
Secure Naming for Distributed Computing using the

Condensed Graph Model

by

Thomas Brendan Brabants Quillinan, B.Eng., M.Sc.

THESIS

Presented to the Faculty of Science

National University of Ireland,

Cork

for the Degree of

Doctor of Philosophy

July 2006

“O! be some other name: What’s in a name? that which we call a rose,

by any other name would smell as sweet.”

William Shakespeare, Romeo and Juliet Act II, Scene II.

Abstract

Distributing computations across multiple machines has become increasingly important in recent

years. With the advent of the computational Grid and other distributed compute projects, such as

Seti@Home and, most recently,Stardust@Home, the distributed computation area is expanding

rapidly. In general, distributed computing incorporates the areas of meta-computing, Grid comput-

ing, cluster computing and Web Services. Implementing a distributed computation architecture has

several basic functional requirements, such as load balancing, fault tolerance and security. Provid-

ing a security architecture for such a diverse area is an important challenge. Requirements include

ensuring the integrity of results, providing an access-control mechanism for sensitive resources and

computations, and authenticating the users of the system.

An important aspect of a security architecture for a distributed system is the identification and

control of both the computation and the compute nodes withinthe system. For example, in order to

control access to a computation, we must be able to identify the individual components that make

up the computation. We propose that in order to control a computation, we must be able to name all

the aspects of the computation. The central premise of our thesis is:“If you can name it, you can

control access to it”.

This dissertation examines the security requirements of the WebCom distributed computing

environment. WebCom is an extensible distributed computation environment that has the ability

to execute arbitrarily complex compute jobs on many different types of architecture. WebCom is

primarily designed to execute condensed graph applications in a distributed manner. This thesis

develops the security architecture for WebCom, primarily to provide a systematic access control

mechanism for condensed graph applications. We explore thecondensed graph model and develop

a naming system that is used to control the execution of thesegraphs and allows the specification

of sophisticated security policies in a distributed environment. SDSI-like local naming is used to

name objects in condensed graphs. We demonstrate the flexibility of this architecture with a number

of case studies, including a micropayment architecture fordistributed computations, an automated

administration architecture for Grid and an activity basedsecure workflow architecture.

2

Dedicated to my Grandfather, Captain P. Brendan Sugrue 1917- 2005, who passed away during

the writing of this thesis. He never let me forget that familyis the most important treasure that we

posess. He considered his family his greatest achievement.I will forever miss his larger than life

personality, his caring of others and, most of all, his senseof mischief and fun.

“Nı́ fheicfidh muid a leithéid arı́s ”

Acknowledgements

First and foremost, I want to thank my family who have believed in and supported me during my

endless college career: at last the eternal student no more.To my parents whose advice, belief and

love has always been readily available and is appreciated, if not always at the time. I especially

want to thank my sister Niamh who spent a weekend proof-reading this totally unfamiliar work.

She has also kindly provided me with somewhere (nice!) to live for the last four years. I also

want to thank my other siblings, Cliona and Cillian, who havehelped and entertained me over the

years. I especially want to thank my mother,Áine, and brother, Cormac, who ransomed the laptop

containing this work back from the thieves who stole it. I also want to thank Galway Bay FM and

especially the Galway Sentinal for their help retreiving the laptop.

I also want to acknowledge the help and friendship shown to meby the members of the Centre

for Unified Computing in UCC especially: Adarsh, Barry, Brian, Dave, Hongbin, James, John

O’Regan, Keith, Max, Neil, Padraig, Philip and Therese. Special mention must go to Barry Mulcahy

and Brian Clayton, with whom I have collaborated in the past and from whom I’ve learnt a great

deal. Thanks also go to Barry for the last-minute proof reading. Also to Philip Healy with whom a

friendly competition for completion, that I lost by two weeks, helped keep me focused throughout

seemingly endless writing up period. Thanks also go to the former CUC postgradutes Daithı́ and

Colm for their help. I want to thank the other postgraduates in computer science that have helped

(and entertained) me, especially the Adrians, Jonathan, Marie, Utz and Will.

To the head of the CUC, John Morrison, who has always helped and provides a great environ-

ment within the group. I particularly appreciate his actingas my internal examiner in very difficult

circumstances. I also want to thank my external examiner, Bruce Christianson, who provided a

rigorous, but enjoyable, examination. His interest and enthusiasm are greatly appreciated.

Last, but never least, to my supervisor, Simon Foley, who hasguided and supported me through-

out my Ph.D. and whose advice was always available and cogent. I can never thank him enough for

all his help. Special thanks also go to Vivien for those gorgeous brownies!

4

Contents

Abstract 2

Acknowledgements 4

I Introduction and Overview 15

1 Introduction 16

1.1 Distributed Computing 16

1.2 WebCom . 17

1.3 Naming Distributed Computations 18

1.4 Securing WebCom .19

1.5 Contributions .. . 20

1.6 Layout of Dissertation 21

II Background and Review 23

2 Authorisation and Authentication 24

2.1 Access Control .. 24

2.1.1 Access Control Matrix .. 25

2.2 Access Control Models 27

2.2.1 Mandatory Access Control .. . 28

2.2.2 Discretionary Access Control 30

2.3 Trust Management Systems 31

2.3.1 PolicyMaker . 33

2.3.2 KeyNote . 35

2.3.3 SDSI/SPKI . 37

2.3.4 Advanced Trust Management Systems 40

2.4 Authentication 48

5

2.4.1 Simple Authentication Protocol 48

2.4.2 SSL/TLS . 49

2.4.3 Kerberos . 50

2.5 Other Security Technologies 50

2.5.1 X.509 . 51

2.5.2 PGP . 53

2.5.3 Secure Mobile Code . 53

3 Distributed Naming 55

3.1 Directory Naming .. . 56

3.1.1 X.500 . 56

3.1.2 LDAP . 57

3.2 Object Naming .59

3.2.1 Spring Naming Service .. 59

3.2.2 CORBA Names . 60

3.3 Other Naming Systems .. . 61

3.4 Discussion and Conclusions 62

4 Condensed Graphs and Distributed Computing 63

4.1 Computational Model 64

4.1.1 Stemming and Grafting: a basis for lazy and eager evaluation 65

4.1.2 Condensation and Evaporation: embedding subgraphs 69

4.1.3 Unifying eager, lazy and imperative computations 70

4.2 Executing Condensed Graphs 71

4.2.1 Triple Manager . 71

4.2.2 Distributing Computations 71

5 WebCom 73

5.1 Distributing Computations 74

5.2 Architecture .. . 75

5.2.1 Execution Engine Module .. 76

5.2.2 Communications Manager Module 76

5.2.3 Load Balancing Module .77

5.2.4 Fault Tolerance Module .. 77

5.2.5 Naming Manager Module . 77

5.2.6 Security Manager Module .. 78

5.2.7 User Modules . 78

5.3 WebCom Applications .. . 78

5.4 Separation of Concerns 79

5.5 Discussion and Conclusions 82

III Security in Distributed Systems 84

6 Naming for Condensed Graphs 85

6.1 Context . 86

6.2 Naming Condensed Graphs 88

6.2.1 Unique names . 91

6.2.2 Self Referencing Names .. 93

6.3 A Naming Model for Condensed Graphs 93

6.4 Reduction Rules .. . 96

6.4.1 Tuple Reduction . 97

6.4.2 Tuple Elimination .97

6.4.3 Name Equivalence . 99

6.4.4 Reduction Rule Application Order 101

6.4.5 Creating and Updating Names .. . 101

6.5 History-based Names 102

6.5.1 Naming Grid Submissions .. 104

6.5.2 Web Services Policy .105

6.6 An API for Naming in WebCom .. 106

6.6.1 webcom.core.naming.ReductionRule 107

6.6.2 webcom.core.naming.NameGenerator 107

6.6.3 webcom.core.naming.WebComName 110

6.6.4 webcom.core.naming.NamingManagerModule 111

6.7 Discussion and Conclusion 112

7 WebCom Security Model 115

7.1 WebCom Access Control Model 116

7.1.1 WebCom Permissions . 117

7.1.2 Ordering Permissions .. . 119

7.1.3 Binding Permissions to Entities 121

7.1.4 Implementing the Security Model in WebCom 123

7.2 Sample Security Policies for WebCom 126

7.2.1 ShareTrader . 126

7.2.2 High Watermark style policy 129

7.2.3 Pull and Push Access Control .. . 132

7.3 Secure WebCom Software Architecture 135

7.3.1 webcom.core.security.SecurityManagerModule 137

7.3.2 Trust Management Based Security Manager 138

7.4 Secure Authentication between WebCom Virtual Machines. 140

7.4.1 webcom.core.conman.SecureConnectionManager 140

7.5 Discussion and Conclusions 141

8 Case Studies 144

8.1 Classic Secure WebCom .. . 145

8.2 Micropayments .. 146

8.2.1 Micropayments in KeyNote .. 147

8.2.2 Security Analysis .. 149

8.2.3 Micropayments in Secure WebCom 149

8.2.4 Discussion . 150

8.3 GridAdmin . 151

8.3.1 Administrating a Grid .. 152

8.3.2 Grid Administration using WebCom 154

8.3.3 Trust Paradigms for Grid Administration 156

8.3.4 Discussion . 164

8.4 WebComDAC . 165

8.4.1 WebComDAC Architecture . 167

8.4.2 Implementing WebComDAC . 168

8.4.3 KeyStar . 171

8.4.4 Stacked Authorisation .. . 172

8.4.5 Discussion . 173

8.5 Discussion and Evaluation 174

IV Discussion and Conclusions 176

9 Conclusions 177

9.1 Results and Contributions 178

9.2 Limitations and Future Work 178

V Appendices 181

A WebCom Names XML Definition 182

B Naming System for the ShareTrader Application 184

B.1 Generating Names for ShareTrader Nodes 184

B.2 Reduction Rules for ShareTrader Nodes 186

Afterword 187

Bibliography 188

List of Figures

2.1 A simple access control matrix. 25

2.2 The Reference Monitor Model 25

2.3 Layers of a Software System. 27

2.4 Overview of a University Delegation Tree 32

2.5 KeyNote Trust Management Architecture (From [30]). 33

2.6 Structure of a PolicyMaker query. 34

2.7 Structure of a PolicyMaker assertion. 34

2.8 PolicyMaker policy assertion for University. 35

2.9 PolicyMaker assertion for Departmental Head. 35

2.10 Basic Structure of a KeyNote credential 36

2.11 Local Names using S-Expressions 38

2.12 An example SPKI Certificate, authorising the appointing of academic staff. 39

2.13 Overview of a SD3 Application 40

2.14 Example REFEREE statement indicating Alice is trustworthy in a certification mod-

ule. 42

2.15 Example REFEREE Policy, enforcing UCC’s acceptable use conditions. 43

2.16 Example QCM Global Name. 44

2.17 The different types of credentials in RT. 47

2.18 Challenge-Response Authentication Protocol 49

2.19 An example X.509v3 certificate 52

3.1 X.500 Directory Information Tree 57

3.2 A sample UCC LDAP directory tree 58

3.3 Information about Ceres stored in an LDAP directory. 58

3.4 A File System Naming Graph 60

4.1 (a) shows a node with a dynamic operator, (b) a node with a static operator. 64

4.2 A simple Condensed Graph. 65

4.3 (a)A is a stemmed operand toB, (b)A is grafted toB 66

10

4.4 A lazy graph implementation of Factorial(n). 67

4.5 The partially executed graph of Factorial(n) after one step. 68

4.6 The partially executed graph of Factorial(n) after two steps. 68

4.7 The partially executed graph of Factorial(n) after the execution of theifel node. . 68

4.8 Evaporation of the recursiveFact node within the Factorial Graph 69

4.9 An eager version of Factorial(n) 70

4.10 The architecture of the Triple Manager 71

5.1 WebCom’s n-tier architecture. 75

5.2 Secure WebCom Architecture 76

5.3 A Simple Purchase Ordering Application 78

5.4 A skeleton credential authorising KBob to perform the actionsOrderApp andprop. 80

5.5 A credential allowing KBob to execute aprop node with any input(s) and any

destination(s) in the domainbob.ucc.ie. 82

6.1 The Components of a Distributed Name 87

6.2 The structure of a WebCom name. 88

6.3 A simple Travel Agent Web Services application, specified as a Condensed Graph. 89

6.4 A possible name for theBuySeatNode. 90

6.5 An extended name for theBuySeat node. 91

6.6 A SPKI credential authorising a user to execute aBuySeat node. 92

6.7 A condensed graph with non-unique nodes. 93

6.8 A recursive definition of theRentCar node. 94

6.9 Haskell representation of WebCom names. 94

6.10 Representation of theRentCar node . 95

6.11 Definition of theOrd relation. 96

6.12 The Remaining Tuple Elimination Rules. 98

6.13 Equality defined in terms of Reduction 99

6.14 A definition of the Equality relation. 100

6.15 A simple Reduction Rule to retain domain history 103

6.16 Domain ordering rules 103

6.17 Definition of theOrd relation. 103

6.18 GRID Portal Structure. 104

6.19 The name for theRentCar node, executing on a particular GRID resource. 105

6.20 Ceiling Reduction Rule 105

6.21 Airline Car Rental preference rules 106

6.22 WebCom’s Naming Architecture 107

6.23 The implementation of a simple reduction rule’sreduce(n) 108

6.24 A destination reduction rule retaining the function tuple 109

7.1 WebCom’s Reference Monitor 117

7.2 Definition of theOrd relation forPermission. 119

7.3 Sample ordering of execution permissions 122

7.4 SPKI Credential authorisingCompute Cluster to execute any node. 124

7.5 A SDSI/SPKI credential authorising aRentCar node. 126

7.6 The Share Trader Application 127

7.7 ThePriceDealComponent . 127

7.8 TheCaptureDealComponent . 127

7.9 TheVerify Component . 128

7.10 The name of aCaptureDeal node before scheduling 128

7.11 The ShareTrader policy authorising the Senior Trader.. 129

7.12 The ShareTrader credential authorising the Junior Trader. 129

7.13 Reserving a Flight specified as a Condensed Graph. 130

7.14 High watermark reduction rule. 130

7.15 Company Domain orderings. 131

7.16 The name of theAccept node: (a) before and (b) after reduction. 131

7.17 Reserving a Car specified as a Condensed Graph. 134

7.18 Name of theCarModel node before the Push Authorisation decision. 134

7.19 Push reduction rule, for a node with two destination domains, q and v. 134

7.20 Name of theSelectModelnode after the authorisation decision. 135

7.21 Authorisation Steps in Secure WebCom 136

7.22 The Trust Management based security manager for WebCom. 138

7.23 Trust ManagementCheck function used by the Security Manager. 139

8.1 A function only KeyNote credential. 145

8.2 Making Micropayments 147

8.3 The Company’s Policy .. . 147

8.4 Customer’s Contract Credential 148

8.5 Invoicing .149

8.6 A Node Name including a digital coin 150

8.7 Condensed Graph Application to reserve Grid resources.. 154

8.8 Policy Credential allowing the Grid Manager to assign exclusive access to up to 100

resources. 155

8.9 User Credential, delegated by the Grid Manager, to allowreservation of 32 resources.155

8.10 Timings to Execute Graph from Figure 8.7 on 1,2,4,8,16 and 32 Machines. 156

8.11 A Virtual Organisation, with three organisations sharing resources. 157

8.12 Karma Credential for User kBob. 158

8.13 Karma Policy, allowing conditional access to Compute nodes. 158

8.14 Condensed graph workflow application to reserve a resource 160

8.15 Administrator Angela is delegated a credit of 1000. 161

8.16 Administrator Angela delegates a credit of 100 to user KBob 162

8.17 KClare contract for reserving 15 compute nodes for 10 hours. 163

8.18 Credit Credential from UCC’s Finance Department, giving KClare’s Credit limit. . 163

8.19 KUCC-Admin’s policy, trusting the keys of several Finance departments to assign

credit limits. It also dictates the terms acceptable to the Administrator. 164

8.20 The Template for an Activity. 166

8.21 A Share Trading Activity Set. 166

8.22 The DAC Architecture 167

8.23 The WebComDAC Architecture. 168

8.24 The KeyStar Architecture 171

8.25 A KeyNote credential used by KeyStar. 172

8.26 Stacked Security Architecture in WebComDAC 173

List of Tables

8.1 Interpretation of Middleware RBAC Models 170

14

Part I

Introduction and Overview

15

Chapter 1

Introduction

A challenge for the design of access control mechanisms for distributed systems can be summarised

as: “if you can fully name an object, then you can properly control access to that object”. Ac-

cess control is primarily concerned with limiting the actions that authorised users of a system can

perform, either directly, or indirectly through programs running on the system. This dissertation

investigates the security requirements for the WebCom [123] distributed computation environment,

and the condensed graphs [122] computation model on which itis based.

1.1 Distributed Computing

Distributed computing provides the ability to execute complex problems across multiple networked

computers. Distributed applications range from massivelyparallel computations such as distributed

cryptographic key cracking [4] or climate prediction [3] tocomplex enterprise workflows and supply

chain management. The provision of a secure environment fordistributed computing is a necessary

part of any distributed computation system.

The basic requirement for distributed computing is the ability to link users and resources as

transparently as possible. Ideally, distributed computations should be fault tolerant, the computation

load should be spread across available resources as evenly as possible and the computations should

be secure.

Security is an important aspect of distributed applications. When a distributed application is

scheduled to execute on external resources, the stakeholders (application and resource owners) typ-

ically need security guarantees. For example, the resourceowner might require that the application

should not have access to local data.

Analysing the requirements of stakeholders in distributedcomputations implies analysing the

threats to distributed computations. Threats to a distributed computation system include the illicit

modification of data used in a computation; the modification of the computation itself; the unautho-

rised access of data by principals; the unauthorised execution of computations, and identity theft.

16

1.2 WebCom 17

Addressing these threats entails the development of security policies that allow stakeholders to

define their requirements and the development of a mechanismthat enforces these policies. Dis-

tributed computations are, by their very nature, decentralised. For this reason, a decentralised se-

curity architecture is required for distributed applications. One such approach is Trust Manage-

ment [32].

Trust management schemes [16, 29, 152] use public key certificates to specify delegation of

authorisation between public keys and can be used to help decentralise authorisation policies. Trust

Management is an approach to constructing and interpretingthe trust relationships between public

keys that are used to mediate security critical actions. Cryptographic credentials are used to specify

delegation of authorisation between public keys. Trust Management has been used for a number of

applications including active networks [34] and to controlaccess to Web pages [2, 42, 44].

Trust management systems have a number of advantages compared to the traditional systems

based on X.509 [41]. Policies and certificates are created and maintained separately from the appli-

cation in a very natural way. The attributes used within the policies and/or certificates are application

defined, and they are represented in a customisable fashion,allowing the application designer to de-

cide what characteristics are required. Changing the attributes does not require changes to the trust

management system used. By removing the traditional lookupof an identity’s authority, and instead

representing that authority within the certificate, applications no longer need to consider the secu-

rity of where and how this authority is stored. An additionalbenefit of utilising a trust management

system within an application is that designers and implementers of the application are required to

consider trust management explicitly. This encourages good practices when considering the overall

security of such applications. Trust management policies are easy to distribute across networks,

helping to avoid reliance on centralised configuration of distributed applications.

Trust management provides a flexible approach to specifyingand enforcing security requirement

across a network of resources. Each of the stakeholders in the system, for example, the owner

of compute resources and/or application, can specify theirsecurity requirements in terms of trust

management policies.

1.2 WebCom

WebCom applications are specified as condensed graphs. Condensed graphs are directed acyclic

graphs where the nodes are computational components and thearcs specify the sequencing con-

straints between nodes. WebCom is a multi-tiered parent-child based architecture. When a con-

densed graph is executed by WebCom, the nodes in the graph arescheduled by the WebCom parent

to its children. Children can become parents themselves andschedule work to their own children.

Condensed graphs can be used as a distributed job control language to describe the schedul-

ing of operations in an application. Nodes represent value-transforming actions and can be defined

1.3 Naming Distributed Computations 18

at any level of granularity, ranging from low-level machineinstructions to mobile-code programs.

Examples include computational primitives, Web Services [148], Corba objects [28, 81], PVM com-

putations [125], Grid applications [123], and commercial-off-the-shelf (COTS) components [118].

Atomic operations in a condensed graph application need notaddress synchronisation or concur-

rency concerns: such details are implicitly specified by thearcs between nodes and are managed by

the condensed graph execution scheduler.

WebCom has been designed as a modular architecture where individual components, such as

fault tolerance [104], load balancing [144] or security, can be replaced as required by applications.

WebCom’s modules are connected to a central scheduler and are used to help determine where

nodes are to be scheduled for execution.

WebCom handles the issues associated with distributed computations, such as communication,

load balancing, fault management and security. These features are transparent to the execution of

condensed graph applications. In this dissertation, we describe the security architecture of WebCom.

This is an architecture that can control where the nodes in a graph are executed, and monitor the

results of these executions.

1.3 Naming Distributed Computations

Creating security policies for distributed computations is a challenging prospect. Different applica-

tions have a wide range of security goals. In this dissertation, we are primarily interested in access

control. Providing a means to create such access control policies requires having the ability to refer

to components throughout the computation in a consistent and potentially unique way. For example,

application owners may want to specify where sensitive portions of their computation are executed,

or to specify an acceptable range for the result of a computation.

Our thesis is that this fundamental problem can be reduced toa namingproblem. The central

premise of our argument is“if you can name it, then you can make authorisation decisions about

it” . If every component (or, in the case of a condensed graph application, a node) in the computation

is properly named, then it can be referred to with as much precision as is required.

Object names range from simple descriptions, such asLaserPrinter, to globally unique refer-

ences, for example, the digital object identifier [73]http://doi.acm.org/10.1145/1111348.1111359.

This requirement is seen is all aspects of computing. For example, locating websites on the Internet

requires the use of DNS names.

Naming distributed components is not a new problem, for example CORBA [81], the Spring

naming system [149], the X.500 naming architecture [182] and Enterprise Java Beans (EJB) [169]

each provide practical solutions towards the naming of distributed components. However, each of

these solutions addresses naming as a static problem. Distributed objects in these systems havea

priori defined names as they do not change often. In contrast, nodes in a condensed graph evolve

1.4 Securing WebCom 19

continually during execution and therefore the names of these nodes must also evolve. A naming

scheme for condensed graphs must consider this evolving nature of components in the computations.

In this dissertation, we develop a naming model for condensed graphs. This model allows us to

name nodes in a condensed graph with as much precision as is required. These names are used to

specify policy requirements in WebCom, and are known asWebCom names. WebCom names can

be used by any of WebCom’s modules.

1.4 Securing WebCom

Securing WebCom involves specifying and enforcing security policies for condensed graph appli-

cations. As nodes in condensed graphs are represented by WebCom names, security policies are

specified in terms of these names. In this dissertation, we develop an access control model and

secure authentication mechanism for WebCom. This model defines what is meant by a secure We-

bCom system.

Access control policies are enforced in Secure WebCom by thesecurity manager. The security

manager ensures that any resources involved in scheduling and/or executing nodes are authorised to

do so. The enforcement mechanism that is used by security managers is dependent on application

requirements. We provide an application programming interface (API) for WebCom that allows

third party enforcement mechanisms to be implemented if required. A general purpose trust man-

agement based security manager is available. Secure communication between instances of WebCom

is also supported using secure communication managers; forexample, a SSL-based communication

manager module.

Managing and verifying the principals using a distributed computing environment entails ensur-

ing that there is a systematic means to determine the authenticity of the principals and the resources

used in the computation. This can be provided through the useof authentication mechanisms.

The WebCom security architecture is designed to address both access control and authentica-

tion. We argue that the goal of access control for distributed computations is threefold. It can be

characterised as the need to ensure that: computations willbe executed only on resources that are

explicitly authorised; resources will execute only computations that come from authorised servers,

and results of computation execution will be accepted only from resources that are authorised. In

an access control based security architecture, access to anobject is authorised when the subject has

been granted permission to use the object in the requested way.

The authentication problem in WebCom can be characterised as the requirement of two princi-

pals to set up a communication channel whereby each principal believes that they are communicat-

ing only with the other principal.

1.5 Contributions 20

WebCom’s security architecture addresses authorisation and authentication separately: Web-

Com’s authorisation architecture is supported by the naming and security manager modules; au-

thentication is supported by WebCom’s communications manager. This entails using a secure au-

thentication protocol, such as SSL/TLS [92], and providingsupport for a public key infrastructure

(PKI), when necessary. Providing authentic and secure connections between WebComs ensures that

data is sent to the correct destination, and cannot be intercepted, or modified, by a third party.

1.5 Contributions

The contributions contained within this dissertation are as follows;

1. A naming architecture for condensed graphs, that specifies the contextual detail required to

properly name a distributed component.

2. An access control-based security architecture for WebCom that allows application developers

to specify security constraints regarding their applications.

3. A software architecture to support names in practice.

4. A number of case studies that examine the capabilities of WebCom and explore some of the

advantages of WebCom’s security architecture.

Early versions of the results in this dissertation have published in peer-reviewed publications.

These publications are broken down into work that the authorwas the primary contributor, and

collaborations with others.

Primary Contributor. Primary investigative research has concentrated on the naming and secu-

rity architectures for WebCom.

• S. N. Foley, T. B. Quillinan, J. P. Morrison, D. A. Power, andJ. J. Kennedy. Exploiting

KeyNote in WebCom: Architecture neutral glue for Trust Management. In Proceedings of

the Nordic Workshop on Secure IT Systems Encouraging Co-operation, Reykjavik University,

Reykjavik, Iceland, October 2000.

• S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure component distribution using Web-

Com. In Proceeding of the 17th International Conference on Information Security (IFIP/SEC

2002), Cairo, Egypt, May 2002.

• S. N. Foley and T. B. Quillinan. Using Trust Management to support Micropayments. In Pro-

ceedings of the Second Information Technology and Telecommunications Conference, pages

219–223, Waterford Institute of Technology, Waterford, Ireland., October 2002. TecNet.

1.6 Layout of Dissertation 21

• T. B. Quillinan and S. N. Foley. Security in WebCom: Addressing naming issues for a Web

Services architecture. In Proceedings of the 2004 ACM Workshop on Secure Web Services

(SWS)., Washington D.C., USA., October 2004. ACM.

• T. B. Quillinan and S. N. Foley. Synchronisation in Trust Management using push authorisa-

tion. In Proceedings of the First International Workshop onSecurity and Trust Management

STM2005. Electronic Notes in Theoretical Computer Science, September, 2005.

Contributions as part of collaborations. Several of the case studies discussed in Chapter 8 are

the result of collaborations with researchers in the Centrefor Unified Computing in UCC.

• S. N. Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahy, andJ. P. Morrison. A framework for

heterogeneous middleware security. In Proceedings of the 13th International Heterogeneous

Computing Workshop, Santa Fe, New Mexico, USA., April 2004.IPDPS.

• T. B. Quillinan, B. C. Clayton, and S. N. Foley. GridAdmin: Decentralising grid adminis-

tration using Trust Management. In Proceedings of the ThirdInternational Symposium on

Parallel and Distributed Computing (ISPDC04), Cork, Ireland, July 2004.

• S. N. Foley, B. P. Mulcahy, and T. B. Quillinan. Dynamic administrative coalitions with

WebComDAC. In WeB2004: the Third Workshop on e-Business, Washington D.C., USA,

December 2004.

• B. C. Clayton, T. B. Quillinan and S. N. Foley. Automating security configuration for the

Grid. In Journal of Scientific Programming. IOS Press, Vol 13, No. 9, 2005.

• S. N. Foley, B. P. Mulcahy, T. B. Quillinan, M. O’Connor and J. P. Morrison. Supporting Het-

erogeneous Middleware Security Policies in WebCom. In Journal of High Speed Networks

(Special issue on Security Policy Management). IOS Press, 2006.To appear.

1.6 Layout of Dissertation

The remainder of this dissertation is structured as follows: Part II examines the background informa-

tion and current research discussed in this dissertation. In particular, Chapter 2 examines security

research relevant to this dissertation; Chapter 3 investigates common naming systems; Chapter 4

describes the condensed graph model in some detail, and finally, the WebCom distributed metacom-

puter is examined in Chapter 5.

Part III contains the primary contribution provided by thisthesis. Specifically, Chapter 6 in-

troduces the naming architecture for the condensed graph model; this naming architecture is then

1.6 Layout of Dissertation 22

applied to WebCom, and a new security model is described in Chapter 7; Chapter 8 evaluates the

effectiveness of architecture through the examination of applications for Secure WebCom.

Part IV (Chapter 9) discusses the results of this Thesis and proposes some future work that may

be undertaken.

Part II

Background and Review

23

Chapter 2

Authorisation and Authentication

In this chapter, we examine the current security research relevant to our thesis. Securing any system

entails identifying and addressing the threats to that system. There are many classes of security

threats, including identity theft, the misappropriation of information, illicit access to protected re-

sources and so on. In this chapter we examine mechanisms and technologies that address specific

categories of security threats, including authorisation and authentication.

This dissertation is primarily concerned with the development of a security architecture for

the WebCom distributed computation environment. Providing for secure distributed computation

involves controlling access to resources and authenticating the entities that are participating in the

computation. In this chapter, we investigate methods to control access to security critical operations

and methods to properly authenticate entities of the system.

Section 2.1 investigates access control and introduces thefundamental concepts of the access

control matrix, reference monitors and the security kernel. In Section 2.2, we discuss the conven-

tional models of access control, including the Bell LaPadula [25], Biba [27] and Clark-Wilson [46]

models. As trust management is extensively used throughoutthis dissertation, Section 2.3 re-

views several of the trust management schemes currently available, including PolicyMaker [33],

KeyNote [31] and SPKI/SDSI [56, 152]. Section 2.4 investigates authentication and describes au-

thentication protocols such as SSL/TLS [92]. Finally, we discuss other relevant security research in

Section 2.5.

2.1 Access Control

Access control [77] is concerned with providing control over security critical actions that take place

in a system. Providing control over actions consists of explicitly determining either the actions

that are permitted by the system, or explicitly determiningthe actions that are not permitted by the

system.

24

2.1 Access Control 25

2.1.1 Access Control Matrix

Lampson [110] introduced the concept of an access control matrix, with domains forming the rows,

objects forming the columns, and cells indicating the permissions. Objects are things in the system

that need to be protected. Subjects are entities that have access to objects. Permissions are attributes

that specify the access that subjects have to objects. Subjects can themselves be objects. The access

control matrix model is not intended for practical use.

Example 2.1 A simple access control matrix is shown in Figure 2.1. This system has three objects,

File1 DirectoryB InetSocket
Alice read write
Bob read, write write read

Figure 2.1: A simple access control matrix.

File1, DirectoryB andInetSocket, and two subjects,Alice andBob. The cells display

the access rights that subjects have to the objects. For example, Alice hasread access toFile1,

but no access rights toDirectoryB. △

An access control model captures the set of allowed actions as a policy within a system. In

[110], Lampson defined the termprotectionto describe“mechanisms that control the access of a

program to things in the system”. This notion of protection was further formalised in the Harrison-

Ruzzo-Ullman (HRU) access control model [84]. The HRU modelprovides a theoretical study of

policies to control the creation and removal of access rights, subjects and objects in the Lampson

matrix model. The HRU model formalised thesafetyproblem, that is, an access mechanism is

considered safe when there is no sequence of commands that can cause the matrix toleakan access

right. A leak occurs when a sequence of commands exist that add an access right to a subject for an

object that previously did not have that right. One of the significant results of HRU is that the safety

problem is undecidable in their model. Other work, such as [15], has examined means to make the

problem decidable, for example, by limiting the commands tocontain a single operation or limiting

the number of subjects in the system.

Access Allowed

Policy

Access Request

Access Denied

Reference Monitor

Subject Object

Figure 2.2: The Reference Monitor Model

2.1 Access Control 26

A reference monitorrepresents the mechanism that implements the access control model, and

is depicted in Figure 2.2. A reference monitor is defined by the Department of Defence Trusted

Computer System Evaluation Criteria (TCSEC) (commonly known as the Orange Book) as:

An access control concept that refers to an abstract machinethat mediates all accesses

to objects by subjects.

A reference monitor typically operates as follows: a security critical action is required, for example,

an access request for sensitive data, the reference monitorintercepts the action and checks whether

the action is authorised according to the security policy. If it is, then the action proceeds. Otherwise

the security critical action is not authorised and the caller is notified of this failure. Many security

systems use the reference monitor paradigm to enforce security policies. However, every access

control model has a different means to specify their security policy, and therefore, a different imple-

mentation of the reference monitor. In practice, implementations of reference monitors lie in a range

between the two extremes of the security/usability tradeoff: security kernels and application based

reference monitors. Security kernels provide verifiable security but are more difficult to configure;

application based reference monitors are easier to use and configure, but are more easily bypassed.

Other implementations of the reference monitor model also exist that lie between these extremes.

For example, application wrappers, such as TCP/IP wrappers[174], have kernel-level primitives

that are used to confine access of the application to the system, but operate at the application layer.

Security Kernel

A security kernel [74] is an implementation of a reference monitor in the kernel of a system. This

means that all actions that take place on the system are mediated upon by the security kernel. A

security kernel is defined by [173] as:

The hardware, firmware and software elements of a trusted computing base that im-

plement the reference monitor concept. It must mediate all access, be protected from

modification and to be verifiable as correct.

The trusted computing base (TCB) is defined by [173] as:

The totality of protection mechanisms within a computer system–including hardware,

firmware, and software–the combination of which is responsible for enforcing a security

policy.

The advantages to the security kernel approach lie in the fact that any security architecture can be

compromised when the attacker manages to infiltrate a layer below the security system. A security

kernel runs at the lowest software layer, avoiding these types of attack. A reference monitor is an

2.2 Access Control Models 27

Applications

Operating System

O.S. Kernel

Hardware

Figure 2.3: Layers of a Software System.

abstract model, the security kernel is an implementation ofthat model, and the trusted computing

base contains the security kernel together with other protection mechanisms [77].

Figure 2.3 shows the component layers of a software system. In these systems, the hardware

is on the bottom, with the operating system providing accessto applications. The security kernel

forms part of the operating system kernel.

Application-based Reference Monitors

Application-based reference monitors are reference monitors that operate at the application layer

of software systems. They are typically embedded into a specific application, rather than operating

on the entire system. The application system makes the security decision using advice from their

application-based reference monitor. Examples of application-based reference monitors include

those that use Trust Management [32] and the Java [170] security model [78, 79].

Such systems are typically used to enforce security policies on user actions. For example,

the Java security model is used to enforce the access programs have to the system. However, the

Java security model also has kernel-level primitives that are used to confine code, for example, to

particular JVM domains, to support application level mechanisms.

2.2 Access Control Models

Security models characterise different kinds of security policies. There are many different access

control models, such as Bell LaPadula (BLP) [25], Biba [27] or Access Control Lists (ACL) [160].

These models provide a means to define the security goals of a system. For example, BLP is con-

cerned with ensuring confidentiality of classified information, whereas the Biba model is concerned

with ensuring integrity. In general, access control modelsform two categories: mandatory and

discretionary access control.

Mandatory access control means that the security kernel controls the access that subjects have

over objects. In contrast, in discretionary access control, the owners of objects define the access that

other users have to their objects.

2.2 Access Control Models 28

2.2.1 Mandatory Access Control

Mandatory Access Control (MAC) policies allow subjects access to objects only when the secu-

rity level of the subject is greater than the security level of the object. There are many different

types of mandatory access control models, including Bell LaPadula (BLP) [25], Biba [27], Clark-

Wilson [46], Chinese wall [40], role-based access control (RBAC) [159, 185] and type enforcement

(TE) [36].

Bell LaPadula Model (BLP)

The Bell LaPadula (BLP) [25] model was designed to provide security guarantees for multi-user

operating systems. BLP is a state machine model that addresses confidentiality concerns. BLP

policies are concerned with preventing information flowingdownwards from a high security level

to a lower level. This can be summarised as “no read up” and “nowrite down.” Such policies are

commonly referred to as multi-level security (MLS)-type policies.

BLP defines three access control properties, two of them define mandatory access properties

(ss-property and *-property), the third defines a discretionary property (ds-property).

• The Simple Security Property (ss-property) states that a subject at a given security level may

not read an object at a higher, or disjoint, security level (no read-up).

• The Star (*) Security Property (*-property) states that a subject at a given security level must

not write to any object at a lower, or disjoint, security level (no write-down).

• The Discretionary Security Property (ds-property) uses an access matrix to specify discre-

tionary access control.

As BLP is a state-machine model, security is defined in terms of the current state and any

transitions from that state. An important property of BLP isdefined as theBasic Security Theorem:

“If all state transitions in a system are secure and if the initial state of a system is secure, then every

subsequent state of the system will also be secure, regardless of any input that occurs.”

Biba

The Biba security model [27] is designed to address integrity concerns in terms of access that sub-

jects have to objects. Integrity in this respect is defined interms of the correctness of data. As in the

BLP model, the Biba model is defined in terms of state machines. However, the integrity properties

defined by Biba mirror the confidentiality properties definedby BLP. Biba defines two mandatory

access properties:

• The Simple Integrity property defines that a subject at a given security level may not write to

an object at a higher security level (no write-up).

2.2 Access Control Models 29

• The Integrity Star (*) property defines that a subject can read an object at a given security

level, that subject may not write to any other object at a higher security level.

If these two properties are upheld then objects cannot be contaminated by lower level information.

Clark-Wilson

The Clark-Wilson model [46] also addresses integrity. The authors argue that one of the primary

security concerns for applications is that data is not illicitly modified, and that errors and fraud do

not occur. They separate integrity requirements into two areas: internal and external consistency.

Internal consistency is concerned with the internal state of the system, and can be enforced by the

system. External consistency is outside of the control of the system, and must be enforced by an

external mechanism, for example auditing.

The basis for enforcing integrity policies is that data may only be modified by specific programs.

Users have access only to these programs, not the data itself. Furthermore, users have to collaborate

to perform changes to data. Therefore, multiple users must collude in order for the security system

to be broken. This is known as aseparation of dutiesrequirement.

The Clark-Wilson model uses programs as an intermediate between subjects and objects (in this

case data). Subjects are authorised to execute programs; programs are authorised to modify objects.

Chinese Wall

Chinese Wall policies [40, 58, 106] are based on the premise that once a subject accesses an object,

they must not access any other objects that cause a conflict ofinterest. The standard example of

such a conflict is when a subject working in an accounting firm accesses the financial data of one

company, they should not have access to a competing company’s financial data. In effect, once a

subject accesses an object a “Chinese wall” is build around any conflicting objects for that subject.

The Chinese Wall model proposes a formal model to address such policies. This model has been

defined as an extension to the BLP model [58] to address these specific concerns.

In the Chinese Wall model, as actions can potentially changethe access rights that a subject has

to every other object, access rights must be examined after every action. In contrast, in the BLP

model access rights can usually be considered static.

Role Based Access Control (RBAC)

Role based access control, or RBAC [159, 185], is an access control architecture that places users

into roles, and permissions are assigned to these roles. RBAC is designed to reflect real-world

relations between users and permissions. Roles define the logical tasks that users can perform.

Users become members of roles and roles are assigned permissions. For example, in a financial

2.2 Access Control Models 30

company, clerks may order items purchased. Thus, in RBAC, wedefine aClerk role, and assign it

the permission to make purchase orders. Then we assign users, who are employed as clerks into the

Clerk role. This implicitly gives them the permissions necessaryto make purchase orders.

RBAC is an efficient means to define an access control policy. As users are grouped in roles and

permissions are assigned to these roles, the policy does notrequire the enumeration of every user

and permission possible. The enforcement check is twofold:when a user attempts to perform an

action, the reference monitor checks the roles the user is a member of; these roles are then checked

in turn to determine whether the action is permitted by any ofthe user’s role. RBAC is commonly

used in operating systems, database management systems andmiddleware architectures.

Type Enforcement

Type enforcement (TE) [36] is a labelling approach to accesscontrol. TE is a table-orientated

mandatory access control mechanism suited for confining applications to known behaviour. do-

main and type enforcement (DTE) [21] is an extension of type enforcement including the concept

of domains to traditional type enforcement. Several systems use implementations of TE, such as

SELinux [115] (DTE) and Flask [165] (TE) to enforce their security policies.

In type enforcement, labels are attached to both subjects and objects. Subjects are considered

active entities and a domain label is attached to them. The domain label encodes the access con-

trol attributes associated with subjects. Objects are considered passive entities, and a type label is

attached to them. The type label encodes the access control attributes associated with objects. The

access that subjects have to objects depends on the access capability that the subject’s domain has

to the object’s type. These capabilities are encoded in a setof tables.

There are two main tables, the domain definition table (DDT) and domain interaction table

(DIT). As with an access control matrix, the DDT specifies theallowed interactions between sub-

jects (domains) and objects (types). Domains form the rows of the table, types form the columns

and the permitted access modes, for example,reador write, are stored in the cells. When a domain

attempts to access a type, the DDT is consulted to determine whether the access is permitted.

The DIT table specifies the allowed interactions between subjects. In the DIT table, both the

rows and columns contain subjects (domains). As with the DDT, the cells contain the access mode

permitted between domains, for example, create, destroy orsignal. When one domain attempts to

interact with another, the DIT is consulted and an authorisation determination is made.

2.2.2 Discretionary Access Control

In discretionary access control (DAC) models, subjects can, at their discretion, modify access to

objects that they own. For example, the Unix file system controls allows the owners of files to set

the read, write and execute permissions for other users. Many operating systems have some type of

2.3 Trust Management Systems 31

DAC system. The most prevalent DAC model is the access control list (ACL) model. DAC models

are also used in database management systems and operating systems, as these systems use the

concept of subjects owning objects and these subjects control access to their objects.

Access control lists (ACLs) [160] are a simple means to implement the access control matrix

model. ACLs represent columns in the matrix. Each object in the system has an associated ACL that

holds a list of subjects and the access rights that they hold for that object. When a subject attempts

to access an object, the reference monitor checks the accesscontrol list associated with the object

and determines whether the subject has the required permission.

2.3 Trust Management Systems

Trust Management [29, 32, 80, 152] is an approach to constructing and interpreting the trust rela-

tionships among public keys that are used to mediate security critical actions. Credentials are used

to specify delegation of authority among public keys, and are used to determine whether a signed

request complies with a local authorisation policy.

Blaze et al [32] defined trust management as“a unified approach to specifying and interpreting

security policies, credentials, and relationships that allow direct authorization of security-critical

actions” Trust Management is basically designed to answer the question “Do I trust principal X to

do action Y?” A trust management system enables permissionsto be associated with cryptographic

keys. These permissions can be delegated by one key to another. Trust management systems must

be able to navigate these delegation chains, linking a request to the authority required to perform

the requested action.

There are two basic categories of cryptographic certificates: identity certificates that define an

association between a public key and the identity of the holder of the certificate; and attribute certifi-

cates that define an association between public keys and a setof permissions. For consistency, we

refer to identity certificates simply ascertificatesand attribute certificates ascredentials. Existing

systems such as X.509 and PGP allow the association of identity to public keys. Trust Manage-

ment addresses the need to associate abilities to public keys. In other words, certificates answer the

question: “who is the holder of this public key?”; credentials answer the question “what can I trust

this public key to do?” In general, trust management systemsdo not necessarily need to verify the

identity of the holder of credentials. These questions, while valid security problems, are not relevant

to the application that is attempting to decide whether or not an action is authorised. Such problems

are instead left to identity certificates systems (such as X.509).

The ability to delegate permissions between users is a central feature of trust management sys-

tems. This allows the users of a system to selectively give other users part of their authority. This

reflects how authority is shared in reality. In the commercial world, a central figure does not set out

the authority of every employee of a company. Instead, the CEO delegates authority for specific

2.3 Trust Management Systems 32

areas to company directors, who delegate portions of their authority to specific employees. Trust

management supports this view of authorisation.

Example 2.2 Consider a university application (Figure 2.4): A University appoints a President

and a Registrar. The President also appoints departmental heads (HoD), who appoint lecturers.

The Registrar registers students for specific courses. If this is considered in a trust management

sense, then the University delegates the authority to appoint departmental heads and lecturers to the

President. The President then further delegates the authority to appoint lecturers to the departmental

heads. The Registrar is delegated the authority to registerstudents by the University.

University

President Registrar

HoD HoD

Lecturers

Students

Figure 2.4: Overview of a University Delegation Tree

In this case we can say “The Universitytruststhe President to appoint departmental heads and

lecturers”. Furthermore, the delegation of authority to the departmental heads can be stated as “The

Presidenttruststhe departmental heads to appoint lecturers”. △

In general a Trust Management system is made up of five basic components (From [29]):

• A language for describing ‘actions’, which are operationswith security consequences that are

to be controlled by the system.

