US secure hash algorith®@HA(). Request for Comments
(RFC) 3174, Internet Engineering Task Force, Septembet.200

[92] Netscape Inc. Secure sockets layer website. Technidatief:
http://home.netscape.com/security/techbriefs/sal.ht



BIBLIOGRAPHY 195

[93] INRIA Rocquencourt, projet Cristal. The Caml homepage
http://pauillac.inria.fr/caml/index-eng.html.

[94] Internet Engineering Task Force. Simple public key rasfructure (SPKI).
http://www.ietf.org/html.charters/spki-charter.html

[95] J. loannidis et al. Fileteller: Paying and getting péod file storage. InProceedings of
Financial CryptographyMarch 2003.

[96] N. Itoi and P. Honeyman. Pluggable authentication negltor Windows NT. IProceedings
of the 2nd USENIX Windows NT Symposiyages 97-108, Seattle, Washington, August
1998.

[97] T.Jim. Sd3: a trust management system with certifietueti@n. InProceeding of the IEEE
Symposium on Security and Privadfay 2001.

[98] M. P. Jones. Hugs 1.3, the Haskell user's Gofer systemsernanual. Technical Report
NOTTCS-TR-96-2, Department of Computer Science, NottamghJniversity, Nottingham
NG7 2RD, UK, 1996.

[99] B. S. Kaliski Jr. A layman’s guide to a subset of ASN.1,BEnd DER. Technical report,
RSA Laboratories, November 1993. ftp://ftp.rsa.com/plbg/ascii/layman.asc.

[100] B. Kaliski. Privacy enhancement for internet elentcomail: Part IV: Key certification and
related services. Request for Comment (RFC) 1424, Intéingineering Task Force, Febru-
ary 1993.

[101] S.D. Kamvar, M. T. Schlosser, and H. Garcia-Molinae Bigentrust algorithm for reputation
management in P2P networks.linProceedings of the Twelfth International World Wide Web
Conference (WWW20Q3udapest, Hungary, May 20-24 2003. ACM Press.

[102] R.M. Karp and R.E. Miller. Properties of a model for alié&l computations:determinacy,
temination, queueingSIAM Journal of Applied Mathematic$4(6):1390-1411, November
1966.

[103] M. Karul. Metacomputing and resource allocation on the world wide weiD thesis, New
York University, May 1998.

[104] J. J. Kennedy.Design and Implementation n-tier Metacomputer with Deedised Fault
Tolerence PhD thesis, University College Cork, Ireland, 2004.

[105] S. Kent. Privacy enhancement for internet electronal: Part II: Certificate-based key
mangement. Request for Comment (RFC) 1422, Internet Eaginte Task Force, February
1993.



BIBLIOGRAPHY 196

[106] V. Kessler. On the Chinese Wall model. European Symposium on Research in Computer
Security pages 39-54. Springer Verlag, LNCS 875, 1992.

[107] S. Kille. String representation of distinguished ream Request for Comment (RFC) 1779,
Internet Engineering Task Force, March 1995.

[108] P. Krugman.The return of Depression Economid&/W Norton & Co, 1999. 176 pages.

[109] T. Lampinen. Using SPKI certificates for authorizatio CORBA based distributed object-
oriented systems. l4th Nordic Workshop on Secure IT systems (NordSec (g@)es 61-81,
Kista, Sweden, November 1999.

[110] B. Lampson. Protectio”ACM Operating Systems Reviey 1974.

[111] U. Lang. Access Policies for MiddlewarePhD thesis, University of Cambridge, Wolfson
College, Cambridge, UK., May 2003.

[112] N. Li. Local nhames in SPKI/SDSI. IRroceedings of the 13th IEEE Computer Security
Foundations Workshgmages 2—-15. IEEE Computer Society Press, July 2000.

[113] N. Li, J. C. Mitchell, and W. H. Winsborough. Design ofr@e-based trust-management
framework. InProceedings of the 2002 IEEE Symposium on Security and &timamber
ISSN: 1081-6011 ISBN: 0-7695-1543-6, pages 114-130, @dkiaA, USA, 2002. IEEE.

[114] J. Linn. Privacy enhancement for internet electranail: Part I: Message encryption and
authentication procedures. Request for Comment (RFC),14i#drnet Engineering Task
Force, February 1993.

[115] P. Loscocco and S. Smalley. Integrating flexible supfmr security policies into the Linux
operating system. IRroceedings of the FREENIX Track of the 2001 USENIX Annuzi-Te
nical Conference.Boston, MA, USA., June 2001.

[116] N. McBurnett. PGP web of trust statistics, 1997. itgzn.boulder.co.us/ neal/pgpstat/.
[117] Microsoft CorporationMicrosoft Passpotrthttp://www.passport.net/.