• A mechanism for identifying ‘principals’, which are entities that can be authorised to perform

actions.

• A language for specifying application ‘policies’, which govern the actions that principals are

authorised to perform.

• A language for specifying ‘credentials’, which allow principals to delegate authorisation to

other principals.

2.3 Trust Management Systems 33

requests
Policy

Application

TM API

Policy

Application

TM API

System

TM

PKI

Untrusted Principles

TM queries

Trusted Environment

untrusted

Figure 2.5: KeyNote Trust Management Architecture (From [30]).

• A ‘compliance checker’, which provides a service to applications for determining how an

action requested by principals should be handled, given a policy and a set of credentials.

Trust Management systems have a number of advantages compared to the traditional identity-

based systems created using X.5091. Policies and certificates are created and maintained separately

from the application (Figure 2.5). The terminology used within the policies and/or credentials is

application defined. They are represented in a application specific fashion, allowing the application

designer to decide what characteristics are required. Trust management removes the traditional

access control approach of first determining the identity ofthe requester, and then determining the

requester’s authority. Instead that authority is represented within the credential. Applications no

longer have to consider the security of where this authorityis stored. A benefit of utilising a trust

management system within applications is that designers and implementers of these applications are

required to consider authorisation issues explicitly. This encourages good practice when considering

the overall security of such applications. Trust management policies are easy to distribute across

networks, helping to avoid reliance on centralised configuration of distributed applications.

In Sections 2.3.1 – 2.3.3 we will examine some of the more common trust management systems

that are currently available. Section 2.3.4 examines some proposed trust management systems that

provide more advanced mechanisms to support specific types of applications.

2.3.1 PolicyMaker

In [32], Blaze et al identified the trust management problem as a distinct component of network

security. PolicyMaker [31–33] proposed a solution towardsaddressing the trust management prob-

lem. Prior to the development of PolicyMaker, existing systems that supported security in network

applications, such as X509 and PGP, addressed only narrow regions of the trust management spec-

trum, namely identification. PolicyMaker changed this in providing a generic trust management

1X.509 (Section 2.5.1) has also been extended to support trust management [70].

2.3 Trust Management Systems 34

framework.

In PolicyMaker, policies, credentials and trust relationships are specified as programs (or parts

of programs), and are expressed in asafeprogramming language. In this context, “safe” means

resource and I/O limited, for example, AWKWARD (which is a safe version of the AWK [14] lan-

guage was developed for the PolicyMaker system). Other “safe” languages include Safe-TCL [57]

and Java [170]. As the policies, credentials and relationships are specified as programs, they are ex-

tremely flexible and expressive. However, when the authors of [33] analysed the proof mechanism

used by PolicyMaker, they found that in its most general formit is undecidable and is NP-hard even

when restricted in several natural ways.

Security policies and credentials are defined in terms of predicates, calledfilters. These filters

are associated with public keys and accept or reject actionsbased on what abilities those public keys

are trusted to perform. The basic function of the PolicyMaker system is to processqueries. Queries

(see Figure 2.6) are requests to determine whether a public key (or keys) is allowed to perform a

specified action, according to the local security policy.

key1, key2, . . . , keyn REQUESTSAction String

Figure 2.6: Structure of a PolicyMaker query.

Action Strings are application-specific messages that describe a trusted action by one or more

public keys. Applications specify themselves the structure and the content of these action strings,

PolicyMaker has no knowledge of their structure. These action strings are interpreted only by the

application that generates them.

PolicyMaker usesassertions, containing bindings between predicates (filters) and one or more

public keys. This binding is called anauthority structure. These assertions (Figure 2.7) confer

authority on keys.

SourceASSERTSAuthorityStructWHERE Filter

Figure 2.7: Structure of a PolicyMaker assertion.

The simplest filters are interpreted programs that accept orreject action strings. In Figure 2.7,

Sourceindicates the source of the assertion (either the public keyof the generator of the assertion

or the local policy, in the case of a policy assertion).AuthorityStructspecifies the key or keys for

whom the assertion has been created.Filter is the predicate that action strings must satisfy for the

assertion to hold.

As was previously stated, there are two types of PolicyMakerassertions: signed assertions–

more commonly called credentials–and unsigned assertions, or policies. A credential is a signed

message that binds a particular authority structure to a filter. Policies are unconditionally trusted

because they originate locally and are therefore not signed. On any given machine, a local root

must exist from whom all trust is delegated. PolicyMaker hasno concept of the semantics of action

2.3 Trust Management Systems 35

strings or signatures. The calling application must verifythe signature. This allows Policymaker to

exploit existing signature schemes. Signing a credential represents the delegation of authority from

the signer of the credential to the holder of the public key mentioned in the credential.

Example 2.3 Consider the University example shown in Figure 2.4. The University’s policy is

policy ASSERTS
pgp:"0x0123456abcdefabe23428129038747b32"
WHERE

PREDICATE=regex:"Appoint Staff";

Figure 2.8: PolicyMaker policy assertion for University.

represented in the policy assertion shown in Figure 2.8. This gives the PGP key mentioned the

authority to appoint staff. As this is a policy assertion, itis unsigned. This authority can be further

delegated by the President. For example, the President can sign a credential for department heads

authorising them to appoint lectures only, as shown in Figure 2.9.

pgp:"0x0123456abcdefabe23428129038747b32"
ASSERTS
pgp:"0xfa3463334bc934a34b34fd0232ad"
WHERE

PREDICATE=regex:"Appoint Staff
Position: Lecturer";

Figure 2.9: PolicyMaker assertion for Departmental Head.

This assertion specifies that the only staff the Departmental Head can appoint are lecturers. This

assertion would of course be signed by the President’s PGP key, in order to bind the predicate to the

Departmental Head’s PGP key. △

2.3.2 KeyNote

KeyNote [29, 30] is an expressive and flexible trust management scheme that provides a simple

credential notation for expressing both security policiesand delegation. A standard application

programming interface (API) to KeyNote is used by applications to help determine if security crit-

ical actions are authorised. The formulation and management of security policies and credentials

are separate from the application, making it straightforward to support trust management policies

across different applications. KeyNote has been used to provide trust management for a number of

applications including active networks [34] and to controlaccess to Web pages [2].

KeyNote was developed to address the complexity issues surrounding PolicyMaker. In effect,

KeyNote provides support for a limited subset of PolicyMaker’s capabilities. Like PolicyMaker,

KeyNote uses a single language to specify policies and credentials. However, unlike PolicyMaker,

these have a structure, and are not arbitrary programs. Thisstructure is defined in RFC 2704 [29]

and is designed to be flexible and human-readable.

2.3 Trust Management Systems 36

Example 2.4 Figure 2.10 shows an example of a basic KeyNote credential. This credential rep-

resents the example discussed before – a University delegates the authority to appoint staff to the

President, actually to the President’s public key.

KeyNote-Version: 2
Local-Constants: kUniversity="RSA:324b234a"

kPresident="DSA:67bc23fa2"
Authorizer: kUniversity
Licensees: kPresident
Conditions: app_domain="University" &&

actions="Appoint" &&
(Position == "Lecturer" ||
Position == "Dept-Head");

Signature: ...

Figure 2.10: Basic Structure of a KeyNote credential

TheConditionsfield specifies the authority that the President has been granted, in this case the

authority to appoint lecturers or to appoint departmental heads. △

TheConditions field defines a set of permissions that represent all possibleattribute value

combinations. Policies are practically identical syntactically to ordinary credentials, except the

Authorizer field is not set to a key but is instead set to the keywordPOLICY. Policy assertions

are unsigned (as is true in PolicyMaker) and are implicitly trusted by the application.

KeyNote credentials can be restricted by the authoriser to prevent further delegation of the au-

thority granted. In our original example (Figure 2.4) the Registrar registers students. In effect the

registrar would delegate to the students the authority to (for example) sit exams for the subjects that

they were registered to take. If a student could further delegate this authority then a situation is

created where an unauthorised student is sitting an exam foran authorised student. To prevent this

the Registrar will use theACTION AUTHORIZERS keyword within theConditions field. This

tells KeyNote that no further delegation is allowed. This keyword specifies the names of principals

that are directly authorising the action in the credential.

When a KeyNote query is evaluated by the compliance checker,the evaluator returns the Policy

compliance valueof the query. These compliance values range fromMIN TRUST to MAX TRUST.

Applications specify compliance values in the form of sets,again ranging from MIN TRUST to

MAX TRUST. An example would be{FALSE, TRUE} where an application requires a boolean

answer to a query or{NOTAPPROVED,APPROVEDLOG,APPROVED} for an application that re-

quires more context. In this caseNOTAPPROVED is MIN TRUST andAPPROVED is MAX TRUST.

An assertion compliance value results from the minimum of the compliance values of the Condi-

tions field and theLicensee field. If theLicensee or Conditions field is missing, then the

assertions licensee/conditions compliance value is considered to beMAX TRUST; however, if it is

present but empty, then the licensee / conditions compliance value is considered to beMIN TRUST.

2.3 Trust Management Systems 37

As principals can delegate permissions to other principals, KeyNote must walk these chains of cre-

dentials to determine if a request is authorised. The KeyNote compliance checker attempts to find a

path between the requesting key and the policy. Policies canalso specify thresholds, that is, multiple

principals must be involved in any valid request.

The KeyNote assertions syntax is defined in RFC2704 ([29]). For example, theAuthorizer

field is the only required field; all other fields are optional.The optional fields are theComment,

Conditions, KeyNote-Version, Licensees, Local-Constants andSignature.

When theSignature field is present, it must be the last field. No field must appear more than

once, and they are all case insensitive.

2.3.3 SDSI/SPKI

SDSI [47, 112, 152] or Simple Distributed Security Infrastructure (pronounced Sudsy) and SPKI [94]

or Simple Public Key Infrastructure (pronounced Spooky) began as two separate standard propos-

als. It was quickly realised that they shared many similarities, and the projects were combined in

1999.

SDSI was originally developed by Ron Rivest and Butler Lampson to address the complex and

incomplete proposals for a public key infrastructure. Unlike X509, SDSI does not rely on a for-

malised global certificate hierarchy. Instead they use a “Local Naming” architecture that leverages

the advantages of a PGP-like “web of trust” (described in Section 2.5.2).

Both SDSI and SPKI are key-centric systems, in that, principals are public keys and all actions

are performed by these keys. SDSI does not attempt to link identities to keys, however,people can

hold these keys and thus manipulate the system.

The SPKI was proposed by the Internet Engineering Task Force(IETF) in 1996 as an alternative

to the X.509 version 3 PKIX public key infrastructure (PKI).The IETF SPKI working group was

founded just before the publication of the original SDSI proposal [152]. However, SPKI quickly

incorporated SDSI names and shares many other similaritieswith the SDSI proposal. In 1999 the

projects were merged and are now referred to as simply SPKI.

S-expressions

S-expressions [153] were developed by Ron Rivest at MIT. S-expressions are lisp-like data struc-

tures that are used to represent complex data. They are either byte-strings (octet-strings) or lists of

other S-expressions. The data in S-expressions can be represented in many formats, from simple

strings to hexadecimal or base64 strings. S-expressions were designed to be a compact, human-

readable efficient and transportable mechanism for storingdata.

An octet string is a sequence of eight-bit octets. These can be represented in many formats

2.3 Trust Management Systems 38

including strings, quoted strings, base64, hexadecimal, and length prefixing “verbatim” encod-

ing; these should all be interchangeable. For example, the string “abc” can be represented as

#616263#, that is simply the hexadecimal form of the characters a (61), b (62) and c (63). The #

marks surrounding the numbers are used to specify the data between is in hexadecimal form. Ver-

batim length prefixing encoding, represents the string withthe length of the string prefixed to that

string, for example,3:abc.

Lists of s-expressions are also s-expressions. In this case, these lists are made up of s-expressions.

An s-expression is surrounded with parentheses, for example(a (b c)) represents a s-expression

that linksa to the second s-expression(b c). S-expressions are used to represent credentials in

both SDSI and SPKI. S-expressions can be used to represent a variety of constructs:

• setsof elements;

• rangesof data, such as dates, time or numbers;

• prefixesof strings, used for comparisons, and

• anyset constructs representing any s-expression out of a set ofpossible s-expressions.

These constructs can be used to store arbitrary data.

Local Names

The SDSI project introduced the idea of “local naming”. In SDSI all principals (keys) are equal.

Each key has its own name-space, as in PGP (Section 2.5.2). When a principal refers to another

principal in their own name space, they define the name themselves: For example if Alice has a

computer, then she calls it “Computer”. Bob may also have a computer, and he may too refer to it as

“Computer”. As Alice and Bob are separate principals this isperfectly acceptable. However, how

does Bob refer to Alice’s Computer? Suppose Bob knows Alice simply as “Alice”. Local naming

provides the ability to use names from other namespace. Bob therefore refers to Alice’s Computer

as “Alice’s Computer”.

(Alice Computer)
(Bob Computer)

(Bob (Alice Computer))

Figure 2.11: Local Names using S-Expressions

If we take these local names and describe them using s-expressions, then we get a naming

system such as the one shown in Figure 2.11. Informally we refer to these naming relationships

using the “’s” construction (i.e., Bob’s Alice’s Computer). These namespaces can be built up to

2.3 Trust Management Systems 39

describe a hierarchy, for example, consider there is more than one Alice in a company. We could

refer to her computer as Company’s Department’s Alice’s Computer. This provides a flexible yet

consistent method to name objects.

SPKI

The SPKI [54–56] is a certificate based system like KeyNote and PolicyMaker. A SPKI certificate

is a signed statement consisting of five fields. The message without a signature (assertion in Poli-

cyMaker), is called a 5-tuple. The five elements are: issuer;subject; delegation; authorisation, and

validity dates.

The issuer and subject fields are mandatory, the remaining three are optional. These fields are

expressed in the form of s-expressions. There are standard rules for converting s-expressions into

binary format and back. These have the same purpose as the ASN.1 [99] notation. S-expressions

are used instead of ASN.1 simply because they are lightweight expressions that are more suitable

for lower specification hardware. The issuer field holds the key (or a hash value of the key) and a

name associated with that key. This name is a SDSI local name.

The subject field also holds a SDSI local name, or a list of local names. The validity dates field

contains the validity period of this certificate, in terms ofa not-beforeand/ornot-afterdate fields.

The validity field may also include a number of “online test” expressions, that specify the certificate

should be verified by checking a certificate revocation list (CRL) or an online validity list (a list of

currently valid certificates). These are optional components of the field.

The authorisation field specifies the authority being delegated. This is roughly equivalent to

the KeyNoteConditions field. Finally, the delegation field specifies whether the authorisations

contained within this certificate can be delegated further.

Example 2.5 Figure 2.12 shows an example of a SPKI certificate, representing the Appoint

Lecturer permission discussed in Example 2.3. In this example a certain key (the President’s

(cert
(issuer (hash sha1 |dsEFA73sahfdDF3784JDFjfsFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash sha1 |dasdk...|))))
(propagate)
(
(tag (Appoint Lecturer))

)
(not-before "2002-11-31_17:00:00")
(not-after "2003-11-31_16:59:59")

)

Figure 2.12: An example SPKI Certificate, authorising the appointing of academic staff.

key) is authorising a key in the local namespaceUCC’s CSDEPT to Appoint Lecturer. The

2.3 Trust Management Systems 40

propagate field allows this permission to be delegated further, and thevalidity dates specify that

this certificate is valid for one year only. △

There are three types of SPKI credentials: identity, attribute and authorisation credentials.

• Identity credentials bind a public key to a name, similar toan X.509 certificate. However,

unlike X.500 distinguished names, SPKI names are local to each public key in the system.

• Attribute credentials bind an authorisation to a name or group. These are generally used with

identity credentials, as different issuers may generate the attribute and identity credentials.

• Authorisation credentials provide a means to delegate authority between names.

2.3.4 Advanced Trust Management Systems

The trust management systems outlined above (PolicyMaker,KeyNote and SDSI/SPKI) provide the

means to specify general trust management policies for a variety of systems. In this section, we

examine more specialised trust management systems, including SD3, REFEREE and QCM, and

more advanced systems, including RT and DAL, that address specific problems with the traditional

approach to trust management.

SD3

SD3 [97] is a Trust Management system consisting of a high level policy language, a local policy

evaluator and a certificate retrieval system. Unlike trust management systems such as KeyNote or

SPKI, SD3 has a built-in certificate distribution component, that allows a complete security infras-

tructure within SD3.

Policy
Daemon

SD3

Application

Data
Source

Request,
Certs.

Yes/No

Figure 2.13: Overview of a SD3 Application

2.3 Trust Management Systems 41

SD3 (“Secure Dynamically Distributed Datalog”) is an extension of the database programming

language, datalog. Datalog [26] is a logic programming language specifically designed to be used

as a database language. It is a nonprocedural, set-orientedlanguage, with no order sensitivity, no

special predicates and no function symbols. Datalog’s set of rules are logical implications. SD3

extends datalog into a trust management system by extendingit with SDSI names.

SD3 provides an API that allows applications to query a daemon that maintains security policies.

Figure 2.3.4 shows a overview of SD3 architecture. The SD3 daemon is initialised with the local

policy. The application can then query the daemon for policydecisions. The application supplies a

request and optionally some certificates it thinks appropriate for the query to the daemon. These are

then examined by the daemon, the signatures are validated and a decision is reached determining

whether or not the request is valid in accordance with the policy.

The local policy may depend on a remote policy. In this case the SD3 daemon will commu-

nicate with a remote data source (such as another SD3 daemon or some directory service, such as

LDAP [52]) to check the request.

A unique and important feature of SD3 is its certified evaluator. In addition to computing the

result of a query, the evaluator also computes a proof that the answer follows the policy. This proof

is passed through a very simple checker before the result is reported by the evaluator. If the proof

does not pass the checker, then the evaluator rejects the answer and reports an error. The fact that the

checker is so simple, allows confidence in the correctness ofthe answer produced by the evaluator.

REFEREE

REFEREE [42, 44] (Rule controlled Environment For Evaluation of Rules and Everything Else)

was created by Yang-Hua Chu et al as part of the World Wide Web Consortium’s (W3C) PICS

(Platform for Internet Content Selection) project [176]. PICS is an effort to define meta-data to be

associated with Internet content. This is intended to support parental control over access to web sites

by children. REFEREE is designed to provide Trust Management support for the PICS project. The

DSig project [43], that uses PICS labels, has also supportedwork on REFEREE. The DSig project

looks at methods to provide a mechanism to make the statement: signerbelievesstatementabout

an information resource.

REFEREE is based on the PolicyMaker trust management system. Similarly to PolicyMaker,

REFEREE is a recommendation based query engine. In REFEREE,policies and credentials are pro-

grams. However, REFEREE differs from PolicyMaker in that itallows policies to control credential

retrieval and signature verification. PolicyMaker makes the assumption that the calling application

has gathered all the relevant credentials and verified all digital signatures before calling the trust

management system.

REFEREE is designed with the principle that the policy controls everything, including the order

2.3 Trust Management Systems 42

of execution of a query and the retrieval of credentials. A policy has a fixed language syntax and

may call other policies in order to satisfy a query. REFEREE supports three primitive datatypes:

Programs, Statement listsandTri-values. A tri-value is one oftrue, falseandunknown. A statement

list is a collection of assertions, or statements, expressed in a two element structure (Figure. 2.14).

This structure consists of somecontentand acontextfor that content. These context and content

attributes are specified as s-expressions [153]. The context determines how the content is to be

interpreted. The interpretation of the context is subject to agreement between REFEREE and the

calling application. Each program takes a statement list asan input and may take additional inputs.

Programs may invoke additional programs during execution.

((‘‘certification module’’)
(‘‘Alice’’ (trustworthy yes)))

Figure 2.14: Example REFEREE statement indicating Alice istrustworthy in a certification module.

Policies are programs defining the suitability of certain actions, that return a tri-value for a query

based on conformity or lack thereof to the stated propertiesof that policy. If a query can neither

be satisfied or rejected based on the policy, thenunknownis returned. Credentials are also pro-

grams that examine initial statements passed to them and derive additional statements. Unlike other

trust management systems, REFEREE credentials generalisethe usual concept of credentials as just

supplying statements. These new statements supplied by a credential can be based on the initial

statements or on environmental factors, such as the disk space remaining locally. Both policies and

credentials return tri-values and statement lists. Policies can return a statement list that justifies the

tri-value answer returned. Credentials return tri-valuesto indicate whether a execution was success-

ful or not. Applications invoking REFEREE provide a database of available programs, an initial

statement list and designates a particular program (policy) to run. It can also specify additional

parameters to the program.

Policies calling other policies are central to the REFEREE system. Policies often defer judge-

ment to other policies – Alice will trust a website because Bob trusts it. Evaluation of particular

request may also require “dangerous” activity such as network access. These dangerous activi-

ties are allowed within policies, and these actions are controlled by other policies. One aspect of

REFEREE’s creed is that everything is controlled by policies.

Profiles 0.92 is a rule-based trust policy language designedto work with REFEREE. Each rule

is an s-expression with an operator as the first element followed by operands. The language in-

cludes support for a language constructinvokethat supports calling of another REFEREE program.

Invoked subprograms can return statements. These statements are prepended with the name of the

subprogram. This feature allows tracing of a statement’s origin. “load labels” is another profiles-

0.92 program that looks for PICS labels either embedded in documents or retrieved over the network.

2.3 Trust Management Systems 43

These labels are parsed and converted into REFEREE statements. Profiles-0.92 also provides sup-

port for generalising the tri-values returned by REFEREE programs. This generalisation provides

a means to convert a tri-value into a traditional Boolean value. Conversion is handled by using

either thefalse-if-unknownor true-if-unknownconstructs. There also exists support for theAND,

OR andNOT Boolean operators within the language. Finally the language provides a statement-list

pattern-matcher that can examine a statement list for statements of a particular form.

Example 2.6 Figure 2.15 shows an example of a REFEREE Policy. In this example policy we want

to restrict users from accessing sites that don’t follow UCC’s acceptable use conditions. We trust

website owners to declare honestly their rating according to UCC.

(invoke "load-label" STATEMENT-LIST URL
"http://www.ucc.ie/ratings/acceptable.html"
(EMBEDDED))

(false-if-unknown
(match
(("load-label" *)
(* ((version "PICS-1.1") *

(service
"http://www.ucc.ie/ratings/acceptable.html") *

(ratings (RESTRICT < uccrate 3)))))
STATEMENT-LIST)

)

Figure 2.15: Example REFEREE Policy, enforcing UCC’s acceptable use conditions.

This policy has two steps: Firstload-label is invoked to find and download labels for the

embedded URL. Any labels found are added to the statement list. Next we run a pattern match

with this statement list, looking for matches from the acceptable use rating service and with an

uccrate rating of less than 3. If such a label is found, then a true or false is returned, based on the

value associated with the label. If no such label is found, then thefalse-if-unknown condition

forces a false to be returned. The result of this policy is to prevent viewing of a document (webpage)

that has auccrate rating of less than 3. △

QCM

QCM [82, 83] is a predecessor of SD3. QCM, or Query CertificateManager, was proposed by

Carl Gunter and Trevor Jim at the University of Pennsylvania. QCM was developed to address the

problem of failed queries due to missing certificates. In a more conventional Trust Management

system, such as KeyNote or SPKI, when an application queriesthe system, it provides all the cer-

tificates (credentials) needed to satisfy the query. However, if all of the required certificates are not

present, then the query will fail due to insufficient information (In REFEREE, anunknownwould

be returned). QCM was developed to address this issue.

2.3 Trust Management Systems 44

QCM uses what the authors of [83] callpolicy-directed certificate retrievalto determine what

certificates to retrieve for a particular query. In previously existing trust management systems, if a

query failed due to lack of relevant certificates, then a user(or application) would have to parse the

policy and determine what additional certificates are required. In this case a three-fold duplication

of effort is required: First the verifier must try to answer the query, when this failed, the policy

must be parsed again to determine what is missing and finally the query must be resubmitted to the

verifier. QCM attempts to eliminate this duplication.

The design of QCM was intended to draw upon the strengths of existing trust management

systems and to add support for the automatic retrieval of relevant certificates. To address this aim,

the developers chose a conservative approach and based the language on the language of sets that

forms the core of some database languages. The language used(Caml [93]) serves as both the

policy language and the query language of QCM. Verification of a QCM query, therefore, takes

the form of a database evaluation and retrieval correspondsto a distributed database evaluation.

QCM takes advantage of the extensive research into databasequery optimisations and distributed

databases. This allows the system to form optimised queriesto minimise message traffic. The

design of the system around an existing database query language, allows users to write policies

without specifically addressing remote queries. QCM automatically detects when a policy requires

external certificates, formulates the correct query and retrieves the appropriate certificates.

Principals in QCM, as in PolicyMaker (Section 2.3.1), KeyNote (Section 2.3.2) and SDSI/SPKI

(Section 2.3.3) are public keys. QCM natively uses SDSI linked local names, with support for global

names as in SDSI. In QCM a global name refers to a set.

Example 2.7 Figure 2.16 shows an example of a QCM global name. In this example K$PKD is a

global name referring to a set of (user, key) pairs. It statesthatKAlice is Alice’s key andKBob is

Bob’s key. K$PKD is the global name of PKD in K’s namespace.

K$PKD = {(“Alice”, KAlice), (“Bob”, KBob)}

Figure 2.16: Example QCM Global Name.

△

QCM can be used as a replacement for systems currently in place. For example, it was shown

in [83] how a replacement for REFEREE could be built using QCMpolicies.

RT

RT [113] is a family of role based trust management frameworks, including RT0, RT1, RT2, RTT and

RTD. RT was created to combine the strengths of traditional trust management systems and those

of role based access control. RT uses both the concepts of roles and the advantages of local naming

2.3 Trust Management Systems 45

to provide attribute-based access control. Traditional trust management systems, such as KeyNote

or SDSI/SPKI, use credentials to delegate permissions (capabilities). These capability-based trust

management systems, however, do not lend themselves to certain decentralised problems. For ex-

ample, imagine an airline has an agreement with a rental car company that preferred customers of

the airline receive special rental rates. This is difficult to cleanly represent in a traditional trust man-

agement system, as the airline does not want to give an external party access to its internal passenger

database.

One approach is the rental company could delegate the “discount” permission to the airline,

who then specifically delegates the permission to its customers. Another approach would be for the

airline to create a new keypair to represent customers, and delegate all rights for this key to each

customer. The rental company then delegates the discount tothis key.

Neither of these approaches are particularly appealing as they cause significant overheads for

one party or another. In the first case, the airline has the administrative overhead to determine what

customers get the preferential rate. The second approach uses a separate keypair for each grouping.

Every key pair must be distributed to all the parties in the system. For example, imagine that the

rental company has different rates based on the type of airline customer. The airline now must

create a key pair for each type of customer and each rental company. Such an approach can quickly

become unreasonable.

RT introduces the concept of attribute based access control(ABAC). ABAC systems have a

number of advantages over capability based systems, including (from [113]):

1. Decentralised attributes: an entity asserts that another entity has a certain attribute.

2. Delegation of attribute authority: an entity delegates the authority over an attribute to another

entity, that is, the entity trusts another entity’s judgement on the attribute.

3. Inference of attributes: an entity uses one attribute to make inferences about another attribute.

4. Attribute fields. It is often useful to have attribute credentials carry field values, such as age

and credit limit. It is also useful to infer additional attributes based on these field values

and to delegate attribute authority to a certain entity onlyfor certain specific field values, for

example, only when spending level is below a certain limit.

5. Attribute-based delegation of attribute authority. A key to an ABAC’s scalability is the ability

to delegate to strangers whose trustworthiness is determined based on their own certified at-

tributes. For example, one may delegate the authority on (identifying) students to entities that

are certified universities, and delegate the authority on universities to an accrediting board.

By doing so, one avoids having to know all the universities.

The RT framework supports localised authority over roles; delegation in role definitions; linked

roles; parameterised roles, and manifold roles. The different systems use a subset of these abilities.

2.3 Trust Management Systems 46

In particular, RT0 only allows atomic strings as role names; RT1 extends RT0 to allows parame-

terised roles. This is useful as the same roles in different domains often hold the same permissions.

For example, manager roles hold the permission to set the salary for their employees. Parameter-

ising this role allows the same salary permission to be applied to different manager roles within an

organisation, with respect to their employees.

RT2 extends RT1 with the notion of o-sets which group logically related objects and access

modes together similarly to parameterised roles. In the case of o-sets, it is sometimes useful to be

able to apply the same permissions to sets of objects and access modes.

RTT provides support for threshold schemes to the RT framework.Threshold policies define

that more than one entity must agree before an action is authorised. For example, in a simple

payment system, a cheque must be signed by two separate keys before it can be cashed.

In certain cases, an entity may not wish to use all of their rights all of the time. A simple

scenario is where an administrator logs in to a system as an ordinary user so that they cannot make

a catastrophic mistake. RTD provides the ability to handle delegation of the capacity toexercise

role memberships. This allows an entity to delegate parts oftheir role permissions to particular

processes. In traditional trust management systems, this is not possible. An entity implicitly uses

all of their rights in every request. They could reduce the number of credentials supplied when

making the authorisation check, however, in a truly distributed system this may not be possible.

RTD adds the notion of delegation of role activations to supportselective delegation of permissions

to processes.

An entity in RT defines an uniquely identified individual or process. They can issue creden-

tials and make requests. Roles in RT define a set of entities who are members of that role. They

can be viewed as an attribute. Entities in RT correspond to users in RBAC systems. Roles can

represent both roles and permissions in an RBAC system. RT views user and role assignments as

dominations (�):

Roles r1 � r2 defines thatr1 has every permission inr2

Users to Roles u � r defines that useru is assigned to roler

Permissions to Roles r � p defines that permissionp is assigned to roler

A role is denoted asA.R, whereA is and entity andR is a role.A.R can be consideredA’s R,

similar to local naming in SDSI/SPKI. In this case, onlyA has the authority to assign members to

the roleR. This is achieved by issuing role definition credentials to the other entity. Each credential

defines one role to contain either an entity, another role or certain other expressions that evaluate

to a set of entities. A role may be defined by multiple credentials. The effect of such multiple role

credentials is a union. Credentials used in RT are defined in terms of delegations (←), as shown in

Figure 2.17.

RT supports common vocabularies between entities. IfA definesA.R to containB.R1, then

A must understand whatB means by the role nameR1. This is achieved in RT through the use

2.3 Trust Management Systems 47

A.R1 ← A.R2 A defines thatR2 dominatesR1.
A.R ← B.R defines thatA delegates authority overR to B.
A.R1 ← B.R2 defines a mapping between two organisations, A and B,

and the roles they provide.
A.R ← A.R1.R2 Using the role mapping credential above, this credential

defines thatA.R contains anyB.R2 if A.R1 containsB.
A.R1 ← B1.R1 ∩B2.R2 defines thatA.R1 contains rolesB1.R1 andB2.R2.

This is the intersection of two credentials.

Figure 2.17: The different types of credentials in RT.

of application domain specification documents (ADSD). ADSDs define a suite of related datatypes,

role identifiers (Role IDs) with the name and datatype of eachparameter. This forms the vocab-

ulary. ADSDs may also declare other common characteristicsof Role IDs such as storage type

information. ADSDs generally provide natural language descriptions of role identifiers, including

the conditions under which they should be issued by the credentials defining them. These creden-

tials also have a preamble where they specify the ADSD that isused with the credential, typically

by specifying its uniform resource identifier (URI) [177].

When role identifiers are used in credentials, the vocabulary identifiers are incorporated as pre-

fixes to the role identifier. While role identifiers are relatively short, they specify a globally unique

Role ID. ADSDs can be linked together in order for one ADSD to use the data types defined in

another.

DAL

DAL [186], or Distributed Authorisation Language, was specifically designed to avoid the problem

of authorisation subterfuge. Subterfuge [68] is the ability of an entity to illicitly gain authorisation

using malformed delegation chains. If two entities use the same permission in different ways within

a coalition, then it is possible that one entity can misuse this permission in some unexpected way.

In order to avoid such problems, common vocabularies are used to provide a globally unique

name space for use in credentials, such as ADSDs in RT or X.500names in X.509. However,

these approaches rely oncloseddelegation, that is delegation between users in coalitionsthat are

effectively controlled by a single administrator. Ensuring that delegation credentials created in these

schemes are subterfuge free requires formal analysis and/or providing pre-agreed global naming

services.

DAL statements represent facts held by entities: identifiers, roles and threshold entities. DAL

statements are made using basic logic operators, functionsand says(|∼) and directly says(‖∼)

operators. Identifiers represent global unique entities and are denoted by the triple(K,N, T), where

K is the entity’s signature key;N is a descriptive name for the entity, andT is the type (individual

2.4 Authentication 48

(I) or coalition (C)) of the entity. Typically this triple isrepresented by the structureIDT , where

ID specifies the global identifier containingK andN .

Example 2.8 A simple DAL certificate is as follows:

AliceI |∼ actAs(UnivAC .student,BobI)

This defines that Alicesaysthat Bob is a student of UnivA. This can be stated more informally as:

Alice, who is an individual, signs a certificate stating thatBob, who is also an individual, is a student

at University A (UnivA), which is a coalition. △

DAL has a number of advantages over other trust management systems. DAL provides an built-

in proof system that ensures that statements are subterfugefree. As with RT, DAL supports role

based authority and role based delegation.

2.4 Authentication

Authentication is the process by which entities can determine one another’s identity, and use this

information to establish a secured communication between the entities. Identities are usually stored

as crytographically signed certificates, and are typicallyrepresented as cryptographic keys. In this

dissertation, when we refer to authentication, we are specifically talking aboutentity authentication.

Entity authentication is defined as (from [76]):

Entity authentication mechanisms allow the verification ofan entity’s claimed identity,

by another entity. The authenticity of the entity can only beascertained only for the

instance of the authentication exchange.

Two users, Alice and Bob, wish to communicate across a network. When Bob receives a mes-

sage from Alice, how does he know it comes from Alice and not anattacker, Eve? This is the

fundamental problem that authentication protocols address. Furthermore, can Alice and Bob create

a shared encryption key so that they may communicate in private, without Eve intercepting their

messages. These problems are addressed using authentication and key-exchange protocols.

2.4.1 Simple Authentication Protocol

A simple challenge-response authentication protocol is shown in Figure 2.18. In this protocol, when

a client wants to access a server, it sends its name,C. The server then sends the client a challenge

in the form of a nonce encrypted with a key shared by the clientand server,KSC . If the client can

then send the server the nonce, incremented by one and encrypted using the shared key, then the

client has been authenticated by the server.

2.4 Authentication 49

Client Server

Access: -(C)

Challenge: � {S,C,nonce}KSC

Response: -{C,S,nonce+1}KSC

Figure 2.18: Challenge-Response Authentication Protocol

The challenge response protocol provides single-side authentication, that is the server has au-

thenticated the client, but the client has no guarantee thatit is talking to the correct server. There are

many different authentication protocols providing a rangeof authentication guarantees. For exam-

ple, some protocols provide single side authentication, while others provide two-way authentication.

We now briefly examine two commonly used key exchange protocols, SSL/TLS and Kerberos.

2.4.2 SSL/TLS

SSL [92], or secure sockets layer, was originally developedby Netscape to provide authentication

between web browsers and web servers on the Internet. It is probably the most common security

protocol in use today. It is primarily used to provide securecommunication between users and online

shops, in order that personal and financial information is sent in an encrypted form between users

and businesses. The SSL protocol (version 3) was submitted as a standard to the IETF, and when

accepted was renamed transport layer security or TLS. Thus,SSL version 3 is virtually identical to

TLS version 1. (We will refer to SSL/TLS henceforth simply asSSL).

SSL uses X.509 certificates, described in Section 2.5.1, to link identities to public keys. Each

entity must share trusted certificates to be used to find a chain of trust to the other entity’s certificate.

Usually each entity will have“root” certificates from certification authorities (CA) whom they trust

to properly verify the identities of the entitys they write certificates for. In order for a certificate to

be trusted by a entity, there must exist a certificate chain between a known trusted certificate and the

certificate provided.

In general SSL can operate in either client-side authorisation, where just the client verifies the

identity of the server, or in client and server side authentication, where both sides authenticate each

other’s identity.

2.5 Other Security Technologies 50

2.4.3 Kerberos

Kerberos [50, 138, 161] is an authentication protocol that uses a trusted third party to allow clients

to authenticate themselves, and thus gain access to services on the network. The protocol uses two

trusted parties, one to hold the shared encryption keys, andthe other to control access to protected

services on the network. The Kerberos model is based on the Needham-Schroeder trusted third

party protocol [136]. The Kerberos server keeps a database of clients and their secret keys. Clients

can be users or even software programs running on machines inthe network. Clients requiring

authentication, register their keys with the Kerberos server. As the Kerberos knows the secret keys

of all the clients on the network, it can create messages thatcan convince one client of another

client’s identity.

Using the Kerberos protocol, when a client wants access to a protected service on the network,

they must contact the ticket granting service. The ticket granting service (TGS) can grant authenti-

cated clients access to a service. First however, the clientmust be authenticated to the TGS. This is

achieved using the Kerberos server as a trusted third party.The client contacts the Kerberos server

and asks to be authenticated to the TGS. The server sends a“ticket granting ticket” (TGT), or a mes-

sage containing a session key, or ticket, encrypted using the client’s secret key and also encrypted

using the key shared by the Kerberos server and the TGS to the client. The client sends a message

containing the TGT to the TGS, with its access request. The client and the TGS now share a secret,

that is, the session key generated by the Kerberos server.

If the TGS determines that the access to the service is authorised, then it generates a new ticket

for the client, containing a session key that the client and service will share (as before). This ticket

will then be presented to the service by the client. In general, the ticket granting ticket will be long

lived, for example it could be valid for a day, but the serviceticket would be a more short-lived

ticket, for example, suitable for a single access to the service.

Kerberos provides the ability to securely authenticate clients and servers using a trusted third

party. Kerberos is used in a variety of applications, such asMIT’s Project Athena [139] and most

recently, a modified version is used by Microsoft to provide authentication in their Windows net-

working, since the release of Windows 2000 [50]. Kerberos ismore than a simple authentication

scheme. It also provides an access control mechanism to its users.

2.5 Other Security Technologies

There are many different certificate based access control technologies currently in use. In this

section we will examine the most important of these technologies, including X.509 and several trust

management systems. Each of these systems provide a means toattach attributes to public keys. In

general, we refer to attribute certificates ascredentials

2.5 Other Security Technologies 51

Using certificated-based access control allows the creation of a decentralised security architec-

ture. Credentials are portable, and can be presented by the subjects attempting to access security

critical objects to prove they are authorised to access them. Access is granted only when the ref-

erence monitor controlling access to the object receives credentials sufficient to authorise access to

the object according to the system policy.

2.5.1 X.509

X.509 [38, 70, 87] is one of the most ubiquitous security technologies in use today. It is the authen-

tication framework designed to support the X.500 [182] directory services. Both X.500 and X.509

are international standards proposed by the ISO and ITU. X.500 is designed to meet the directory

service requirements of large computer networks.

The naming service is rigidly hierarchical, that is best suited for large corporations and govern-

ments, where such a structure is common. X.509 provides a PKI[39] (Public Key Infrastructure)

framework for authenticating X.500 services. X.500 directories have a tree-like structure (and will

be described in Chapter 3). The root of the tree has branches to each of the countries. Each country

has organisations, these form the next set of sub-branches.Organisation are made up of organisa-

tional units, that have users.

Example 2.9 A distinguished namefor a user (Alice) in the Computer Science department in Uni-

versity College Cork is:

Distinguished Name (DN) : {

Country (C) = IE,

Organisation (O) = UCC,

Organisational Unit (OU) = CS,

Common Name (CN) = Alice

}

△

The X.509 PKI standard was originally proposed in 1988. It was the first attempt at standardis-

ing a PKI available at the time. It was developed to support the authentication of entries in an X.500

directory. Version 3 is the current standard. An X.509v3 certificate is shown in Figure 2.19. The

certificate binds an identity to a key. The serial number is unique and is issued by the Certification

Authority (CA). The CA and Subject names are X.500 names. Dueto the close relationship with

X.500, CA hierarchies generally follow X.500 hierarchies.

Example 2.10 Figure 2.19 displays how the issuing certification authority (CS Root CA) has created

this certificate forAlice Userin the Computer Science department in UCC.

This certificate is valid for one year from January7th 2002 at 18:06:51. △

2.5 Other Security Technologies 52

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 1 (0x1)
Signature Algorithm: dsaWithSHA1
Issuer:C=IE,ST=Munster,L=Cork,O=UCC,OU=CS Dept,

CN=CS Root CA/Email=rootca@cs.ucc.ie
Validity
Not Before: Jan 7 18:06:51 2002 GMT
Not After : Jan 7 18:06:51 2003 GMT
Subject:C=IE,ST=Munster,O=UC Cork,OU=CS,CN=Alice User
Subject Public Key Info:
Public Key Algorithm: dsaEncryption
DSA Public Key:
[..]

X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE

Netscape Comment:
OpenSSL Generated Certificate

X509v3 Subject Key Identifier:
61:D0:B5:4A:0F:CA:1E:B0:49:59:73:59

X509v3 Authority Key Identifier:
keyid:0B9:2F:63:F6:26:ED:72:8F:C9:8C

DirName:/C=IE/ST=Munster/L=Cork/O=UCC/OU=CS Dept/
CN=CS Root CA/Email=rootca@cs.ucc.ie

serial:00
Signature Algorithm: dsaWithSHA1
[..]

Figure 2.19: An example X.509v3 certificate

In order for a certificate to be valid it must be presented during the validity period, and must not

have been revoked. Certificates are revoked using Certificate Revocation Lists (CRL). These CRLs

are issued by the CA’s periodically. When a user wishes to check whether a certificate is valid, they

should also contact the issuing CA to procure the latest CRL and ensure the certificate has not been

revoked. CRLs provide an additional layer of complexity to X.509. Not only does the user have to

check if the certificate is semantically valid, they must also contact the CA to ensure the certification

still authorised to.

X.509v3 also supportscertificate policiesthat give CAs the ability to include a list of policies

followed when the certificate was created. For example a certificate might be valid to support

online email reading but not for online financial transactions. X.509 is widely used within Internet

applications. It is, perhaps, best known as providing the infrastructure for securing websites with

Netscape’s SSL [92] protocol. SSL uses X.509v3 certificatesto enable users to verify the identity of

the website they are connected to. X.509 (version 1) has alsobeen used to support privacy enhanced

mail (PEM) [22, 100, 105, 114]. PEM is a proposed standard that provides encryption in email.

X.509 defines a rigid hierarchical structure, ideally with one super certification authority. In

practice, the each major certification authority considersthemselves the top of the hierarchy. This

2.5 Other Security Technologies 53

means that cross-CA certificates must be created for every pair of CAs. Furthermore, the compro-

mise of a CA private key is extremely serious. Should this occur, every certificate that is signed by

that key is potentially suspect. Revocation of an entire tree, plus re-keying is a daunting task. X.509

is not a security panacea. It is one useful tool that can be used to develop secure systems.

2.5.2 PGP

PGP [38, 116, 187] or pretty good privacy was developed by Philip Zimmerman as a secure asym-

metric encryption system for the common man. PGP introducedthe idea that each user is their own

certification authority. This leads to a very ad hoc PKI system, unlike the rigid structure of X.509.

An important feature of the PGP system is its “web of trust”. As each user is a certification

authority, they certify others according to personal knowledge. The system works as follows: every

user creates his/her own encryption key pairs. They then go to friends, who are also using PGP, and

get their key “certified” (signed) by those friends. These friends will set a level of trust along with

their signature, ranging from untrusted to fully trusted.

This is intended to build links from any one key to any other key in the system. When receiving

a message from an unknown key, a user can decide to trust the identity of the message’s signer based

on the quality of the links between their known (and fully trusted) keys and the message signer’s

key. For example they could require two separate paths at a marginal trust level or one completely

trusted path.

2.5.3 Secure Mobile Code

Mobile code [155], such as Java applets [79, 170], are executable components that run in remote

locations. Unlike mobile agents, mobile code does not move from location to location, instead it is

downloaded by the user and executed on their machine. For example, during a Formula 1 GrandPrix,

interested viewers can execute a Java applet that provides live race information, such as driver lap

times [13]. As mobile code is foreign code to the user, they must be confident that this code is not

malicious. There are several techniques used to assure the user of the safety of the mobile code.

One of the primary solutions towards securing mobile code isto execute any remote code in a

protection domain orsandbox. A sandbox limits the set of operations that the remote code may call.