[118] Microsoft Corporation. Microsoft Platform SDK. The COM Library. Microsoft Devetp
Network, 0.9 edition, October 1995. http://www.msdn.microsafirnc

[119] J. K. Millen and R. N. Wright. Reasoning about trust am&lirance in a public key infrastruc-
ture. InProceedings of the 13th IEEE Computer Security Foundatgokshop (CSFW’00)
pages 16-23, Cambridge, England, July 03—05 2000.



BIBLIOGRAPHY 197

[120] J. G. Mitchell, J. J Gibbons, G. Hamilton, P. B. KesskérA. Khalidi, P. Kougiouris, P. W.
Madany, M. N. Nelson, M. L. Powell, and S. R. Radia. An ovewwigf the Spring system.
In Compcon Spring '94, Digest of Paperpages 122-131, 28th February — 4th March 1994.

[121] P. Mockapetris. Domain names - concepts and fadlitiRequest for Comment (RFC) 1034,
Internet Engineering Task Force, November 1987.

[122] J. P. Morrison. Condensed Graphs: Unifying Availability-Driven, CoermiBriven and
Control-Driven ComputingPhD thesis, Eindhoven, 1996.

[123] J. P. Morrison, B. Clayton, A. Patil, and S. John. Thieimation gathering module of the
WebCom-G operating system. Rroceedings of the Second International Symposium on
Parallel and Distributed Computing (ISPDCQ3)jubljana, Slovenia, October 2003.

[124] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. Grid enabled metacomputing.he
Journal of Neural, Parallel and Scientific Computatjd®pecial Issue on Grid Computing,
2004.

[125] J. P. Morrison and R. Connolly. Facilitating ParaPebgramming in PVM using Condensed
Graphs. Proceedings of EuroPVM’'99: Universitat AutononeaBarcelona, Spain. 26-29
Sept 1999.

[126] J. P. Morrison et al. Architectural neutral glue for M@bjects. Internal Note, Center for
Unified Computing, University College, Cork, Ireland, 2000

[127] J. P. Morrison and P. D. Healy. Implementing the WebCodistributed computing platform
with XML. In IEEE Proceeding of the International Symposium on Paraltel Distributed
Computing 2002.

[128] J. P. Morrison, P. D. Healy, and P. J. O'Dowd. Architeetand implementation of a dis-
tributed reconfigurable metacomputer. Pnoceedings of the Second International Sym-
posium on Parallel and Distributed Computing (ISPDC 2Q03ges 153-158, Ljubljana,
Slovenia, October 2003.

[129] J. P. Morrison, P. D. Healy, D. A. Power, and K. J. Pow&he role of XML within the
WebCom metacomputing platformScalable Computing: Practice and Experien&£1),
2005.

[130] J. P. Morrison and D. A. Power. Master promotion anéndliredirection in the webcom
system. INPDPTA, Las Vegas USAR000.



BIBLIOGRAPHY 198

[131] J. P. Morrison, D. A. Power, and J. J. Kennedy. A ConddrGraphs Engine to Drive Meta-
computing. Proceedings of the international conferengeanallel and distributed processing
techniques and applications (PDPTA '99), Las Vegas, Newiulze 28 - Julyl, 1999.

[132] J. P. Morrison, D. A. Power, and J. J. Kennedy. WebCoritY/egb Based Distributed Compu-
tation Platform. Proceedings of Distributed computing loe tVeb, Rostock, Germany, June
21 - 23, 1999.

[133] J. P. Morrison, K. Power, and N. Cafferkey. Cyclone: ykle brokering system to harvest
wasted processor cycles. Rarallel and Distributed Computing Techniques and Applica
tions Las Vegas, NV, USA, June 2000.

[134] B. P. Mulcahy, S. N. Foley, and J. P. Morrison. Crossikegtcondensed graphs. Rroceed-
ings of the 2005 International Conference on Parallel andtBibuted Processing Techniques
and ApplicationsMonte Carlo Resort, Las Vegas, Nevada, USA, June 27-30. KIDBTA.

[135] M. J. Nash and K. R. Poland. Some conundrums concesg@pgration of duty. liProceed-
ings of the Symposium on Security and Privamyges 201-207, Oakland, CA, May 1990.
IEEE Computer Society Press.

[136] R. M. Needham and M. D. Schroeder. Using encryptiorafghentication in large networks
of computersCommunications of the ACN1(12):993-999, December 1978.

[137] M. N. Nelson and S. R. Radia. A uniform name service foirg)’s unix environment. In
Proceedings of the Winter 1994 USENIX Conferetd®ENIX, January 1994.

[138] B. C. Neumann and T. Ts'o. Kerberos: An authenticasenvice for computer networks.
IEEE CommunicationsSeptember 1994.

[139] Massachusetts Institute  of  Technology  (MIT). Projec athena.
http://web.mit.edu/release/www/index.html.

[140] Object Management Group (OMG). Naming service speatifin. Technical Report Version
1.3, OMG, October 2004. http://www.omg.org/cgi-bin/dfmetal/04-10-03.

[141] S.C)’Tuairisg, M. Browne, J. Cunniffe, A. Shearer, J. Morrisamd K. Power. WebCom-G:
Implementing an astronomical data analysis pipeline onid-tgpe infrastructure. In P. L.
Shopbell, M. C. Britton, and R. Ebert, edito SSP Conf. Ser. Astronomical Data Analysis
Software and Systems XIRublications of the Astronomy Society of the Pacific, 2005.

[142] T.P. Pedersen. Electronic payments of small amoim&ecurity Protocols Workshppages
59-68, 1996.



BIBLIOGRAPHY 199

[143] K. Pingali and Arvind. Efficient demand-driven evadioa. part 1. ACM Transactions on
Programming Languages and System(®):311-333, April 1985.

[144] D. A. Power. A Framework for: Heterogeneous Metacomputing, Load Batapaend Pro-
gramming in WebConPhD thesis, University College Cork, Ireland, 2004.

[145] D. A.Power, A. Patil, S. John, and J. P. Morrison. Web@8. InProceedings of the 2003 In-
ternational Conference on Parallel and Distributed Prosieg Techniques and Applications
(PDPTA'03) Las Vegas, Nevada, June 2003. CSREA Press.

[146] K. Power.ComPeer: A Scalable, Self-organizing, peer-to-peer Meta@uter PhD thesis,
University College Cork, Ireland, 2004.

[147] T. B. Quillinan, B. C. Clayton, and S. N. Foley. GridAdm Decentralising grid admin-
istration using trust management. Pnoceedings of the Third International Symposium on
Parallel and Distributed Computing (ISPDCQ4Jork, Ireland, July 2004.

[148] T. B. Quillinan and S. N. Foley. Security in WebCom: Adslsing naming issues for a web
services architecture. IRroceedings of the 2004 ACM Workshop on Secure Web Services
(SWS).Washington D.C., USA., October 2004. ACM.

[149] S. Radia. Naming policies in the Spring system. Phoceedings of the 1st International
Workshop on Services in Distributed and Networked EnviemtmiSun Microsystems, Inc.,
IEEE, 1994.

[150] M. K. Reiter and S. G. Stubblebine. Path independeacadthentication in large-scale sys-
tems. InProceedings of the 4th ACM conference on Computer and comatioms security
(CCS97) pages 57-66. ACM Press, 1997.

[151] R. Rivest. The MD5 message-digest algorithm. Rediae€€omments (RFC) 1321, Internet
Engineering Task Force, April 1992.

[152] R. Rivest and B. Lampson. SDSI - a simple distributetligéy infrastructure. I'DIMACS
Workshop on Trust Management in Network396.

[153] R.L.Rivest. S-expressions. Technical report, Nekorking Group, Internet Engineering
Task Force, May 1997. Internet Draft: http://theory.lds.edu/ rivest/sexp.txt.

[154] R. L. Rivest. Can we eliminate certificate revocati@isl? In Rafael Hirschfeld, editor,
Proceedings of Financial Cryptography '98umber 1465, pages 178-183. Springer Lecture
Notes in Computer Science, February 1998.



BIBLIOGRAPHY 200

[155] A. D. Rubin and D. E. Geer Jr. Mobile code securitpternet Computing2(6):30 — 34,
November/December 1998. ISSN: 1089-7801.

[156] J. Sabater and C. Sierra. Social regret, a reputatimstehbased on social relatiorS8lGecom
Exch, 3(1):44-56, 2002.

[157] V. Samar and R. Schemers. Unified login with pluggahlthentication modules (PAM).
Request for Comments 86.0, Open Software Foundation, @cid95.

[158] R. Sandhu et al. Role based access control motlesE Computer29(2):38-47, 1996.

[159] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. YounmRole-based access control
models.IEEE Computer29(2):38—-47, February 1996.

[160] R. S. Sandhu and P. Samarati. Access control: pri@pld practice. Communications
Magazine, IEEE32(9):40 — 48, September 1994.

[161] B. SchneierApplied Cryptographychapter 12, pages 566-572. Wiley, second edition, 1996.

[162] B. Schneier. Managed Security Monitoring: Closing the Window of Expes2000.
http://www.counterpane.com/window.html.