For example, Java’s applet sandbox prevents remote code from creating a socket connection to any

remote machine other than the machine that provided the applet. Sandboxing mobile code allows

users to specify the mobile code they trust and what operations that the code is allows execute on

the local machine.

Another solution is to digitally sign mobile code. Signing code reassures the user that the code

was produced by a reputable software manufacturer. Thus, the user should only execute code from

2.5 Other Security Technologies 54

software makers that they trust not to provide malicious code. However, this approach has disad-

vantages. Digital signing certificates have been issued to people masquerading as a representative

of a well known software maker [69]. Furthermore, small and open source software makers may

not have the financial capability to purchase such signing certificates.

Chapter 3

Distributed Naming

Naming objects is a common requirement for many systems. Naming an object allows that object

to be correctly identified by different entities in the system. For example, in in an email applica-

tion, users are identified by their email address. One of the early distributed naming services for

the Internet was the domain name service (DNS) [121]. DNS links recognisable strings to the nu-

meric identifiers of machines on the Internet and provides simplified access for users to distributed

resources.

Naming is a particular challenge for distributed systems. Each part of the distributed system

must be able to refer to objects in the system. This is a commonproblem in computing, ranging

from properly identifying users to providing a persistent means to identify objects on the Internet,

for example, using digital object identifiers (DOI) [73]. Distributed computing relies on having

names for objects in the system. For example, in order to access objects in CORBA, we must be

able to uniquely refer to them.

We argue that when an object is properly named, it is then possible to make informed security

decisions about that object. This philosophy is evident in the security architectures of each of the

naming systems described in this chapter. For example, in order to make an access control decision

about a CORBA object, one must first identify the object in question.

Developing names for objects is vital when referencing those objects. Object names range from

simple descriptions to globally unique references. This isa common challenge in computing. For

example, determining the exact version of a document available on the Internet can be vital in

understanding information citing that document.

Developing a naming architecture for a distributed system entails having a means to represent

the aspects of the objects in that system and providing a usable reference to the object for the system.

Research in distributed names has concentrated around directory naming services such as LDAP and

X.500 directories, and in object naming services such as CORBA names. We examine these topics

separately.

55

3.1 Directory Naming 56

In this Chapter we describe some approaches that are used to name objects in distributed sys-

tems. We examine directory naming services, specifically the classic Internet standard X.500 di-

rectory naming service and the increasing popular LDAP (lightweight directory access protocol)

in Section 3.1. Section 3.2 investigates object naming services, specifically how the CORBA and

Spring systems manage names for objects. Other types of naming systems are briefly examined in

Section 3.3.

3.1 Directory Naming

Directory naming services are used primarily to store relatively static information, such as tele-

phone and email directories. Such systems are optimised forreading, rather than writing. The most

prevalent directory naming systems in use are X.500 and LDAP. We examine these systems in this

section.

3.1.1 X.500

X.500 [179, 182] defines a directory naming service that is designed to meet the directory service

requirements of large computer networks. X.500 was designed as a client / server architecture.

Clients query a server that holds the directory information. X.500 is a decentralised system, where

each site running X.500 is responsible only for the local part of the directory. The naming service

is rigidly hierarchical. Such a structure is more appropriate for large corporations and governments.

Another example is the X.509 PKI [39] (Public Key Infrastructure) framework for authenticating

X.500 named services that was discussed in Chapter 2. X.500 provides a single homogeneous

global namespace. X.500 directories have a tree-like structure (Figure 3.1). The root of the tree

has branches to each of the countries. Each country has organisations, these form the next set of

sub-branches. Organisation are made up of organisational units, which have users. Figure 3.1 gives

an example of this structure.

X.500 names are based on a the perceived structure of an organisation for example, a gov-

ernment or a large company. Such organisations can be brokendown as follows: country (C);

state (ST); locality (L); organisation (O); organisational unit (OU), and common name (CN). The

common name is defined by the organisational unit and the organisational unit is defined by the

organisation. The country, state and locality define where the organisation is physically located.

While X.500 names are commonly used, their rigid structure makes them useful only for spe-

cific applications, such as a telephone or email directory inlarge organisations. In practice, X.500

names are primarily used to identify the entities referred to in X.509 certificates (see Chapter 2),

and in large organisations. Smaller organisations, for example, a small company without internal

organisational units, would find it difficult to justify the use of an X.500 based directory. X.500’s

3.1 Directory Naming 57

Root

IE

UCC

COM

CS

Alice

Orgainisation

Common Name

Country Code

Organisational Unit

Figure 3.1: X.500 Directory Information Tree

decentralised structure does not suit every application. For example, it is difficult to imagine using

an X.500 directory to store unstructured information.

3.1.2 LDAP

The Lightweight Directory Access Protocol (LDAP) [49, 89, 107, 178, 184] is based on X.500 di-

rectories, but is designed to be simpler and more customisable. LDAP is commonly referred to as

a database, although this analogy is not completely accurate. Implementations of LDAP directories

are typically optimised for read performance as LDAP is primarily used for looking up data, rather

than updating data. Thus, LDAP is well suited for storing data that is not frequently changed, for

example, a telephone directory. LDAP is extremely flexible.Any type of data may be stored in

an LDAP directory. The structure of the directory is application specific, but in general follows a

X.500 type layout, using X.500 headings.

Data is stored in LDAP in a hierarchical structure, similar to a X.500 directory. Figure 3.2

shows an sample directory tree layout for University College Cork. This example shows the layout

without any data. In X.500 directories, the organisation unit (ou) name was used to distinguish the

functional areas within a company.

The distinguished name for each LDAP entry is made up of two parts, the relative distinguished

name (RDN) and the location within the directory where the data is stored. The relative distin-

guished name is the portion of the distinguished name that isnot related to the directory structure,

commonly stored in thecn or common name attribute. The root of each entry, called theBase DN,

3.2 Directory Naming 58

dc=ucc dc=ie
ou=science

ou=chemistry
ou=computerscience
ou=physics

ou=humanities
ou=law

...

Figure 3.2: A sample UCC LDAP directory tree

is stored in thedc field. This is typically a representation of the DNS entry forthe organisation.

Example 3.1 A machine in the computer science department in UCC has the following entry (dis-

tinguished name) in an LDAP directory:

cn=ceres,ou=computerscience,ou=science,dc=ucc,dc=ie

In this case the base of the directory isdc=ucc, dc=ie. The record of the machine name

is stored inou=computerscience, ou=science. The relative distinguished name of this

LDAP record iscn=ceres. △

dn: cn=ceres,ou=computerscience,ou=science,dc=ucc,dc=ie
cn: Ceres
machineType: Workstation
machineComponent: Pentium IV
machineComponent: 1024MB Ram
machineComponent: 80GB Hard Disk
machineComponent: Gigabit Ethernet
machineComponent: NVidia Graphics Card
machineSoftware: Debian Linux
machineSoftware: KDE
machineSoftware: Xorg

Figure 3.3: Information about Ceres stored in an LDAP directory.

The entries in an LDAP directory can be customised for the specific requirements of an ap-

plication. For example, Figure 3.3 shows the information stored in an LDAP directory about the

machineceres. This information might be used for auditing or statisticalreasons. The fields

machineComponent andmachineSoftware are application specific, in this case to store the

hardware and software components of the machine respectively. LDAP directories are designed to

store multiple values of a simple type (for example,machineComponent) in this manner, rather

than in the familiar row and column layout of a relational database. LDAP provides a flexible means

to store (ideally) static information that can be quickly retrieved.

3.2 Object Naming 59

3.2 Object Naming

Object naming systems link references to objects on a system. Typically, this reference is passed

to the component that wishes to use the object. For example, CORBA objects are represented by

an object name. When an application wishes to use a CORBA object, it looks up the reference and

uses the reference to access the object. Objects names are typically relatively static, in that objects

are long-lived and their names do not often change. In this section, we examine some object naming

services, specifically, the Spring naming service and CORBAobject names.

3.2.1 Spring Naming Service

The Spring [120, 137, 149, 166] operating system was an experimental microkernel [171] based

operating system designed by Sun to replace its Unix operating system. One of the basic design

aspects of Unix is its concept that “everything is a file”. Thus, directories are files, devices are files,

and so on. However, this paradigm does not fit every aspect of aUnix system. For example, the

capabilities of printers are represented in a printer specific namespace.

To address this limitation, subsystems in Unix have type-specific name services, such as the

printer capabilities (/etc/printcap) or environment variables. Furthermore, distributed services of

Unix, such as NIS or NFS, must also have a means to refer to objects distributed across a network.

These systems use directory services to bind objects to names. The spring system provides a specific

name service to support the requirements of the different subsystems of the operating system. This

naming service provides users and normal Unix programs uniform naming access to most types of

Unix objects.

Spring is an extensible distributed operating system that is inherently multi-threaded. It is struc-

tured around the concept of objects that act as“an abstraction that contains state and provides a set

of operations to manipulate that state”[137]. Spring provides the concept of adomain, that is an

address space with a set of threads. In a distributed system with multiple domains, Spring provides

an unforgeable nucleusdoor identifierthat identifies the server domain.

The Spring name service allows any object to be bound to any name. These name binding are

stored in acontext. A context is an object that stores one or more unique name bindings. A simple

example of a context is a Unix directory file. Each file in the directory is an object-name binding

and the directory file stores these bindings. Objects can be bound to more than one unique name

at a time. The Spring name service provides the capability tobind objects to names and to resolve

the name for any object. As contexts are themselves objects,they can also be bound to names. This

leads tonaming graphs. For example, the Unix file system is such a naming graph. An example of

such a graph is shown in Figure 3.4. In a naming graph, directory contexts are bound to names (the

directory name) and these contexts stored in another directory file (the parent directory).

Names in the Spring system provide the basis for the Spring security model. Objects that are

3.2 Object Naming 60

/home

/usr/share

/usr

/usr/lib /home/tom

/home/tom/research

/

Figure 3.4: A File System Naming Graph

bound can be associated with access control lists (ACL). ACLs specify the access rights that princi-

pals have to objects within the system. One of the major advantages of this paradigm is that names

in the Spring system provide the detail to specify security policies for all of the different subsystems

that make up the Spring operating system.

3.2.2 CORBA Names

Common Object Request Broker Architecture (CORBA) [28, 81,140] is a application component

system that is specified and standardised by the Object Management Group (OMG) [8]. CORBA

defines an API, communication protocol and object management system to enable heterogeneous

components to inter-operate on various systems. CORBA objects can be thought of as services that

are used by applications. In general, CORBA wraps code to provides a standard interface to that

code for distribution across a network.

An important aspect of CORBA is how these objects are named. CORBA objects may be

distributed across many different CORBA servers (called object request brokers or ORBs). The

provision of means to refer to objects on remote systems allows these objects to be used. In most

object orientated systems, objects have references that are used internally to identify them. In

CORBA, objects are used remotely, a more systematic approach is required.

CORBA’s naming service, like the Spring system, relies on the concepts of name to object asso-

ciations called name bindings. Name bindings in CORBA are defined relative to naming contexts.

3.4 Other Naming Systems 61

As with Spring name contexts, CORBA name contexts contain a set of name bindings in which

each name is unique. Many different names can be bound to a single object. However, there is no

requirement that every object have a name. Contexts can alsobe named, allowing the creation of

naming graphs. CORBA uses linked contexts to form compound names to refer to an object. A

compound name defines the path in the naming graph that leads to an object.

Names in CORBA are made up of a sequence of name components. Name components consist

of two attributes: theid attribute and thekindattribute. Both the id attribute and the kind attribute are

represented as interface definition language (IDL) strings. Kind attribute provides a textual descrip-

tion of the name. For example, a kind attribute could be “csource” or “executable”. Kind attributes

are not interpreted by the naming system. Both attributes are arbitrary length ASCII strings. Name

components cannot be empty and a name must consist of at leastone name component. In contrast

id attributes store the reference to the object in question.

As with the Spring system, the CORBA security model uses object names to form the basis of

the access control system. Permissions are specified regarding object names.

3.3 Other Naming Systems

We have only examined a small sample of the naming systems currently in use. Other naming

systems include Internet based naming services, such as DNSand Microsoft’s Windows Internet

Naming Service (WINS) [53], that link names to physical addresses on a network. In Chapter 2,

we examined SDSI local naming. Recall that in SDSI all principals (keys) are equal and each key

has its own name-space. When a principal refers to another principal in their own name space, they

define the name themselves. Local naming has the advantage that arbitrary precise names can be

represented within a name. Namespaces can be linked together to allow one principal to refer to

objects defined by other principals.

Abadi et al [11] describe a tree naming scheme that uses certificates to provide context. In this

system, only certified names would be allows in the trusted namespace. For example, if an appli-

cation sought the name “/bin/ls”, then it would have to provide a certificate that the administrator

trusted so that the name would be assigned. This scheme is primarily aimed at operating systems,

where specific namespaces have special meaning. System policies specify trusted namespaces in

term of regular expressions that are used as permissions in the certificates.

Howell [88] proposes another tree based naming hierarchy that attempts to provide highly se-

mantic and human readable (mnemonic) names for objects in a distributed system. In this system,

names are bound to objects by users. These names provide symbolic connections to objects, rather

like links in the Unix file system.

3.4 Discussion and Conclusions 62

3.4 Discussion and Conclusions

In this chapter we have discussed several naming systems, ranging from structured naming systems

(X.500 and LDAP) to flexible naming graph based systems (Spring and CORBA). Structural names

have the advantage that the naming service can be easily decentralised. Names in a directory under a

particular branch are controlled by the owner of that branch. However, this also limits the ability of

such naming architectures to adapt for use in distributed environments. In contrast, flexible naming

systems provide the ability to refer to complex compound names. Names can be linked together

into naming graphs.

One similarity of all of these naming systems is that the objects they reference are static in

nature. In the case of X.500 and LDAP, object names do not often change. In both CORBA and

the Spring systems, while data contained in the objects may change, the names themselves do not

change. Another approach to distributed names is the concept of SDSI local naming, discussed in

Chapter 2. Unlike the naming services outlined in this chapter, SDSI names are capable of storing

a more dynamic reference to an object.

In Chapter 6, we will develop a naming service for the condensed graph architecture that will

be described in Chapter 4. A primary difference of the namingrequirements for condensed graphs

to the naming systems described in this chapter is the dynamic nature of condensed graphs. As

the structure of a condensed graphs application evolves during execution, it requires a dynamic

approach to naming. For this reason, we base our approach on SDSI-like local naming.

Chapter 4

Condensed Graphs and Distributed

Computing

Condensed Graphs [122] is a graph based computational model. Applications are codified as graphs.

Nodes in a graph correspond to operations, the arcs represent data paths between operations. The

model supports three computational paradigms, which control the execution order of a graph.

• Imperativecomputation [175], where the sequencing of the operations in the graph drives the

execution order. This corresponds to the traditional control-driven approach.

• Eagercomputation [102], where node execution is determined by the availability of parameter

data to the nodes. This is equivalent to dataflow and is considered data-driven evaluation.

• Lazycomputation [20, 143], where execution sequencing is results driven. It corresponds to

the functional approach and is considered demand-driven evaluation.

Condensed Graphs may be used as a distributed job control language to describe the schedul-

ing of operations in an application. Atomic operations are value-transforming actions and can be

defined at any level of granularity, ranging from low-level machine instructions to mobile-code pro-

grams. Examples include computational primitives, Web Services [148], CORBA objects [28, 81]

and commercial-off-the-shelf (COTS) components [118]. Atomic operations in a condensed graph

application need not address synchronisation or concurrency concerns: such details are implicitly

specified by the arcs between nodes and are managed by the condensed graph execution scheduler.

In this chapter, we describe both the condensed graph model and its execution engine. In Sec-

tion 4.1 we examine the condensed graph computational modeland investigate its execution mecha-

nism. The Triple Manager [131] is used to schedule and execute condensed graphs. This is described

in Section 4.2.

63

4.1 Computational Model 64

4.1 Computational Model

The condensed graph model unifies three different models of computation (imperative, lazy and

eager) within a single graph based model. In the traditionalimperative (control-driven) model of

computation [175], the programmer explicitly determines the scheduling constraints of the com-

putation. In the eager (data-driven) approach [12], sequencing is determined based on the arrival

of data to the computational components. In the lazy (availability driven) approach, components

are executed based on the need for their results. Both the data driven and availability driven [143]

approaches are typically represented in the literature as directed acyclic graphs (DAG), for example,

dataflow graphs [18].

Definition 4.1 Condensed Graph. A condensed graph, henceforth referred to as a graph, is a

directed acyclic graph, representing an application and/or program. A condensed graph is made up

of a collection of condensed nodes that are connected by arcs. A graph has a singleEnternode (E)

defining where operands enter the graph and a singleExit node (X) defining where results flow out

of the graph. ♦

Definition 4.2 Arc. Arcs are directional connections between condensed nodes along which data

flows, in the graph. ♦

Definition 4.3 Port. A port is a point on a condensed node where other condensed nodes can

attach, via arcs. ♦

Ports on a node are where data from other condensed nodes enter and data for other condensed

nodes exit. Operands enter through operand ports, operators enter through the operator port and

data exits the condensed node via destination ports.

Operator

Destination(s)Operand(s) Destination(s)Operand(s)

Operator

(a) (b)

Figure 4.1: (a) shows a node with a dynamic operator, (b) a node with a static operator.

Definition 4.4 Condensed Node (computational triple).A condensed node, henceforth referred to

as a node, provides one or more operand ports, a single operator port and one or more destination

ports. ♦

4.1 Computational Model 65

Nodes are typically represented as a circle, as shown in Figure 4.1(a), with operands on the left,

destinations on the right and the operator on top. Operators, like operands can flow along arcs to

nodes. In most cases, the operator is statically defined and is represented as text in the centre of the

node, as shown in Figure 4.1(b).

CE

B

A

X

Figure 4.2: A simple Condensed Graph.

Figure 4.2 is an example of a simple condensed graph with an enter node (E) an exit node (X)

and three condensed nodesA, B andC. Each node consists of three parts: one or more operands, an

operator, and one or more destinations. Thus, nodes are referred to ascomputational triples. A node

can only execute when this triple is complete, that is, they have all of their operands, an operator

and all of their destinations. Arguments to the graph shown in Figure 4.2 are passed as operand data

to bothA andB, through theE node.

Definition 4.5 Firable Node. A node is considered firable when its triple is complete, thatis when

it has an operator associated with its operator port, operands associated with each of its operand

ports, and its destination ports are bound to a destination node. ♦

When the graph from Figure 4.2 is scheduled for execution, both theA andB nodes are imme-

diately firable, that is, they each have their operator, operands and a destination. These two nodes

can execute in parallel. In contrast, the nodeC cannot execute until it has the results from bothA

andB. When the nodesA andB execute, the results flow along the arcs to the nodeC. OnceC has

its operands, it becomes firable.

4.1.1 Stemming and Grafting: a basis for lazy and eager evaluation

Stemming and grafting are used in condensed graphs to alter the execution sequence of nodes in a

graph. Stemming has the effect of temporarily delaying the execution of parts of the graph. This

provides for lazy evaluation of the graph.

Definition 4.6 Stemming. A node’s operand is stemmed when the operand node’s destination is

not attached to the operand port of the node. ♦

Definition 4.7 Grafting. Grafting is the process of attaching a stemmed operand to thethe operand

port of the destination node1. ♦

1Grafting can also be used to graft operators to operator ports.

4.1 Computational Model 66

A stemmed node cannot be executed until it has been grafted. This allows control over the

execution of parts of the computation. Nodes that are stemmed will not be grafted until their results

are required by the computation2. This provides for lazy evaluation. In contrast, when all nodes in

a graph are grafted, all nodes that are fireable can be executed in parallel. This provides for eager

evaluation. There are advantages to both the lazy and eager models of computation. These will be

explored in Examples 4.1 and 4.3.

A B A B

(a) (b)

Figure 4.3: (a)A is a stemmed operand toB, (b)A is grafted toB

In the graphical representation of condensed graphs, we represent stemmed nodes as “sitting” on

the arc, as shown by the nodeA in Figure 4.3(a). In contrast, the nodeA in Figure 4.3(b) is grafted to

B. Constants are represented graphically as rectangular boxes enclosing the constant value. They are

traditionally stemmed until the node is ready to be fired, whereupon they are automatically grafted.

Ports are represented as small boxes on nodes where arcs may attach3.

Stemming a node will delay its execution as stemmed nodes areonly grafted when their results

are required. Stemming is often used when there are multipleconditional branches within the com-

putation. The branches are grafted after the conditional case is computed. Stemming all potential

branches means that only one of these branches will ever be executed. If these branches were in-

stead grafted, then all branches could be executed in parallel. This behaviour has both advantages

and disadvantages. Potentially nodes in all possible branches could be executed before the cor-

rect branch is chosen and redundant computations discarded. Executing conditional branches of a

computation simultaneously provides speculation, or eager evaluation. Eager evaluation of multiple

branches can potentially provide much more parallelism to acomputation, with the disadvantage

of redundant computations. The condensed graphs executionengine has the ability to increase or

decrease the amount of speculation depending on the amount of parallelism desired. This will be

examined in more detail in Section 4.2.

A special case exists for nodes where one or more of their destinations are stemmed while

their operator and operand(s) are present. Such nodes are consideredreducible, that is, they will

be fireable when their destinations are present. This reducible state is important for the execution

scheduler. When a graph is executing, the scheduler will first look for fireable nodes. When no

fireable nodes are present it will then examine the graph for reducible nodes. Reduceable nodes will

then have their destinations grafted and thus become fireable.

2Although this rule is sometimes overridden to allow speculative computations.
3Note that where no ambiguity can arise: ports are not specifically depicted on subsequent graphs.

4.1 Computational Model 67

Definition 4.8 Reducible Node. A node is considered reducible if there is a condensed graph

associated with its operator and with each of its operands. Anode with stemmed operands is not

reducible until all of the operands and the operator are grafted. ♦

Example 4.1 We define a simple graph, shown in Figure 4.4 to compute the factorial of an integer.

An integer value is passed as a parameter to the graph throughtheE node and in turn is passed as

an operand to theequalsto (=), minus (-) andmultiply (*) nodes. The partially executed

graph ofFactorial(50) is shown in Figure 4.5. Fireable nodes are shown in the diagram as

shaded.

E
X

=

*_

ifel

1
1

1

F

B

T

Fact

Figure 4.4: A lazy graph implementation of Factorial(n).

Nodes that have fired are not immediately garbage collected by the execution engine. They are

simply dereferenced and are properly deallocated when the exit node fires. Theifel (conditional)

node has conditional Boolean (B), True (T) and False (F) operand ports. Theifel node becomes

fireable once its boolean port becomes bound to an operand value (Figure 4.6), even though its other

ports may not be bound. The conditional node is a special casewithin the condensed graph model.

Other nodes are fireable only when their all of their operand ports are bound. In contrast, theifel

node is fireable once the boolean operand port is bound4. Unexecuted nodes may be present on any

of the other operand ports. Once the conditional node becomes fireable, the node (or nodes) present

at the ‘winning’ operand port pass through the conditional node and attach to the operand port(s) of

the conditional’s destination(s).

If the operand to the graph was equal to 1, then the computation would continue using the true

branch and the false branch would be ignored. Given that we are using the value50 as the input

to this graph, the computation proceeds along thefalsebranch. Thus the nodes on the false branch

now pass through the conditional node, and the* node is now attached to theX node’s operand port,

as shown in Figure 4.7.

Theifel node is now dereferenced and the* node is instead attached to theX node. At this
4Actually, this is not a special case. The Condensed Graph Model uses the concept of portstrictness. This is discussed

in detail in [122]. Theifel node is the only node with this behaviour that is discussed inthis thesis.

4.1 Computational Model 68

X

*

ifel

1
1

1

50

50

50

F

B

T

=

_

Fact

Figure 4.5: The partially executed graph of Factorial(n) after one step.

X

*

1

50

ifel

Fact
49

F

B

T

=

_

False

50

1

50

1

Figure 4.6: The partially executed graph of Factorial(n) after two steps.

X

50

49

F

B

T

=

False

ifel

*

Fact

50

1

50

1
1

_

Figure 4.7: The partially executed graph of Factorial(n) after the execution of theifel node.

4.1 Computational Model 69

point there are no fireable nodes, but as theFact node is reducible, it is grafted and becomes

fireable. Another instance of the graph is now spawned, usingthe operand49. When the result of

this graph (and all potential sub-graphs) are computed, themultiply node is executed returning

a result to theX node, giving the factorial of50. △

4.1.2 Condensation and Evaporation: embedding subgraphs

A node in the condensed graphs model can represent either an atomic action or a complete con-

densed graph. Atomic actions are primitives of the execution scheduler or operations provided by

the underlying host. When a node representing a condensed graph is executed, that node is replaced

by the graph it represents. The graph is then executed. Condensed graphs are hierarchical, that is,

graphs can contain subgraphs. Subgraphs can represent reusable or recursive sequences within a

condensed graph application. In the condensed graph model,subgraphs are represented as nodes in

the parent graph. When these nodes execute they expand to reveal the subgraph. The subgraph is

then executed. This process is known asevaporation.

Example 4.2 Figure 4.8 shows an instance of the factorial graph where thefactorial node in the

original graph shown in Figure 4.4 has been evaporated. In this case, two iterations of the graph are

E
X

=

*_

ifel

1
1

1

=

*_

ifel

1
1

1

F

B

T

F

B

T

Fact

Figure 4.8: Evaporation of the recursiveFact node within the Factorial Graph

visible, the original shown in the dashed box and the evaporated graph shown in the dotted box. In

4.2 Computational Model 70

practice, evaporation causes a separate condensed graph tobe spawned, with the operands passed

through theE node and the result returned, via theX node, to the next node, in this case the* node,

in the parent graph. △

The process to convert complex graphs to simpler subgraphs is known as condensation. This

process is not automated: condensing a graph is currently a task performed by programmers.

4.1.3 Unifying eager, lazy and imperative computations

The original aim of the condensed graphs model was to unify the eager, lazy and imperative sequenc-

ing of computations. As previously defined, a node in the model can be considered a computational

triple of operands, an operator and destinations. A node is not firable until this triple is complete.

In the condensed graphs model, each of these approaches relyon the restriction of one part of the

triple in order to control executions. With the eager approach, computations are sequenced based

on the availability of operand data. In the lazy approach, computations are sequenced based on

the availability of destinations. The imperative approach, in contrast, relies on the availability of

operators to sequence the computation. It is possible to mixthe three models of computation within

a single graph, depending on how the graph is written.

Example 4.3 The original Factorial graph (Figure 4.4) is a lazy condensed graph. It is called lazy,

as nodes are only executed when the result of a node is required. In contrast, an eager version of this

graph is shown in Figure 4.9. In this graph the recursiveFact node is grafted, allowing it to recurse

E
X

=

*_

ifel

1
1

1 is now
Note node

grafted.

F

B

T

Fact

Figure 4.9: An eager version of Factorial(n)

before the boolean check has been performed. This allows much more parallelism as many more

nodes are now fireable, both in the original graph and in its subgraphs. However, this eagerness

has consequences. Since the boolean check is not performed prior to the spawning of the subgraph,

graphs that recurse infinitely are possible.5. △

5In theory, athrottling mechanism can be used to selectively stem graphs, or throttle back on the infinite recursion in
this graph [122]. However, throttling is not currently provided as part of the WebCom system.

4.2 Executing Condensed Graphs 71

4.2 Executing Condensed Graphs

Condensed Graphs are executed using a execution scheduler called theTriple Manager. The triple

manager schedules nodes within a condensed graph for execution.

4.2.1 Triple Manager

The Triple Manager manages and executes computational triples. It consists of two basic parts,

the graph memory and a scheduler, as shown in Figure 4.10. Nodes in a condensed graph are

either executed by the host operating system or are executedby the triple manager itself. The triple

manager will execute special nodes, called triple manager primitives. Examples of triple manager

primitives include theE, X andifel nodes, and nodes that are condensed subgraphs.

Graph Memory

Triple Manager

Scheduler

Host OS

Figure 4.10: The architecture of the Triple Manager

Graph Memory stores the current status of an executing graph. When computational compo-

nents are executed, their results are integrated into the status of the graph. The scheduler selects

fireable nodes to be executed. If no fireable nodes are present, it will select reducible nodes and

graft their operands.

4.2.2 Distributing Computations

Triple managers can be linked together to form a distributedcomputation architecture. There are

several implementations of this type of architecture [85, 104, 132, 144–146]. These implementa-

tions provide parallel execution of graphs across different machines. In each case, the initial triple

manager schedules fireable nodes to different machines. Whenever a condensed node that defines

a condensed graph is executed, its defining graph is scheduled to a triple manager. In a distributed

implementation, this evaporated graph may be sent to a different triple manager. This results in a hi-

erarchical n-tier architecture where the connections between distributed triple managers will evolve

4.2 Executing Condensed Graphs 72

to match the executing graph.

WebCom is the primary architectural platform for distributed condensed graphs. It is a dis-

tributed n-tier metacomputer and is examined in detail in Chapter 5. Other examples include the

peer-to-peer metacomputer, ComPeer [146] and an implementation on field programmable gate ar-

rays, ARC [85, 128].

Chapter 5

WebCom

WebCom [104, 124, 126, 130–132, 144, 145] is a metacomputer [24, 103] that is designed to execute

condensed graphs in a distributed manner. It uses a variant of the client/server paradigm to distribute

operations for execution over a network. WebCom provides ann-tier approach to distributed com-

puting. In contrast to a traditional two-tier metacomputer, where there is a single parent and many

children, WebCom’s n-tier structure allows each child WebCom to act as a parent to other children.

WebCom handles the issues associated with distributed computations, such as communication, load

balancing, fault management and, as is proposed in this dissertation, security. These features are

transparent to the execution of condensed graph applications.

The WebCom architecture has proven itself to be adaptable and extensible. It can be used

to support a variety of architectures including middleware[67, 126], web services [148], and the

Grid [124]. WebCom is designed to be modular, that is, each ofits major components are developed

as modules. The implementations of these modules are“pluggable” – they can be easily replaced

with different implementations of that type of module. For example, there could be a load balancer

that provides round-robin scheduling and an alternative that uses a more sophisticated scheduling

policy based on feedback from its children. This allows WebCom to be easily extended. The security

manager in WebCom has been extended to support a micropayment system [64], a decentralised

system administration tool for grids [48, 147] and a security policy tool for enterprises [63]. Each

of these extensions are described in detail in Chapter 8.

This chapter will examine the architecture of WebCom, concentrating in particular on the de-

sign of the security architecture. The development of WebCom was a collaborative effort within

the Centre for Unified Computing in University College Cork.The fault tolerance architecture is

described in [104]. In [144], the load balancing architecture is described. The contribution detailed

in this dissertation is the design and implementation of WebCom’s security architecture.

Providing a security architecture for WebCom entails first identifying the security risks that

metacomputers suffer and creating an architecture that addresses these risks. The security system

73

5.2 Distributing Computations 74

must also consider, and work with, the other systems that WebCom provides, such as fault tolerance

and load balancing.

In Section 5.1 we will introduce the WebCom system and identify the type of problems it can

be used to solve. The WebCom architecture is examined in Section 5.2. Section 5.3 describes

the types of problems WebCom can be used to solve. These include processor intensive parallel

computations, such as a distributed key cracking and distributed workflows. One of the major

benefits of the WebCom system is the ability to separate functionality from scheduling control.

This is described in Section 5.4. We discuss the advantages and limitations in Section 5.5.

5.1 Distributing Computations

WebCom essentially functions as a distributed condensed graph execution engine, known as the

Triple Manager that was described in Section 4.2.1. WebCom operates as a virtual machine running

on top of the host architecture. Thus, we refer to the system as the WebCom Virtual Machine, or

WVM. When a WVM is executing a graph, it can schedule nodes withinthat graph to its children.

The child WVMs then execute the nodes and return the results to their parent. The results are in-

tegrated into the graph and the execution continues. When a condensed graph is executing and a

subgraph is uncovered, this subgraph can be sent to another WVM for scheduling. This subgraph

is then maintained by a second WVM. This is known aspromotion[130]. The promoted WVM

will schedule the nodes contained within the subgraph to itschildren As an application executes,

there can be many subgraphs uncovered within the parent graph. Subgraphs can themselves contain

further subgraphs. As these graph are discovered, the network structure of the WVMs will ideally

change based on the discovery of subgraphs1. Thus, as a computation evolves, the network architec-

ture of WVMs executing the application dynamically evolvesto account for the needs of the graph

[104]. This type of evolving network is known as an n-tier structure. A representation of WebCom’s

n-tier structure is shown in Figure 5.1.

WebCom also supports child migration, where child WVMs are adopted from other WVM

parents. A WVM can either make this request to its parent, or can make the request to a central child

repository, such as Cyclone [133]. Volunteers first register with Cyclone, and are then migrated to

WVMs that need workers. Other repositories include Grid machines [145], that is, machines that

are provided as workers within a Grid architecture.

WebCom has been used to manage the execution of applicationsranging from simple workflows

to complex Grid applications. Recall that nodes in condensed graphs can represent atomic actions of

any level of complexity, from simple computational primitives to complete application components.

A WVM makes no differentiation (other than load balancing) between simple and complex nodes.

Both are handled transparently by the scheduler.

1Provided that sufficient WVMs are available.

5.2 Architecture 75

ChildWebCom
Parent

WebCom
Parent

WebCom
Parent

WebCom
Parent

WebCom
Parent

WebCom
Parent

WebCom
Parent

Child

ChildChildChildChildChildChild

Child

Figure 5.1: WebCom’s n-tier architecture.

5.2 Architecture

WebCom is composed of a number of replaceable modules connecting to a central scheduler. The

core WebCom modules are theExecution Engine Module, theCommunications Manager Module,

the Load Balancing Modulethe Fault Tolerance Module, the Naming Manager Moduleand the

Security Manager Module. These modules make up the core of the WebCom system. Each module

has its own local policies that define the configuration of that module. Non-core modules, called

user modules, are also supported. The architecture is “pluggable”, in the sense that a module can

be re-implemented to replace the reference implementations of that module. WebCom supports the

use of multiple instances of a core module type concurrently. When multiple instances are present,

decisions are made jointly. For example, if multiple security manager modules are present, each

module makes decisions on requested actions and only when all modules agree will any action

take place. Figure 5.2 displays a representation of the coreWebCom modules. These modules are

examined in more detail below.

WebCom provides a complete messaging infrastructure, allowing modules to communicate be-

tween themselves on both the same WVM, and on other WVMs in thenetwork. For example, a load

balancing module can ask another load balancing module in a different WVM the extent of the load

on its children. The messaging infrastructure is regulatedby the security manager.

When a node is firable by the execution engine and is to be scheduled by the WVM, the sched-

uler asks the load balancing module and the security managermodule to find a child that is both

unloaded and is authorised to execute such a node. Whether a child is unloaded and authorised is

determined by the load balancer and security manager modules respectively.

5.2 Architecture 76

Execution Engine

Security Manager
Module

Communications
Manager
Module

Scheduler

N
et

w
or

k

Load Balancer

Module Module

Fault Tolerance

Naming Manager

Module

Secure WebCom

Figure 5.2: Secure WebCom Architecture

5.2.1 Execution Engine Module

The execution engine module is used to execute operations sent to the WVM. Execution engine

implementations can be written to execute any type of operation. The reference implementation is

a Triple Manager that is used to execute condensed graphs. Implementations also exist to execute

CORBA, J2EE, .NET andGrid nodes. If a WVM is operating as a child, the execution engine will

execute the nodes sent to it locally and will return results to its parent. If the WVM is operating

as a parent, the execution engine selects nodes for scheduling and maintains the current state of the

executing graph.

5.2.2 Communications Manager Module

The communication manager module is used to manage communication between WVMs. Typically

this network communication uses the TCP/IP protocol. However other types of communication

manager module also exist, such as the Web Services communication manager module [129], that

provides a web services interface to WVM. The communicationmanager module is used to route

the traffic between a WVM, its children and parent.

The current prototype of Secure WebCom uses SSL [92] to provide secure and authentic com-

munication links. This will be discussed in more detail in Chapter 7. Thesecurecommunications

manager manages the cryptographic keys and store trusted keys. Implementing a secure commu-

nication manager module entails replacing the standard communication manager module with an

implementation that uses the SSL protocol.

5.2 Architecture 77

5.2.3 Load Balancing Module

The load balancing module manages the load on the children ofa WVM. This allows the parent

WVM to choose to schedule nodes to children that are relatively unloaded. The load balancing

module makes the scheduling decisions in conjunction with the security manager. The load bal-

ancing policies range from simple round-robin schedulers to complex schedulers using history to

predict future loads [144].

The load balancer is also used to match nodes to specific WVMs.For example, a node may

require data that is only available to a specific WVM. The loadbalancer policy can contain such

details and match nodes to specific WVMs2.

5.2.4 Fault Tolerance Module

The fault tolerance module managers faults that occur within a network of WVMs. This can range

from fault avoidance to fault recovery [104]. Work that was scheduled to WVMs that have since

failed will be rescheduled to other WVMs by the fault tolerance mechanism.

The default fault tolerance mechanism is sophisticated. Ifa WVM that is acting as a parent

fails, then the only work lost is the work that is taking placeon the failing machine. Its children will

decide on a new parent between themselves. This new parent will contact their “grandparent”, that

is, the WVM that was the parent of the failing machine. The work that the children have executed

up to that time will be reintegrated by the new parent and the execution will continue as before.

5.2.5 Naming Manager Module

The naming manager module manages the names of node objects in a condensed graph. When We-

bCom modules make decisions they require a fully qualified name for nodes. The naming manager

generates, stores and updates the names as the execution progresses. These names hold the execu-

tion context of the nodes in a condensed graph application. This execution context can be used by

the other modules to make scheduling and security decisionsabout the nodes.

Chapter 6 describes how nodes in condensed graphs can be properly named. The naming man-

ager uses these techniques to manage descriptive names for nodes in the WebCom system. In the

current prototype the security manager alone uses these names. However, it is envisioned that the

other modules will take advantage of the naming architecture. For example, it is proposed to use

the naming system to properly identify WVMs for use by the fault management mechanism.

2The security manager module is also capable of ensuring thatnodes are sent to specific WVMs. This will be examined
in Chapter 7.

5.3 WebCom Applications 78

5.2.6 Security Manager Module

The security manager module enforces the local security policy of WebCom. The security manager

module acts as a reference monitor [25], determining whether it is safe to execute security critical

actions. These actions could be the scheduling of a node, thesending of a message, a result to be

processed or the local execution of a node. The security manager makes decisions based on its local

security policy.

The security manager can be implemented in a number of ways, ranging from a simple manager

that permits everything, to a sophisticated access controlsystem. An early prototype implemented

a trust management based access control system. In this implementation permissions are delegated

to principals, representing WVMs, using cryptographic credentials. The trust management security

manager uses the credentials provided by child WVMs to decide where to schedule nodes. The

implementation of the Trust Management security module is discussed in more detail in Chapter 7.

5.2.7 User Modules

WebCom supports the development a variety of non-core module types. These are referred to as user

modules. One example is the information gathering module [123] that gathers machine execution

information from WVMs. This is used to map the load on a cluster of WVMs to measure both

performance and usage. User modules cannot directly effectthe scheduling decision making logic

of WebCom. User modules are restricted to gathering information. This information could be used

by a core module, and thus effect a scheduling decision.

WebCom provides a complete application programming interface (API). Using this API, third

parties can create different implementations of core WebCom modules, or create entirely new mod-

ules.

5.3 WebCom Applications

WebCom allows us to execute applications across many machines in a network. It is used to solve

both complex scientific computations, such as identifying astronomical phenomenon [141] and sim-

ple workflow applications [126]. Workflow applications are sequences of operations that must ex-

ecute in the order specified for the application to be successful. For example, Figure 5.3 shows a

simple purchase ordering system specified as a workflow. In this workflow, an order must be first

proposed (prop) and then verified (ver) to be considered a valid order.

XE prop ver

Figure 5.3: A Simple Purchase Ordering Application

5.4 Separation of Concerns 79

Specifying this application as a condensed graph has the implicit benefit that theprop node

will be executed before thever node. WebCom provides the ability to distribute such application

components to different machines in a network. WebCom applications are primarily created using

a graphical integrated development environment, the WebCom IDE.

WebCom applications use the benefits of the architecture of WebCom transparently. Consider

the following scenario: the nodeprop has been scheduled to a WVM running on machineA. This

machine breaks down before the node finishes executing. As WebCom has a fault tolerance (in this

case a fault recovery) mechanism the node is rescheduled forexecution without user interaction.

This mechanism is outside of the condensed graph model.

5.4 Separation of Concerns

WebCom provides the inherent ability to separate computation functionality from computation con-

trol. Computation functionality is provided by the implementation of the nodes and graphs, the

control is provided by the WebCom modules. In most distributed computation architectures, such

as PVM [9] and MPI [7], control is embedded within the functional code. For example, the num-

ber, type and order of resources to be used to execute the computation are known a priori. This

provides a tight coupling between functionality and control. In contrast to this type of architecture,

WebCom provides for a separation of concerns at the code level, allowing a loose coupling between

functionality and control: functional code is separate from control code.

Example 5.1 Traditionally when Trust Management is used within an application, the calls to the

trust management system are embedded into the functional code. For example, Figure 5.3 shows a

condensed graph with two nodesprop andver. If the implementation of theprop node used the

KeyNote trust management system (as described in Section 2.3.2), the calls to KeyNote would be

embedded into the code as shown below3.

1 // Initilise JKeyNote Objects
KeyNoteFactory knf = new KeyNoteFactory();
KeyNoteParser trustedParser = knf.getParser(true);
KeyNoteParser untrusted = knf.getParser(false);
KeyNoteNavigator nav = knf.getNavigator();

// Set up a list of variables to act as query.
VariablesList vL = new BasicVariablesList();
vL.addStringVar("App_Domain", "OrderApp");

10 vL.addStringVar("Operation", "prop");
knf.addVariablesList(vL);

// setup the compliance values and load policy

3In the code fragments shown in this chapter we use the Java implementation of the KeyNote Trust Management
system, JKeyNote [90].

5.4 Separation of Concerns 80

knf.setComplianceValues("untrusted,trusted");
String pol = ...
trustedParser.parse(pol);

// Parse the user credentials
String usercreds = ...

20 untrusted.parse(usercreds);

// Perform the query, using the client’s key.
PublicKey ClientKey = ...
int res1 = nav.findAuthorizer(ClientKey);
if (res1 > 0)
{
prop();

}
else

30 {
// deny access...

}

In this code, before theprop() function call is made, the system calls KeyNote and verifies

that the call is authorised. It must first initialise the JKeyNote objects and define the query (lines

1–14). Next the local policy (trusted) credentials and the user (untrusted) credentials are loaded

(lines 15–20). Finally KeyNote is queried whether the client’s public key is authorised for the

given query (lines 23–25). In this case, the client must holdcredentials authorising the actions

App_Domain == "OrderApp" andOperation == "prop", such as the credential shown

in Figure 5.4.

Authorizer: "KAlice"
licensees: "KBob"
Conditions: App_Domain=="OrderApp"

&& Operation=="prop";
...

Figure 5.4: A skeleton credential authorising KBob to perform the actionsOrderApp andprop.

△

WebCom offers a different approach to scheduling of nodes. Nodes that represent atomic com-

ponents are scheduled based on the characteristics of thosenodes. For example, the WebCom se-

curity manager decides whether a nodes are permitted to execute on specific resources. If a node is

not so authorised, then it will not be scheduled to that resource. Furthermore, if a resource receives

a node that its security model does not permit, then that nodewill be rejected. In the WebCom

system, the node application code has no explicit calls to the WebCom security model. The se-

curity policy is thus independent of the application code. This allows, for example, programmers

who have little experience of the security model to create nodes and graphs4. The security policy

is created later, before the application is executed in a secure environment, thus providing a loosely

4The security model is examined in detail in Chapter 7.

5.4 Separation of Concerns 81

coupled architecture. All WebCom’s modules share this characteristic and are, as such, all loosely

coupled. Typically, security policies are created during application development, as developers will

have greater insight into the security requirements of their application. However, a loosely coupled

architecture allows policies to be easily changed without modifying the application code.

Example 5.2 When a node is to be scheduled by WebCom, the scheduler asks the Load Balancing

Module and the Security Manager Module to find a suitable child WVM to execute the node. The

Load Balancer and Security Manager search for a child based on their decision logic. If the Security

Manager is using the KeyNote trust management system as its decision logic, the search for a

suitable child WVM takes the form of a check of each candidateuntil an authorised child is found.

This search is performed by acheck method, parts of which is shown below.