[163] C.  Shirky. The case against micropayments. OpenP2P:
http://www.openp2p.com/pub/a/p2p/2000/12/19/micyopants.html, December 2000.

[164] A. E. K. Sobel and J. Alves-Foss. A trace-based modéh@iChinese Wall security policy.
In Proceedings of the 22nd National Information Systems 8gdlpbnference Arlington,
Va., USA, October 1999.

[165] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Asdn, and J. Lepreau. The Flask
security architecture: System support for diverse secydlicies. InProceedings of the
8th USENIX Security Symposiugages 123 — 140, Washington D.C., USA, August 1999.
USENIX.

[166] J. A. Stankovic and K. Ramamritham. The Spring kerreelhew paradigm for real-time
operating systemsSIGOPS Oper. Syst. Re23(3):54—71, 1989.

[167] T. L. Sterling, D. Savarese, D. J. Becker, J. E. DorhahdA. Ranawake, and C. V. Packer.
Beowulf: A parallel workstation for scientific computatiorin Proceedings of the Inter-
national Conference of Parallel Processing (ICRPRplume 1, Urbana-Champain, lllinois,
USA, August 11-14 1995.



BIBLIOGRAPHY 201

[168] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoeka] BinBalakrishnan. Chord: A scalable
peer-to-peer lookup service for internet application®oceedings of SIGCOMM 200%an
Diego, California, USA., August 2001. ACM.

[169] Sun Microsystems. Enterprise JavaBeans(tm) Specification, Version, 2line 2003.
http://java.sun.com/products/ejb/docs.html.

[170] Sun Microsystems IncThe Java Websitenttp://java.sun.com/.

[171] A. S Tanenbaum and A. S Woodhubperating Systems Design and Implementati®ren-
tice Hall, 3rd edition, 2006. ISBN: 0-13-142938-8.

[172] J. Touch, L. Eggert, and Y. Wang. Use of IPsec transpaxde for dynamic routing. Request
for Comments (RFC) 3884, Internet Engineering Task Forepte®nber 2004.

[173] U.S. Department of Defense. Trusted computer systéaria. Technical Report CSC-STD-
001-83, U. S. National Computer Security Center, August319Bnown as “The Orange
Book”.

[174] W. Venema. TCP WRAPPER: Network monitoring, accesstrob and booby traps. In
Proceedings of the 3rd UNIX Security Symposita99.

[175] J. von Neumann. The principles of large-scale conmguthachines.lEEE Annals of the
History of Computing10(4):243—-256, October-December 1988. ISSN: 1058-6180.

[176] The World Wide Web Consortium (W3C). The PICS projéttp://www.w3.org/PICS/.

[177] The World Wide Web Consortium (W3C). Web naming and radsing.
http://www.w3.org/Addressing/.

[178] M. Wahl, T. Howes, and S. Kille. Lightweight directoagcess protocol (version 3). Request
for Comment (RFC) 2251, Internet Engineering Task Forceghder 1997.

[179] C. Weider, J. Reynolds, and S. Heker. Technical oeenif directory services using the
X.500 protocol. Request for Comment (RFC) 1309, Interneafilirering Task Force, March
1992.

[180] C. Weissman. Security controls in the ADEPT-50 tirhering system. IAFIPS Conference
Proceedingsvolume 35, pages 119-133. FJCC, 1969.

[181] B. S. White, M. Walker, M. Humphrey, and A. S. GrimshavegionFS: A secure and scal-
able file system supporting cross-domain high-performapications. InSC2001: High
Performance Networking and Computjidenver, Colorado, November 10-16 2001.



BIBLIOGRAPHY 202

[182]

[183]

[184]

[185]

[186]

[187]

R. Wright, A. Getchell, T. Howes, S. Sataluri, P. YeadaVN. Yeong. Recommendations
for an X.500 production directory service. Request for Camta (RFC) 1803, Internet
Engineering Task Force, June 1995.

L. Xiong and L. Liu. Peertrust: Supporting reputatioaised trust in peer-to-peer communi-
ties. IEEE Transactions on Knowledge and Data Engineering (TK2BP4. Special Issue
on Peer-to-Peer Based Data Management.

W. Yeong, T. Howes, and S. Kille. Lightweight diregtoaccess protocol. Request for
Comment (RFC) 1777, Internet Engineering Task Force, Mag&b.

X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegatinodel in RBAC. InPro-
ceedings of the 7th ACM Symposium on Access Control Modé[$earhnologies (SACMAT
2003) Como, Italy, June 2003.

H. Zhou and S. N. Foley. A framework for establishingeletralized secure coalitions. In
Proceedings of IEEE Computer Security Foundations Woikstenice, Italy, July 2006.

P. ZimmermannThe Official PGP Users GuideMIT Press, 1995.