1 // Node name stored in instrname
// Enviroment Variables
vL.addStringVar("App_Domain", "WebCom");
vL.addStringVar("Domain", instrname.getDomain());
vL.addStringVar("Graph", instrname.getGraph());
vL.addStringVar("Function", instrname.getFunction());
// Multiple Inputs and Destinations
Vector inputs = instrname.getInputs(); // Go through inputs
for (Iterator iter = inputs.iterator(); iter.hasNext();)

10 vL.addStringVar("Input", (String) iter.next());

Vector dests = instrname.getDestinations(); // Go through destinations
for (Iterator diter = dests.iterator(); diter.hasNext();)
vL.addStringVar("Destination", (String) diter.next());

knf.addVariablesList(vL);
knf.setComplianceValues("untrusted,trusted");

// Initilise the credential search engine and load credentials
20 KeyNoteNavigator nav = knf.getNavigator();

try {
for (Iterator polsiter = pols.iterator(); polsiter.hasNext();) {

String pol = (String) polsiter.next(); // Policy (trusted) Credentials
trustedParser.parse(pol);

}
for (Iterator iter = creds.iterator(); iter.hasNext();) {

String cred = (String) iter.next(); // User (untrusted) Credentials
untrusted.parse(cred);

}
30

// Check if the client key supplied is authorised.
int res1 = nav.findAuthorizer(ClientKey);
if (res1 > 0) {

return true; // it is, let the SecurityManager know.
}
else {

return false; // not authorised, inform the SecurityManager
}

}
40 }

5.5 Discussion and Conclusions 82

In this code fragment, jKeyNote is initialised in the same way as before, and acts in a similar

manner to the embedded version discussed earlier. However,the implementation used by the Secu-

rity Manager is generic, that is, it can be used for any node. The environment variables used for the

query are extracted from the name of the node5 (lines 4–15). The properties of the nodes are stored

in a name variable,instrname in this code fragment, and are extracted for use by the KeyNote

query. The KeyNote credentials used will reflect these environment variables. A sample credential

is shown in Figure 5.5.

Authorizer: "KAlice"
licensees: "KBob"
Conditions: App_Domain=="WebCom"

&& Domain=="bob.ucc.ie"
&& Graph=="PurchaseOrder"
&& Function=="prop";

...

Figure 5.5: A credential allowing KBob to execute aprop node with any input(s) and any destina-
tion(s) in the domainbob.ucc.ie.

△

WebCom’s pluggable design allows different implementations of security managers for specific

types of security policy. For example, it is easy to imagine that a separation of duties security

policy [135] would be required for the purchase ordering system shown in Figure 5.3. Such a policy

could define that one person should perform theprop operation and another thever operation.

In this simple application, the security policy would reference both theprop andver nodes. The

simplest policy would define a specific WVM that should executeprop nodes and a different WVM

that should executever nodes. A specific implementation of the security manager module could

be used to enforce this policy.

5.5 Discussion and Conclusions

The WebCom architecture is a metacomputing environment that provides the basis for secure, fault

tolerant, load balanced distributed applications. The pluggable nature of the WebCom architecture

allows the development of modular components. The reference implementations of the core mod-

ules can be replaced, allowing different implementations of those modules to be used. WebCom can

therefore adapt to different execution conditions as required.

From a security standpoint, the architecture of WebCom prompts some unique challenges. En-

suring the integrity of the computations executing in a distributed environment entails controlling

the configuration of both the computation and the network of WVMs that the computation will be

5The process by which the node’s name is determined is discussed in Chapter 6 and is not important at this point.

5.5 Discussion and Conclusions 83

executing on. The security requirements of WebCom are managed by the Security Manager Mod-

ule. Different implementations of the security manager canbe used to enforce different types of

access control. As WebCom is a distributed environment, enforcement of the security policy must

also be distributed. WebCom can exist outside of the controlof a single administrator. Instances

of WebCom running on different resources can have differentadministrators. The security system

must support this type of architecture.

Another challenge that faces the security architecture of WebCom includes the localisation of

security policy. Each WVM will have its own local policy, andso will only execute computations

that comply with these policies. WebCom must support this type of policy localisation and manage

the problems that this creates.

WebCom provides built-in support for the separation of functional and control code. Condensed

nodes implement functional code; WebCom’s modules providecontrol over this code. Functional

and control code requirements are typically disjoint. Whena component is modified, that does not

necessitate modifying the control code, and vice versa. This provides a loosely coupled architec-

ture. Conventionally, trust management does not support this separation of concerns: security code

is embedded within the functional code. However, separating the functional and control code does

not provide the same level of detail when making a trust management check. When this check is

embedded within the functional code, all of the informationavailable to the application is poten-

tially available to the trust management system. Removing the trust management check from the

application requires the ability to extract that same levelof detail from WebCom. We argue that

a rich naming system for WebCom is necessary so that we can carry out the same kind of check

outside of the application code. Chapter 6 will address thisissue.

In this chapter, we examined the architecture of the WebCom metacomputer. In Chapter 7,

we will examine WebCom’s security model in detail and addresses the threats that WebCom must

defend against. Specific implementations of security managers for WebCom are also described in

Chapter 7, with the types of security policies that these implementations can support.

Part III

Security in Distributed Systems

84

Chapter 6

Naming for Condensed Graphs

Distributed computing technologies, such as Grid [71, 72] and cluster computing [167], raise some

unique problems when articulating security policies. The complexity of these problems depends

greatly on what type—open or closed—of distributed system is in use. Closed distributed systems

are those where the entire system is owned and/or operated bya single organisation, such as an

organisation’s cluster or enterprise application. In contrast, open distributed systems consist of

shared resources across many administrative domains, suchas a computational grid.

Distributed applications are made up of computational components that are executed on dis-

tributed resources. With traditional closed systems, computations are performed within domains

where the characteristics of the system, such as the resources available or the types of operating

system in use, are a priori known. However, in open distributed architectures, computational com-

ponents may be executed across widely distributed domains,where developers may have less a

priori information about the resources the components use and where these components will exe-

cute. In a closed distributed system, these resources are known to the developer and the security

requirements are more easily configured.

In practice, open decentralised security architectures, such as Trust Management [29, 32, 56],

provide an approach towards addressing this concern. Security policies are maintained by the

stakeholders in the computations: the users who initiate the computations and the computational

resources that host the jobs.

Creating security policies for open distributed computations is a challenging prospect. In this

dissertation, different applications have a large range ofsecurity goals. In particular, we are primar-

ily interested in access control. Providing a means to create such access control policies implies

having the ability to refer to components throughout the computation in a consistent and potentially

unique way. For example, how does one specify that sensitiveparts of a computation are only sent

to be executed on appropriately trusted resources? More complex problems can also be imagined,

such as creating a history-based policy [40, 135, 164, 180].Such policies require representing the

85

6.1 Context 86

contexts that the computation has passed through to this point, for example, a separation of duty

rule on a financial transaction could entail ensuring that a different principal approve the transaction

that another principal initiates. The context must maintain the information necessary to uphold such

policies. We argue that this fundamental problem can be reduced to anamingproblem. The central

premise of our argument is“if you can name it, then you can make authorisation decisions about

it” . If every component (or, in the case of a condensed graph application, a node) in the computation

is properly named, then it can be referred to with as much precision as is required.

Naming distributed components is not a new problem, for example CORBA [81], the Spring

naming system [149], the X.500 naming architecture [182] and Enterprise Java Beans (EJB) [169]

each provide solutions towards the naming of distributed components. However, each of these so-

lutions addresses naming as a static problem. Distributed objects in these systems have a priori

defined names as they do not change often. In contrast, nodes in a condensed graph evolve continu-

ally during execution, therefore, the names of these nodes must also evolve. A naming scheme for

condensed graphs must consider this evolving nature of components in the computations.

In Chapter 3, we examined the background of distributing computations and described a num-

ber of the technologies used to address some of the security issues that arise. Chapter 5 described

the distributed architecture used to execute condensed graphs. In particular, Chapter 5 outlined the

security architecture of WebCom. This chapter will furtherexamine the structure of condensed

graphs in order to properly develop a naming architecture for them. Section 6.1 examines the con-

textual information required to name a computational component. These requirements are applied

to condensed graphs in Section 6.2. In Section 6.3, we propose a rigorous model for condensed

graph names. This naming model provides the ability to definename reduction rules that provide

a translation from complex and unwieldy names to a more usable reduced form. These reduction

rules are described in Section 6.4. Section 6.5 describes some examples of history-based naming

policies. A practical implementation of this naming architecture for the WebCom system is then

described in Section 6.6.

6.1 Context

A distributed application consists of a number of computational components. Naming such com-

ponents entails capturing the attributes of the computation at a specific moment in time. One of

the applications of these names is in making access control decisions regarding the ongoing com-

putation; for example, whether or not it should be allowed access to certain resources. This is not

the only application: names can be used to help define many types of policy, ranging from load

balancing to fault tolerance. To properly name a component in a computation, we must first identify

the computational context that incorporates the component. This context can be broken down into a

number of attributes:

6.2 Context 87

Output(s)

Domain

Function

Input(s)

Graph

Figure 6.1: The Components of a Distributed Name

• Domain: the context in which this component is executing, or in which context it will be

executed.

• Application: the application (graph) that this component a part of.

• Function: the operational function of this component.

• Inputs: the computational context(s) that have led to this value.

• Outputs: the context(s) that this computation is destined for in thefuture.

SDSI/SPKI [152] proposes linked local namespaces as a way tobuild complex names. For

example, Alice has a computer that she simply calls“Computer”. Bob also has a computer, that he

too refers to as“Computer”. As Alice and Bob are separate principals, this is perfectlyacceptable.

However, how does Bob refer to Alice’s Computer? Suppose Bobknows Alice simply as“Alice” ;

Bob, therefore, refers to Alice’s Computer as“Alice’s Computer”. More precisely: it is the object

that Alice refers to as ‘‘Computer”. SDSI uses s-expressions to encode these names. In an s-

expression, theref: keyword can be regarded as a formalisation of the ’s relationship between

related components of the local name. Thus, the s-expression representation of“Alice’s Computer”

is (ref: Alice Computer).

Each principal in a system names objects according to their local view of the system. This same

rational can be applied to the nodes of a condensed graph. Through the use of s-expressions, local

naming provides the ability to use names from other principal’s namespaces.

6.2 Naming Condensed Graphs 88

6.2 Naming Condensed Graphs

WebCom applications are specified in terms of condensed graphs. In order that the context of

a condensed graph application is properly named, components (nodes) in condensed graphs are

named in terms ofWebCom names. A WebCom name is a five-tuple, made up of a domain, a graph,

a function, zero or more inputs and zero or more outputs. Eachof these tuples can themselves refer

to a WebCom name, or can be empty. The tuples represent different aspects of a node’s context, and

are defined as follows:

• thedomain tuple in a WebCom name is the execution context in which the node that the

name refers to has executed, is currently executing, or willexecute;

• thegraph tuple in a WebCom name is the condensed graph in which the nodereferred to is

a member;

• thefunction tuple in a WebCom name is a description of the operator of the node;

• input tuples in a WebCom name are the names of the operands to the node There can be

multiple inputs, each of which can be referred to separately;

• output tuples in a WebCom name are the names of the destinations of the node. There can

be multiple outputs, each of which can be referred to separately.

<webcomname> ::=
(WebComName

[(domain <webcomname>)]
[(graph <webcomname>)]
[(function <webcomname>)]
[(inputs

{(input <webcomname>)}
)]
[(outputs

{(output <webcomname>)}
)]

)

<webcomname> ::=
(WebComName S-Expression)

Figure 6.2: The structure of a WebCom name.

Using these attributes, Figure 6.2 defines a WebCom name as a s-expression. All parts of the

name are optional. A name can be represented by a combinationof any of these fields or by a

simple representative s-expression. There can be one or moreinput and/oroutput fields when

theinputs and/oroutputs fields, respectively, are present. This structure represents all of the

aspects of a condensed node, including a representation of where that node executes.

6.2 Naming Condensed Graphs 89

Example 6.1 The condensed graph shown in Figure 6.3 defines a simple web services application

as a workflow of atomic actions, that implements a travel agent application. The application op-

erates as a simple travel agent, using web services from different sites. Users of the application

are directed to fill in the details required to purchase an airline ticket (BuySeat). Once this pur-

chase is completed, the relevant details are sent to hotel reservation (RentRoom) and car rental

sites (RentCar). The user can then fill in any extra details. Finally all the details are collated and

printed out for the user (Print).

E

Rent
Car

Seat
Buy

Print

Room
Rent

X

Travel
AgentAp ::=

Figure 6.3: A simple Travel Agent Web Services application,specified as a Condensed Graph.

From Alice’s perspective, a version of theRentCar node from Figure 6.3 executing on her
computer, named “Computer”, can be named using an s-expression as:

(WebComName

(domain Computer)

(graph (ref: Computer TravelAgentAp))

(function (ref: Computer (ref: TravelAgentAp RentCar)))

(inputs (input (ref: Computer (ref: TravelAgentAp (ref: RentCar Input)))))

(outputs (output (ref: Computer (ref: TravelAgentAp (ref: RentCar Output)))))

)

From Bob’s perspective, the components of the name must specify the principal Alice, in whose
namespace these name-components exist. Bob’s name for theRentCar node becomes:

(WebComName

(domain (ref: Alice Computer))

(graph (ref: Alice (ref: Computer TravelAgentAp)))

(function (ref: Alice (ref: Computer (ref: TravelAgentAp RentCar))))

(inputs (input (ref: Alice (ref: Computer

(ref: TravelAgentAp (ref: RentCar Input))))))

(outputs (output (ref: Alice (ref: Computer

(ref: TravelAgentAp (ref: RentCar Output))))))

)

6.2 Naming Condensed Graphs 90

While the node’s name changes based on the perspective of thenamer, it is immediately obvious

that the same node is being referred to. △

Local naming provides the ability to store the required detail to identify each portion of the node in

as much, or as little, detail as is necessary.

Example 6.2 Taking the nodeRentCar from the condensed graph shown in Figure 6.3, we can

use information about the node’s inputs and outputs to create a more contextual representation of

the node in terms of a specific airline (Aerlingus), car rental company (Hertz) and travel agent

(eBookers), as shown in Figure 6.4.

(WebComName
(domain (ref: Hertz (ref: Paris)))
(graph (ref: eBookers (ref: Dublin (ref: Alice TravelAgentAp))))
(function (ref: Hertz (ref: Paris (ref: TravelAgentAp RentCar))))
(inputs (input (ref: Aerlingus (ref: EI220 (ref: Paris

(ref: TravelAgentAp BuySeat))))))
(outputs (output (ref: eBookers (ref: Dublin (ref: Alice

(ref: TravelAgentAp Print))))))
)

Figure 6.4: A possible name for theBuySeat Node.

In this example, theRentCar node is executed in Hertz’s Paris office. The web service appli-

cation (TravelAgentAp) was launched by the eBookers travel agent in their Dublin office, by a

principal called Alice. The flight involved is Aerlingus flight EI220 to Paris, and the details will be

sent back to eBookers Dublin office for printing.

This node has a single input and a single output. Both the input and output node are referred to

concisely using their function tuple. How names are constructed in practice is examined in detail in

Section 6.4. △

As some nodes have multiple inputs and/or outputs, for example, theBuySeat andPrint nodes

in Figure 6.3, the names of such nodes must have the ability torefer to these multiple inputs/outputs.

Example 6.3 The output result of the execution of theBuySeat node acts as the input to three

other nodes,RentRoom, Print, andRentCar. The name for theBuySeat node could be as

shown in Figure 6.5

These names can be used directly in authorisation credentials, such as the SPKI credential shown

in Figure 6.6. This credential authorises a user to execute aspecificBuySeat node, for example,

when the output is destined for “Hilton’s Paris’s TravelAgentAp’s RentRoom” and so forth.

In all of these cases, the names shown are not the only potential names for these nodes. Node

names depend on the amount of information required for a particular application. Credentials can

often be simplified, for example, when the input or output constraints are not required and instead

6.2 Naming Condensed Graphs 91

(WebComName
(domain (ref: Aerlingus (ref: Dublin)))
(graph (ref: eBookers (ref: Dublin (ref: Alice TravelAgentAp))))
(function (ref: Aerlingus (ref: Dublin (ref: TravelAgentAp BuySeat))))
(inputs (input (ref: eBookers (ref: Dublin (ref: Alice

(ref: TravelAgentAp E))))))
(outputs
(output (ref: Hilton (ref: Paris (ref: TravelAgentAp RentRoom))))
(output (ref: eBookers (ref: Dublin (ref: Alice

(ref: TravelAgentAp Print)))))
(output (ref: Hertz (ref: Paris (ref: TravelAgentAp RentCar)))))

)

Figure 6.5: An extended name for theBuySeat node.

any BuySeat nodes from any input and going to any output is allowed. When adetail is not

specified, the credential becomes more general. In Section 6.4 we will examine how we can control

the amount of information stored in a name.

△

Node names are dynamic in the sense that they can change as thenodes pass through different

contexts and may, therefore, grow in size to record the history of transited contexts. While these

names provide the contextual detail required to enable naming policies to be articulated before com-

putation takes place, it is clear that the size of these namesmay cause them to become unusable in

computations of a non-trivial nature. A consistent system is required to provide a compact reduced

form for these names, yet still containing enough detail to allow informed authorisation decisions

to be made. For example, a more compact representation of theRentCar node from Example 6.2

might include less information, such as the simple s-expression:

(WebComName (ref: Hertz (ref: Paris RentCar)))

This represents a node that Alice refers to as “Hertz’s Paris’ RentCar”. In Bob’s namespace,

this would be referred to as “Alice’s Hertz’s Paris’ RentCar”. How names can be transformed and/or

simplified usingreduction rulesis examined in Section 6.4.

6.2.1 Unique names

It may not be immediately possible to uniquely name nodes in acondensed graph. Consider a graph

with two nodes that are functionally equivalent, such as thetwo B nodes in Figure 6.7. Both nodes

are functionally identical, have the same input node,A and the same node,C, receives their output.

For example, this behaviour may be desirable when replicated component executions are required.

On the one hand it can be argued that this is not an issue for an access control policy. If the

nodes are identical, then the security policy should also beidentical. Consider, on the other hand, a

separation of duties style policy [40, 58, 180] that states:“Only one nodeBmay execute in any single

6.2 Naming Condensed Graphs 92

(cert
(issuer (hash sha1 |dsEFA73213jsDDF3784JDFjfsFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash sha1 |dasdk...|))))
(propagate)
(
(tag
(execute
(WebComName
(domain (ref: Aerlingus (ref: Dublin)))
(graph (ref: ebookers (ref: Dublin

(ref: Alice TravelAgentAp))))
(function (ref: Aerlingus (ref: EI220 (ref: Paris

(ref: TravelAgentAp BuySeat))))
(inputs
(input (ref: ebookers (ref: Dublin (ref: Alice

(ref: TravelAgentAp E))))))
(outputs
(output (ref: Hilton (ref: Paris

(ref: TravelAgentAp RentRoom)))))
(output (ref: ebookers (ref: Dublin

(ref: Alice (ref: TravelAgentAp Print)))))
(output (ref: Hertz (ref: Paris

(ref: TravelAgentAp RentCar))))))
)

)
)

)
(not-before "2006-01-01_00:00:00")
(not-after "2006-12-31_23:59:59")

)

Figure 6.6: A SPKI credential authorising a user to execute aBuySeat node.

domain”. On first examination, this contradicts our previous argument that the security decision for

two identical nodes should be identical. However, in practice, this is not the case with dynamic

names as such names contain a context. Once a nodeB is assigned to a domain, its name changes.

Dynamic names are updated continually as their context changes.

It is possible for two nodes to have the exact same name even after they have been assigned to

a domain. If, for example, the twoB nodes from Figure 6.7 are scheduled to the same domain, then

the names of these nodes would be identical. However, we argue that the responsibility lies with

the application developer to avoid such situations. One approach would be to use different function

names to refer to the nodesB.

While it is possible in most cases to generate unique dynamicnames for nodes, this is often

undesirable. For example, when specifying a security policy, it would be easier to refer to more

“generic” names that can refer to many nodes rather than requiring every possible node name to be

uniquely identified.

6.3 A Naming Model for Condensed Graphs 93

E
XA

B

B

C

Figure 6.7: A condensed graph with non-unique nodes.

6.2.2 Self Referencing Names

An important aspect of a naming architecture for condensed graphs is how these names are gener-

ated. As every node in a condensed graph is potentially (indirectly) connected to every other node,

then a single node’s name may potentially reference every other node in the graph. In the examples

of node names provided up to this point in this dissertation,we have referred to other nodes simply

by the name of their function tuple. We will see in Section 6.4that this corresponds to “de facto”

name reduction. If instead, we use the full name of the connected nodes, then the node’s name

becomes infinite.

Example 6.4 In Figure 6.8, theRentCar node has been defined in a self referential manner with

one round of unfolding, that is, WebCom names of the input nodes are included in the node name.

One of the inputs to theRentCar node is theBuySeat node. Consequently if this node’s name

is constructed, then one of its outputs is theRentCar node.

△

This increase in name complexity is not necessarily disadvantageous. With increased com-

plexity in a name comes increased precision. For example, executingB can be distinguished from

executingB using input that came fromC. Name complexity can be addressed when generating

names for nodes. When a node is being named, reduction rules are applied to that name in order to

simplify the name of the node.

6.3 A Naming Model for Condensed Graphs

SDSI-like local names provide an adequate means to refer to nodes in condensed graphs. In the im-

plementation of the naming architecture for WebCom, s-expressions are used to provide the internal

representation of node names. For the sake of compact exposition, rather than use s-expressions, we

use haskell [98] in this dissertation to describe the namingmodel. Haskell provides a precise and

concise way to specify WebCom names and reduction rules and provides a rigorous notation that

can be type-checked and executed to confirm consistency.

6.3 A Naming Model for Condensed Graphs 94

(WebComName
(domain (ref: Hertz (ref: Cork)))
(graph (ref: eBookers (ref: Dublin (ref: Alice TravelAgentAp))))
(function (ref: Hertz (ref: Cork (ref: TravelAgentAp RentCar))))
(inputs
(input
(WebComName

(domain (ref: Aerlingus Cork))
(graph (ref: eBookers (ref: Dublin (ref: Alice TravelAgentAp))))
(function (ref: Aerlingus (ref: EI220 (ref: Paris (ref: BuySeat)))))
(inputs
(input (ref: eBookers (ref: Dublin (ref: Alice (ref: TravelAgentAp E)))))

)
(outputs
(output (ref: Hilton (ref: Paris (ref: TravelAgentAp RentRoom))))
(output (ref: Hertz (ref: Paris (ref: TravelAgentAp RentCar))))
(output (ref: eBookers (ref: Dublin (ref: Alice

(ref: TravelAgentAp Print))))
)

)
)

(outputs
(output (ref: eBookers (ref: Dublin (ref: Alice (ref: TravelAgentAp Print)))))

)
)

Figure 6.8: A recursive definition of theRentCar node.

Figure 6.9 gives the haskell definition of a WebCom name. A name is aPnam (primitivename),

Snam (structuredname) orLnam (linked name). There is also a zero-arity constructor function,

Empty, that represents an empty, or null, name. Primitive names are strings that cannot be reduced

any further. Structured names consist of the familiar five-tuple, domain (dom), graph (grph),

function (fun), inputs (ins) and outputs (ops). Each of these tuples can themselves contain

completeName objects. As there can be multiple inputs and outputs, these tuples can hold lists of

Name objects.

The linked name constructor function (Lnam) is used to hold representations of SDSI-like local

data Name =
Empty

| Pnam {pnam :: String}
| Snam {dom :: Name,

grph :: Name,
fun :: Name,
ins :: ([Name]),
ops :: ([Name])}

| Lnam {lnam :: [String]}

deriving (Eq, Show)

Figure 6.9: Haskell representation of WebCom names.

6.3 A Naming Model for Condensed Graphs 95

names. These local names form lists of linked names, for example:

(Lnam ["Hertz","Cork","RentCar"])

is equivalent to the s-expression:

(ref: Hertz (ref: Cork RentCar))

The definition of a linked name could have been given as a list of linked Name objects. However,

while such a definition allows for a more expressive syntax, using linkedString objects allows

for a clearer presentation, and avoids having lists of strings with embeddedPnam constructors. For

example, the name ofRentCar from above would instead be specified as:

(Lnam [(Pnam "Hertz"),(Pnam "Cork"),(Pnam "RentCar")])

Linked names consist of irreducible primitives and so are represented as a list of strings.

Example 6.5 Figure 6.10 gives a haskell representation of the name of theCarRental node from

the Condensed Graph shown in Figure 6.3. In this case,Lnam (linked names) are used to represent

(Snam
(Lnam ["Hertz","Cork"])
(Lnam ["eBookers","Dublin","Alice","TravelAgentAp"])
(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"])
[(Lnam ["Aerlingus","EI220","Paris","TravelAgentAp","BuySeat"])]
[(Lnam ["eBookers","Dublin","Alice","TravelAgentAp","Print"])]

)

Figure 6.10: Representation of theRentCar node

the linked local namespace of each of the components of the name. For example, the domain of the

node is Hertz’s Cork office. △

Haskell provides three basic derivations for each data type, equality (Eq), display (Show) and

ordering (Ord). Eq defines how values are tested for equality;Show defines how the value is

represented on output;Ord defines how objects are ordered with respect to each other. For the

moment, we will use the default definitions for bothEq andShow relations, but will define theOrd

relation separately.

The default definition of the ordering relation (Ord) for theName data type does not operate as

we require. The standardOrd relation generated automatically by Haskell does not give us the level

of control over name ordering that we desire. For example, wecould not support a naming policy

that does not want to consider differing domain tuples as causing two node names to be different.

For this reason, we define our own ordering forName in Figure 6.11.

In our ordering for names, theEmpty name is the lowest name in the ordering; a structured

name is less than another when the components of the former are each less than their respective

6.4 Reduction Rules 96

instance Ord Name where
Empty <= x = True
(Snam a b c d e) <= (Snam v w x y z) = (a <= v) && (b <= w) &&

(c <= x) && (d <= y) && (e <= z)
(Pnam p) <= (Pnam q) = p == q
(Lnam l) <= (Lnam m) = l <= m
x <= y = x == y

Figure 6.11: Definition of theOrd relation.

components in the latter; primitive names are either disjoint, or are equal, and so are not ordered;

one linked name is less than another when the former is a prefixof the latter. In practice, this relation

is redefined based on the requirements of particular applications.

As WebCom names can be self referencing, evaluating this ordering may not terminate when

one or more self referencing names are compared. Therefore,care must be taken to avoid this when

writing names; one strategy is to design reduction rules that ensure finite names.

6.4 Reduction Rules

The design of a WebCom name provides the flexibility to refer to a node with as much, or as

little, contextual detail as needed. The ability to store a lot of contextual detail comes at the cost

of possible redundant information stored in the name. This cost can be lessened through the use

of reduction rules. A reduction rule is a function that converts a complex name for a node into a

simpler representation. The writer of these rules must ensure that consistent names are produced.

Having a unique reference to an node is not always ideal. Creating application policies some-

times requires genericity of the node references. For example, it may not be desirable to have to

specify a security policy in terms of the path that an execution has taken to some point. This would

require knowledge of all potential paths that the computation would be allowed to take. Reduction

rules are used to create more generic names for use within application policies. For example, rather

than refer to the name in Figure 6.10, it may be preferable to simply refer to:

(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"])

Another aspect of name reduction is how these reduced names are maintained. There are two

options: store the original unreduced name and a list of reduction rules to apply to the name, or

store the reduced form of the name. Storing both the originalname and the reduction rules allows

different reduction rules to be applied, when necessary, during the lifetime of the name. We argue

that it is easier to simply store the reduced name. The model does not ensure name consistency, for

example, one reduction rule could remove information from aname that another requires. Ensuring

that inconsistencies do not occur are the responsibility ofthe developer.

6.4 Reduction Rules 97

While the storing of reduced names approach is more optimal,the consistency argument applies

only to static names. As a condensed graph executes, the names of the nodes change. In order to

use dynamic names, reduction rules must be applied to names that have changed. Achieving this

requires that we use the first approach: store the name and thelist of reduction rules to apply to that

name.

Reduction rules form two classes: tuple reduction rules that are applied to the tuples that make

up a WebCom name and tuple elimination rules that are appliedto the whole name to remove one,

or more, of these tuples. We examine these types of reductionrules separately.

6.4.1 Tuple Reduction

Tuple reduction operates on the individual tuples of WebComnames. It reduces that tuple to what

is considered an equivalent form. Reducing the components of a name is an application specific

process, as, for example, the type of the inputs and results to nodes are potentially unique to a single

application. For example, in the Travel Agent application (Figure 6.3), we are interested only in

the airline name and the destination of the flight. Therefore, any name should be reduced to just

these components, for instance,(Lnam ["Aerlingus","EI220"]) from the name shown in

Figure 6.6.

We can define atupleReduction function to represent generic tuple reductions as follows:

Let tupleReduction :: Name -> Name be a name rewrite rule that defines the tuple re-

duction rules used by an application. We use this construct to represent tuple reduction that is made

up of a series of specific rules.

6.4.2 Tuple Elimination

A Tuple Elimination reduction rule is a rule that eliminatesone of the component tuples—domain,
graph, function, inputs or outputs—from a WebCom name.

tupleDElimination :: Name -> Name

tupleDElimination n = n{dom=Empty}

Given a name,n, thentupleDElimination(n) replaces the domain tuple of the namen with

an empty name. Equivalent rules can be easily created for each of the tuples, as shown in Fig-

ure 6.12. We can use these basic rules, along with application specific rules to build complex

security policies.

We define atupleElimination function to represent generic tuple eliminations as follows:

Let tupleElimination :: Name -> Name be a name rewrite rule that defines the com-

bined tuple elimination rules used by an application.

Example 6.6 Figure 6.10 shows the name of aRentCar node. We can refer to this node as
rentCarName, as shown below.

6.4 Reduction Rules 98

tupleGElimination :: Name -> Name
tupleGElimination n = n{grph=Empty}

tupleFElimination :: Name -> Name
tupleFElimination n = n{fun=Empty}

tupleIElimination :: Name -> Name
tupleIElimination n = n{ins=[]}

tupleOElimination :: Name -> Name
tupleOElimination n = n{ops=[]}

Figure 6.12: The Remaining Tuple Elimination Rules.

rentCarName =

(Snam

(Lnam ["Hertz","Cork"])

(Lnam ["eBookers","Dublin","Alice","TravelAgentAp"])

(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"])

[(Lnam ["Aerlingus","EI220","Paris","TravelAgentAp","BuySeat"])]

[(Lnam ["eBookers","Dublin","Alice","TravelAgentAp","Print"])]

)

Applying the tuple elimination ruletupleIElimination(rentCarName) results in the name:

(Snam

(Lnam ["Hertz","Cork"])

(Lnam ["eBookers","Dublin","Alice","TravelAgentAp"])

(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"])

[]

[(Lnam ["eBookers","Dublin","Alice","TravelAgentAp","Print"])]

)

△

Example 6.7 We can take the node namerentCarName, from Example 6.6, and apply the fol-
lowing tuple reduction rule.

domTupleRedux :: Name -> Name

domTupleRedux (Snam d g f i o)

| d == (Lnam ["Hertz","Cork"]) = (Snam (Lnam "Ryans","Cork") g f i o)

| otherwise = (Snam d g f i o)

ThedomTupleRedux tuple reduction rule checks the domain tuple of a name and replaces any

instance of("Hertz","Cork") with Hertz’s Cork agent,("Ryans","Cork"). Applying

domTupleRedux(rentCarName) results in the name:

(Snam

(Lnam ["Ryans","Cork"])

6.4 Reduction Rules 99

(Lnam ["eBookers","Dublin","Alice","TravelAgentAp"])

(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"])

[(Lnam ["Aerlingus","EI220","Paris","TravelAgentAp","BuySeat"])]

[(Lnam ["eBookers","Dublin","Alice","TravelAgentAp","Print"])]

)

We can then apply the tuple elimination rulestupleGElimination, tupleIElimination

andtupleOElimination in turn to result in the reduced name:

(Snam

(Lnam ["Ryans","Cork"]) (Empty)

(Lnam ["Hertz","Cork","TravelAgentAp","RentCar"]) [] []

)

△

6.4.3 Name Equivalence

Determining whether two names are equal is an important aspect of any enforcement mechanism

using WebCom names. There are two basic approaches for comparing names. The first approach

entails a simple comparison of unreduced names.

In contrast, the second approach is to apply reduction rulesto the names and then compare the

names. Figure 6.13 shows a definition of name equality based on reducing the names of nodes first,

and then checking for equality.

instance Eq Name where
Empty == Empty = True
Empty == x = False
n == m = tupleElimination(tupleReduction(n)) ==

tupleElimination(tupleReduction(m))

Figure 6.13: Equality defined in terms of Reduction

Example 6.8 Consider comparing the (original)rentCarName name described in Example 6.7

to the namebobRentCar using the definition of equality shown in Figure 6.13.

bobRentCar =

(Snam

(Lnam ["Ryans","Cork"])

(Lnam ["USIT","Limerick","Bob","TravelAgentAp"])

(Lnam ["Ryans","Cork","TravelAgentAp","RentCar"])

[(Lnam ["Ryanair","FR776","Berlin","TravelAgentAp","BuySeat"])]

[(Lnam ["USIT","Limerick","Bob","TravelAgentAp","Print"])]

)

6.4 Reduction Rules 100

These names initially appear very different, as they refer to different travel agents, airlines and

rental companies. However, a naming policy might only be interested in specific aspects of these

names. If we first apply the tuple reduction rule,domTupleRedux, and then apply the graph,

function, input and output tuple elimination rules to bothrentCarName andbobRentCar, both

of these names are reduced to the name:

(Snam (Lnam ["Ryans","Cork"]) (Empty) (Empty) [] [])

△

While we can define equality in this manner, in reality, it is not necessary to apply reduction

rules to determine equality. Instead, we can effectively implement equivalence within the definition

of Eq.

Example 6.9 An application makes a policy decision based on the domain where a node is to

execute. In this case, we redefine the derivation of theEq (Figure 6.14) or equality property of

Name to check only this information.

instance Eq Name where
Empty == Empty = True
Empty == x = False
(Snam a b c d e) == (dom:f) = (a == f)
(Pnam p) == (Pnam q) = (p == q)
(Lnam l) == (Lnam m) = (l == m)
x == y = False

Figure 6.14: A definition of the Equality relation.

This definition of equality acts implicitly as a reduction rule. Primitive and linked names are

compared based on their text, while structured names are compared based only on their domain

tuple. The result is that any structured name is implicitly reduced to its domain tuple.

△

Example 6.10 We modify the definition of equality from Example 6.9 to:

instance Eq Name where

Empty == Empty = True

Empty == x = False

(Snam a b c d e) == (dom:f) = (a == f)

(Pnam p) == (Pnam q) = (p == q)

(Lnam ["Hertz","Cork"]) == (Lnam "Ryans","Cork") = True

(Lnam l) == (Lnam m) = (l == m)

x == y = False

6.4 Reduction Rules 101

In this definition, we have embedded the tuple reduction and tuple elimination rules used in

Example 6.8. This definition compares names based on their domain tuples, and implicitly replaces

any instance of(Lnam ["Hertz","Cork"]) with (Lnam ["Ryans","Cork"]). In this

case comparing the namesrentCarName andbobRentCar will again determine that they are

equivalent according to this definition of equality.

△

Note that there is no canonical definition for the name of a node. This means that a node

could be referred to using two, or more, different (non-equivalent) names. Further research work is

required to develop a naming theory whereby two different names that refer to the same object can

be reduced to a canonical form.

6.4.4 Reduction Rule Application Order

The order in which tuple reductions take place is significant. Tuple reduction rules are not neces-

sarily commutative, that is if we have two tuple reduction rules,S andT and a name n then

S(n), T (n) = T (n), S(n)

does not necessarily hold. Thus, applications must specifythe order that tuple reduction rules are

applied. However, tuple elimination rules are commutative. Tuples are atomic, in that applying a

tuple reduction rule on one tuple does not effect any other tuples. Removing any one tuple also does

not effect any other tuples.

6.4.5 Creating and Updating Names

Node names in a condensed graph are continually being updated during the execution of the graph.

There are several conditions under which a node name can change:

1. When the name of a node is first created, it contains the basic information available at that

time, namely the function and graph tuple of the node. Therefore, an initial node name

appears as:(Snam (Empty) g f [] []). Inputs and outputs may also be represented

by the name of the node(s) that the input arrives from, and thename of the node(s) that the

result of this node is sent to, respectively.

2. When input arrives to a node, the name of the node is updatedto reflect this change. The name

can be changed to the value of the input. Alternatively, the name of the node that provided the

input is retained. This decision depends on the naming policy. A naming policy could require

that values replace node names whenever a node executes, or alternatively, that the name of

the node that has executed is retained.

6.5 History-based Names 102

3. When a node executes and returns a result, the name of the node may be updated to represent

the value that has resulted from the execution. The result might be incorporated into the

function tuple. For example, the result “5” of a divide operation could be represented in the

function name:(Lnam ["divide","result","5"]).

4. When a node is scheduled to a domain, the name of the node is updated to include this domain

name.

In each of these cases, when the name of a node in a graph is updated, this update may potentially

effect every other node name in the graph.

6.5 History-based Names

Frequently, policies are constructed to consider the historical contexts of a computation. For exam-

ple, access control mechanisms, such as Separation of Duties [135], Chinese Walls [40, 58, 106] and

High Watermark [180] policies, all depend on the history of the computation in order to make deci-

sions. Other types of policy, such as a reactive load balancing policy that bases its future scheduling

decisions on the load of the resources utilised to date, can also rely on the contexts that a compu-

tation has passed through. With condensed graphs, the context information is stored in the node

names. Thus, in order to make an history-based decision for acondensed graph, the relevant con-

textual information must be extracted using history-basedreduction rules

A noden has a name(Snam d g f i o) whose attributes provide the names of execution

contexts for domain (d), application graph (g), function (f), list of inputs (i) and list of outputs (o),

respectively. Thehistory reduction of the name of noden is defined as

tupleElimination(Snam d g f (map tupleReduction i) o)

wheretupleElimination andtupleReduction represent the application of tuple elimina-

tion and tuple reduction rules, respectively. The tuple reduction rule is only applied (using themap

function) to the inputs. Themap function applies the function, in this casetupleReduction, in

turn to each member of a list. This characterises history reduction as the inputs to a node specify

the path that the execution has taken to this point.

Example 6.11 To perform a history based policy decision, we take the inputs to a node and reduce

their execution contexts. Figure 6.15 shows a representation of such a rule in the form of a function

saveDomHist.

This reduction rule defines that an execution context shouldcontain the context(s) of the in-

put(s). The relevant details, in this case the domain tuple,from the input tuple is extracted and

6.5 History-based Names 103

saveDomHist :: Name -> Name
saveDomHist (Snam a b c [(Snam v w x y z)] e) = (Snam a b c [v] e)

Figure 6.15: A simple Reduction Rule to retain domain history

integrated into the name of the current context. This replaces the domain tuple of the current con-

text with the domain of the input. This reduction rule is applied to the input tuple of the name, that

istupleElimination(Snam d g f (map saveDomHist i) o). This is a very simple

example of atupleReduction reduction rule.

△

Example 6.12 A more useful example of this type of reduction rule can be seen in Figure 6.16.

In this example, the domain of the input replaces the domain of the current context only when the

domain of the input is strictly “greater” than the domain of the current context. ThesaveDom

function acts as filter. If it is applied to each node in the graph in turn, then it ensures that the

“greatest” domain is retained in every name.

saveDom :: Name -> Name
saveDom (Snam a b c [(Snam v w x y z)] e)

| a < v = (Snam v b c [(Snam v w x y z)] e)
| otherwise = (Snam a b c [(Snam v w x y z)] e)

Figure 6.16: Domain ordering rules

In Section 6.3, we described how to define an ordering betweennames using theOrd rela-

tion. In Figure 6.17, we explicitly define the ordering(Pnam "Alice")< (Pnam "Bob") <

(Pnam "Claire").

instance Ord Name where
Empty <= x = True
(Snam a b c d e) <= (Snam v w x y z) = (a <= v) && (b <= w) &&

(c <= x) && (d <= y) && (e <= z)
(Pnam "Alice") <= (Pnam "Bob") = True
(Pnam "Bob") <= (Pnam "Claire") = True
(Pnam p) <= (Pnam q) = p == q
(Lnam l) <= (Lnam m) = l <= m
x <= y = x == y

Figure 6.17: Definition of theOrd relation.

△

Example 6.13 A node that is to be executed in domainClaire has the name:

(Snam (Pnam "Claire") (Pnam "MathGraph") (Pnam "MulFunction")

[((Pnam "Bob") (Pnam "MathGraph") (Pnam "DivFunction") [] [])] [])

6.5 History-based Names 104

If we apply thesaveDom reduction rule to this name, then the reduced name becomes:

(Snam (Pnam "Bob") (Pnam "MathGraph") (Pnam "MulFunction")

[((Pnam "Bob") (Pnam "MathGraph") (Pnam "DivFunction") [] [])] [])

This means that the node will now be executed in domainBob. Such reduction rules could be used

to help ensure data. For example, results of executions, is not sent to inappropriate domains, or

computations executed on inappropriate resources. However, enforcing such requirements is the

responsibility of the relevant policy enforcement mechanism. △

6.5.1 Naming Grid Submissions

The computational Grid allows the sharing of compute resources between different organisations.

WebCom, using condensed graphs, can be used to create Grid applications [124]. As Grid appli-

cations execute across many domains, it is important to ensure that application components can be

referred to properly wherever they execute.

Example 6.14 A national compute Grid is organised in a tiered structure. In order to support system

policies, the name of context where every job (graph) is submitted must be retained in every node

name. The Grid resources are structured to allow job submission at various layers in the overall

architecture, shown in Figure 6.18.

Regional

LocalLocal

Regional

LocalLocal

Regional

LocalLocal

National
Portal

Figure 6.18: GRID Portal Structure.

In this architecture, jobs can be submitted at national, regional or local portals. The specific

policy requirement is that a computation launched at a regional or local portal must not move up

the architecture, even though the portals are interconnected. For example, when a job is submitted

on a regional portal, it can move down to local resources underneath that regional portal, but not up

to the national portal or across to other regional portals. We call this a “ceiling” restriction and can

specify it in a naming policy.

6.5 History-based Names 105

This requirement can be described by a reduction rule that maintains the submission portal as

part of each node’s name. For example, the travel agent condensed graph application shown in

Figure 6.3 can be submitted to a Regional portal. The name of the portal becomes part of the name

of every node in the submitted graph.

(Snam
(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])
(Pnam "eBookers")
(Lnam ["eBookers","RentCar"])
[(Lnam ["eBookers","BuySeat"])]
[(Lnam ["eBookers","Print"])]

)

Figure 6.19: The name for theRentCar node, executing on a particular GRID resource.

Normally the domain portion of a name is defined as the computational resource that is execut-

ing, will execute, or has executed, the node, when this is known. When making a naming policy

decision about a node, theceiling reduction rule is applied to the name of the node.

saveDom :: Name -> Name
saveDom (Snam a b c [(Snam v w x y z)] e)

| a < v = (Snam v b c [(Snam v w x y z)] e)
| otherwise = (Snam a b c [(Snam v w x y z)] e)

Figure 6.20: Ceiling Reduction Rule

The tuple reduction rule,saveDom, shown in Figure 6.201, is an example of such a reduction

rule. When applying this rule, we assume that the names we areapplying it to are of the correct

form. When used with an appropriate definition of theOrd relation, this rule ensures that the parent

graph’s domain is maintained within the node name and thus the ceiling is never exceeded. The

Ord relation would be similar to the relation shown in Figure 6.17, but with Local< Regional<

National △

6.5.2 Web Services Policy

Up to this point, we have seen how reduction rules that can be applied to names to ensure existing

information is retained. However, this is only one application of such rules. Reduction rules can

also be used to inject new information into a name.

Example 6.15 Airlines have business relationships with specific hotel and car rental companies.

For example, in Ireland the Hertz car rental company gives specific discounts to customers who

fly with either Aerlingus and Ryanair; in contrast, Easyjet discounts Europcar. Another example

is when flying into London on an Irish airline, customers are recommended to stay in one of the

1This is the same reduction rule as shown in Figure 6.16.

6.6 An API for Naming in WebCom 106

Jury group’s hotels. We can represent these types of relationship using reduction rules in the web

services graph shown in Figure 6.3.

selectCarCo :: Name -> Name
selectCarCo (Snam a b c [(Snam v w x y z)] e)

| ((v == (Pnam "Aerlingus")) && (c == (Pnam "RentCar"))
= (Snam a b c [(Snam (Pnam "Hertz") w x y z)] e)

| ((v == (Pnam "Easyjet")) && (c == (Pnam "RentCar"))
= (Snam a b c [(Snam (Pnam "Europcar") w x y z)] e)

| otherwise = (Snam a b c [(Snam v w x y z)] e)

Figure 6.21: Airline Car Rental preference rules

Figure 6.21 defines such a reduction rule. TheselectCarCo reduction rule matches the

domain that an input node has executed in with known airlines. If the current node is aRentCar

node, then it updates the domain name of the current node to that of the airline’s car rental partner.

If an unknown airline is selected, then no change is made to the node name.

△

This example identifies some interesting possibilities. Asthe naming model is outside of the

condensed graph model, it is possible to use the naming system to effect where nodes in the graph

are scheduled. WebCom can use these names to help determine where to schedule nodes. The

flexibility of the naming system is of the order of an additional programmable system outside of the

condensed graph model. The question now arises: are these programmable side-effects an advantage

or a hindrance to the condensed graph model? Traditionally in the condensed graphs model, side

effects are frowned upon. However, a number of features in individual applications rely on side

effects. For example, a side effect can be used to support concurrency in condensed graphs [134].

Another example of a common side effect is how files are transfered between resources for certain

condensed graphs applications. This is also provided outside of the model.

6.6 An API for Naming in WebCom

In this Section, we outline an implementation of the naming model for WebCom. We provide an

API to support WebCom names throughout the entire WebCom architecture. Maintaining the names

of the nodes is the responsibility of WebCom’s naming manager module. The naming manager

maintains a representation of each node in the executing graph and updates this name during the

graph’s execution. As the graph executes, the names of the nodes evolve, representing changes that

occur in the graph itself. For example, when a node executes and returns a result, the names of the

nodes receiving that result are updated to reflect this change.

The implementation of the naming system in WebCom consists of the naming manager module,

a number of name generators, an abstract name type, and an abstract representation of reduction

6.6 An API for Naming in WebCom 107

rules. These classes provide the ability to define and modifynode names for use by the other

WebCom modules.

Naming Manager

Module

Name
Generator

Reduction
Rules

Operand N.G. Destination N.G.

Name
Cache

Figure 6.22: WebCom’s Naming Architecture

Figure 6.22 shows a representation of the naming software architecture. The main component

of this architecture is theNamingManagerModule. However, we will first describe the other

components of the architecture, as they are all used by theNamingManagerModule.

6.6.1 webcom.core.naming.ReductionRule

ClassReductionRule is the abstract definition of a name reduction rule. It is passed a WebCom

name (described in Section 6.6.3) and returns the reduced form of that name. Reduction rules

are application (graph) specific. Each application has its own security policy requirements. These

requirements drive the requirements for the reduction rules.

public abstract SexpList reduce(SexpList Name);

ReductionRule is a simple class with one major methodr.reduce(N). This method takes a

list of s-expressions and performs (rule dependent) actions on that list. The reduced form of the s-

expression is returned to the caller. The default reductionrule is definedabstractly, that is, it has no

implementation code. Instead, it must be inherited so that subclasses provide the implementation.

A simple reduction rule can take a WebCom name and return a representation of the node that

describes the function of the node. This emulates of the operation of the early Secure WebCom

prototypes [66]. A sketch of this reduction rule is shown in Figure 6.23.

While we typically associate naming policies with access control policies, WebCom naming

policies can also be used to address other concerns, such as load balancing or fault tolerance. The

enforcement mechanism remains the same. In these cases, newreduction rules must be defined for

such policies.

6.6.2 webcom.core.naming.NameGenerator

Node names can be generated either a priori by the developer of the graph or, more typically, when

the name is needed to make a security decision about the node.Generating names for nodes entails

6.6 An API for Naming in WebCom 108

public class SimpleReductionRule extends ReductionRule
{

public SexpList reduce(SexpList Name)
{

//Extract Function tuple from Name and return this as a new
// S-Expression.
SexpList newname = new SexpList(extractFunction(Name));
return (newname);

}
}

Figure 6.23: The implementation of a simple reduction rule’s reduce(n)

examining the node at a particular point in time and extracting the relevant details.

The name of a WebCom node is returned by its name generator. The name generator examines

an instance of a condensed node and extracts the relevant details. Name generators are used to create

fresh names for nodes. When WebCom loads a graph for execution, theNamingManagerModule

identifies the nodes without names in the graph and generatesnames for those nodes. A node’s

name is generated using an internal condensed graph examiner class. This examiner can investigate

the internals of a loaded condensed graph on a “read-only” basis.

As nodes in condensed graphs refer to each other, their nameswill also contain references to

other node names. In Section 6.2.2 we discussed the potential for self-referencing names. As each

node’s destination can be another node operand, the name of the destination node must also be

included in the original node’s name. However, as the destination node will also have a reference to

the original node, care must be taken to avoid recursive loops. When a node name is generated, this

situation must be addressed.

The solution is to apply specific reduction rules when generating the name of a node’s operand

and/or destination. We use, respectively, theOperandNameGenerator class and theDestination-

NameGenerator class to accomplish this goal. These name generators are in fact special reduction

rules that are only called by the name generator. Their specific task is to prevent name recursion.

For example, the simplest approach to preventing name recursion is to apply tuple elimination rules

to the inputs and/or outputs of a node, removing any reference to the current node.

public WebComName generateNameForNode(Node node, ReductionRule reduxrule,

String Domain)

public void setOperandGenerator(OperandNameGenerator operandGenerator)

public void setDestGenerator(DestinationNameGenerator destGenerator)

NameGenerator classes are called byNamingManagerModules to generate new names for

nodes. The application interface for this class is relatively simple, with the most significant method

being theng.generateNameForNode(n,r,d) performing the name generation. Name gen-

eration can be potentially application specific. In most cases application requirements are handled

by customised reduction rules. In Chapter 8, we will examinesome specific WebCom applications.

6.6 An API for Naming in WebCom 109

webcom.core.naming.DestinationNameGenerator

Destination name generators generate representive names for the destination of a node. When a

node’s name is generated, it is important to prevent recursion in the destination. In Section 6.2.2,

we identified the problem of self referencing names. Destination and operand name generators

address this problem by explicitly preventing recursion. These name generators act as reduction

rules that are applied to the names of destination nodes to derive a non-recursive representation of

that node. However, they are called name generators as thesereduction rules are only used during

name generation.DestinationNameGenerators are exclusively called byNameGenerators.

protected String generateNameForDestination(CondensedGraph cg,

int DestinationNodeID);

Thedng.generateNameForDestination(g, did) is the only major method in this

class. As it is only called from a name generator, condensed graph internal representation is used to

identify the specific destination node. The reference version of this class simply returns the function

tuple of the destination node’s name, such as shown in Figure6.23. This is equivalent to applying

the haskell reduction rule functiondestReduxRule shown in Figure 6.24.

retainFunc :: Name -> Name
retainFunc (Snam d g f i o) = f

destReduxRule :: Name -> Name
destReduxRule (Snam d g f i o) = (Snam d g f i (map retainFunc o))

Figure 6.24: A destination reduction rule retaining the function tuple

In this example, theretainFunc function is used instead of applying the domain, graph,

input and output tuple elimination rules. However, as destination name generators use the inter-

nal condensed graph API to determine the nodes in question, standard reduction rules cannot be

substituted.

webcom.core.naming.OperandNameGenerator

Operand name factories are the corollary to destination name factories. They are specific reduction

rules that address the potential for mutual recursion in thenames of operands.OperandNameGen-

erators are also exclusively called byNameGenerators.

protected String generateNameForOperandNode(CondensedGraph cg,

int OperNodeID);

public String generateNameForOperandValue(Object Input);

6.6 An API for Naming in WebCom 110

As with destination name generators, the main method in an operand name generator is the

ong.generateNameForOperandNode(cg, oid) method. This method investigates the

operand node and extracts a representation of the operand node.

Unlike Destinations, operands may, when the operand node has executed, consist of the result

of the operand node. In condensed graphs, a result can be anything, ranging a simple numerical

value to complex objects such as a spreadsheet. When an operand has returned a result, the operand

name generator can use theong.generateNameForOperandValue(i)method to extract a

representation of this result and use this to refer to the operand.

In some cases, it is more important to specify where the operand result came from rather than

the value itself. In Section 6.5, we described some history based naming policies. The operand

name generator is an important part of such policies. In suchcases, the operand name generator

has the ability to look at the historical path the operand hastaken to this point. A representation of

this historical path can then be used as the name of the operand. This capability can be used, for

example, to enforce history-based security policies, suchas high watermark or Chinese wall [40]

policies.

6.6.3 webcom.core.naming.WebComName

Recall from Section 6.2 that a node’s name consists of a five-tuple: thedomain it is (or will be)

executing in; thegraph it is a member of; itsfunction; the operand(s)to the node; and itsDesti-

nation(s). WebComName stores a representation of a node’s name. When a node has not been

selected for execution, its domain may not be a priori defined. In this case, only when a node is

scheduled will the domain be known, and thus be reflected by the name the naming manager mod-

ule stores. Alternatively, a user could define the domain in which a node must execute. In this case

the naming manager would store this information within the node’s names. When no domain name

has been assigned to a node, the domain tuple is unassigned. This is equivalent to anEmpty name

in the naming model.

TheWebComName class stores the details defining a node. All component tuples of theWe-

bComName can be individually set and retrieved. In the current implementation of aWebCom-

Name, s-expressions [153] are used to store this information. The Java s-expression library from

the JSDSI project is utilised [5]. A s-expression containing a representation of the node’s name can

be retrieved from the class. This representation can be modified by applying one or more reduction

rules to the name. These reduction rules are specified withinReductionRule classes. The number,

type and the order of reduction rules to apply are application specific settings and are specified when

configuring WebCom.

TheWebComName API is split into two categories, the simple string-based interface and the

6.6 An API for Naming in WebCom 111

more complex s-expression based interface. The string based interface is used to convertWebCom-

Names into simple text and to parse text to represent it as s-expressions. However, this interface

does not maintain the full name of a node. S-expressions provide context to a string. Extracting the

string implies losing this contextual detail.

public void setDomain(java.lang.String domain)

public void setGraph(java.lang.String graph)

public void setFunction(java.lang.String function)

public void setDestination(java.lang.String Destination)

public void setInput(java.lang.String input)

public void addDestination(java.lang.String Destination)

public void addInput(java.lang.String input)

The API has simple “setter” methods to store the detail of a node. As a node is investigated,

these methods are used to build up a representation of the node. There are equivalent “getter”

methods to extract a string-based representation of the five-tuple.

The s-expression interface represents how information contained within theWebComName is

stored and manipulated. This interface allows the calling module to retrieve the current name of

a node without losing any contextual detail. In this case, the WebComName class provides the

ability to retrieve the full name of the node as well as a reduced form, based on the reduction rule(s)

applied to the name.

public jsdsi.sexp.SexpList getName()

public jsdsi.sexp.SexpList generateName()

public jsdsi.sexp.SexpList reduceName(ReductionRule rule)

6.6.4 webcom.core.naming.NamingManagerModule

The naming manager module in WebCom maintains a representation of all the nodes in the currently

executing graph. As nodes become fireable and execute, theirnames evolve to represent these

changes. All nodes in a graph are linked and so changes to a single node effect every node in the

graph. The naming manager provides information about nodesfor the other modules in WebCom.

Node names reflect the current state of the graph along with any predefined policies within We-

bCom. For example, when a graph is created, specific naming information can be embedded into

node definitions. Typically, predefined names are stored using an XML representation of aWeb-

ComName2 [127]. When WebCom is executing an application, theNamingManagerModule is

constantly updating the names of the nodes of that application.

TheNamingManagerModule class provides the following public interface:

2The XML representation of WebCom names is outlined in Appendix A.

6.7 Discussion and Conclusion 112

public WebComName getNameForNode(Node n, ReductionRule r,

Descriptor domain);

public void loadProperties(String propertiesFile);

public void setNameGenerator(NameGenerator generator);

public void setReductionRule(ReductionRule rule);

The NamingManagerModule is initialised by WebCom’s scheduler, known as theBackplane.

As with all WebCom modules, it loads its initial properties from a stored configuration file us-

ing thenmm.loadProperties(pFile) method. These settings include selecting the partic-

ular name generator and reduction rule(s) to use. These setting can be changed at runtime using

thenmm.setNameGenerator(g) andnmm.setReductionRule(r)methods. This func-

tionality is utilised when customised name generator and reduction rules are needed for a specific

application.

Names for nodes are constantly changing as a graph executes.As all nodes are connected, each

node that is scheduled or executes causes the names of all theother nodes in the graph to change.

The NamingManagerModule manages how these names are modified and stores a representa-

tion of each nodes name in aname cache. Node names are updated in two cases: when a node is

scheduled and when a node executes and returns a result. These actions cause theNamingMan-

agerModule to update the names of all the nodes in the current graph, using the specified reduction

rules. If a node does not have a current name, then theNamingManagerModule calls the config-

ured name generator to generate a name for that node. This happens, for example, when a subgraph

is evaporated and no predefined names are present.

When another module asks for a name for a specified node, theNamingManagerModule

checks its name cache for the current name of that node. It will then update the name when re-

quired. Updating the name is needed when, for example, the node is to be scheduled to a particular

domain. The naming manager will then apply the specified reduction rule(s) on the name and return

the reduced name to the calling module.

6.7 Discussion and Conclusion

In this chapter, we have proposed a naming model for condensed graphs. This model allows the

creation of sophisticated policies using these names. Naming the nodes in a condensed graph entails

capturing a representation of the context in which the node is executing, as well as the specific

details regarding that node, such as function, inputs and outputs. These names are dynamic: as the

computation progresses the names of the nodes evolve.

WebCom names are structured so that they can represent nodeswith arbitrary precision. How-

ever, using these names requires having the ability to convert them to a more usable form. Reduction

rules are used to take complex names and remove unnecessary information. We use reduction rules

6.7 Discussion and Conclusion 113

to help create specific policies, such as history-based policies. A history-based policy is one where

information about what has transpired during the executionof the graph is stored within the names

of nodes. For example, we can use history-based policies to store the names of the domains that the

nodes have executed during the computation.

Complex distributed systems, such as CORBA, use abstract names to hide underlying detail of

the operating system from application developers. However, hiding operating system details can

cause problems when developing security policies for thosesystems [111]. Names in WebCom are

not abstractions. The contextual details of the operating system that are considered important can

be made available within the name.

WebCom policies are limited to a single execution context and will not effect future executions

of the same graph, nor the authorisation of any other graphs being executed concurrently. Work is

ongoing towards providing support for concurrency within Condensed Graphs [134].

The definition of reduction rules is also limited in the current model. The model does not

guarantee name consistency. For example, one reduction rule could remove information that a later

reduction rule relies upon.

Example 6.16 Recall the tuple reduction ruledomTupleRedux applied to therentCarName

from Example 6.7. ThedomTupleRedux rule modifies the rental company name so that Hertz’s

local agent, Ryans, replaced Hertz when renting a car in Cork. Consider a second reduction rule,

upgradeCar, that is applied to Aerlingus customers who rent from Hertz:

upgradeCar :: Name -> Name

upgradeCar (Snam d g f i o)

| (d == (Lnam ["Hertz","Cork"]) &&

f == (Lnam ["eBookers","RentCar"]) &&

True ‘elem‘ [ip <= (Lnam ["Aerlingus"]) | ip <- i])

= (Snam d g (Lnam ["RentCar","Upgrade"]) i o)

| otherwise = (Snam d g f i o)

This reduction rule upgrades qualifying customers to a better vehicle. IfdomTupleRedux is

applied beforeupgradeCar, then Hertz customers renting in Cork will never receive this upgrade.

However, whenupgradeCar is applied, and thendomTupleRedux, customers will receive the

upgrade, and the rental company name will be updated to localagent, Ryans.

△

Our position in this dissertation is that it is the responsibility of the specifier of the rewrite

rules to ensure these inconsistencies do not occur. However, the development of a formal model

to prevent such inconsistencies is a potential topic of future work. Such a model could be used

to prove the consistency and completeness of a set of reduction rules. There has been substan-

tial research [51] into rewrite systems. Such systems provide formal analysis and proof for name

rewriting. Developing such a model for names is a topic of future research.

6.7 Discussion and Conclusion 114

This chapter outlines the current implementation of the naming model in WebCom. Chapter 7

uses this naming architecture as a basis for WebCom’s accesscontrol model. In Chapter 8, we

examine some complete case studies using WebCom’s naming and access control architectures.

Chapter 7

WebCom Security Model

In Chapter 5, we introduced the WebCom distributed metacomputing environment. In this chapter

we describe the security model and architecture of WebCom inmore detail. WebCom’s architecture

provides the ability to make security policy decisions about the execution of computations. The

enforcement of security policy decisions is the responsibility of WebCom’s security architecture.

Threats to a distributed computing environment include theillicit modification of data used in a

computation; the modification of the computation itself; the unauthorised access of data by princi-

pals; the unauthorised execution of computations, and identity theft. These threats are addressed in

WebCom through the provision of data and computation integrity and by authenticating the princi-

pals using the system.

Data and computation integrity involves ensuring that boththe data used in the computation

and the computation itself are not modified illicitly. Integrity is important as computations can

potentially execute across compute resources that are controlled by many different entities. For

example, spoofing of results is a common problem in volunteerbased distributed computations [45].

An authorisation mechanism to ensure that computation execution and data access is only performed

by authorised principals is needed. Such a mechanism will ensure the integrity of both computations

and data.

Managing and verifying the principals using a distributed computing environment entails ensur-

ing that there is a systematic way to determine the authenticity of the principals and the resources

used in the computation. This can be provided through the useof authentication mechanisms.

The WebCom security architecture is designed to address both authorisation and authentication.

The authorisation mechanism is access control based. We argue that the goal of access control for

distributed computations is fourfold. It can be characterised as the need to ensure that: computations

will only be executed on resources that are explicitly authorised; resources will only execute com-

putations that come from authorised servers, results of computation execution will only be accepted

from resources that are authorised, and these results are received only by the authorised recipient. In

115

7.1 WebCom Access Control Model 116

an access control based security architecture, access to anobject is authorised whether the subject

has been granted permission to use the object in the requested way.

The authentication problem in WebCom can be characterised as the requirement of two princi-

pals to set up a communication channel whereby each principal believes that they are communicat-

ing only with the other principal.

WebCom’s security architecture addresses authorisation and authentication separately:

• WebCom’s authorisation architecture is supported by the Naming and Security Manager Mod-

ules. In Chapter 6, we described how nodes in condensed graphs can be named. By specifying

the exact conditions under which a named node may execute, sophisticated security policies

may be written for those nodes.

• Authentication is supported by WebCom’s communications manager. This entails using a

secure authentication and/or communication protocol, such as SSL [92] or IPSec [172], and

providing support for a public key infrastructure (PKI), when necessary. Providing authentic

and secure connections between WebComs ensures that data issent to the correct destination,

and cannot be intercepted, or modified, by a third party.

We can regard the security manager as acting as a reference monitor, checking security critical

actions and ensuring that these actions comply with the access control policy. In this chapter, we

examine the security model and architecture of WebCom. Section 7.1 describes WebCom’s access

control model. In Section 7.2, we examine some examples of security policies that can be enforced

using the WebCom security architecture. Section 7.3 describes the implementation of the security

architecture in WebCom. The architectural support for authentication is outlined in Section 7.4.

7.1 WebCom Access Control Model

An access control model captures the set of allowed actions as a policy within a system. Access

control addresses a primary concern for security in a system: deciding whether access to a resource

is permitted or denied. Recall from Chapter 2 that areference monitorimplements access control.

A reference monitor typically operates as follows: a security critical action is required, for example,

an access request for sensitive data, the reference monitorintercepts the action and checks whether

the action is authorised according to the security policy. If it is, then the action proceeds. Otherwise

the security critical action is not authorised and the caller is notified of this failure.

WebCom’s security architecture follows this model of policy enforcement. Figure 7.1 shows a

representation of the WebCom reference monitor. When a nodeis to be executed, this “security crit-

ical” action is mediated by the “WebCom reference monitor”.In this case, part of theScheduler,

NamingManagerModule andSecurityManagerModule act in concert to decide whether the se-

curity critical action is authorised. TheScheduler module selects one or more potential WVM

7.1 WebCom Access Control Model 117

Security Manager
Module

Naming Manager

Module

Module

Load Balancer

Module

Fault Tolerance

Execution Engine

Communications
Manager
ModuleScheduler

Naming Policy Access Control Policy

Schedule

WVMs

WVM

Reference Monitor

Figure 7.1: WebCom’s Reference Monitor

(WebCom Virtual Machine) targets for the action (node to be executed). TheNamingManager-

Module extracts the relevant details of this action. TheSecurityManagerModule then makes the

decision based on the security policy and the action’s details supplied by theNamingManager-

Module. If authorised, then the node is scheduled to the authorisedWVM. Otherwise, the node is

rejected and the scheduler is informed.

7.1.1 WebCom Permissions

The security architecture in WebCom allows control over theexecution of applications running in
the system. Authorised actions are specified in the securitypolicy, and the WebCom reference
monitor ensures that only authorised actions take place. Recall from Chapter 6 that the definition of
a WebComName is:

data Name =

Empty

| Pnam {pnam :: String}

| Snam {dom :: Name,

grph :: Name,

fun :: Name,

ins :: ([Name]),

ops :: ([Name])}

| Lnam {lnam :: ([String])}

Names in WebCom are defined in terms of Haskell [98] equations.

The access control policy ensures that only authorised WVMsare assigned work. The names

of WVMs are represented within the WebCom naming scheme. Theset of all possible names for

7.1 WebCom Access Control Model 118

WVMs is defined as a subtype ofName, and represented as:

type WVM = Name

In a WebCom environment, nodes are assigned as work to WVMs. The set of all possible names for

nodes is defined by a subtype ofName and represented as:

type Node = Name

Let Permission denote the set of all permissions in WebCom. WebCom providestwo main

capabilities: scheduling and execution of nodes. These capabilities are considered as permissions

and are represented as follows:

data Permission :: Sch Name | Exe Name

Example 7.1 Figure 6.19 showed the (reduced) name ofRentCar node. The permission to exe-
cute this node can be specified as follows:

(Exe (Snam

(Empty)

(Pnam "eBookers")

(Lnam ["eBookers","RentCar"])

[(Lnam ["eBookers","BuySeat"])]

[(Lnam ["eBookers","Print"])]

)

)

The permission does not constrain the WVM domain in which thenode is executed. A variation on
this permission for a specific WVM domain is as follows:

(Exe (Snam

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])

(Pnam "eBookers")

(Lnam ["eBookers","RentCar"])

[(Lnam ["eBookers","BuySeat"])]

[(Lnam ["eBookers","Print"])]

)

)

This permission specifies that the UCC compute cluster is authorised to execute thisRentCar

node.

△

7.1 WebCom Access Control Model 119

7.1.2 Ordering Permissions

A partial ordering (transitive, asymmetric, reflexive) is defined on the set of permissions, whereby,

(p1 <= p2) is interpreted to mean that holding permissionp2 implies holding the permission

p1. This partial ordering (theOrd of datatypePermission) is used to specify the access control

policy. Ordering permissions is a traditional convention used for access control. For example, both

the Java security model and RBAC also use a partial ordering of permissions [78].

Example 7.2 Figure 7.2 shows an example of theOrd relation forPermission. As Sch and

Exe permissions are disjoint, they are compared separately. Inboth cases, permissions are com-

pared based on the names of the nodes they refer to. In this example, one permission is less than

another when the name of the second node is less than (or equalto) the name of the first node.

instance Ord Permission where
Exe n <= Exe m = m <= n
Sch n <= Sch m = m <= n
x <= y = False

Figure 7.2: Definition of theOrd relation forPermission.

In this example,Permission partial orderings are functionally opposite toName partial or-

derings. Names are ordered such that when more information is present in the name, that name

more precisely identifies the node. For example, a node name with input value “5” is more precise

than the same node name without this input information. In contrast, permissions are ordered so

that a less precise permission means that the holder has morerights. For example, a permission

for the node that specifies the input value “5” is more restrictive than one that does not have this

requirement. Precision in the case of both names and permissions refers to how much uniquely

identifying information is present in the name or permission. The most precise name for any given

node will have all possible information stored within the name.

In Permission orderings, anEmpty permission represents the greatest possible permission

in the ordering. Granting anEmpty permission to an entity is equivalent to granting the Java

permissionAllPermissions to an entity in the Java security model. △

Example 7.3 The WVM permission shown in Example 7.1 shows a very specific permission. In

contrast, thehighestexecute permission for theCompute Cluster WVM is as follows:

(Exe (Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])

(Empty) (Empty) [] [])

As this permission does not explicitly refer to any specific node, or set of nodes, it is greater than

any permission that has the same references in its domain tuple. This permission authorises the

WVM to executeeverypossible node.

7.1 WebCom Access Control Model 120

Furthermore, the execute permission:

(Exe (Lnam ["Grid Ireland"]) (Empty) (Empty) [] [])

is less precise again, and so is greater than theCompute Cluster execute permission. △

In principle,(Permission,<=) can have have any definition (provided it is a partial order-

ing). However, in practice, there are a number of constraints that we place on the ordering. The

name of a WebCom entity changes only in accordance to the behaviour of the execution engine (to

reflect inputs arriving to nodes, node firing, and so forth) and the rewrite rules; we must ensure that

any potential permission ordering is consistent with this behaviour.

Many of the changes to a name simply extend it. For example, the arrival of an input value to

a node results in its name changing fromEmpty to a name reflecting its value. Node names are

either increasing in detail, when, for example, new information arrives, or decreasing in detail, for

example, when reduction rules are applied to the names. We require that orderings on permissions

are monotonic with respect to the names that they refer to, that is,

MonoNames :: Name -> Name -> Bool

MonoNames n1,n2 = if (n1 <= n2) then

(Sch n2) <= (Sch n1) &&

(Exe n2) <= (Exe n1)

MonoNames(n1,n2)defines the relationship between the names of two nodes in terms of the

permissions required to execute and/or schedule those nodes. It defines that as the name of a node

grows more precise, the permission based on that name becomes more restrictive.

Example 7.4 If the name of a node is:

(Snam (Empty) (Pnam "GraphA") (Pnam "FuncA") [] [])

then the permission required to schedule that name is simply:

(Sch (Snam (Empty) (Pnam "GraphA") (Pnam "FuncA") [] []))

However, if the name of the node is updated to contain a domain:

(Snam (Pnam "DomainA") (Pnam "GraphA") (Pnam "FuncA") [] [])

then, a schedule permission for this name only authorises the holder to schedule the node to a

specific domain,DomainA, while the original permission allowed the holder to schedule the node

to any domain. △

This relationship is required asName ordering andPermission orderings between the names

of nodes are “opposite” to one another. As we have seen, namesof nodes grow more precise as they

increase in size. In contrast, permissions grow more restrictive as node names increase in size. This

7.1 WebCom Access Control Model 121

is similar to how the KeyNote trust management system [29] operates. In KeyNote, if a attribute is

not specified, then no restriction is placed on the value of that attribute. With WebCom permissions,

if any part of the name isEmpty, then the permission implicitly authorisesanyvalue in that part of

the name.

We argue that the ordering shown in Figure 7.2 meets this requirement. This ordering upholds

this requirement as one permission is considered greater than another when the node name contained

in the first permission islessthan the node name in the second permission. Thus permissions for a

specific node are of a lower order than those for a less specificname for that node.

Example 7.5 When theBuySeat node has executed and a seat purchased on Aerlingus’ EI220 to

Paris, the name of theRentCar node changes to reflect this result. TheExe permission for this

node on the UCC compute cluster is as follows:

(Exe (Snam

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"]))

(Pnam "eBookers")

(Lnam ["eBookers","RentCar"])

[(Lnam ["Aerlingus","EI220","Paris","TravelAgentAp","BuySeat"])]

[(Lnam ["eBookers","Print"])]

)

)

In order for permission monotonicity to hold, this permission must be less than (or equal to) the

WVM permission shown in Example 7.1 in the ordering of permissions. As this permission is in

fact alower permission, in the respect that it refers to a more specific node, this property holds.△

7.1.3 Binding Permissions to Entities

Execute and schedule permissions are disjoint sets, and arethus not comparable. A WVM may hold
either execute or schedule or both permissions for nodes of any given name. Every WVM and node
have associated schedule and execute permissions.

schedule :: WVM -> [Permission]

execute :: WVM -> [Permission]

Given w:WVM, thenschedule(w) returns the scheduling permissions associated with the

WVM w andexecute(w) returns the execute permissions that WVMw holds.

Given a noden:Node, then(Sch n) represents thelowestpermission that must be held by

a WVM in order to schedule the noden; (Exe n) represents thelowestpermission that must

be held by a WVM to execute the noden. The node permission shown in Example 7.1 shows a

permission for aRentCar node. However, thelowestpossible permission for any node is specific

to the inputs and outputs of that node. For example, the lowest permission for a node with input

7.1 WebCom Access Control Model 122

value “5” is different to the lowest permission for a node with input value “6”, as each permission

would specify the input value.

(Exe (Empty g f [] []))
� I

(Exe (Alice g f [] [])) (Exe (Empty g f [1] [])
6 6

(Exe (Alice g f [42] [])) (Exe (Empty g f [1] [Fn]))

Figure 7.3: Sample ordering of execution permissions

Example 7.6 Figure 7.3 shows an example of how permissions are ordered for a graphg and Func-

tion f1. In this example, the permission that is the least precise, that is(Exe (Empty g f []

[])), is highest ordered permission. Lower permissions are ordered according to the details that

are present in these permissions. For example,(Exe (Alice g f [] [])) is a higher order

permission than(Exe (Alice g f [42] [])), as the latter has additional information, that

is an input value of “42”. △

We can define what is meant by a secure WebCom system as one where every schedule and

execute operation is authorised.

Definition 7.1 Secure Execution.A WVM w should hold the permission to execute a noden that

is scheduled to it, that ismayExecute(w,n), where,

mayExecute :: WVM -> Node -> Bool

mayExecute w n = any (\p -> (Exe n) <= p) (execute w)

mayExecute(w,n) defines that in order for a WVM,w, to execute a node,n, the WVM must

hold an execute permission for that node. ♦

Definition 7.2 Secure Schedule.When a noden is scheduled to a child WVM for execution, the

scheduling WVM (in this case, the parent WVM that executes the graph that containsn) must hold

the permission to schedule that node, that is,maySchedule(w,n), where,

1The permissions shown use a simplified syntax for display reasons.

7.1 WebCom Access Control Model 123

maySchedule :: WVM -> Node -> Bool

maySchedule(w,n) = any (\p -> (Sch n) <= p) (schedule w)

maySchedule(w,n) defines that in order for a WVM,w, to schedule a node,n, the WVM must

hold an schedule permission for that node. ♦

Example 7.7 Consider aRentCar node with name:

(Snam

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"]))

(Snam (Lnam ["eBookers","Alice"]) (Pnam "TravelAgentAp") (Empty) [] [])

(Lnam ["eBookers","RentCar"])

[(Lnam ["eBookers","BuySeat"])]

[(Lnam ["eBookers","Print"])]

)

We can use themayExecute or maySchedule functions to determine whether this node is

authorised to be executed or scheduled, respectively. As the name of the WVM forms part of the

name of the node, we use this information to determine whether the action is authorised. Thus, in

this instance, theRentCar node is to be scheduled to the UCC Compute Cluster. This action is

authorised only when there exists a relevant execute permission held by the WVM with (element of

execute(w)) name:

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])

and a relevant schedule permission held by the WVM (element of schedule(w)) with name:

(Lnam ["eBookers","Alice"])

△

It is possible for a WVM to hold a permission that they cannot use. For example, consider the

permission

(Sch Lnam ["eBookers","Alice"])

If Bob held this permission, then he would not be able to use it to schedule any nodes. However,

Bob could delegate this permission toAlice, who would be able to use it.

7.1.4 Implementing the Security Model in WebCom

We can interpret this model in WebCom in terms of attribute credentials using a trust manage-

ment system. Each WVM holds cryptographic credentials thatrepresent their schedule and execute

permissions for various nodes. As these credentials are crytographically signed, they are computa-

tionally infeasible to forge, and so provide a secure means to encode permissions.

7.1 WebCom Access Control Model 124

(cert
(issuer (hash sha1 |dsEFA73sahfdDF3784JDFjfsFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash sha1 |dasdk...|))))
(propagate)
(
(tag
(execute
(WebComName
(domain (ref: Grid_Ireland (ref: Munster (ref: UCC

(ref: Compute_Cluster)))))
)

)
)

)
(not-before "2005-11-31_17:00:00")
(not-after "2006-11-31_16:59:59")

)

Figure 7.4: SPKI Credential authorisingCompute Cluster to execute any node.

Example 7.8 Figure 7.4 shows an execute permission, encoded as a SPKI credential, for a WVM

that authorises the WVM to execute every possible type of node. △

Permissions can be directly encoded as trust management credentials, as shown in Example 7.8.

The trust management compliance check directly corresponds to performingmayExecute and

maySchedule checks on nodes that are to be executed and scheduled respectively. For an in-

dividual WVM to be considered secure, every node that the WVMreceives for execution from a

parent WVM, and every node that the WVM schedules, must be authorised. The security com-

pliance check required in order for a node to be scheduled andexecuted can be considered in two

parts:

• the WVM scheduling the node must perform a check to ensure that the WVM that the node

is being scheduled to is authorised to execute it (Definition7.1).

• the WVM executing the node must perform a check to ensure that the WVM that scheduled

the node was authorised to do so (Definition 7.2);

In both these cases, if either, or both, of these condition fails, then the action is rejected.

A critical requirement for a distributed implementation ofSecure WebCom is that a WVM

should only make mediation decisions about other WVMs and should never be relied upon to me-

diate about themselves. A WVM cannot be trusted to decide whether it is authorised to schedule (to

itself) or execute a node that it holds.

These mediations can be performed using a trust management system. When permissions are

cast as trust management credentials, the WVM scheduling the node provides the relevant schedul-

ing credentials to the child WVM. The child WVM can then perform the trust management me-

diation. This is equivalent to the child WVM performing amaySchedule check. Similarly, the

7.1 WebCom Access Control Model 125

child WVM provides the parent WVM with execution credentials, so that the parent can use the

trust management system to ensure that the child is authorised to execute a node. This is equivalent

to the parent performing amayExecute check. These separate, but linked checks are necessary

in order for the entire WebCom system to be considered secure. In any implementation, every node

that is scheduled and executed must have these two checks applied to them.

Each WVM maintains a local policy, consisting of a list of permissions held by both the local

and remote WVMs. These permissions are used to determine whether security critical actions are

authorised. In terms of a trust management system, this policy consists of a list of trusted policy

credentials. The global policy of the system is made up of allthe local policies.

Example 7.9 Considering the name of theRentCar node from Example 7.7, in order for the

WebCom system to be secure, amayExecute check must be performed on the (parent) WVM

with the name:

(Lnam ["eBookers","Alice"])

regarding the (child) WVM with the name:

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])

and amaySchedule check must be performed on the (child) WVM with the name :

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"])

regarding the (parent) WVM with the name:

(Lnam ["eBookers","Alice"])

The parent WVM must hold at least the permission:

(Sch (Snam

(Lnam ["Grid Ireland","Munster","UCC","Compute Cluster"]))

(Snam (Lnam ["eBookers","Alice"]) (Pnam "TravelAgentAp") (Empty) [] [])

(Lnam ["eBookers","RentCar"])

[(Lnam ["eBookers","BuySeat"])]

[(Lnam ["eBookers","Print"])]

)

)

The child WVM also must hold at least the associated execute permission. Only when both of

these WVMs hold these permissions will the node be scheduledand executed by a secure WebCom

system. △

7.2 Sample Security Policies for WebCom 126

(cert
(issuer (hash sha1 |dsEFA73sahfdDF3784JDFjfsFsd=|))
(subject (ref: UCC (ref: CSDEPT (hash sha1 |dasdk...|))))
(propagate)
(
(tag
(execute
(WebComName
(domain (ref: Grid_Ireland (ref: Munster

(ref: UCC Compute_Cluster))))
(graph ebookers)
(function (ref: (ebookers RentCar)))
(inputs
(input (ref: Aerlingus (ref: EI220

(ref: Paris (ref: TravelAgentAp BuySeat))))))
(outputs (output (ref: ebookers Print)))

)
)
)

)
(not-before "2005-11-31_17:00:00")
(not-after "2006-11-31_16:59:59")

)

Figure 7.5: A SDSI/SPKI credential authorising aRentCar node.

Example 7.10 Figure 7.5 is an sample SPKI credential for theRentCar node discussed in Exam-

ple 7.5. In this case, the licensee is authorised to execute aRentCar node. The parent WVM uses

such credentials to determine whether a child WVM is authorised to execute a specific node.△

Proposition 1 The implementation of the security model in terms of credentials is valid. ©

7.2 Sample Security Policies for WebCom

We now describe some specific application policies that can be enforced using the WebCom security

architecture. Section 7.2.1 discusses a share trading workflow application that uses names to ensure

that only authorised users receive secured components. We then examine a high watermark policy

style policy in Section 7.2.2. This policy uses historical information stored within node names to

ensure that executions do not travel to WVMs that are of lowerclassification than the application.

Finally, Section 7.2.3 examinespushauthorisation using WebCom names. Push authorisation en-

sures that future requirements are taken into account when current authorisation decisions are being

made.

7.2.1 ShareTrader

We can configure Secure WebCom to support specific application security requirements. In a work-

flow, application components may interact with specific users. Condensed graphs are ideally suited

7.2 Sample Security Policies for WebCom 127

to providing the necessary sequencing constraints. The WebCom security architecture can then be

configured to ensure that the correct users (domains) execute specific nodes.

Example 7.11 A workflow based WebCom application is shown in Figure 7.6. This application has

three application components:PriceDeal (Figure 7.7),Verify (Figure 7.9) andCaptureDeal

(Figure 7.8). The application is executed by customers who wish to purchase shares. The user passes

in the share symbol as a parameter to the application. A stocktrader will check the price of the stock

and suggest a purchase using thePriceDeal component.

E
X

Share
Trader

Share
Trader

F

B

ture
Cap−

Verify

Price
Deal

Deal

ifel

T

::=

Figure 7.6: The Share Trader Application

Figure 7.7: ThePriceDealComponent

The customer verifies the transaction using theVerify component.

Figure 7.8: TheCaptureDealComponent

If they approve of the transaction, then the stock is purchased for the agreed price using the

7.2 Sample Security Policies for WebCom 128

CaptureDeal component. If the customer does not approve, then the stockbroker will get a new

quote. TheShareTrader graph is defined recursively.

Figure 7.9: TheVerify Component

When creating security policies for this application, we must represent the requirements of the

stakeholders. For example, the customer’s security policyfor this application must consider which

stockbrokers they trust to make purchases for them. The stockbrokers will only accept requests

from trusted children. Both parties will only allow the components to execute in trusted domains.

Each user of the system stores their own credentials, and provides them as required to Web-

Com, in order to prove their authorisation. Nodes are scheduled only to authorised users. Using

application specific naming, very specific policies can be enforced by the security architecture. For

example, the stock-brokerage may allow a junior broker to capture sales up to a certain value, say

C200. Once a sale over this value is requested, a trading manager must capture the sale. These

conditions are specified in the trust management policy, andare aided by the naming system. When

aCaptureDeal node is scheduled for execution, the name of the node must contain information

about the input to the node.

In order to achieve this, when the node name is generated, it must contain the details of the stock

trade from the inputs to theCaptureDealnode. An application specificNameGeneratorclass,

as shown in Appendix B, is implemented in Java and is used to ensure this takes place. Any required

reduction rules, again implemented in Java and shown in Appendix B, are then applied to the name

to convert it into reduced form. Such a node name is shown in Figure 7.10.

The share trading policy is shown in Figure 7.11. This KeyNote policy authorises the senior

trader to perform any operations onCaptureDeal nodes in theShareTrader graph. The

senior trader then delegates part of this authority to the junior trader by signing the credential shown

in Figure 7.12. This credential limits the junior trader to executingCaptureDeal nodes of value

less thanC200.

△

(Snam (Empty) (Pnam "ShareTrader") (Pnam "CaptureDeal")
[(Lnam ["stock","SUNW","210"])] [])

Figure 7.10: The name of aCaptureDeal node before scheduling

7.2 Sample Security Policies for WebCom 129

KeyNote-Version: 2
Comment: ShareTrader Policy File for Sales Team
Local-Constants: seniortrader =

"rsa-base64:MIGfMAIb3DQEBAQUAA4GNADCBiQKBg\
skpav8kfrw7OKnNgFMHDuVc69wIDAQAB"

Authorizer: "POLICY"
Licensees: seniortrader
Conditions: App_Domain == "WebCom" &&

Graph == "ShareTrader" &&
Function == "CaptureDeal";

Figure 7.11: The ShareTrader policy authorising the SeniorTrader.

KeyNote-Version: 2
Comment: ShareTrader Junior Trader Credential
Local-Constants: seniortrader =

"rsa-base64:MIGfMAIb3DQEBAQUAA4GNADCBiQKBg\
skpav8kfrw7OKnNgFMHDuVc69wIDAQAB"

juniortrader =
"rsa-base64:MIGfMASDJASD123d3DDd932J3kk32f\
yy123kJJ2304kbwqiMaAlwpo8rJKWEQT"

Authorizer: seniortrader
Licensees: juniortrader
Conditions: App_Domain == "WebCom" &&

(Graph == "ShareTrader" &&
Function == "CaptureDeal" &&
Input < 200) &&
operation == execute;

Signature: ...

Figure 7.12: The ShareTrader credential authorising the Junior Trader.

7.2.2 High Watermark style policy

Many traditional authorisation policies are based on the context in which computational components

have been executed in the past. For example, Separation of Duties [135], Chinese Wall [40, 58, 106]

and High Watermark [180] policies. With such history based policies, the access control state

needed to make decisions must be gathered from all the distributed mechanisms that are involved

in the computation in the past. For example, in the case of trust management based authorisation,

this means that all relevant credentials issued must be gathered to accurately determine the access

control history of a user. With condensed graphs, the context information is stored in the node

names. Thus, in order to make an access control decision for acondensed graph, the relevant

contextual information can be preserved using history-based reduction rules.

In a high watermark policy component levels (names) rise to reflect the classification of the

data written to it. High watermark policies incorporate theconcept of ordered classifications from

multi-level security (MLS) policies. In the case of a condensed graph application, this is cast as

a policy where a node may only execute on a resource of “equal”or “higher” classification. The

classification of a node will depend on the path that the execution has taken to this point. In a

distributed computation, such a policy may be informally expressed as: “once a computation is

7.2 Sample Security Policies for WebCom 130

executed on a resource running at a certain security level, resources that are of a lower security level

are never again used in the future execution of the computation”.

We use node names to store security state in a decentralised manner during application exe-

cution. In Chapter 6, we described how the WebCom naming architecture has the ability to store

information in the names of the nodes, and ensure, using appropriate reduction rules, that this in-

formation is stored in the names of all the nodes in a graph. The contextual detail required to make

authorisation decisions is “pulled” from the nodes that have executed.

The reduction policies applied to the names must encode the highest security clearance of the

resources that the execution has used to this point. In the case of a distributed computation, the

resources that are used to execute components in the future depends on the resources used to date.

Example 7.12 Figure 7.13 shows a condensed graph that defines an implementation of a flight

reservation application. This graph can be considered as animplementation of theBuySeat node

from Figure 6.3. The airline’s security policy includes a basic ordering of domains, shown in Fig-

Sel
Flight Accept XSel

Acc
E

Guest / User

Pass
Detail

Pay
Detail

Customer

Services

Finance

ReserveFlight ::=

Figure 7.13: Reserving a Flight specified as a Condensed Graph.

ure 7.15. Under this ordering,Finance> CustomerService> Guest. For example, if a node exe-

cutes on a resource that is classifiedFinance, then no subsequent node should execute on resources

classifiedCustomerServiceor lower.

If this graph executes on the Airline’s network, and in the domains shown, then the security

policy requires that theAccept node should only be executed in theFinancedomain. This can be

achieved using reduction rules that maintain the high watermark within a node’s name.

We use the high watermark reduction rule shown in Figure 7.14. This is the original input

reduction rule from Figure 6.15 in Chapter 6. However, for specific applications, we need to redefine

saveDom :: Name -> Name
saveDom (Snam a b c [(Snam v w x y z)] e)

| a <= v = (Snam v b c [(Snam v w x y z)] e)
| otherwise = (Snam a b c [(Snam v w x y z)] e)

Figure 7.14: High watermark reduction rule.

7.2 Sample Security Policies for WebCom 131

theOrd relation from Chapter 6. Recall that permission ordering are opposite to name orderings.

instance Ord Name where
Empty <= x = True
(Snam a b c d e) <= (Snam v w x y z) = (a <= v) && (b <= w) &&

(c <= x) && (d <= y) &&
(e <= z)

(Pnam "Finance") <= (Pnam "CustomerService") = True
(Pnam "Finance") <= (Pnam "Guest") = True
(Pnam "CustomerService") <= (Pnam "Guest") = True
(Pnam p) <= (Pnam q) = p == q
(Lnam l) <= (Lnam m) = (l == m)
x <= y = x == y

Figure 7.15: Company Domain orderings.

Permission orderings (shown below), use these name orderings.

instance Ord Permission where

Exe n <= Exe m = m <= n

Sch n <= Sch m = m <= n

In this case, we use some application specific rules to support the required domain ordering.

When thesaveDom function reduces names, the name ordering from Figure 7.15 is used.

(Snam
(Pnam "CustomerService")
(Pnam "BuySeat")
(Pnam "Accept")
(Snam [(Snam (Pnam "CustomerService") (Empty)

(Pnam "PassDetail") [][])
(Snam (Pnam "Finance") (Empty)

(Pnam "PayDetail")[][])
])

[(Pnam "X")])

(a) Before Reduction

(Snam (Pnam "Finance") (Empty) (Pnam "Accept") [] [])

(b) After Reduction

Figure 7.16: The name of theAccept node: (a) before and (b) after reduction.

In the names shown in Figure 7.16, prior to the application ofthe reduction rule, the node

Accept is considered to be permitted to execute on a resource classified CustomerService.

However, as one of the previously executed nodes,PayDetail, was executed on a resource of

classificationFinance, the reduction rule modifies the name of the node and changes the domain

tuple toFinance.

7.2 Sample Security Policies for WebCom 132

This can be used to enforce a high water mark authorisation policy, once any node in the com-

putation reaches a higher security level, all subsequent nodes must execute on resources that hold

permissions for nodes to be executed at least at that security level. The parent WVM must apply

these reduction rules to any node that is to be scheduled, andthen perform amayExecute check,

using the high watermark policy, to determine whether childWVMs hold sufficient permissions to

execute subsequent nodes.

We could also make decisions based on the type of customer using the service. If a known

customer, whose details are retained by the airline, logs into the site, then the name of the node

could be set to reflect this. When the payment details are required, that node would be directed to

specific resources that hold saved customer financial details. △

7.2.3 Pull and Push Access Control

The history based access control strategy works well in the case of a simple ordering of, for ex-

ample, domains. With history based access control, we make access control decisions regarding

the contexts that a node has gone though. We consider this strategy to be a‘pull’ authorisation

strategy in that contexts are pulled from the relevant names. Authorisation decisions often have

consequences that alter the possible future authorisationdecisions that may occur. Consider the

case where we have a mutually exclusive ordering such as witha separation of duties policy [135]

or Chinese wall policies [40]. In a Chinese wall policy, oncea computation executes on a particular

company’s resource, it should never be allowed execute on resources belonging to a competitor.

With a Condensed Graph application, it is possible that multiple nodes execute in parallel, and the

results from these parallel executions are integrated in the future. When we use a pull strategy to en-

force a separation of concerns policy, we can encounter deadlock, where the computation can never

finish due to a policy conflict. We could address this concern trivially, with a policy that dictates

all computations must execute in one domain. However, such apolicy will force the computation

to be assigned a priori to a specific domain. This approach limits the flexibility of the computation,

Instead we introduce the concept of‘push’ authorisation to address this issue.

Traditionally, when such problems are addressed dynamically, they use synchronisation between

the components [19]. However, such synchronisation is often undesirable and requires extra infras-

tructural support. Ideally, we want to be able to identify potential conflicts and address them within

the authorisation policy. Instead of pulling the information required to make a decision from the

source, we instead push this information from the source to the points where it will be needed. We

refer to these as “push”, or future based, authorisation policies.

We can use push authorisation to force a computation to execute in the future on specific re-

sources based on the authorisations that the computation has received in the past and on the po-

tential conflicts that must be avoided in the future. This allows, for example, the enforcement of

7.2 Sample Security Policies for WebCom 133

dynamic separation of duty policies, without an external synchronisation infrastructure. The details

required to identify potential conflicts are stored in the computational context of the nodes. In Web-

Com, push authorisation policies are then written in terms of trust management credentials and are

enforced using the existing security architecture. No additional architecture is required to support

these policies, the only change is in how the names of the nodeare created.

Push reduction can be defined in a similar way to history basedreduction. The subtle difference

between them exists in the part of the execution context thatis expanded, inputs for pull reduction,

and outputs for push reduction.

Definition 7.3 Push Reduction:.A noden has a name (execution context)

(Snam d g f i o)

whose attributes provide the names of execution contexts for domain (d), application graph (g),

function (f), inputs (i) and outputs (o) , respectively. The push reduction of the name of noden is

tupleElimination(Snam d g f i (map tupleReduction o]))

wheretupleElimination andtupleReduction represent the application of tuple elimi-

nation and application reduction rules, respectively. In contrast to the history-based reduction de-

scribed in Chapter 6, themap function applies thetupleReduction function to each member

of the list of outputs, rather than the list of inputs. ♦

To make a ‘push’ authorisation decision about an execution context, first we expand the ex-

ecution context to examine the destination contexts that will be used. Next, application specific

tuple reduction rules,tupleReduction are used to extract the relevant details. Tuple elimina-

tion rules,tupleElimination, are then used, when required. Finally the reduced name is used

with the authorisation mechanism.

Example 7.13 The rental company’s separation of duties policy states that: “Sales and Finance

Data should not be processed on the same resource”. Once the nodePayDetail, from Figure 7.17,

has been scheduled to a computational context, the name ofCarModel node must be updated so

that when it is to be scheduled, it is sent to a non conflicting domain. This ensures that when the

results from both of these nodes reaches theAccept node, it can be executed in accordance with

the separation of duties policy.

Updating theAccept node could be achieved with pull authorisation; however updating the

CarModel node would require communication between nodes that can execute in parallel to en-

sure synchronisation. Instead, when the result of theCustDetail node is to be integrated into

the computation, the details of the computational contextsthat it will be sent to is pushed to the

CarModel node.

7.2 Sample Security Policies for WebCom 134

Accept XE
Cust

Detail

Detail
Pay

Car
Model

Finance / Sales

Finance

Finance

RentCar ::=

Figure 7.17: Reserving a Car specified as a Condensed Graph.

(Snam (Empty) (Pnam "RentCar") (Pnam "CarModel")
[(Snam (Pnam "CustomerService") (Empty) (Pnam "CustDetail") [] [])]
[(Snam (Empty) (Empty) (Pnam "Accept") [] [])]

)

Figure 7.18: Name of theCarModel node before the Push Authorisation decision.

Figure 7.18 shows a representation of the node’s name beforea push authorisation decision

has taken place. In particular, the node’s domain has not been specified at this point. When the

PayDetail node is scheduled to execute, the authorisation policy ensures it is sent to theFinance

domain. Thus, all subsequent nodes must adhere to the separation of duties policies. Once this

requirement is apparent, the name of theCarModel node is modified to contain a specific domain,

Finance. This push action ensures that no policy conflicts will occur.

pushDom ::Name -> Name
pushDom (Snam a b c [(Snam q r s t u),(Snam v w x y z)] e)

| v <= q = (Snam a b c [(Snam q r s t u),(Snam q w x y z)] e)
| q <= v = (Snam a b c [(Snam v r s t u),(Snam v w x y z)] e)

Figure 7.19: Push reduction rule, for a node with two destination domains, q and v.

This push action is implemented in the form of a reduction rule. Figure 7.19 shows such a rule

where a node’s result may be sent to conflicting domainsv andq . ThepushDom reduction rule

defines that where the result of this node could execute in domainsvandq, then they should both be

forced to be executed in the higher order domain. These rulesare applied to the names of the nodes

that will execute in the future and the authorisation mechanism ensures that they are scheduled to

the correct domains. Figure 7.20 shows the node name after the push. △

Push authorisation allows a more dynamic control over ongoing computations and provides

support for pushing computations to specific resources using the security policy. This allows the

implementation of distributed separation of duty policies, without requiring ongoing synchroni-

sation or communication between atomic nodes. Changing thenames of the nodes requires no

7.3 Secure WebCom Software Architecture 135

(Snam (Pnam "Finance") (Pnam "CarRental") (Pnam "CarModel")
[(Snam (Pnam "CustomerService") (Empty) (Pnam "CustDetail") [] [])]
[(Snam (Empty) (Empty) (Pnam "Accept") [] [])]

)

Figure 7.20: Name of theSelectModelnode after the authorisation decision.

changes to the existing pull-based security architecture.The same security policies are used to pro-

vide authorisation. The only change is in how the relevant information is provided to the protection

mechanism.

With this push mechanism, we can provide the communication within the existing framework.

However, providing a push authorisation model limits the possible contexts that a computation may

execute in the future. The fact that decisions are pushed before execution means that some potential

future information cannot be used when making a decision. Weargue that the advantages that

simplification of the architecture bring, outweigh this potential downside.

Push authorisation can also suffer from deadlock. If a node requires that it execute on a specific

resource, and a push authorisation decision has excluded that resource, the computation will never

complete. As with a pull deadlock condition, this would require that the computation is “rolled

back” and nodes re-executed.

Push authorisations can be modelled within the pull architecture, however, this requires a cen-

tralised synchronisation mechanism. When a pull reductiontakes place, the node names on parallel

paths must be synchronised. Such a centralised mechanism would have to exist outside of the exist-

ing trust architecture.

7.3 Secure WebCom Software Architecture

The reference implementation of WebCom provides a softwarearchitecture that implements the

security model described in Section 7.1. Currently the implementation is written in Java, using a

Java s-expression library [5] to support the naming model. The reduction rules are also currently

specified in Java. This section outlines the software architecture of the security systems in WebCom.

The security manager module is used in several situations toensure that the WVM’s local secu-

rity policy is upheld. These situations can be described in terms of scheduling and executing actions

performed by parent WVMs (WVMP) and child WVMs (WVMC), as shown in Figure 7.21, and

enumerated below.

1. When a node is selected for execution by WebCom, it will be dispatched to the scheduler in

order to find a suitable child WVM (WVMC). The child is selected by the load balancing and

security modules based on their policies. This authorisation can be represented as: WVMC

is authorised to execute noden whenmayExecute(WVMC , n) holds. While the load

7.3 Secure WebCom Software Architecture 136

WV MP WV MC

(1) mayExecute(WVMC,n) -n : Node (2) maySchedule(WVMP,n)

� n : Result(3) mayExecute(WVMC,n)

Figure 7.21: Authorisation Steps in Secure WebCom

balancer works with the security manager to pick suitable targets, the security manager has

priority. That is, the load balancer will select its preferred option from the list of authorised

children. The WVMs on this list are determined by the security manager. If no authorised

children are found, then the node is rejected by the securitymanager for later rescheduling.

Once a child is selected, the node is dispatched to that child.

2. When children receive nodes for execution, the child WVM (WVMC) will first consult its

security manager to ensure that the parent WVM (WVMP) is authorised to schedule that

Node. This authorisation can be represented as: WVMC executes noden from WVMP when

maySchedule(WVMP , n) holds. If the WVM is not authorised according to the child’s

local security policy, then the node is rejected and the parent informed.

3. When a willing child does execute a node and the result is returned to the parent, the result will

be sent to the parent’s security manager for verification. This authorisation can be represented

as: WVMC is authorised to execute noden whenmayExecute(WVMC , n) holds. If the

result of an execution does not correspond to the security policy, then it will be rejected

and the node will be rescheduled. This authorisation check represents the reality that the

mayExecute(WVMC , n) operates on an approximation of the name ofn, as not all of the

information is available until the node has executed. An authorisation policy can require that

results of the execution of a node fall in specific ranges. Such policies cannot be enforced

before execution. For example, a clerk in a share trading firmmay only be authorised to

capture deals worth less thanC100. If such a clerk attempts to capture a deal greater than

this, then themayExecute check on the result will discover it, and inform WebCom so that

the result can be discarded.

These security mediations correspond exactly to the security model described in Section 7.1.

However, the secondmayExecute step is not explicitly specified in the model, as the model

does not directly consider the dynamic nature of node execution. When a node executes, its name

7.3 Secure WebCom Software Architecture 137

changes. Therefore, a child WVM may not have been authorisedto execute the node.

7.3.1 webcom.core.security.SecurityManagerModule

The SecurityManagerModule provides the ability to control the execution of nodes and graphs

in the WebCom system. Providing a different type of access control entails creating a custom

security manager module. The security manager can be implemented using different enforcement

mechanisms. The primary difference is in how the access control policy is specified. However, the

WebCom access control model is always upheld, as every implementation of the security manager

must provide a standard interface, as detailed below.

public boolean isAuthorised(Descriptor client, Instruction Instr);

public boolean isAuthorised(Descriptor client, Result Rslt);

public Object getAuthorisedClient(Vector clients, Instruction Instr);

public Vector getAuthorisedList(Vector clients, Instruction Instr);

This interface provides the ability to ask four basic accesscontrol questions:

1. sm.isAuthorised(c,i): is a specific child (c) authorised to execute a particular node

(instruction) (i?);

2. sm.isAuthorised(c,r): is the result (r), that a specific child (c) is returning authorised

to be included into the computation?;

3. sm.getAuthorisedClient(vc,i): can a child be found from a list of children (vc)

that is authorised to execute a particular instruction (i)?;

4. sm.getAuthorisedList(vc,i):can a list of children (vc) be found that are all autho-

rised to execute a particular instruction (i)?;

These methods target instructions (processed nodes) and the results of the execution of a node.

These methods provide the implementation of both themayExecute andmaySchedule func-

tions;mayExecute, when the methods are called on the parent WVM andmaySchedule, when

the methods are called by the child WVM that is to execute the node.

Security managers can be used to perform specific tasks. For example, the security manager

shown in Figures 7.22 and 7.23 makes access control decisions using the KeyNote trust management

system. Figure 7.22 shows how the public key is retrieved from the secure communications manager

(lines 21–39). This public key is then sent with the name of the node to thecheck function (line

40), shown in Figure 7.23, which performs the actual trust management check. In this function,

the tuples are extracted and used as attributes for the trustmanagement query (lines 3–10). Next

policy and user credentials are loaded into the trust management engine (25–30). Finally, the trust

management engine attempts to find a link between the supplied public key and the local policy

(line 32).

7.3 Secure WebCom Software Architecture 138

1 public boolean isAuthorised(Descriptor cd, Instruction I)
{

this.backplane = getBackplane();
if ((currDomain == null) &&

(getBackplane().getConMan() instanceof SecureConnectionManagerModule)){
SSLSettings settings = ((SecureConnectionManagerModule) getBackplane().

getConMan()).getSSLSettings();
KeyNote kn = new KeyNote();

10 currDomain = (kn.getPublicKeyString(kn.getKeyPair(settings.getKeyStore(),
settings.getAlias(), settings.getPassword()))).trim();

}
Node currNode = I.getSourceNode();
WebComName nodename = (WebComName) currentNode.getName();

if (nodename == null) {
nodename = nGenerator.generateNameFromNode(currNode, redrule, currDomain);

}

20 nodename.reduceName(getReductionRule());
PublicKey clientkey;
if (cd == null) {
if (getBackplane().getConMan() instanceof SecureConnectionManagerModule){

SSLSettings sslset = ((SecureConnectionManagerModule) getBackplane().
getConMan()).getSSLSettings();

KeyNote kn = new KeyNote();
kn.setKeyPair(sslset.getKeyStore(), sslset.getAlias(),

sslset.getPassword());
clientkey = kn.getPublicKey();

30 }
else

clientkey = null;
}
else if (cd instanceof InetDescriptor) {

String hostname = ((InetDescriptor) cd).connectedTo().getHostName();
clientkey = ((InetDescriptor) cd).getPublicKey();

}
else

return false;
40 return (check(nodename, clientkey));

}

Figure 7.22: The Trust Management based security manager for WebCom.

7.3.2 Trust Management Based Security Manager

In Section 7.1 we described WebCom’s security model. In thissection, we examine a specific

implementation of the security manager module. There exists implementations of security managers

using both the KeyNote [29] and SPKI/SDSI [56] trust management systems. Both these security

managers use Java based implementations of the requisite trust management systems,JKeyNote[90]

andJSDSI[5] respectively. However, the security manager could use any of the trust management

systems described in Chapter 2.

The trust management security managers work in essentiallythe same manner. When a trust

7.3 Secure WebCom Software Architecture 139

1 private boolean check(SecureName instrname, PublicKey ClientKey)
{

KeyNote kn = new KeyNote();
String Domain = instrname.getDomain();
String Graph = instrname.getGraph();
String Function = instrname.getFunction();
if (Domain != null) vL.addStringVar("Domain", Domain);
if (Graph != null) vL.addStringVar("Graph", Graph);
if (Function != null) vL.addStringVar("Function", Function);

10
Vector inputs = instrname.getInputs();
for (Iterator iter = inputs.iterator(); iter.hasNext();) {

String input = (String) iter.next();
vL.addStringVar("Input", input); }

Vector dests = instrname.getDestinations();
for (Iterator diter = dests.iterator(); diter.hasNext();) {

String destination = (String) diter.next();
vL.addStringVar("Destination", destination); }

20 knf.addVariablesList(vL);
knf.setComplianceValues("untrusted,trusted");
KeyNoteNavigator nav = knf.getNavigator();

try {
for (Iterator polsiter = pols.iterator(); polsiter.hasNext();) {

String pol = (String) polsiter.next();
trustedParser.parse(pol); }

for (Iterator iter = creds.iterator(); iter.hasNext();) {
String cred = (String) iter.next();

30 untrusted.parse(cred); }

int res1 = nav.findAuthorizer(ClientKey);
if (res1 > 0) {

RGLog.logFine("TMSecurityManager: Client is authorised to access "
+ instrname);

return true;}
else {

RGLog.logFine("TMSecurityManager: Client is not authorised to access "
+ instrname);

40 return false; }
}
catch (Exception e) {

RGLog.logSevere("TMSecurityManager: Exception caught: " + e.toString());
return false; }

}

Figure 7.23: Trust ManagementCheck function used by the Security Manager.

management decision is required, the reduced name of the node is acquired from the naming man-

ager module. This name is then used as part of the query conditions to the trust management system.

Both the generation of node names, and how these names are reduced depend on the configuration

of the naming manager module. Changing the reduction rules used or the name generator alter the

conditions of access control decisions.

The trust management security manager extracts the information from the name provided to

7.4 Secure Authentication between WebCom Virtual Machines 140

perform the trust management check. How this is achieved depends on the trust management sys-

tem in use. For the KeyNote based system, each tuple is individually represented in thecondition

field. This allows contextual information to be separately assessed. In the SPKI/SDSI based trust

management system, the s-expression is used in its entiretyas part of thetag field. An example

SPKI/SDSI credential can be seen in Figure 7.5.

7.4 Secure Authentication between WebCom Virtual Machines

WebCom communication is managed by the connection manager.Securing these communication

channels is accomplished through the implementation of theconnection manager module. WebCom

can only securely schedule nodes when it can identify its children. This entails providing entity

authentication for WebCom.

Identities in the communication manager are linked to the identities used by the security man-

ager. For example, when selecting a child WVM to execute a job, the parent WVM must be able to

associate the authorised entity with a physical IP address.Public keys are typically used to provide

this link. However, any authentication token could be potentially used. For example, WebCom

names can be used to provide a more contexual rich reference to a WVM.

In Chapter 2, we examined some authentication technologies, such as Kerberos [138] and the

SSL [92] protocols that provide entity authentication. Using such authentication protocols in a

secure connection manager allows WVMs to authenticate eachother. The reference implementation

of WebCom uses SSL to provide two-way authentication between WVMs. WVMs are identified by

the security manager using their public keys. For example, whenever the trust management based

security manager selects a child for node scheduling, the public key of that child is used as the

child’s identifier.

7.4.1 webcom.core.conman.SecureConnectionManager

The secure connection manager ensures that communication between one WVM and another is

secure. It uses an implementation of a security protocol, for example SSL [92], to provide authentic

and crytographically secure communication links. The default SecureConnectionManager class

extends the standard CommunicationManagerModule class touse SSL sockets. However, in most

cases, the inherited methods from the standard IPv4-based WebCom connection manager are used.

The methods that are overridden provide the implementationof SSL using Sun Microsystems’ Java

Secure Sockets Extension (JSSE).

public boolean connectTo(InetAddress address)

public boolean connectTo(InetAddress address, int port)

public void setPort(int cpPort)

public void processMessage(Message msg)

7.5 Discussion and Conclusions 141

Thescmm.connectTo(addr) andscmm.connectTo(addr,p) connect to a SSL se-

cured socket at the provided address (using the port number,when provided). These methods set

up a secure connection between the local and remote WVMs. Thescmm.setPort(p) method

specifies the port number that the SSL server socket on the local WVM should be listening on. This

port is normally specified in the module properties file and isloaded by the super class. This method

allows the port number to be changed at runtime. Finally, thescmm.processMessage(msg)

method adds some additional supported message types to the types supported by the superclass.

These message types include the ability to query the public key provided by connecting WVMs for

use by the SecurityManagerModule.

Providing secure communication also entails using a publickey infrastructure to manage the

keys used by WVMs. A public key infrastructure is necessary to properly determine validity of cer-

tificates, provide for certificate revocation, to provide a means to issue new and renewal certificates

and to act as a repository for user certificates. There currently is no specific PKI implementation

available for WebCom. Instead each WVM must have all the necessary certificates locally in order

to support secure communication. The provision of a proper PKI implementation is the topic of

future work. As work on WebCom is currently aimed towards using it as a Grid middleware [124],

support of federated identity management [6, 117] is also animportant topic of future work.

7.5 Discussion and Conclusions

In this chapter, we have introduced the access control modelfor WebCom. WebCom’s access control

model is designed to address specific threats to a distributed computing environment including illicit

data and computation modification and unauthorised access to data or computations by principals.

These threats are addressed by WebCom through the provisionof an authorisation mechanism to

ensure that computation execution and data access is only performed by authorised principals.

WebCom provides a distributed model to support access control decisions. This model uses

the naming architecture described in Chapter 6 in determining the authorisation of security criti-

cal actions to be performed by WVMs. These actions consist ofthe scheduling and execution of

condensed graph nodes.

WebCom is a closed system, in that a WVM has access to the name of every node in an applica-

tion executed by that WVM. Therefore, a WVM can potentially act as a central repository of policy

decisions. For example, we can use the parent WVM to ensure that an access permission granted to

a particular child does not cause a conflict in a separation ofduties, or Chinese wall-style policy.

Although the entire access control system can be implemented using the Haskell primitives de-

scribed in this chapter, for both simplicity and efficiency reasons, the reference implementation is

implemented using the Java programming language and existing access control logics, JKeyNote [90]

and JSDSI [5].

7.5 Discussion and Conclusions 142

In this chapter we have discussed a particular form of accesscontrol, using trust management to

make security decisions: the design of WebCom supports the replacement of this system with a dif-

ferent enforcement mechanism. However, any implementation of the security architecture will fol-

low the model proposed in Section 7.1 as any implementation of the security manager modulemust

support themayExecute andmaySchedule checks, implemented using theisAuthorised

function. For example, the security model could be implemented using access control lists (ACLs).

In this case WebCom names would allow contextual information to be stored in the ACLs.

The naming approach to specifying security policies allowsa separation of security checks from

functional code. This provides a loosely-coupled architecture, where maintaining security policies

does not require changing functional code. Other work has looked at codifying protection mecha-

nisms as condensed graphs [62]. This work proposes implementing fragile, tenacious and emergent

protection mechanisms using triple manager primitives that determine whether nodes should be

executed in particular domains.

In the current implementation of WebCom entities are identified by their public key. A critical

requirement in a distributed computing environment is the management and verification of these

identities. This entails ensuring that there is a systematic way to determine the identity of both the

users of the system and the resources used in the computation. Identity verification and management

can be provided through the use of authorisation mechanisms.

In order to fully support identity in WebCom, some form of federated identity system is re-

quired, such as Liberty Alliance [6] or Microsoft’s Passport [117]. Federation of identity allows

each resource in the system to have an assembled identity that the entire distributed system can use

to refer to that resource. For example, a user can be a managerin one domain and a clerk in an-

other. Each domain refers to the user in the context they support. With a federated identity, the two

domains share a context when they are referring to the user. The provision of a federated identity

system is a topic of future work.

Another important topic of future research is the provisionof a public key infrastructure (PKI)

for WebCom. In its current form, WebCom uses an ad-hoc methodto distribute both identity and

authorisation certificates. It is envisioned that a PKI architecture should be constructed to provide a

distribution mechanism for such certificates. PKIs also support concepts such as certificate revoca-

tion, which is also not currently addressed.

WebCom also includes a messaging architecture, where modules can send messages to other

modules, both in the same or to other WVMs. The security modelpresented does not address this

architecture. In practice, a security check is performed onall messages. Security policies can be

written about messages, allowing users to control what messages are authorised to be acted upon.

These policies could be specified in terms of the WVMs that a particular entity trusts. However, this

only supports coarse-grained policies. More precise checks could specify the modules in a WVM

that are trusted to send or receive specific messages. Such checks would require a naming system

7.5 Discussion and Conclusions 143

for messages. Extending the WebCom security model to represent the messaging architecture is a

topic of future research.

While WebCom’s messaging architecture provides several advantages, the potential for illicit

behaviour using messages causes concern. It can be argued that this messaging system should not

be allowed, or at least only allow a predefined set of vetted messages. However, it is possible to

implement a general messaging system in a manner that lies within the security model. Messages

could be implemented as condensed graph applications, and the existing security architecture used

to enforce specific policies.

Chapter 8

Case Studies

We have seen, first in Chapter 5, and in more detail in Chapter 7, that WebCom is a modular and

“pluggable” distributed execution system. WebCom’s flexible design allows the creation of specific

applications, such as the ShareTrader application described in Chapter 7. In this chapter, we will

examine the advantages of Secure WebCom in more detail and describe some specific case studies

that use the architecture.

WebCom’s pluggable architecture allows the creation of different implementations of its core

modules. Specifically, in this dissertation, we have examined the implementation of the security

manager module. Changing security managers allows the enforcement of completely different se-

curity policies, while still adhering to the security modeldescribed in Chapter 7. This allows the

creation of new applications that use Secure WebCom as theirbase.

This chapter describes applications of Secure WebCom. These applications are developed using

the security architecture to support specific security requirements. In Section 8.1, we examine an

early Secure WebCom prototype [65, 66] and describe how security policies from this prototype

can be enforced in the current system. Section 8.2 describesa security manager for WebCom that

incorporates micropayments, using the naming and securityarchitectures to enforce pay-per-execute

policies. This system uses trust management to support a credential-based payment system.

We analyse a grid administration extension for WebCom, called GridAdmin, in Section 8.3. This

system uses WebCom to provide a secure administration system for computational clusters. Admin-

istration tools are provided using workflow applications that execute on demand on the machines

being administrated. Applications for this system range from adding users to enforcing exclusive

access to a cluster. The WebComDAC case study is described in Section 8.4. WebComDAC is a se-

cure workflow system to control security policies on heterogeneous systems. We use WebComDAC

to view, modify and enforce a unified security policy across multiple systems and domains. Sec-

tion 8.2, Section 8.3 and Section 8.4 are the result of collaborations with other members of the

Centre for Unified Computing in UCC.

144

8.2 Classic Secure WebCom 145

8.1 Classic Secure WebCom

WebCom was originally developed [65, 66] using a hybrid of the Java and C programming lan-

guages. The distributed system was implemented in Java, while the execution engine was written in

C. A consequence of this design was that, as the internals of the graphs were not available for exam-

ination by the distribution system, node names were based purely on the function name of the node.

The KeyNote trust management system was used to provide configurable access control. This ac-

cess control mechanism was only able to make decisions basedon the function of a node. However,

with the development of the current WebCom architecture, this limitation no longer exists.

Security policies from the original WebCom prototype can bedenoted in terms of reduction

rules for the current WebCom system. This entails using tuple elimination rules to reduce a name

to contain only the function tuple. This rule can be expressed in Haskell as follows:

retainFunc :: Name -> Name

retainFunc (Snam d g f i o) = f

The retainFunc1 reduction rule extracts the function tuple from the provided name and

discards the remaining entries. This allows traditional WebCom trust management policies to be

enforced. A credential used with such a policy is shown in Figure 8.1.

KeyNote-Version: 2
Comment:
Local-Constants: Alice =

"rsa-base64:MIGfMA0GCSqGSb3DQEAQUA4GNADCBiQ\
Sr8xM9qBGuvbXG1eIZM6IcYTxQIDAQAB"

Bob =
"rsa-base64:MIGfMA0GCSqGI3DQEBAQ4GNACBiQKBg\
CKP9TXQE/zlC+poPrKHr/S7yHQIDAQAB"

Authorizer: Alice
Licensees: Bob
Conditions: App_Domain == "WebCom" &&

(Function == "checkprime.isPrimeOp")
&& operation == "execute");

Signature: "sig-rsa-sha1-base64:H0YZV5yvCVNpLiVbyWWvclE\
bmLbPdvYEzCY2nkVCX35feMasCPrOIVf+oluqjJGqY="

Figure 8.1: A function only KeyNote credential.

This credential defines that Alice delegates the execute right to nodes with the function name

checkprime.isPrime to Bob. Providing such general credentials is, however, notnecessarily

advantageous. This credential allows Bob to executecheckprime.isPrime nodes in any pos-

sible graph, regardless of input or output or execution domain. This was a significant disadvantage

of the original WebCom prototype. With the current implementation, using different reduction rules

allows finer granularity policies to be enforced within the same access control system.

1We could alternatively use a combination of the tuple elimination rules described in Chapter 6. However, in this case
it is simpler to use one reduction rule to retain a tuple, rather than applying four separate tuple elimination rules.

8.2 Micropayments 146

8.2 Micropayments

With the advent of computational grids, cluster owners are making their compute resources available

to users outside of their own organisation. However, the provision of these resources is not without

cost, both in maintenance and overheads. Owners may want to recoup these costs from their users.

One solution is a micropayments system where users pay a charge based on the submitted compute

job. We can develop such a system on top of Secure WebCom, using the naming and security

infrastructures as the base.

Micropayments schemes are intended to support very low-value payments, in the order of

C0.01, or less. Micropayment schemes [17, 35, 142] typically rely upon the notion of a digital

coin that represents a fraction of a pre-agreed contract. Each coin is linked to this contract, and can

only be redeemed when the coin is presented with the contract.

One means to support a micropayment system is through the useof one-way hash functions,

such as MD5 [151] or SHA1 [91]. These hash functions are designed so that they are easy to

compute, but computationally difficult to reverse. One way hash-based micropayment schemes [17,

37, 142] typically operate as follows: a payer (the principal making the payment) generates a fresh

random seeds, and computeshn(s), whereh() is a cryptographic one-way hash function. Ifs is

known only to the payer, then([hn−1(s), n − 1, val] . . . [h1(s), 1, val]) provides an ordered chain

of micropayments, each one worthval. Initially, the payer provides a payee with[hn(s), n, val],

which acts as a contract for(n− 1) micropayments.

As the seed is known only to the payer, and the hash function iscomputationally difficult to

reverse, coins cannot be forged. Furthermore, as contractsare crytographically signed, presumably

with strong cryptographic algorithms, they cannot be forged. Therefore, once a coin is presented

for payment, the payer cannot repudiate the payment; only hecould have given the payee the coin,

and so the coin should be redeemed.

A payee (the principal receiving the payment) who has securely receivedi micropayments,

([hn−1(s), n−1, val] . . . [hn−i(s), n− i, val]), can use the hash functionh() to check their validity

against the initial contract. Sinceh() is a one-way hash function it is not feasible for the payee to

forge or compute the next(i+1)th payment (before it is paid). Micropayments may be cashed in at

any time; the payer keeps track of contracts issued, and any payments made, to guard against double

spending.

Example 8.1 Consider an online business where a company, represented bypublic keyKComp is

providing a service to a customer, represented by keyKCust. Figure 8.2 shows a simple micro-

payment protocol. The customer is trusted by the company to create payment contracts that the

company will later redeem.KComp has received a contract fromKCust. KCust sendsKComp n− i

micropayments using this contract.

8.2 Micropayments 147

KCust KComp

-{KComp, h
n(s)}KCust

-hn−1(s)

-hn−2(s)

-hn−i(s)

Figure 8.2: Making Micropayments

The company will later redeem these payments by presenting the contract along with the last

coin received by the customer.

△

This approach to micropayments has been proposed and used inpayment schemes proposed by

[17, 37, 142]. For example, in [17], the payer threads digital coins (issued by a bank) through the

hash chain such that each micropayment reveals an authenticdigital coin that can be reimbursed by

the original bank.

8.2.1 Micropayments in KeyNote

We use the KeyNote trust management system [29] to provide support for micropayment authori-

sation of services between public keys across networks. This architecture writes the micropayment

contracts in terms of KeyNote credentials. The payer writesa contract credential for the payee,

stating the terms of the contract, for example the value of each coin. This credential is used by the

payee to ensure the validity of any coin received and is presented, along with the coins received, by

the payee, when redeeming the contract.

Example 8.2 A company (public keyKComp) expects payments for providing services X and Y.

They trusts banks Bank1 or Bank2 to guarantee payments for the customers of their services up to

a certain limit (C50.00). This is expressed by the KeyNote policy credentialin Figure 8.3.

Authorizer: "POLICY"
Licensees: "kBank1" || "kBank2"
Conditions: @Val * Num <= 50.0 &&

Service == "X" || Service == "Y";

Figure 8.3: The Company’s Policy

8.2 Micropayments 148

This policy credential defines the conditions under which the public keysKBank1 andKBank2

are trusted by the company. These conditions are defined in terms of attributesVal (micropayment

value val), Num (number of micropaymentsn in contract) and Service. Figure 8.4 provides a

micropayment contract credential that a customer (public keyKCust) buys from Bank1. It is signed

by the owner of public keyKBank1, delegating authority over the contract to the customer.

Authorizer: "kBank1"
Licensees: "kCust"
Conditions: @Val==0.01 && Num=1000 &&

Contract == "tIyJelErKyLtYoIJQPw/bQ==";
Signature:

Figure 8.4: Customer’s Contract Credential

Attribute Contract provides the initial contract value[hn(s), n, val] wheres is the secret

seed known only to the bank and customer. This particular contract is for a maximum of 1,000

micropayments valued atC0.01 each. Alternatively, the bank could decide to write a different

credential that delegates authority to generate contractsdirectly to the customer.

When requesting service X, the customer provides[h1000−i(s), ...] as theith micropayment to

Alice; in this case we assume thatKCust has already made payments[h999(s), ...] to [h999−i(s), ...]

to the company. The company uses the trust management systemto determine, given the creden-

tials, whether the customer is authorised for the particular request. Attribute bindings[V al =

0.001;Num = 1000;Service = X;Contract = hi(v)] define the circumstances of the request.

The company uses the KeyNote query engine to search for a delegation chain that links the trusted

keyKBank1 (from her policy credential) toKCust (the requester) and satisfies the circumstances of

the request. △

By casting micropayments in terms of trust management, we obtain a framework that provides

flexibility in managing complex payment and service authorisation trust relationships. For exam-

ple, the company might decide to out-source their support for service X to Alice by writing an

appropriate KeyNote credential that delegates their authority (contract with the customer) to Alice.

Similarly a bank can create contract credentials for customers, who can then delegate these contract

credentials to their service providers. In such an architecture, the service provider can then invoice

the bank directly, by providing both contract credentials.

Example 8.3 Figure 8.5 shows a simple payment invoicing protocol. As before KComp has re-

ceived a contract fromKCust. KCust sendsKComp n−i micropayments using this contract.KComp

wishes to claim for these payments and so must invoiceKCust. KComp generates an invoice detail-

ing the last hash received, the number of payments that are being claimed, and a time-stamp of this

transaction.KComp signs this invoice and sends it toKCust, with a copy of the original contract.

8.2 Micropayments 149

KBank KCust

-{KCust, h
n(s)}KBank

-hn−1(s)

-hn−2(s)

-hn−i(s)

�{KBank, hn−i(s), n − i, timestamp}KCust
,

{KCust, h
n(s)}KBank

Figure 8.5: Invoicing

KCust now checks the validity of the contract, and that no claims for invoiced payments have

been made before. OnceKCust is happy with the transactionKComp is credited with the required

payment. △

8.2.2 Security Analysis

There are several security risks associated with the micropayment scheme outlined above. These

include the risk of double spending, where a bank’s customerattempts to use the same contract to

pay multiple service providers; and the risk of double invoicing, where the service provider attempts

to cash in the same contract multiple times.

Double spending is difficult to prevent in a distributed environment. However, this can be de-

tected after the fact when the second service provider attempts to redeem the contract. At this point,

a dispute resolution protocol will be used. In the case of a customer attempting to spend the same

contract multiple times, the fact that both of the service providers hold a signed credential from the

customer, delegating the contract to that provider, provesthat the customer is attempting fraud.

Double invoicing is a simpler problem to address. As each invoice is presented to the bank, the

bank can check to ensure that this contract has not been previously redeemed. This requires that the

bank must store all redeemed contract credentials for all time. However, this cost can be reduced

when the contract credentials are only valid for a fixed time period. The bank must only then store

redeemed contracts that are still valid.

8.2.3 Micropayments in Secure WebCom

We can implement this scheme in Secure WebCom by modifying the trust management-based se-

curity manager so that it explicitly supports micropayments [64]. The micropayments security

manager maintains a database of received coins, along with alist of current contracts. When a node

8.2 Micropayments 150

is scheduled to a WVM for execution, it must be accompanied bya digital coin, called acyclot.

This coin forms part of the domain tuple of the node name, suchas the name shown in Figure 8.6.

The information contained in such names is used by the accesscontrol mechanism to enforce the

(Snam
(Lnam ["kBank1","kCust","Contract 9LIwhTqls1ZuKdgfgHcSzQ=="

"Iter 10","Cyclot Xnd5ft1qHlEoU9k91/rf1A=="])
(Lnam ["kBank1","kCust","kAlice","SampleAp")
(Lnam ["kBank1","kCust","SampleAp","SampleOp"])
[(Lnam ["kBank1","kCust","SampleAp","InputOp"])]
[(Lnam ["kBank1","kCust","SampleAp","OutputOp"])]

)

Figure 8.6: A Node Name including a digital coin

pay-per-execute requirement. In this example,KBank1 has created a contract forKCust, who is

using this contract to payKAlice to execute applicationSampleAp.

The security manager extracts the contract, iteration and cyclot information from the name. This

information could form the base of a trust management check,as described in Section 8.2.1, or using

a very simple access control mechanism, calculate whether hashing theCyclot valueIter times

results in theContract hash.

Using the trust management mechanism, the initial overheadincurred by a WebCom server

when computing a micropayment contract for a client is offset by the subsequent computational

burden that is off loaded (and paid for, task by task) to the client. Client side checking of payments

carries minimal overhead, becoming part of the existing credential based authorisation check. It is

possible that the child can cache the last valid coin they receive and, therefore, only need to compute

one hash to ensure the next coin is valid, without requiring atrust management check.

8.2.4 Discussion

Blaze et al [35, 95] use KeyNote to manage trust for a micro-billing based payment scheme. Their

scheme is similar to IBM’s minipay scheme [86], whereby a credential represents an electronic

cheque issued by the authoriser to the licensee. KeyNote is used by the payer (merchant) to deter-

mine whether or not an off-line payment from a particular payee (customer) should be trusted, or

whether the payee should go online to validate the payment and payee. The scheme is intended for

small value payments (under $1.00). Since each payment transaction requires a public key crypto-

graphic operation it may not be practical for very small payments where the cost of processing is

high relative to the value of the payment.

In [163], Shirkly argues that micropayments struggle to attain widespread usage because of their

very nature. He states that users require “predictable and simple pricing” whereas micropayments

“waste the user’s mental effort in order to conserve cheap resources”. When a user interacts with

8.3 GridAdmin 151

a micropayment system, they still have to make a choice: whether or not item X is worth Y. For

example, imagine a website where a micropayment is requiredfor each page viewed. A user will

not automatically view each page without carefully considering whether that webpage is worth

spending a tiny amount of money for. The amounts being considered are so small that this decision

is wasteful. The only case where a user is willing to accept a transaction automatically is where that

transaction is free.

In the system described, this is not an issue. Users do not make decisions on which transactions

to accept; instead the decision to accept (trust) a transaction is performed by KeyNote. In effect the

user’s mental effort is represented in terms of a KeyNote policy. Another criticism of micropayment

schemes is based on the ratio of setup cost versus the total cost of the transactions. Ideally, the

relatively large cost of initialisation is offset by the frequent use of the low cost payment over time.

With the application described in this section, this is particularly true. Relationships between payer

and payee are generally long term and this setup cost is insignificant compared to the total cost of

the transactions processed.

In this section we have shown a new scheme for micropayments using the KeyNote trust man-

agement system. This scheme has been implemented in the WebCom meta-computer, providing a

method of rewarding clients for work completed. Our proposed scheme can be extended to provide

for an evolution of trust between the server and client. The client originally does not trust the server

to reimburse the micropayment, and might seek to (inefficiently) cash in each micropayment as it

arrives. Aftern such reimbursements have been made the client might write a new KeyNote policy

stating that it is safe to seek reimbursement after everym micropayments.

8.3 GridAdmin

GridAdmin [48, 147] is a WebCom-based system used to provideautomated support for adminis-

trative requests, such as resource reservation and user account management. We propose using trust

metrics to help judge the merits and suitability of each request. We outline how these metrics can

be implemented using trust management techniques.

Grids [7, 71, 181] consist of numbers of sites cooperating toshare resources. These resources are

heterogeneous in nature and are maintained by a range of administrators, from full-time profession-

als to volunteers. The purpose of these sites is to share their resources and knowledge throughout

the Grid. Grid middleware such as Globus [71, 72] facilitates the sharing of these resources and pro-

vides an identity based security infrastructure using X.509 certificates. X.509 certificates provide

authentication support for users submitting jobs to remotesites. However, this does not directly

address the issue of administration across the Grid: It is difficult for an administrator to decide how

to react to a request from a different site, or to know whetheran executable or configuration file

from another site should be trusted. This is a hindrance to resource sharing.

8.3 GridAdmin 152

Facilitating inter-site administration requires the definition of policies and some knowledge of

each principal in the Virtual Organisation (VO). A VO is a virtual space across organisations that

allows its members to interact transparently. This is a major overhead for system administrators.

GridAdmin is designed so that a request from a well-trusted administrator at a different site would

be approved automatically, whereas a request from an under-qualified user (for example, a student

requesting a resource reservation) would require further investigation.

It is also important to consider how automation of user requests, software installation and up-

grades, resource reservation, both within, and across sites should be achieved.

8.3.1 Administrating a Grid

There are several types of problems associated with grid administration. These problems form two

main categories: local problems within an organisation andcross-site problems within a virtual

organisation. We will examine these problems separately.

Local Problems

At any site, administrators face several basic issues. Users need accounts to operate in that site. Each

user may have a different software requirement, and will need their specialised software installed

on each resource they intend to use. Users may wish to requestexclusive use of the resource, for

example for critical timing, or simply to reserve access to the resource. The system administrator

will handle these requests according to his/her knowledge of the user making the request, and within

the constraints of the local policy.

Example 8.4 Site A has a policy which states that only postgraduate students and staff are allowed

to make requests on their compute cluster (for accounts, software installation and for resource reser-

vation and/or co-reservation). Priorities are assigned based on seniority of the requester and the

urgency of the work. An undergraduate student could be granted an account by their supervisor, but

couldn’t request a cluster booking: such a request would have to be brokered by their supervisor

directly. △

Cross-site Problems

When these local problems are translated to a Grid environment, they become more challenging.

The same decisions must be made with less information available to the administrator.

For example, a user at site A wishes to use resources at site B,where both sites are in the

same VO (Virtual Organisation) and have a functioning Grid.Currently, the procedure would be

to send an email to site B’s system administrator requestingthat the attached executable file be

8.3 GridAdmin 153

installed. This would be accompanied by a configuration file used to set up the executable file. The

administrator must now decide:

• does the user have a right to access resources on site B (covered under the terms of the VO

agreement and handled by Globus);

• whether the user at site A is authorised to make such a request (perhaps local policy dictates

that only senior staff members can make such requests);

• whether he should trust the executable file, or should the source code be consulted, and

• whether the configuration file is trustworthy.

It is obvious that the ability to trust the user would greatlyimprove cross-site cooperation, and

facilitate resource sharing. It is easier to accommodate requests from system administrators of

different sites who have established relationships, and therefore have some level of shared trust.

These decisions could be taken according to the establishedtrust relationship and in terms of the

local policy.

In the absence of a trust model, it is tempting to take an authorise all, or authorise none approach,

to requests from outside the administrator’s domain. Theseapproaches may hinder the spirit of the

agreement and reduce inter-site cooperation.

System administrators at different sites in a Grid tend to talk to one another, even when only to

exchange the bare information required to set up a Grid (for example, machine names for firewalls

or user names for grid map files etc.). For this reason, some level of trust (or history) is established

between them. This trust can be leveraged, along with the constraints of the local policy, and the

VO agreement to interpret requests. This is rarely the case with ordinary users. It is more likely that

administrators will have little or no knowledge of individual users from other sites, but will have

established relationships with their administrators. Theuser can normally only prove their identity

and their right to access the resources under the VO agreement through the Globus X.509 security

system.

Trust Management is used to help automate administrative decisions rather than replacing the

existing Globus security infrastructure. The contribution of our approach is to provide a framework

in which Grid administration becomes more practical. In this section, we explore two approaches —

explicit and “fuzzy”— to supporting Trust Management in Grid Administration. Explicit delegation

of authorisation requires full authorisation details to beencoded within the Trust Management cre-

dentials. However, it does not capture the flexible nature ofa real system. To this end, we propose

alternative metrics to provide a means to make “fuzzy” delegations. These allow administrators to

quantify the level of trust they apply to each of their users.

8.3 GridAdmin 154

8.3.2 Grid Administration using WebCom

Supporting automated administrative requests on a Grid resource, requires an administrative helper

“daemon” running on that resource. These agents take administrative requests, such as node reser-

vation, and perform the low-level changes to the resources.For example, a successful request to

reserve compute nodes would call the agent in charge of thosenodes, and modify the system to only

allow that user to log in during the reservation period.

We can represent administrative tasks as condensed graph applications [63]. The security in-

frastructure can then be used to decide whether these administrative actions are authorised. Thus

WebCom becomes the administrative agent on the nodes. The WebCom system operates as a trusted

application on the nodes, and the security manager ensures that the tasks it executes comply with

the local security policy.

Example 8.5 A common problem for Grid Administrators is allowing users exclusive access on

Grid resources for a period of time. Typically the Administrator must go to each resource required

and prevent other users from accessing that resource for theduration of the booking. This task can

be represented in an administrative condensed graph, shownin Figure 8.7.

For All

Build Access
List

E X

Machines

Action

User Account Info

AdminTask

GridAdmin ::=

Figure 8.7: Condensed Graph Application to reserve Grid resources.

This graph specifies the sequencing of the application. First, the parameters are built up using

Build Access ListNode. This seeds theForAll node with the number of machines needed

and the administrative action requested. TheForAll node spawns copies of theAdminTask

node, one for each resource that will be modified. TheAdminTask node represents the admin-

istrative action to be applied on the Grid resources. In thiscase, it executes the exclusive access

administrative request.

The policy credential shown in Figure 8.8 grants the Grid Manager the authority to assign up

to 100 Grid resources exclusively to users. The Grid Manageruses this authority and signs the

credential, shown in Figure 8.9, that allows the User to reserve 32 machines. The user presents this

credential to WebCom to prove her authority when she wishes to reserve the resources.

8.3 GridAdmin 155

Authorizer: "POLICY"
licensees: "KGridManager"
Conditions: App_Domain == "WebCom" &&

Resource == "UCC-GRID" &&
(Graph == "GridAdmin" &&
Function == "ExclusiveAccess" &&
Input <= 100);

Figure 8.8: Policy Credential allowing the Grid Manager to assign exclusive access to up to 100
resources.

Authorizer: "KGridManager"
licensees: "KUser"
Conditions: App_Domain == "WebCom" &&

Resource == "UCC-GRID" &&
(Graph == "GridAdmin" &&
Function == "ExclusiveAccess" &&
Input <= 32) &&
_ACTION_AUTHORIZERS == KUser;

Signature: ...

Figure 8.9: User Credential, delegated by the Grid Manager,to allow reservation of 32 resources.

TheAdminTask Node takes two parameters, the first is the action to be performed. This is

either ‘grant’ or ‘remove’. The second parameter is the useraccount information. This consists of a

colon delimited string with the user name, encrypted password string, UID, gui and home directory.

The Node then starts or stops the NIS service as appropriate and either adds or removes the account

from the machine. The UID, GID and home directory are passed in to avoid having to make changes

to the NIS and NFS servers. This allows ordinary users to makemajor changes without the need for

root access.

With GridAdmin the user need only specify a number of machines and the account information

(readily available from the NIS server). To do the same task by hand, the System Administrator

would have to log into each node, manually edit the password and group files to include the neces-

sary information, and enable/disable NIS2.

Figure 8.10 shows the amount of time taken to grant exclusiveaccess on 1, 2, 4, 8,16 and 32

nodes of the Boole Machine. The Boole Machine, owned by the BCRI (Boole Centre for Research in

Informatics) machine is a 100-cpu Beowulf cluster. It is used by over 70 researchers in 5 institutions

for research into fields including Computer Science, Mathematics, Applied Mathematics, Physics,

Astrophysics and Geophysics.

This time (in milliseconds) excludes the time to set up the variables, such as the user name,

password, etc., for the entire run. This took 25 seconds at startup. However, this is a static per

request cost. For comparison, making these changes manually was timed at 45 seconds per machine.

The advantage of this approach is apparent. The time taken for execution increases rapidly at

2Of course these actions could be automated with scripts.

8.3 GridAdmin 156

Figure 8.10: Timings to Execute Graph from Figure 8.7 on 1,2,4,8,16 and 32 Machines.

first, but as the number of client machines grows, this cost gradually flattens out. In this case, the

administrator makes the request, but as the policy is enforced using trust management, this is not

required. The administrator could write credentials delegating this authority to specific users. This

authorisation could specify the maximum number of machinesthat any one request could effect.

However, some external control should be applied in this case, as an unscrupulous user could avoid

this restriction by attempting multiple requests. △

8.3.3 Trust Paradigms for Grid Administration

We have outlined how WebCom’s Trust Management infrastructure can provide a basis for decen-

tralised security administration in the Grid. Such a systemhas the ability to make authorisation

decisions about user requests. Considering the problem of how to administrate islands of resources

on the Grid, we can readily recognise the advantages of usingTrust Management credentials to

drive administrative actions.

Analysing the administrative problem further, we identifythree common administrative trans-

actions:

1. Adding a remote user to a local Grid resource. Users in remote systems often request access

to local systems. The local administrators may have no personal knowledge of the remote

8.3 GridAdmin 157

user, and are forced to make blind decisions regarding the user’s eligibility and access level;

2. Providing the ability to book exclusive resource allocations, as described in Example 8.5.

Users often require exclusive access to resources for diverse reasons. The administrator

makes decisions regarding these requests based on such considerations as past behaviour.

For example, when the user last had exclusive access, did they use it properly?, and

3. Providing an infrastructure for users to request custom software installation. Administrators

make decisions on new software installations again based onthe requesting user’s past perfor-

mance and the skill level of that user; An experienced user will often receive a more positive

response than a novice.

There are several potential approaches to solving these problems with a Trust Management

framework.

Reputation based metric

A

C

B

Figure 8.11: A Virtual Organisation, with three organisations sharing resources.

Administration of different domains, such as the VO shown inFigure 8.11, rely on informal

relationships between the administrators of those domains. Formalising these relationships into a

model would provide a more consistent outcome for user requests. An analogy can be seen in the

relationships between nightclubs in a locality. In general, they are competing businesses. However,

if a person misbehaves in one club, then their reputation often proceeds them to the other clubs in

the area, through the “network” of doormen. This is a model well suited to the administration of

Grid resources.

Using reputation based metrics for measuring trust is a wellestablished technique [101, 156,

183]. Analysing the Grid architecture in order to use reputation to promote data integrity has pre-

viously been explored [75]. Knowing the reputation of a usercan provide an insight into what

access you give that user. Maintaining a measure of each user’s reputation allows an administrator

8.3 GridAdmin 158

Authorizer: "KUCC-Admin"
licensees: "KBob"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
karma = 0.52;

Signature: ...

Figure 8.12: Karma Credential for User kBob.

Authorizer: POLICY
licensees: "KUCC-Admin"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
(node_request > 5) -> (karma > 0.6);

Figure 8.13: Karma Policy, allowing conditional access to Compute nodes.

to make decisions about allocating the resources of the system to those users. We call this measure

a user’s“karma” . Karma is a numerical value representing the level of trust that a user has attained

in the local system. This value represents the user’s previous behaviour in the system. The higher

the value, the greater the user’s potential access. Applying a numerical weight to users allows cre-

ation of more user-understandable policies. For example, depending on the karma level of a user,

automatic decisions regarding access to resources may be made.

We envision karma to be represented by a value between 0 and 1.Users could potentially receive

their initial karma level(Ku
dl

) depending on their introducer’s karma in the local domain(Ki
dl

) and

the user’s karma in the introducer’s domain(Ku
di

). An introducer is an authority in an associated

domain, trusted to some level by the authorities in the localdomain. For example:

Ku
dl

= Ki
dl
∗Ku

di

Over time, depending on the user’s behaviour, karma will rise and fall. Good behaviour, such

as properly using reserved resources, is rewarded with increased karma, and therefore access. Con-

sequently bad behaviour, such as requesting new software, but not using it, will result in reduced

karma.

Karma could be encoded into trust management credentials, such as KeyNote credentials. For

example, Figure 8.12 shows a karma credential for user KBob.This credential, signed by an ad-

ministrator of the UCC-GRID domain, sets his karma level as 0.52. The flexibility of this system

is apparent when examining the sample policy shown in Figure8.13. This policy indicates that if

a user wishes to reserve more than 5 compute nodes in the localdomain, then their karma must be

over 0.6. Additional conditions could be placed in this policy, such as, if a user was below 0.6, then

they would need to provide a request co-signed by another user.

Other usage of karma could include assigning a karma level tomachines, based on their setup.

This would allow the creation of policies where machines that are very stable (high karma) would

8.3 GridAdmin 159

be reserved for users who also have high karma. When machineshave problems, their karma drops.

Consequently a high availability increases the machine’s karma level.

Difficulties with a karma-based metric are in the administration of updates to the user karma

values. How are changes to the user’s karma level stored and enforced? Users will probably be

willing to throw-away an old credential, where the replacement has a higher karma level. However,

getting them to use a new credential with lower karma is more difficult. This issue can be addressed

in a number of ways. Expiry dates could form part of the user karma credential, forcing the user

to obtain a new credential periodically to continue using the system. Unlike Certificate Revocation

Lists (CRLs), this places the burden of proof of authorisation on the user [154]. Another solution

would be to store changes to each user’s karma in a central“karma server”. This, however, intro-

duces a single point of failure into the system, and does not have the advantages of a decentralised

approach.

Furthermore, we must consider how to handle multiple introducer credentials for a given user.

How do we aggregate different karma levels from different introducers? Also should changes to the

introducer’s karma reflect on the karma of the user? An example of such a system can be seen in [1].

Finding adequate solutions to these problems is important in order to create a useable system, and

is a topic for future research.

Reputation based metric in WebCom

Supporting a reputation based metric in WebCom requires checking the requesting user’s karma

level, compared to the level required by the system policy for the requested administration action.

If the user’s karma is high enough, then the request is accepted. If not, then either a request for con-

firmation is made to an administrator, or, if the policy so dictates, then the request is automatically

denied. These administrative actions are specified as condensed graph workflow applications.

Example 8.6 Reservation of Grid resources is specified in a condensed graph workflow application

shown in Figure 8.14. When a user wishes to reserve such resources, this workflow is launched and

the components executed on the relevant resources.

This security policy of the environment, in which the workflow application is running, defines

that theBook Resource operation should be scheduled to a principal whose karma is greater

than 0.4; TheGrant Request operation is only allowed to be scheduled to a principal with

karma greater than 0.6; TheDisplay Result operation can be scheduled to any valid user. This

policy is defined in a policy credential, such as in Figure 8.13.

KBob’s credential (shown in Figure 8.12) indicates that he has sufficient karma to make a request

to book a resource, however he would need someone else to approve that request, as he does not

have enough karma to do so by himself. The result of the request would be displayed on KBob’s

machine, as he is a valid user of the system (i.e. his karma is greater than zero). △

8.3 GridAdmin 160

Request
Grant

Resource
Book

XE
Display
Result

karma > 0.6

karma > 0.4

karma > 0

ReserveResource ::=

Figure 8.14: Condensed graph workflow application to reserve a resource

WebCom’s naming architecture must ensure that the karma level associated with every node

is retained, enabling the security manager on both the parent and child WVMs to make proper

reputation decisions. The karma level is stored in the domain tuple of the node name. Furthermore,

the karma levels for users may be supported by a karma user module in WebCom (see Chapter 5).

Using this combination of the workflow abilities of condensed graphs, and the security man-

agers of WebCom we can construct a flexible automated security administrator. As the GridAdmin

application, described in Section 8.3.2, already uses WebCom to schedule the administrative tasks,

there is no additional overhead. Instead different credentials form part of the existing authorisation

checks. However, this does not address the accounting problems with such a reputation metric.

Assurance based metric

Using money as a trust metric has been growing in popularity in recent years. In Section 8.2, we de-

scribed how we can use micropayments within WebCom to pay forthe execution of nodes. We can

use a similar technique towards paying for administrative actions in GridAdmin. Applying mone-

tary or assurance [119, 150, 162] terminology to trust decisions is appealing as the stakes involved

in a system are readily understandable. Unlike the reputation based metric, a monetary based metric

requires no storage of the changes in each user’s fortunes: users take care of their own money.

In a monetary based system, money is exchanged between principals. To use a resource, an

agreed sum must be paid to the owner of the resource. It is important that the trust mechanism

has a low computational and administrative cost, and also that contracts between users must be

both verifiable and subject to conflict resolution. Such a system can be implemented using a trust

management system [35, 59, 64]. These systems work on the basis that either the payments act as

electronic cheques, that are reimbursed later, or are used as a closed currency. In a closed currency

system, payments take the form of coupons, traded for resources. Ideally principals must either

8.3 GridAdmin 161

“save up”, or several principals must combine, to request an“expensive” resource. Such a system

discourages bad behaviour, as the abuser will lose money in the transaction.

A difficulty with such a metric becomes apparent when considering problems experienced in

economics. For example in [108], Krugman introduces the problems with Babysitter clubs, that are

common in the US. In these clubs, each set of parents are initially issued a fixed number of seed

coupons. These coupons are used to pay other parents when a babysitter is required. When a parent

wants a night out, they spend a coupon and another parent babysits for them. However over time,

the system collapses due to hoarding of coupons by parents “saving up” for a special occasion.

Other parents noticing the lack of babysitting jobs also stay in, preferring to save their coupons for

emergencies. Applying this behavioural result to the proposed metric, leads to the conclusion that

similar problems may well be experienced.

Instead of a coupon based metric, consider instead a depositbased system. In such a system, a

“promissory note” is signed by the principal requesting theresource. If they behave properly, then

the contract is returned after some period. However, if abuse of the resource takes place, then the

owner of that resource cashes in the contract, reducing the future purchasing power of the principal.

This is analogous to an insurance policy. This is in effect an“Assurance” policy. If the user abuses

the resource, then the assurance policy is invoked, and compensation is paid.

Seeding the system requires that a trusted source, for example a bank, must set limits on all

the principals using the system. This can be achieved using atrust management system. Initially

authorities in a Virtual Organisation are delegated a certain amount of credit. These authorities can

then pass on portions of this credit to their local users.

Example 8.7 In the Virtual Organisation shown in Figure 8.11, there are three component domains,

A, B and C. The KeyNote policy shown in Figure 8.15 assigns a credit of 1000 to KAngela, the

Administrator of domain A’s key.

Authorizer: POLICY
licensees: "KAngela"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Credit = 1000 &&
Validity <= 200404312359;

Figure 8.15: Administrator Angela is delegated a credit of 1000.

These credentials have a validity date, up to when the credentials are valid. These validity dates

allow the legitimate reuse of the credit that a user holds, without requiring the administrator to

explicitly return the deposits. KAngela can then delegate parts of this total to users in her domain.

Such a delegation is shown in Figure 8.16.

This credential delegates a credit of 100 to KBob. KBob couldnow use this credential to gen-

erate a contract, guaranteeing good behaviour when requesting a resource in domain B. As each of

8.3 GridAdmin 162

Authorizer: "KAngela"
licensees: "KBob"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Credit = 100 &&
Validity <= 200404142359;

Signature: ...

Figure 8.16: Administrator Angela delegates a credit of 100to user KBob

the domains would trust administrators in the other domains, such a contract would be honoured in

domain B. △

The metric outlined is essentially the opposite of a reputation based metric. Good behaviour

simply guarantees continual access to resources. Bad behaviour would result in default of the con-

tract, reducing the amount of money available in the future.If a principal misbehaves, then a conflict

resolution process would be enacted. Using this process, the complainant would furnish the con-

tract credential, and some proof of the bad behaviour. If thecomplaint is upheld, at the start of

the next renewal period for the user credit credentials, then the credit of the misbehaving principal

would be reduced, and the credit instead issued to the complainant. If principals can show good

behaviour in terms of contracts successfully completed, then their issuing authority could choose to

raise their credit limit. This is comparable to a credit cardcompany increasing the credit limit of a

good customer.

There is a potential problem with such a metric. Due to the decentralised nature of the proposed

system, double spending, or promising the same deposit to more than one principal, becomes pos-

sible. A principal could make guarantees in domains B and C using the same collateral. However,

we propose that this is, in fact, a desirable characteristic. If a principal acts properly in both do-

mains, then the double spending will never become apparent.However, when a default occurs in

both domains, the digital signatures will prove the guilty principal, and a conflict resolution process

would take over. Such a system will reward a principal who takes more risks, yet whose behaviour

is good. Good behaviour is likely to be increased, as principals are risking potential disaster when

discovered.

Assurance based metric in WebCom

Alternatively, supporting a assurance based metric in WebCom requires a different type of creden-

tial infrastructure. When a user wishes to make an administrative request, they create and sign a

contract credential. This credential is then sent to the Administrator of the resource requested. If

the Administrator accepts the contract, then the request isgranted. These decisions are taken based

on the local policy of the resources requested. For example,if the policy stated the cost per minute

8.3 GridAdmin 163

of reserving a node, then the user would have to offer at leastthis amount for the request to suc-

ceed. Even though this metric is in practice the opposite of the reputation metric: principals must

prove their worth, the system is not required to maintain state; these administrative requests can be

specified in the same form as those used with the reputation metric.

Example 8.8 Principal KClare wants to reserve 15 compute nodes for 10 hours in order to gen-

erate some accurate results. In order to achieve this, she creates a contract credential, shown in

Figure 8.17.

Authorizer: "KClare"
licensees: "KUCC-Admin"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Request == "BookResource" &&
Nodes = 15 &&
Time = 600 &&
Deposit = 100 &&
Validity <= 200404142359 &&
[...];

Signature: ...

Figure 8.17: KClare contract for reserving 15 compute nodesfor 10 hours.

This contract credential allocates a deposit of value 100 toKUCC-Admin to guarantee KClare’s

good behaviour while using the requested compute nodes. Forthis request to be successful, KClare

would have to provide a credential from a source trusted by KUCC-Admin, giving her the right to

create such a contract credential. Figure 8.18 shows a credential fulfilling these requirements.

Authorizer: "KUCC-Finance"
licensees: "KClare"
Conditions: App_Domain == "GridAdmin" &&

Deposit <= 250 &&
Validity <= 200404312359;

Signature: ...

Figure 8.18: Credit Credential from UCC’s Finance Department, giving KClare’s Credit limit.

This credential, signed by a key belonging to the Finance department in UCC, gives KClare the

right to sign contracts up to value 250, in the GridAdmin application. Finally, KUCC-Admin’s local

policy must declare what price the Administrator is willingto accept for reservation of nodes. The

policy must also trust the KUCC-Finance key for this requestto be successful.

Figure 8.19 shows such a policy. In this policy credential the administrator has defined the

conditions under which certain administrative requests are acceptable. Specifically, in order to

reserve nodes, principals must provide a deposit based on the number of nodes required and the

length of time (in minutes), they are required for. △

8.3 GridAdmin 164

Authorizer: POLICY
licensees: "KUCC-Finance" ||\

"KNUIG-Finance" ||\
"KTCD-Finance"

Conditions: App_Domain == "GridAdmin" &&
((Request == "BookResource" &&

(Deposit >= Time * Nodes * 0.01)) ||
(Request == "InstallSoftware" &&
(Deposit >= Nodes * 100)));

Figure 8.19: KUCC-Admin’s policy, trusting the keys of several Finance departments to assign
credit limits. It also dictates the terms acceptable to the Administrator.

This system can be extended to encompass all the administrative actions concerning the ad-

ministrator. Placing a monetary value on the actions allowsthe administrator to discourage certain

actions, without outright refusal. For example in Figure 8.19, the administrator has defined the

value 100 as the price to install a new piece of software on each node. These conditions can be as

fine-grained as the administrator requires. For example, reserving an SMP machine could be much

more expensive than a uni-processor node.

Additionally, using the architecture of the WebCom system,we can implement the“Nightclub”

model previously discussed. Using the communication capabilities of WebCom, advisory creden-

tials, written by administrators, could be distributed throughout the system and integrated into the

trust management decision. These credentials could specify that a higher “Entrance fee” is required

from users who have misbehaved on other systems. This provides a means to instantly reduce the

purchasing power of individual users, without waiting for the renewal of credit credentials. This

concept is similar to the idea of Certificate Cancellation Notices (CCN) in SPKI [94]. CCNs are an

informal version of Certificate Revocation Lists (CRLs) with most of the benefits, but at reduced

cost.

These decisions take place in a fully decentralised manner.Different administrators have dif-

ferent priorities, and so the policies will vary from domainto domain. Another advantage of this

decentralised architecture is the ability to “sub-contract” work. It would be possible that KUCC-

Admin decides to sub-contract some work to another domain. This is achieved by the creation of a

new contract credential by KUCC-Admin to another administrator, delegating the deposit from the

received contract credential. The original contract credential would be passed along to preserve the

delegation chain.

8.3.4 Discussion

In this section we have introduced GridAdmin, an automated administrator, empowered to handle

the tedious administrative requests, such as the reservation of compute nodes, common in grids

today. This system provides a “value-added” service to Gridadministration, sitting on top of the

existing Grid architecture rather than replacing the existing security architecture. For example, the

8.4 WebComDAC 165

cryptographic keys used to sign credentials are the same keys used by the principals to authenticate

themselves to the Grid management software, such as Globus.

Section 8.3.2 described how we use the WebCom system to provide automated administration of

Grid resources. Our experimental results show the value of this approach, dramatically decreasing

the amount of time required to perform common administrative tasks.

However, this implementation does not capture the flexible needs of a real users. To this end,

Section 8.3.3 proposes alternative trust metrics that provide a “fuzzier” notion of trust. Each ap-

proach was found to have advantages and disadvantages, suchas problems of aggregation in the

karma system and conflict resolution in the assurance system.

The metrics proposed encompass alternative ends of the possible design of such a system. How-

ever we believe that the assurance metric provides an interesting, yet useful simulation of the real-

life situations administrators find themselves in. Often weask ourselves: “what’s in this for me?;

what guarantees do I have that this will not break our system?” These questions are addressed using

an assurance system, with the cost/benefit analysis being readily understandable.

We are in the process of deploying such an automated system inregards to the Cosmogrid [10]

project. This will reduce the time required to administrate, and increase both flexibility and sharing

of resources between the component sites. We have implemented a prototype system on the Boole

machine in UCC. Users have the ability to perform automated resource reservations.

In the future, we intend analysing both the usability of the GridAdmin architecture, and the

suitability of the proposed metrics over time. The flexibility of a trust management based approach

allows each site to alter their policies to suit local conditions, while providing a consistent infrastruc-

ture throughout the sites. Integrating some of the featuresof both proposed metrics into a combined

metric also may provide some interesting results. More research into these metrics is required.

8.4 WebComDAC

WebComDAC [63, 134] is a security orientated heterogeneous administrative tool based on the We-

bCom architecture. WebComDAC (WebCom with dynamic administrative coalitions) acts as an

administrative interface to an organisation’s heterogeneous systems. Dynamic administrative coali-

tions are virtual administrative spaces where administration tasks are carried out for users. These

tasks are specified as condensed graphs and are coordinated by trusted instances of WebCom, called

DAC coordinators.

WebComDAC provides an activity-centred model for structuring and organising administrative

workflows on a heterogeneous network. These administrativeworkflows are described asactivity

sets[60, 61]. These activity sets are then translated into condensed graphs and executed by Web-

Com. Activities can be represented visually, as shown in Figure 8.20. This shows the template for

an activity set. Activities are made up of a number of actions: Start to start the activity;Finish

8.4 WebComDAC 166

to conclude the activity;Join to join the activity;Leave to resign from the activity; andDo to

perform some action. Activities support multiple actions of each of the different action types. In the

implementation of activity sets, only join, leave and do actions are supported.

Activity Do

Leave

Join

Finish

Start

Figure 8.20: The Template for an Activity.

Activities can be linked together, for example, aDo action in one activity could be linked to a

Join or Start action in another activity. Activity sets can represent business rules; each activity

represents a different principal’s duties. Example 8.9 describes a share trading activity using a

number of linked activity sets.

Example 8.9 Figure 8.21 shows a share trading application cast as a number of activities. Each

activity set corresponds to a user’s view of their actions. For example, the CEO can appoint trading

managers, sales managers, and can resign. The join action for the CEO’s duties starts the activity

by the appointment of the CEO.

CEO
Appoint

Appoint
Trading
Manager

CEO

Trading
Manager

CaptureDeal
PriceDeal

Sales
Manager

Resign

Clerk CaptureDeal

Resign

Resign

PriceDeal
AnalyzeRisk

Resign

Appoint

Appoint

Clerk

Clerk

Manager
Sales

Appoint

Figure 8.21: A Share Trading Activity Set.

The CEO’sdo actions entail appointing trading and sales managers. Bothof these mangers can

appoint clerks. Their other duties include analysing risksand pricing deals for the trading manager

and pricing deals and capturing deals for the sales manager.Clerks can capture deals. △

The aim of the WebComDAC system is to implement this activity model using condensed graphs

8.4 WebComDAC 167

to support the sequencing constraints. We use activity setsto specify the business rules for an or-

ganisation. These rules are then automatically translatedinto condensed graph workflow applica-

tions [134]. We securely execute these workflows using WebCom.

8.4.1 WebComDAC Architecture

We have examined how administrative workflows are specified for WebComDAC . However, this is

but one aspect of the system. In order to provide administrative support in WebCom we also require

the ability to view and modify authorisation policies on theresources of the system. DAC policies

are specified and controlled by the DAC policy tool.

Coordinator
DAC

Policy
Tool

Policy

Authorisation
Server

Policy

Authorisation
Server

Policy

Authorisation
Server

Policy

Authorisation
Server Coordinator

DAC

DAC 1
DAC 2

DAC 3

Figure 8.22: The DAC Architecture

The DAC system operates though the use of DAC coordinators toschedule administrative tasks,

and authorisation servers to perform those tasks on their corresponding servers. Figure 8.22 shows

a representation of a network containing a number of administrative coalitions. Implementation of

authorisation servers exist for a number of architectures,including DCOM/.Net (KeyCOM), Linux

(KeyLin) and Enterprise Java Beans (KeyBean). We examine these authorisation servers later.

The DAC coordinators are implemented as trusted instances of WebCom, called WebComDAC .

WebComDAC is used by the DAC policy tool to coordinate administrative workflows on legacy

systems. These systems provide executable components thatform part of applications. The autho-

risation servers can be used to view and/or update the authorisation policies for these components.

DAC domains can overlap, for exampleDAC1andDAC2in Figure 8.22. This could potentially

cause an issue where an administrative update on one authorisation server by one DAC conflicts with

the requirements of another DAC. We do not believe this is a significant problem as WebComDAC is

a closed system and a single workflow is executing at any time.If a change is made to a authorisation

server policy, that policy update is reflected in the DAC policy tool.

8.4 WebComDAC 168

8.4.2 Implementing WebComDAC

The WebComDAC architecture is shown in Figure 8.23. It is broken down into anumber of compo-

nents. The middleware systems, such as COM or EJB, provide the components that can be used by

WebCom applications. Both the components and the security policy are discovered byinterroga-

tors. These interrogators determine the services that are available on a middleware server and input

this information into a database. This database is used by the WebCom integrated development en-

vironment (IDE) to allow developers to create applicationsusing these services. During component

interrogation, the interrogators also extract the security policy for these middleware components and

also store this information in a database. This informationis represented in a palette in the WebCom

IDE.

Middleware
System

Middleware
System

Middleware
System RBAC to

Trust Management
Transation

KeyStar
Client

KeyStar
Client

KeyStar
Client

Select M/W
Services

Generate T.M.

Credentials

Server

KeyStar

Update
Security

Interrogates Services

Use Middleware Services

Interrogator Database

Policy on
Clients

Update Server Policies

S
ec

 P
ol

ic
y

S
ec

 P
ol

ic
y

S
ec

 P
ol

ic
y

WebCom
IDE

Figure 8.23: The WebComDAC Architecture.

Once an application has been created, an access control policy must also be created for this

application. Typically, this takes the form of a trust management policy. This may require changes

to the authorisation policies of the middleware systems. Inthis case, theKeyStarsubsystem is used

to make these updates.

Middleware systems typically use a type of role based accesscontrol (RBAC) for authorisa-

tion. RBAC-like policies can be encoded in terms of equivalent cryptographic certificates/policies

[109, 152]. In addition to supporting ad hoc KeyNote policies, WebComDAC supports middle-

ware RBAC-like security policies within KeyNote authorisation credentials. This is unlike [109],

where authorisation certificates are only integrated as part of the lower-level middleware system.

WebComDAC uses KeyNote to determine whether it is safe to execute a middleware component.

A WebComDAC environment can automatically convert middleware RBAC policies to their

equivalent KeyNote policies/credentials, and vice-versa. This provides a high degree of policy

8.4 WebComDAC 169

interoperability, both between the middleware and trust management layers, and within different

Middlewares. In addition to providing a uniform way of specifying RBAC policies for different

middleware systems, it also becomes possible to enforce standardised RBAC middleware policies

across middleware systems that do not have a configured RBAC policy.

Role-based access control (RBAC) [158] is widely used to provide access control in Database

management systems, operating systems and Middleware architectures. In RBAC, access rights

(permissions) are associated with roles, and users are members of these roles. When a user is as-

signed to a role, they gain all the permissions of that role inthe system. This allows an organisation

to model its security infrastructure along the lines of its business. For the purposes of this disserta-

tion we extend the conventional RBAC model ofUsers, RolesandPermissions, to includeDomain.

• Permission: represent actions, capabilities, applications or any other active behaviour that can

be “performed” and, to which, we intend to control authorisation.

• Domains: administrative boundaries that group permissions and manage their underlying

resources. In general, domains do not intersect in their underlying permissions.

• Roles: roles are logical groupings of permissions that reflect a particular task that can be

assigned to some user. We assume that roles do intersect in their underlying permissions.

• Users: include humans or any other entity that can be assigned a role.

An RBAC policy is defined in terms of the following relations.

RolePerm : (Domain×Role)↔ Permission

RoleUser : (Domain×Role)↔ User

whereRolePerm((d, r), p) means that the roler (in domaind) holds permissionp (on some ob-

ject), andRoleUser(d, r, u) means that useru is assigned to domain-role pair(d, r). Table 8.1

uses this model to provide a uniform interpretation of basicCOM+, EJB and CORBA middleware

RBAC policies.

There are a variety of approaches to supporting roles in KeyNote. Encoding the fixed relation-

ships from the Domain-Role-Permission table as a single KeyNote credential provides a simplistic

representation of the RBAC policy. Individual credentialsare then issued, associating users to roles.

Example 8.10 The ShareTrader Domain-Role-Permission table can be encoded as the following

policy credential.

8.4 WebComDAC 170

Type Domain Role User Permission

EJB Combination of
Host, EJB Server,
relevant bean
container.

Application Spe-
cific for each
server.

Exist globally on
each server, can be
members of differ-
ent roles.

Method calls (of
an object type) that
roles are permitted
to make.

COM Windows NT Do-
mains.

Unique to Do-
mains.

Windows Users.
Unique to each
Domain.

Considering only
Launch, Access
andRunAs.

CORBA Machine name and
ORB server name.

Unique to Do-
mains.

Can be members
of different roles,
unique to each
server.

Relate to method
calls on objects of
the given object
type.

Table 8.1: Interpretation of Middleware RBAC Models

Authorizer: POLICY

Licencees: "Kwebcom"

Conditions: app_domain="ShareTrader" &&

(Domain=="mgmt"&&(role=="TraderMgr") ->

(perm=="setlimit"||perm=="analyzerisk"||...);

....

(Domain=="staff"&&(role=="sales") ->

(perm=="pricedeal"||perm=="capturedeal");

This specifies that the WebCom administration keyKwebcom is authorised to administer rights in

connection with this policy.

Authorizer: "Kwebcom"

Licencee: "Kjoe"

Condition: app_domain=="ShareTrader" &&

role=="Trader";

This credential authorises Joe as a Trader. △

The above approach promotes a more centralised policy administration, with the WebCom envi-

ronment (administrator) managing delegation and is comparable to the conventional middleware

approach.

Alternatively, the Domain-Role-Permission table can be decentralised and spread across a num-

ber of credentials and additional authorisations and role memberships delegated to other keys. A

common strategy is to represent roles (from domains) in terms of public keys; delegation is used

to create the role-permission and role-user relationships. In practice, roles are best supported using

SDSI-like local names [152], however, we can approximate the role membership effect in KeyNote

as follows.

Example 8.11 Public keysKRtraderandKRsales, etc., are used to represent roles. Credentials

associate authorisations to the roles. For example,

8.4 WebComDAC 171

Authorizer: KRtrader

Licencee: KRsales

Condition: app_domain=="ShareTrader" &&

perm=="pricedeal"||perm=="capturedeal";

Sally is assigned this role using a credential, signed byKRtrader, authorisingKsally. In prac-

tice, if Joe is a member of theKRtrader and is permitted to further delegate the associated per-

missions, then Joe could authorise Sally to be in theKRsales role. △

A disadvantage of this more flexible and decentralised approach is that, in giving administration

authority to individual users, it provides only limited control of how these users subsequently del-

egate their authority; trading manager, Mandy, can decide to directly authorise salesperson, Sally,

to setlimit, regardless of the intended role hierarchy. In [63], we describe how distributed workflow

rules supported by WebCom are used to place constraints on the delegation actions of such users.

8.4.3 KeyStar

KeyStar is the administrative update system for WebComDAC and is shown in Figure 8.24. It

is implemented using a client/server architecture. The middleware systems that support KeyStar

implement a simple client API that listens for update ordersfrom the KeyStar server.

Middleware
System

KeyStar
Client

Middleware
System

KeyStar
ClientT.M.

KeyStar
Server

Policy

Request, Credentials Update
Order

Figure 8.24: The KeyStar Architecture

The KeyStar server listens for administrative requests from WebComDAC . When a request

is received, it is accompanied by trust management credentials that should authorise the request.

These credentials are used as part of a query to the trust management system to ensure the request is

authorised according to KeyStar’s policy. If the request isauthorised, then an update order is sent to

the relevant KeyStar client(s). When this order is received, the middleware authorisation policy is

updated to reflect the order. For example, the KeyNote credential shown in Figure 8.25, authorises

the userjsmith to add new users on the serverceres.ucc.ie.

8.4 WebComDAC 172

KeyNote-Version: 2
Comment: Authorises jsmith to Add Users on Ceres
Local-Constants: manager =

"rsa-base64:MGA0GCSGSIb3DQEAQUAA4ADCBiQKBg\
Tk162GCQWJc5gyAOuZrXaHZp2QIDAQAB"

jsmith =
"rsa-base64:MIGfMA0GCSqIb3DQEBAQUAGNADCBiQ\
YhDrrHn/eJqQXFRYY8h0BdNfJQIDAQAB"

Authorizer: manager
Licensees: jsmith
Conditions: App_Domain == "KeyStar" &&

(Domain == "ceres.ucc.ie/BUILTIN" &&
Task == "AddUser");

Signature: ...

Figure 8.25: A KeyNote credential used by KeyStar.

Implementations of KeyStar clients exist for a number of middleware systems, including Mi-

crosoft’s DCOM/.Net (KeyCOM) and EJBs (KeyBean). There area number of standard RBAC-

based administrative requests that are supported including:

• adding new users to the system;

• adding new roles to the system;

• adding a user to a role;

• assigning a permission to a role.

These administrative requests are used to support administrative workflows that are coordinated by

WebComDAC .

8.4.4 Stacked Authorisation

A Secure WebCom environment uses KeyNote to help manage trust relationships with other Secure

WebCom environments. This approach requires the WebCom environment to be trusted in the sense

that the security mediation (authorisation) is done by the WebCom environment and not the under-

lying operating system. An advantage of this approach is that, since it is independent of the security

architecture of the underlying system, then it provides a better opportunity for interoperation be-

tween heterogeneous platforms that run the WebCom environment. However, since it does not rely

on the underlying operating system and/or middleware authorisation mechanisms, a result is that it

increases the software in the trusted computing base.

In this section we address this issue by considering how the security mechanisms of the underly-

ing middleware and/or operating system can be used to provide the basis of security mediation and

form a part of the overall WebCom security architecture. This provides a stack of security layers,

as depicted in Figure 8.26. Note that Level 3 security corresponds to mechanisms encoded within

8.4 WebComDAC 173

the condensed graph that is used to coordinate the application components. This is examined in

Chapter 7.

Application Security

Trust Management

Middleware Security

OS SecurityL0

L1

L2

L3

Security Mechanisms Interoperability

W
eb

C
om

Stack

Figure 8.26: Stacked Security Architecture in WebComDAC

These stacked layers of secure WebCom are ‘pluggable’ in thesense of [96, 157]; for exam-

ple, in the absence of CORBASec support for a particular ORB,a WebCom environment could be

configured so that authorisation is based only on a combination of KeyNote (trust management)

and underlying operating system policy. A Secure WebCom environment can automatically con-

vert middleware RBAC policies to their equivalent KeyNote policies/credentials, and vice-versa.

This provides a high degree of policy interoperability, between the middleware and trust manage-

ment layer, and also within the different middleware. In addition to providing a uniform way of

specifying RBAC policies for different middleware systems, it also becomes possible to enforce

standardised RBAC middleware policies across middleware systems that do not have a configured

RBAC policy.

As one may not have access to the source code of these legacy systems, it is not always possible

to change their security policies. WebCom provides the ability to enforce a different security policy

at a higher layer. The same argument can be made for fault tolerance and load balancing policies.

This architecture provides a clear separation of functional and control code.

8.4.5 Discussion

WebComDAC provides a framework to support automated administration using workflows. In Sec-

tion 8.3, we examined GridAdmin, an administration toolkitfor Grids. In effect, GridAdmin is

an extension of the WebComDAC system. We could implement these administrative tasks using

KeyStar, specifically “KeyGrid”.

The WebComDAC framework allows the development of business rules in an activity-centric

manner. First the activities of a user are specified and the interaction between users noted. These

sets of activities are then translated into condensed graphworkflows. These workflow applications

can be then executed (or coordinated) by WebCom.

8.5 Discussion and Evaluation 174

WebComDAC is used to provide a central view of different legacy systems. As each legacy

system’s security policy is specified, modified and enforceduniquely to that system, interoperability

between these systems is a difficult prospect. WebComDAC provides a higher-level view of these

systems. As security policies are interrogated and a representation of those policies are formed,

it is possible to use the WebCom security mechanisms to emulate the security policy of a legacy

system. In this way we can take an application security policy from one system and enforce an

approximation of that policy on a different system, using trust management as an intermediate

language.

Naturally, this approximation is not perfect. However, providing even simple translations,

such as the creation of the same users, roles and permissionson a new system is useful. The

WebComDAC framework provides the tools to view, modify and enforce cross-platform security

policies using a single mechanism.

In [23], the authors propose a method to constrain the delegation of authority using regular

expressions that are embedded into the authorisation credentials. This allows the chain of delega-

tions to be restricted, in the sense that the ability to delegate doesn’t necessarily imply the holding

of the authorisation. WebComDAC provides similar functionality using workflow to sequence the

delegation operations. In this way, the delegation operations are performed in a well defined and

controlled manner. However, this approach requires a distributed architecture unlike the credential

based system described in [23].

8.5 Discussion and Evaluation

This chapter discussed several application case studies using Secure WebCom. We have described

how the security architecture of WebCom can be used to support specific applications, such as

micropayments, administrative workflows and Grid administration. We have examined the extensi-

bility of WebCom and in particular the naming and security architectures.

As WebCom is designed as a modular system, it can be extended to support different application

requirements. This has the advantage that specific requirements can be quickly implemented using

the security system. For example, the micropayment security manager can be used by any applica-

tion to provide a payment system where every execution must be paid for. This could be used as

an auditing tool, where we do not attempt to recover payment,but instead analyse where and how

many nodes have executed in any given domain.

Recall in Chapter 5, we argued that the WebCom architecture is inherently loosely coupled, that

is, functional and security requirements are implemented separately. However, experience gained

developing these case studies has shown that this is not entirely true. While in theory, information

can be abstractly represented in the name of a node, in practice, it is often easier to embed this infor-

mation within the implementation of the security manager. Therefore, the case studies demonstrate

8.5 Discussion and Evaluation 175

that custom security manager implementations are requiredfor specific applications.

The case studies presented in this dissertation serve to evaluate the effectiveness of WebCom’s

security model and the software architecture. Several conclusions can be drawn from experience

gained through the development and implementation of theseapplications. For example, represent-

ing hash-based micropayments requires implementing a specific micropayment security manager

for WebCom. This security manager handles the contracts andprovides the logic to ensure that the

hash coins are valid. However, an extension of the KeyNote trust management systems to support a

hashing function has been proposed [59]. This would remove the need for the hashing logic in the

security manager. Regardless, a separate contract mechanism would have to be retained.

Interacting with Grid resources is also not as straightforward as initially believed. As Grid

security is based upon the identity of the users submitting jobs. These identities allow Grid resources

to determine whether, and indeed when, to execute user jobs.As WebCom identifies users in terms

of public keys, user jobs can at best be identified to the granularity of the WVM submitting the Grid

job. While the naming architecture is technically capable of embedding user certificates as part

of a node’s name, implementing such a system would again require a specific “grid job” security

manager. The provision of a federated identity system [6] would help greatly towards addressing

this particular problem.

This experience has resulted in the belief that any non-trivial security application would require

the creation of a specific security manager for WebCom. However, WebCom supports the use of

several implementations of any module. For example, the micropayment security manager could

be used in conjunction with the standard trust management based security manager so that the

micropayments were processed, while a standard trust management policy could also be enforced.

Part IV

Discussion and Conclusions

176

Chapter 9

Conclusions

In this dissertation, we have introduced the WebCom distributed computation environment, and

the condensed graph computation model that it utilises. TheWebCom architecture is a distributed

computation environment provides the basis for secure, fault tolerant, load balanced distributed

applications. The pluggable nature of the WebCom architecture allows the development of modular

components. The reference implementations of the core modules can be replaced, allowing different

implementations of those modules to be used.

Applications in WebCom are specified as condensed graphs, where the nodes in the graphs rep-

resent atomic actions. WebCom’s modules control the scheduling of these nodes. This provides a

clear separation of function and control code. This separation of concerns is not security specific;

every module in WebCom enjoys the same advantage. This allows policies to be written indepen-

dently of the functional code.

From a security standpoint, the architecture of WebCom prompts some interesting challenges.

The security requirements of WebCom are managed by the Security Manager Module. Different

implementations of the security manager can be used to enforce different types of access control. As

WebCom is a distributed environment, enforcement of the security policy must also be distributed.

WebCom can exist outside of the control of a single administrator. Instances of WebCom running

on different resources can have different administrators.The security system must support this type

of architecture.

Developing a security architecture for WebCom necessitated the investigation of the nature of

condensed graph applications. In this dissertation, we have argued that in order to properly specify

security policies for nodes in a condensed graph, we first need to properly name these nodes.

Naming condensed graph nodes requires capturing the contextual details that describe these

nodes. This context includes details such as the function ofthe node, the domain where it is ex-

ecuting, and the history of the node. Using this context, naming policies can be constructed that

can be used by enforcement mechanisms to help direct the scheduling and execution of these nodes.

177

9.2 Results and Contributions 178

Chapter 6 explored naming issues and developed a model for naming in WebCom.

The WebCom naming model can also be used to support the other WebCom modules. For

example, using WebCom names in the fault tolerance module torefer to WVMs would allow more

contextual information about these WVMs to be provided. As WVMs were referenced by their

IP address in the original implementation of WebCom, only one instance of WebCom on a single

resource was permitted. The greater contextual information available within WebCom names allows

multiple instances of WVMs on a single resource.

Reduction rules are used to take complex names and remove unnecessary information. We use

reduction rules to help create specific policies, such as history-based policies. For example, we can

use history-based policies to store the names of the domainsthat the nodes have executed during the

computation.

We investigated WebCom’s security architecture in Chapter7. Secure WebCom provides the

ability to specify access control policies in terms of WebCom names. These security policies are

enforced by WebCom’s security manager. We argue that if sufficient context is provided within the

names, then a wide variety of authorisation requirements can be captured as access control policies.

Finally, we explored some extensions to WebCom in Chapter 8.These case studies demon-

strate the extensibility of the Secure WebCom architectureand provide some practical examples of

applications that can be developed using WebCom.

9.1 Results and Contributions

There are four main contributions contained within this dissertation. We have defined a naming

architecture for condensed graphs, that specifies the contextual detail required to properly name a

distributed component. Using this naming architecture, wehave developed an access control-based

security architecture for WebCom that allows application developers to specify security constraints

regarding their applications. This architecture has been implemented in terms of a software archi-

tecture that support names in practice. Finally, we have developed a number of case studies that

examine the capabilities of WebCom and explore some of the advantages of WebCom’s security

architecture.

9.2 Limitations and Future Work

The naming architecture described in this dissertation suffers a number of limitations. Primarily, as

the naming model is not formally specified, no consistency guarantees can be made. Furthermore,

we have seen in Chapter 6 that when multiple reduction rules are created and used in conjunction

can contradict the goal of the policy, even though they operate correctly when used separately. The

9.2 Limitations and Future Work 179

order that reduction rules are applied to names must be carefully controlled by the developer. There

is no current means to address reduction rule inconsistencies.

A topic of future research would be to develop a formal model for WebCom names. This

model could provide proofs of name consistency and completeness. Such a model could provide

assurances about the application of reduction rules and theorder that they are applied.

Identity management is another limitation in the current Secure WebCom prototype. Each We-

bCom domain has its own view of the names of entities. Federation of identity allows entities in

different domains to have a common point of reference. Implementing some form of federated

identity management [6] would help support large, cross-domain applications, particularly when

considering Grid applications for WebCom.

Federation of identity allows each resource in the system tohave an assembled identity that the

entire distributed system can use to refer to that resource.For example, a user can be a manager in

one domain and a clerk in another. Each domain refers to the user in the context they support. With

a federated identity, when the two domains are discussing that user, they both know which user the

other is referring to.

While the Naming architecture described in Chapter 6 provides a framework that could be used

to store the necessary contextual detail to identify resources, it does so from a local perspective.

Identity federation allows the linking of these local perspectives into a global identity. WebCom

names could be used to provide this link. It is envisioned that WebCom will be used on the

Grid [123]. Supporting an existing federation scheme wouldpromote integration with existing

infrastructures and helps gain acceptance within the global community.

WebCom provides a messaging service that is independent of the condensed graph model. This

messaging service provides the ability for both WVMs and thecomponent modules to communicate

and perform tasks on request. Messaging is possible both internally to a WVM and between WVMs.

Each module in WebCom defines the messages it can handle. For example, the security manager

module could define a message that allows remote querying of its security policy. Remote querying

has the advantage that a parent can ask its children that, in the case they were sent a particular node,

would they allow it to be executed.

However, this can have security implications. For example,if a WVM wanted to surreptitiously

execute a dangerous node, it could ask each of its children until it received a positive reply. The

security manager should provide the capability to vet thesemessages so that dangerous messages

can be prevented from reaching their destinations. This aspect of WebCom is not addressed in the

current access control model. It is foreseen that some form of mayCommunicate check could be

defined in terms of the WebCom access control model. This is a potential avenue for future research.

Another important topic of future research is the provisionof a public key infrastructure (PKI)

for WebCom. In its current form, WebCom uses an ad hoc method to distribute both identity and

authorisation certificates. It is envisioned that a PKI architecture should be constructed to provide a

9.2 Limitations and Future Work 180

distribution mechanism for such certificates. PKIs also support concepts such as certificate revoca-

tion, which is also not currently addressed.

We suggest that a PKI system could be constructed on top of WebCom. A WebCom could

implement a certificate query system. This system could use,for example, a Chord [168] like peer-

to-peer structure to maintain the certificates across the distributed network. WebCom’s messaging

system could be utilised to support the storage and retrieval of the certificates. PKI queries could be

expressed in terms of condensed graph applications. However, developing a PKI infrastructure for

any architecture is a significant task.

Part V

Appendices

181

Appendix A

WebCom Names XML Definition

The following the the XML definition of a WebCom name. These representations are used to define

names for nodes a priori. The Naming Manager reads in these names and uses them during graph

execution.

<!-- cg.dtd - an XML Document Type Declaration for XML documents -->

<!-- describing sets of Condensed Graphs. -->

<!-- Copyright (C) 2003 The Centre for Unified Computing -->

<!-- DOCUMENT HISTORY -->

<!-- Date Person Action -->

<!-- 06/3/2004 Philip Healy Created -->

<!-- secname:securename element -->

<!ELEMENT secname:securename

(secname:domain?, secname:graph?, secname:operand*,

secname:operator?, secname:destination*)>

<!ATTLIST secname:securename

xmlns:secname CDATA #FIXED "http://cuc.ucc.ie/xml/secname">

<!-- secname:domain element -->

<!ELEMENT secname:domain EMPTY>

<!ATTLIST secname:domain name CDATA #REQUIRED>

<!-- secname:graph element -->

<!ELEMENT secname:graph EMPTY>

<!ATTLIST secname:graph name CDATA #REQUIRED>

<!-- secname:operand element -->

<!ELEMENT secname:operand EMPTY>

<!ATTLIST secname:operand name CDATA #REQUIRED>

182

A.0 183

<!-- secname:operator element -->

<!ELEMENT secname:operator EMPTY>

<!ATTLIST secname:operator name CDATA #REQUIRED>

<!-- secname:destination element -->

<!ELEMENT secname:destination EMPTY>

<!ATTLIST secname:destination name CDATA #REQUIRED>

Appendix B

Naming System for the ShareTrader

Application

B.1 Generating Names for ShareTrader Nodes

public class ShareTraderNameGenerator extends NameGenerator

{

public SecureName generateNameFromNode(CondensedGraph cg, Node node,

ReductionRule reduxrule,

String Domain) {

SecureName nodename = new SecureName();

CGExaminer examiner = new CGExaminer(cg);

int NodeID = examiner.getNodeID(node);

nodename.setDomain(Domain);

nodename.setFunction(examiner.getOperator(NodeID));

nodename.setGraph(examiner.getName());

int destports = examiner.getNumDestinationPorts(NodeID);

for (int i = 0; i < destports; i++) {

int[] destids = examiner.getNodeDestinationIDs(NodeID);

for (int j = 0; j < destids.length; j++) {

String operator = examiner.getOperator(destids[j]);

nodename.addDestination(operator);

}

}

Vector NodeOperands = examiner.getNodeOperands(NodeID);

int[] inpnodeids = new int[NodeOperands.size()];

int pos = 0;

for (Iterator iter = NodeOperands.iterator(); iter.hasNext();) {

184

B.1 Generating Names for ShareTrader Nodes 185

Object[] item = (Object[]) iter.next();

if (item[0] instanceof String) {

String type = (String) item[0];

if ((type.equals("NodeID")) && (item[1] instanceof Integer))

inpnodeids[pos] = ((Integer) item[1]).intValue();

else if (type.equals("Value"))

inpnodeids[pos] = -1;

else {

throw new webcom.cgengine.InvalidIDException(

"Invalid Operand type in Node ID " + NodeID +

" Operand " + pos);

}

pos++;

}

}

if (inpnodeids.length > 0) {

for (int j = 0; j < inpnodeids.length; j++) {

if (inpnodeids[j] == -1) // Node is a value. {

Object[] item = (Object[]) NodeOperands.elementAt(j);

String type = (String) item[0];

if (type.equals("Value")) {

if (item[1] instanceof Trade) {

Trade trd = (Trade) item[1];

nodename.addInput("" + trd.getTotal());

}

nodename.addInput(item[1].toString());

}

else

throw new webcom.cgengine.InvalidIDException(

"Invalid Node ID " + inpnodeids[j] + " in Node ID "

+ NodeID + "’s Operand " + j);

}

else

nodename.addInput(examiner.getOperator(inpnodeids[j]));

}

}

nodename.reduceName(reduxrule); // Apply the Reduction Rule specified.

return (nodename);

}

}

B.2 Reduction Rules for ShareTrader Nodes 186

B.2 Reduction Rules for ShareTrader Nodes

public class ShareTraderReductionRule extends ReductionRule {

public SexpList reduce(SexpList Name) {

SexpList Function = null;

SexpList Inputs = null;

if (Name == null)

return null;

int pos = 0;

for (Iterator i = Name.iterator(); i.hasNext();) {

if (pos == 0) {

pos++;

i.next();

}

SexpList part = (SexpList) i.next();

if ((part.getType()).compareTo("Function") == 0)

Function = part;

else if ((part.getType().compareTo("Inputs") == 0))

Inputs = part;

pos++;

}

Sexp list[] = new Sexp[Function.size() + Inputs.size()];

pos = 0;

for (Iterator iter = Function.iterator(); iter.hasNext();) {

SexpString item = (SexpString) iter.next();

list[pos] = item;

pos++;

}

for (Iterator iter = Inputs.iterator(); iter.hasNext();) {

Sexp item = (Sexp)iter.next();

list[pos] = item;

pos++;

}

SexpList newname = new SexpList(new SexpString("WebComName"), list);

return (newname);

}

}

Afterword

The story of the writing of this Ph.D. thesis is rather bizarre. As I mentioned in the dedication, my

maternal Grandfather passed away during the writing of thisthesis. I spend many interesting days

sitting by his hospital bed in the weeks before his death. He had some wonderful stories, and many

of my funniest stories involve him. He interrogated me on many occasions about when he would

see this thesis.

After he passed away, on August 23rd 2005, I returned to the full time writing of this Thesis.

One month later, during the anniversity service, my parent’s house in Galway was broken into. The

thieves were disturbed during the theft, and only made off with some cash, a playstation and the

laptop I was writing this thesis upon. They also took all of the backups. These included two usb-

pendrives, a usb harddrive and a recent printout. As I had been living in Galway for nearly three

months at this point, I was only backing up the thesis locally, in case of hardware failure. The most

recent remote copy I was left with was a three months old copy in Cork.

The Gardaı́ were not hopeful about the return of the laptop. Not willing to give up, we contacted

the local radio station and they kindly made an announcementrequesting the return of the laptop. A

local paper, the Galway Sentinal, called and asked if they could help. They wrote an article about

the theft, and left a contact number where we could be reached. The following day, someone called,

stating they had “purchased” the laptop forC1000 and would “sell” it back to us for that price.

My mother,Áine, haggled with the thieves and brought the price down significantly. Eventually,

after many phonecalls, a meet was arranged where the money was to be swapped for the laptop. As

I was in Cork at the time, my mother and brother, Cormac, went to a graveyard to meet the thieves.

The laptop was retrieved and given to the Gardaı́ for fingerprinting. I have some advice in this

regard: Never let your LCD screen be fingerprinted, the dust is next to impossible to remove! I am

extremely grateful to both my mother and my brother for theirefforts on my behalf. At this point

my mother believes that she deserves the Ph.D. more than I do!

187

Bibliography

[1] Advogato’s trust metric. http://www.advogato.org/trust-metric.html.

[2] Apache-ssl release version 1.3.6/1.36. Open source software distribution.

http://www.apache.org.

[3] ClimatePrediction.net. http://www.climateprediction.net/.

[4] Distributed.net. http://www.distributed.net/.

[5] The JSDSI Project. http://jsdsi.sourceforge.net/.

[6] Liberty Alliance. http://www.projectliberty.org/.

[7] The Message Passing Interface (MPI) standard. http://www-unix.mcs.anl.gov/mpi/.

[8] The Object Management Group. http://www.omg.org.

[9] Parallel Virtual Machine (PVM). http://www.csm.ornl.gov/pvm/pvmhome.html.

[10] The Cosmogrid Project, 2004. http://www.cosmogrid.ie/.

[11] M. Abadi, A. Birrell, and T. Wobber. Access control in a world of software diversity. In

Proceedings of the Tenth Workshop on Hot Topics in OperatingSystems.USENIX, June

2005.

[12] D. A. Adams. A computational model with dataflow sequencing. PhD thesis, Stanford,

California, 1968. TR/CS-117.

[13] Formula One Administration. Formula 1 live timing javaapplet.

http://www.formula1.com/archive/grandprix/livetiming/popup/757/8.html.

[14] A. V. Aho, B. W. Kernighan, and P. J. Weinberger.The AWK Programming Language.

Addison-Wesley, 1988.

[15] P. Ammann and R. S. Sandhu. The extended schematic protection model.Journal of Com-

puter Security, 1(3–4):335–384, 1992.

188

BIBLIOGRAPHY 189

[16] M. Blaze and. The role of trust management in distributed systems security. InSecure

Internet Programming: Issues in Distributed and Mobile Object Systems. Springer-Verlag

Lecture Notes in Computer Science, 1999.

[17] R. Anderson, H. Manifavas, and C. Sutherland. Netcard -a practical electronic cash system.

In Cambridge Workshop on Security Protocols, 1995.

[18] Arvind and K. P. Gostelow. A computer capable of exchanging processors for time. In

Proceedings of IFIP Congress 1977, pages 849–853, Toronto, Canada, August 1977.

[19] V. Atluri, S. Ae Chun, and P. Mazzoleni. Chinese wall security for decentralized workflow

management systems.Journal of Computer Security, 12(6):799–840, 2004.

[20] J. Backus. Can programming be liberated from the von Neumann style? a functional style

and its algebra of programs.Communications of the ACM, 21(8):613–641., August 1978.

[21] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and S. A. Haghighat. A domain

and type enforcement UNIX prototype. InProceedings of the Fifth Usenix UNIX Security

Symposium, Salt Lake City, Utah, USA., June 5–7 1995. USENIX.

[22] D. Balenson. Privacy enhancement for internet electronic mail: Part III: Algorithms, modes

and identifiers. Request for Comment (RFC) 1423, Internet Engineering Task Force, Febru-

ary 1993.

[23] O. Bandmann, M. Dam, and B. S. Firozabadi. Constrained delegation. InProceedings of the

IEEE Symposium on Security and Privacy, pages 131–140, Oakland, CA, USA, May 2002.

IEEE.

[24] A. Baratloo, M. Karul, Z. Kedem, and P. Wyckoff. Charlotte: metacomputing on the web. In

K. Yetongnon and S. Hariri, editors,9th International Conference on Parallel and Distributed

Computing Systems, Dijon, France, September 25–27 1996.

[25] D. E. Bell and L. J. La Padula. Secure computer system: unified exposition and MULTICS

interpretation. Report ESD-TR-75-306, The MITRE Corporation, March 1976.

[26] E. Bertino, B. Catania, G. Guerrini, M. Martelli, and D.Montesi. A bottom-up interpreter for

a database language with updates and transactions. In M. Alpuente R. Barbuti and I. Ramos,

editors, 1994 Joint Conference on Declarative Programming, volume II, pages 206–220,

Peniscola, Spain, September 1994.

[27] K. J. Biba. Integrity considerations for secure computer systems. Technical Report MTR-

3153 Rev 1 (ESD-TR-76-372), MITRE Corp Bedford MA, 1976.

BIBLIOGRAPHY 190

[28] B. Blakley. Corba Security. An Introduction to Safe Computing with Objects. Object Tech-

nology Series. Addison-Wesley, 2000.

[29] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. The KeyNote trust management

system version 2. September 1999. Internet Request For Comments 2704.

[30] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. Using the KeyNote trust manage-

ment system.http://www.crypto.com/trustmgt, December 1999.

[31] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust management in

distributed systems security. In Jan Vitek and C.tI. Jensen, editors,Security Issues for Mobile

and Distributed Objects, Fourth International Workshop, MOS’98, Brussels, Belgium, July

1998. Springer-Verlag Inc.

[32] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. InProceedings of

the Symposium on Security and Privacy. IEEE Computer Society Press, 1996.

[33] M. Blaze, J. Feigenbaum, and M. Strauss. Compliance checking in the policymaker

trust management system. InProceedings of the 2nd Financial Cryptography Conference.

Springer Verlag LNCS, 1998.

[34] M. Blaze, J. Ioannidis, and A. D. Keromytis. Trust management and network layer security

protocols. InSecurity Protocols International Workshop. Springer Verlag LNCS, 1999.

[35] M. Blaze, J. Ioannidis, and A. D. Keromytis. Offline micropayments without trusted hard-

ware. InFinancial Cryptography, Grand Cayman, February 2001.

[36] W.E. Bobert and R.Y. Kain. A practical alternative to hierarchical integrity properties. In

Proceedings of the National Computer Security Conference, pages 18–27, 1985.

[37] J. Boly, A. Bosselaers, R. Cramer, R. Michelsen, S. F. Mjolsnes, F. Muller, T. P. Pedersen,

B. Pfitzmann, P. de Rooij, B. Schoenmakers, M. Schunter, L. Vallee, and M. Waidner. The

ESPRIT project CAFE - high security digital payment systems. In ESORICS, pages 217–230,

1994.

[38] M. Branchaud. A survey of public key infrastructures. Master’s thesis, McGill University,

Montreal, Quebec, Canada., 1997.

[39] S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates; Building in

Privacy. The MIT Press, Cambridge, Massachusetts, 2000.

[40] D. F. C. Brewer and M. J. Nash. The Chinese Wall security policy. In Proceedings of the

1989 IEEE Symposium on Security and Privacy, pages 206–214. IEEE Computer Society

Press, May 1989.

BIBLIOGRAPHY 191

[41] CCITT Draft Recomendation.The Directory Authentication Framework, Version 7, Novem-

ber 1987.

[42] Y. Chu. Trust management for the world wide web. Master’s thesis, Massachusetts Institute

of Technology, June 1997.

[43] Y. Chu, P. DesAutels, B. LaMacchia, and P. Lipp. PICS signed labels (dsig) 1.0 specification.

Technical report, World Wide Web Consortium, May 1998. http://www.w3.org/TR/REC-

DSig-label.

[44] Y. Chu, J. Feigenbaum, B. LaMacchia, P. Resnick, and M. Strauss. Referee: Trust man-

agement for web applications. InSixth International World Wide Web Conference, Santa

Clara, California, USA, April 1997. http://www.farcaster.com/papers/www6-referee/www6-

referee.htm.

[45] M. J. Ciaraldi, D. Finkel, and C. E. Wills. Risks in anonymous distributed computing systems.

In Proceedings of the International Network Conference, Plymouth, UK, July 2000.

[46] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer security

models. InProceedings Symposium on Security and Privacy, pages 184–194. IEEE Com-

puter Society Press, April 1987.

[47] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos,and R. L. Rivest. Certificate chain

discovery in SPKI/SDSI.Journal of Computer Security, 9(4):285–322, September 2001.

[48] B. C. Clayton, T. B. Quillinan, and S. N. Foley. Automating security configuration for the

grid. Journal of Scientific Programming, 13(2):113–125, 2005.

[49] S. Cluet, O. Kapitskaia, and D. Srivastava. Using LDAP directory caches. InPODS ’99:

Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Principles of

Database Systems, pages 273–284, New York, NY, USA, 1999. ACM Press.

[50] Microsoft Corporation. Microsoft Kerberos specifica-

tion. http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/secauthn/security/microsoftkerberos.asp, July 2005.

[51] N. Dershowitz. A taste of rewriting. In P. Lauer and J. Zucker, editors,Functional Program-

ming, Concurrency, Simulation and Automated Reasoning., volume 693, pages 199–228.

Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1993.

[52] M. Donnelly. An Introduction to LDAP, April 2000.

http://www.ldapman.org/articles/introto ldap.html.

BIBLIOGRAPHY 192

[53] E. Dulaney, V. Sankar, and S. E. Sankar.Integrating Unix and NT Technology. 29th Street

Press, June 1999.

[54] C. Ellison. SPKI requirements. Request for Comment (RFC) 2692, Internet Engineering

Task Force, September 1999.

[55] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,and T. Ylonen. SPKI examples.

Internet draft, Internet Engineering Task Force, 1998.

[56] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,and T. Ylonen. SPKI certificate

theory. Request for Comment (RFC) 2693, Internet Engineering Task Force, September

1999.

[57] L. Demailly et. al. Safe-TCL. Sun Microsystems Inc.

http://www.demailly.com/tcl/plugin/safetcl.html.

[58] S. N. Foley. Building Chinese Walls in standard Unix.Computers and Security Journal,

16(6):551–563, December 1997.

[59] S. N. Foley. Using trust management to support transferable hash-based micropayments. In

Proceedings of the 7th International Financial Cryptography Conference, Gosier, Guade-

loupe, FWI, January 2003.

[60] S. N. Foley and J. L. Jacob. Specifying security for CSCWsystems. InProceedings of

the Computer Security Foundations Workshop, pages 136–145, Kenmare, Co. Kerry, Ireland,

June 1995. IEEE Computer Society.

[61] S. N. Foley and J.L. Jacob. Specifying security for computer supported collaborative working.

Journal of Computer Security, 3(4):233–254, 1994/1995.

[62] S. N. Foley and J.P Morrison. Computational paradigms and protection. InACM New Com-

puter Security Paradigms, Cloudcroft, NM, USA, 2001. ACM Press.

[63] S. N. Foley, B. P. Mulcahy, and T. B. Quillinan. Dynamic administrative coalitions with

webcomDAC. In WeB2004 The Third Workshop on e-Business, Washington D.C., USA,

December 2004.

[64] S. N. Foley and T. B. Quillinan. Using trust management to support micropayments. InPro-

ceedings of the Second Information Technology and Telecommunications Conference, pages

219–223, Waterford Institute of Technology, Waterford, Ireland., October 2002. TecNet.

[65] S. N. Foley, T. B. Quillinan, and J. P. Morrison. Secure component distribution using web-

com. InProceeding of the 17th International Conference on Information Security (IFIP/SEC

2002), Cairo, Egypt, May 2002.

BIBLIOGRAPHY 193

[66] S. N. Foley, T. B. Quillinan, J. P. Morrison, D. A. Power,and J. J. Kennedy. Exploiting

KeyNote in WebCom: Architecture neutral glue for trust management. InProceedings of the

Nordic Workshop on Secure IT Systems Encouraging Co-operation, Reykjavik University,

Reykjavik, Iceland, October 2000.

[67] S. N. Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahy,and J. P. Morrison. A framework

for heterogeneous middleware security. InProceedings of the 13th International Heteroge-

neous Computing Workshop, Santa Fe, New Mexico, USA., April 2004. IPDPS.

[68] S. N. Foley and H. Zhou. Authorisation subterfuge by delegation in decentralised networks.

In Proceedings of International Security Protocols Workshop. Springer Verlag LNCS, April

2005.

[69] B. Fonseca. VeriSign issues false Microsoft digital certificates.

http://www.infoworld.com/articles/hn/xml/01/03/22/010322hnmicroversign.html, March

2001. Infoworld.

[70] Internet Engineering Task Force. Public key infrastructure (x.509) [PKIX].

http://www.ietf.org/html.charters/pkix-charter.html.

[71] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The Interna-

tional Journal of Supercomputer Applications and High Performance Computing, 11(2):115–

128, Summer 1997.

[72] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational

grids. In5th ACM Conference on Computer and Communications Security, 1998.

[73] International DOI Foundation. Digital object identifiers. http://www.doi.org/.

[74] L. J. Fraim. Scomp: a solution to the multilevel security problem. IEEE Computer,

16(7):126–143, July 1983.

[75] A. Gilbert, A. Abraham, and M. Paprzycki. A system for ensuring data integrity in grid

environments. 2004.

[76] D. Gollmann. What do we mean by entity authentication?Proceedings of the Symposium on

Security and Privacy, pages 46–54, May 1996.

[77] D. Gollmann.Computer Security. Wiley, 1st edition, 1999. ISBN: 0-471-97844-2.

[78] L. Gong.Inside JavaT M 2 Platform Security. The JavaT M Series. Addison Wesley, June 1999.

ISBN: 0-201-31000-7.

BIBLIOGRAPHY 194

[79] L. Gong et al. Going beyond the sandbox: An overview of the new security architecture in

the java development kit 1.2. InUSENIX Symposium on Internet Technologys and Systems,

pages 103–112, 1997.

[80] T. Grandison and M. Sloman. A survey of trust in inter-

net applications. IEEE Communications Surveys, December 2000.

http://www.comsoc.org/livepubs/surveys/public/2000/dec/grandison.html.

[81] The Object Management Group. Common object request broker architecture

(corba/iiop). Technical report, The Object Management Group, December 2002.

http://www.omg.org/technology/documents/formal/corba iiop.htm.

[82] C. A. Gunter and T. Jim. Design of an application-level security infrastructure. InDIMACS

Workshop on Design and Formal Verification of Security Protocols, September 1997.

[83] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software: Practice & Experi-

ence, 30(15):1609–1640, September 2000.

[84] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems.Communications of

the ACM, 19:461–471, 1976.

[85] P. D. Healy.Architecture and Implementation of a Distributed Reconfigurable Metacomputer.

PhD thesis, University College Cork, April 2006.

[86] A. Herzherg and H. Yochai. Mini-pay: Charging per clickon the web. InSixth International

World Wide Web Conference, Santa Clara, California, USA, April 7–11 1997.

[87] R. Housley et al. Internet X.509 public key infrastructure certificate and CRL profile. January

1999. Internet Engineering Task Force, Request for Comments 2459.

[88] J. R. Howell.Naming and sharing resources across administrative boundaries. PhD thesis,

Dartmouth College, Hanover, New Hampshire, May 2000.

[89] T. Howes, S. Kille, W. Yeong, and C. Robbins. The string representation of standard attribute

syntaxes. Request for Comment (RFC) 1778, Internet Engineering Task Force, March 1995.

[90] E. Huggard. JKeyNote. Fourth year computer science project, University College Cork,

Ireland, April 2003. http://kargellan.ucc.ie/JKeyNote.

[91] D. Eastlake III and P. Jones. US secure hash algorithm 1 (SHA1). Request for Comments

(RFC) 3174, Internet Engineering Task Force, September 2001.

[92] Netscape Inc. Secure sockets layer website. TechnicalBrief:

http://home.netscape.com/security/techbriefs/ssl.html.

BIBLIOGRAPHY 195

[93] INRIA Rocquencourt, projet Cristal. The Caml homepage.

http://pauillac.inria.fr/caml/index-eng.html.

[94] Internet Engineering Task Force. Simple public key infrastructure (SPKI).

http://www.ietf.org/html.charters/spki-charter.html.

[95] J. Ioannidis et al. Fileteller: Paying and getting paidfor file storage. InProceedings of

Financial Cryptography, March 2003.

[96] N. Itoi and P. Honeyman. Pluggable authentication modules for Windows NT. InProceedings

of the 2nd USENIX Windows NT Symposium, pages 97–108, Seattle, Washington, August

1998.

[97] T. Jim. Sd3: a trust management system with certified evaluation. InProceeding of the IEEE

Symposium on Security and Privacy, May 2001.

[98] M. P. Jones. Hugs 1.3, the Haskell user’s Gofer system: User manual. Technical Report

NOTTCS-TR-96-2, Department of Computer Science, Nottingham University, Nottingham

NG7 2RD, UK, 1996.

[99] B. S. Kaliski Jr. A layman’s guide to a subset of ASN.1, BER, and DER. Technical report,

RSA Laboratories, November 1993. ftp://ftp.rsa.com/pub/pkcs/ascii/layman.asc.

[100] B. Kaliski. Privacy enhancement for internet electronic mail: Part IV: Key certification and

related services. Request for Comment (RFC) 1424, InternetEngineering Task Force, Febru-

ary 1993.

[101] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm for reputation

management in P2P networks. InIn Proceedings of the Twelfth International World Wide Web

Conference (WWW2003), Budapest, Hungary, May 20-24 2003. ACM Press.

[102] R.M. Karp and R.E. Miller. Properties of a model for parallel computations:determinacy,

temination, queueing.SIAM Journal of Applied Mathematics, 14(6):1390–1411, November

1966.

[103] M. Karul. Metacomputing and resource allocation on the world wide web. PhD thesis, New

York University, May 1998.

[104] J. J. Kennedy.Design and Implementation n-tier Metacomputer with Decentralised Fault

Tolerence. PhD thesis, University College Cork, Ireland, 2004.

[105] S. Kent. Privacy enhancement for internet electronicmail: Part II: Certificate-based key

mangement. Request for Comment (RFC) 1422, Internet Engineering Task Force, February

1993.

BIBLIOGRAPHY 196

[106] V. Kessler. On the Chinese Wall model. InEuropean Symposium on Research in Computer

Security, pages 39–54. Springer Verlag, LNCS 875, 1992.

[107] S. Kille. String representation of distinguished names. Request for Comment (RFC) 1779,

Internet Engineering Task Force, March 1995.

[108] P. Krugman.The return of Depression Economics. WW Norton & Co, 1999. 176 pages.

[109] T. Lampinen. Using SPKI certificates for authorization in CORBA based distributed object-

oriented systems. In4th Nordic Workshop on Secure IT systems (NordSec ’99), pages 61–81,

Kista, Sweden, November 1999.

[110] B. Lampson. Protection.ACM Operating Systems Review, 8, 1974.

[111] U. Lang. Access Policies for Middleware. PhD thesis, University of Cambridge, Wolfson

College, Cambridge, UK., May 2003.

[112] N. Li. Local names in SPKI/SDSI. InProceedings of the 13th IEEE Computer Security

Foundations Workshop, pages 2–15. IEEE Computer Society Press, July 2000.

[113] N. Li, J. C. Mitchell, and W. H. Winsborough. Design of arole-based trust-management

framework. InProceedings of the 2002 IEEE Symposium on Security and Privacy, number

ISSN: 1081-6011 ISBN: 0-7695-1543-6, pages 114–130, Oakland, CA, USA, 2002. IEEE.

[114] J. Linn. Privacy enhancement for internet electronicmail: Part I: Message encryption and

authentication procedures. Request for Comment (RFC) 1421, Internet Engineering Task

Force, February 1993.

[115] P. Loscocco and S. Smalley. Integrating flexible support for security policies into the Linux

operating system. InProceedings of the FREENIX Track of the 2001 USENIX Annual Tech-

nical Conference., Boston, MA, USA., June 2001.

[116] N. McBurnett. PGP web of trust statistics, 1997. http://bcn.boulder.co.us/ neal/pgpstat/.

[117] Microsoft Corporation.Microsoft Passport. http://www.passport.net/.

[118] Microsoft Corporation.Microsoft Platform SDK. The COM Library. Microsoft Developer

Network., 0.9 edition, October 1995. http://www.msdn.microsoft.com.

[119] J. K. Millen and R. N. Wright. Reasoning about trust andinsurance in a public key infrastruc-

ture. InProceedings of the 13th IEEE Computer Security FoundationsWorkshop (CSFW’00),

pages 16–23, Cambridge, England, July 03–05 2000.

BIBLIOGRAPHY 197

[120] J. G. Mitchell, J. J Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi, P. Kougiouris, P. W.

Madany, M. N. Nelson, M. L. Powell, and S. R. Radia. An overview of the Spring system.

In Compcon Spring ’94, Digest of Papers., pages 122–131, 28th February – 4th March 1994.

[121] P. Mockapetris. Domain names - concepts and facilities. Request for Comment (RFC) 1034,

Internet Engineering Task Force, November 1987.

[122] J. P. Morrison. Condensed Graphs: Unifying Availability-Driven, Coercion-Driven and

Control-Driven Computing. PhD thesis, Eindhoven, 1996.

[123] J. P. Morrison, B. Clayton, A. Patil, and S. John. The information gathering module of the

WebCom-G operating system. InProceedings of the Second International Symposium on

Parallel and Distributed Computing (ISPDC03), Ljubljana, Slovenia, October 2003.

[124] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil. s:Grid enabled metacomputing.The

Journal of Neural, Parallel and Scientific Computation, Special Issue on Grid Computing,

2004.

[125] J. P. Morrison and R. Connolly. Facilitating ParallelProgramming in PVM using Condensed

Graphs. Proceedings of EuroPVM’99: Universitat Autonoma de Barcelona, Spain. 26-29

Sept 1999.

[126] J. P. Morrison et al. Architectural neutral glue for COM objects. Internal Note, Center for

Unified Computing, University College, Cork, Ireland, 2000.

[127] J. P. Morrison and P. D. Healy. Implementing the WebCom2 distributed computing platform

with XML. In IEEE Proceeding of the International Symposium on Paralleland Distributed

Computing, 2002.

[128] J. P. Morrison, P. D. Healy, and P. J. O’Dowd. Architecture and implementation of a dis-

tributed reconfigurable metacomputer. InProceedings of the Second International Sym-

posium on Parallel and Distributed Computing (ISPDC 2003), pages 153–158, Ljubljana,

Slovenia, October 2003.

[129] J. P. Morrison, P. D. Healy, D. A. Power, and K. J. Power.The role of XML within the

WebCom metacomputing platform.Scalable Computing: Practice and Experience, 6(1),

2005.

[130] J. P. Morrison and D. A. Power. Master promotion and client redirection in the webcom

system. InPDPTA, Las Vegas USA, 2000.

BIBLIOGRAPHY 198

[131] J. P. Morrison, D. A. Power, and J. J. Kennedy. A Condensed Graphs Engine to Drive Meta-

computing. Proceedings of the international conference onparallel and distributed processing

techniques and applications (PDPTA ’99), Las Vegas, Nevada, June 28 - July1, 1999.

[132] J. P. Morrison, D. A. Power, and J. J. Kennedy. WebCom: AWeb Based Distributed Compu-

tation Platform. Proceedings of Distributed computing on the Web, Rostock, Germany, June

21 - 23, 1999.

[133] J. P. Morrison, K. Power, and N. Cafferkey. Cyclone: A cycle brokering system to harvest

wasted processor cycles. InParallel and Distributed Computing Techniques and Applica-

tions, Las Vegas, NV, USA, June 2000.

[134] B. P. Mulcahy, S. N. Foley, and J. P. Morrison. Cross cutting condensed graphs. InProceed-

ings of the 2005 International Conference on Parallel and Distributed Processing Techniques

and Applications, Monte Carlo Resort, Las Vegas, Nevada, USA, June 27-30 2005. PDPTA.

[135] M. J. Nash and K. R. Poland. Some conundrums concerningseparation of duty. InProceed-

ings of the Symposium on Security and Privacy, pages 201–207, Oakland, CA, May 1990.

IEEE Computer Society Press.

[136] R. M. Needham and M. D. Schroeder. Using encryption forauthentication in large networks

of computers.Communications of the ACM, 21(12):993–999, December 1978.

[137] M. N. Nelson and S. R. Radia. A uniform name service for spring’s unix environment. In

Proceedings of the Winter 1994 USENIX Conference. USENIX, January 1994.

[138] B. C. Neumann and T. Ts’o. Kerberos: An authenticationservice for computer networks.

IEEE Communications, September 1994.

[139] Massachusetts Institute of Technology (MIT). Project athena.

http://web.mit.edu/release/www/index.html.

[140] Object Management Group (OMG). Naming service specification. Technical Report Version

1.3, OMG, October 2004. http://www.omg.org/cgi-bin/doc?formal/04-10-03.

[141] S.Ó’Tuairisg, M. Browne, J. Cunniffe, A. Shearer, J. Morrison, and K. Power. WebCom-G:

Implementing an astronomical data analysis pipeline on a Grid-type infrastructure. In P. L.

Shopbell, M. C. Britton, and R. Ebert, editors,ASP Conf. Ser. Astronomical Data Analysis

Software and Systems XIV. Publications of the Astronomy Society of the Pacific, 2005.

[142] T. P. Pedersen. Electronic payments of small amounts.In Security Protocols Workshop, pages

59–68, 1996.

BIBLIOGRAPHY 199

[143] K. Pingali and Arvind. Efficient demand-driven evaluation. part 1. ACM Transactions on

Programming Languages and Systems, 7(2):311–333, April 1985.

[144] D. A. Power. A Framework for: Heterogeneous Metacomputing, Load Balancing and Pro-

gramming in WebCom. PhD thesis, University College Cork, Ireland, 2004.

[145] D. A. Power, A. Patil, S. John, and J. P. Morrison. WebCom-G. InProceedings of the 2003 In-

ternational Conference on Parallel and Distributed Processing Techniques and Applications

(PDPTA’03), Las Vegas, Nevada, June 2003. CSREA Press.

[146] K. Power.ComPeer: A Scalable, Self-organizing, peer-to-peer MetaComputer. PhD thesis,

University College Cork, Ireland, 2004.

[147] T. B. Quillinan, B. C. Clayton, and S. N. Foley. GridAdmin: Decentralising grid admin-

istration using trust management. InProceedings of the Third International Symposium on

Parallel and Distributed Computing (ISPDC04), Cork, Ireland, July 2004.

[148] T. B. Quillinan and S. N. Foley. Security in WebCom: Addressing naming issues for a web

services architecture. InProceedings of the 2004 ACM Workshop on Secure Web Services

(SWS)., Washington D.C., USA., October 2004. ACM.

[149] S. Radia. Naming policies in the Spring system. InProceedings of the 1st International

Workshop on Services in Distributed and Networked Environments.Sun Microsystems, Inc.,

IEEE, 1994.

[150] M. K. Reiter and S. G. Stubblebine. Path independence for authentication in large-scale sys-

tems. InProceedings of the 4th ACM conference on Computer and communications security

(CCS97), pages 57–66. ACM Press, 1997.

[151] R. Rivest. The MD5 message-digest algorithm. Requestfor Comments (RFC) 1321, Internet

Engineering Task Force, April 1992.

[152] R. Rivest and B. Lampson. SDSI - a simple distributed security infrastructure. InDIMACS

Workshop on Trust Management in Networks, 1996.

[153] R. L. Rivest. S-expressions. Technical report, Network Working Group, Internet Engineering

Task Force, May 1997. Internet Draft: http://theory.lcs.mit.edu/ rivest/sexp.txt.

[154] R. L. Rivest. Can we eliminate certificate revocation lists? In Rafael Hirschfeld, editor,

Proceedings of Financial Cryptography ’98, number 1465, pages 178–183. Springer Lecture

Notes in Computer Science, February 1998.

BIBLIOGRAPHY 200

[155] A. D. Rubin and D. E. Geer Jr. Mobile code security.Internet Computing, 2(6):30 – 34,

November/December 1998. ISSN: 1089-7801.

[156] J. Sabater and C. Sierra. Social regret, a reputation model based on social relations.SIGecom

Exch., 3(1):44–56, 2002.

[157] V. Samar and R. Schemers. Unified login with pluggable authentication modules (PAM).

Request for Comments 86.0, Open Software Foundation, October 1995.

[158] R. Sandhu et al. Role based access control models.IEEE Computer, 29(2):38–47, 1996.

[159] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control

models.IEEE Computer, 29(2):38–47, February 1996.

[160] R. S. Sandhu and P. Samarati. Access control: principle and practice.Communications

Magazine, IEEE, 32(9):40 – 48, September 1994.

[161] B. Schneier.Applied Cryptography, chapter 12, pages 566–572. Wiley, second edition, 1996.

[162] B. Schneier. Managed Security Monitoring: Closing the Window of Exposure, 2000.

http://www.counterpane.com/window.html.

[163] C. Shirky. The case against micropayments. OpenP2P:

http://www.openp2p.com/pub/a/p2p/2000/12/19/micropayments.html, December 2000.

[164] A. E. K. Sobel and J. Alves-Foss. A trace-based model ofthe Chinese Wall security policy.

In Proceedings of the 22nd National Information Systems Security Conference, Arlington,

Va., USA, October 1999.

[165] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D. Andersen, and J. Lepreau. The Flask

security architecture: System support for diverse security policies. InProceedings of the

8th USENIX Security Symposium, pages 123 – 140, Washington D.C., USA, August 1999.

USENIX.

[166] J. A. Stankovic and K. Ramamritham. The Spring kernel:a new paradigm for real-time

operating systems.SIGOPS Oper. Syst. Rev., 23(3):54–71, 1989.

[167] T. L. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A. Ranawake, and C. V. Packer.

Beowulf: A parallel workstation for scientific computation. In Proceedings of the Inter-

national Conference of Parallel Processing (ICPP), volume 1, Urbana-Champain, Illinois,

USA, August 11–14 1995.

BIBLIOGRAPHY 201

[168] I. Stoica, R. Morris, D. Karger, M. Frans Kaashoeka, and H. Balakrishnan. Chord: A scalable

peer-to-peer lookup service for internet applications. InProceedings of SIGCOMM 2001, San

Diego, California, USA., August 2001. ACM.

[169] Sun Microsystems. Enterprise JavaBeans(tm) Specification, Version 2.1, June 2003.

http://java.sun.com/products/ejb/docs.html.

[170] Sun Microsystems Inc.The Java Website. http://java.sun.com/.

[171] A. S Tanenbaum and A. S Woodhull.Operating Systems Design and Implementation. Pren-

tice Hall, 3rd edition, 2006. ISBN: 0-13-142938-8.

[172] J. Touch, L. Eggert, and Y. Wang. Use of IPsec transportmode for dynamic routing. Request

for Comments (RFC) 3884, Internet Engineering Task Force, September 2004.

[173] U. S. Department of Defense. Trusted computer system criteria. Technical Report CSC-STD-

001-83, U. S. National Computer Security Center, August 1983. Known as “The Orange

Book”.

[174] W. Venema. TCP WRAPPER: Network monitoring, access control and booby traps. In

Proceedings of the 3rd UNIX Security Symposium, 1999.

[175] J. von Neumann. The principles of large-scale computing machines.IEEE Annals of the

History of Computing, 10(4):243–256, October-December 1988. ISSN: 1058-6180.

[176] The World Wide Web Consortium (W3C). The PICS project.http://www.w3.org/PICS/.

[177] The World Wide Web Consortium (W3C). Web naming and addressing.

http://www.w3.org/Addressing/.

[178] M. Wahl, T. Howes, and S. Kille. Lightweight directoryaccess protocol (version 3). Request

for Comment (RFC) 2251, Internet Engineering Task Force, December 1997.

[179] C. Weider, J. Reynolds, and S. Heker. Technical overview of directory services using the

X.500 protocol. Request for Comment (RFC) 1309, Internet Engineering Task Force, March

1992.

[180] C. Weissman. Security controls in the ADEPT-50 time-sharing system. InAFIPS Conference

Proceedings, volume 35, pages 119–133. FJCC, 1969.

[181] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw.LegionFS: A secure and scal-

able file system supporting cross-domain high-performanceapplications. InSC2001: High

Performance Networking and Computing, Denver, Colorado, November 10–16 2001.

BIBLIOGRAPHY 202

[182] R. Wright, A. Getchell, T. Howes, S. Sataluri, P. Yee, and W. Yeong. Recommendations

for an X.500 production directory service. Request for Comments (RFC) 1803, Internet

Engineering Task Force, June 1995.

[183] L. Xiong and L. Liu. Peertrust: Supporting reputation-based trust in peer-to-peer communi-

ties. IEEE Transactions on Knowledge and Data Engineering (TKDE), 2004. Special Issue

on Peer-to-Peer Based Data Management.

[184] W. Yeong, T. Howes, and S. Kille. Lightweight directory access protocol. Request for

Comment (RFC) 1777, Internet Engineering Task Force, March1995.

[185] X. Zhang, S. Oh, and R. Sandhu. PDBM: A flexible delegation model in RBAC. InPro-

ceedings of the 7th ACM Symposium on Access Control Models and Technologies (SACMAT

2003), Como, Italy, June 2003.

[186] H. Zhou and S. N. Foley. A framework for establishing decentralized secure coalitions. In

Proceedings of IEEE Computer Security Foundations Workshop, Venice, Italy, July 2006.

[187] P. Zimmermann.The Official PGP Users Guide. MIT Press, 1995.

