
Semantic Web and Firewall Alignment
Simon N. Foley #, William M. Fitzgerald #,∗

#Department of Computer Science,
University College Cork,

Ireland.
s.foley@cs.ucc.ie

∗Telecommunications Software & Systems Group,
Waterford Institute of Technology,

Ireland.
wfitzgerald@tssg.org

Abstract— Secure Semantic Web applications, particularly
those involving access control, are typically focused at the
application-domain only, rather than taking a more holistic
approach to also include the underlying infrastructure (for
example, firewalls). As a result, infrastructure configurations
may unintentionally hinder and prohibit the normal operation of
the Semantic Web. This paper, discusses an approach involving
Description Logic and the Semantic Web Rule Language to
provide synergy and alignment between firewall configurations
and semantic-aware application configurations.

I. INTRODUCTION

The Semantic Web [1] builds on application domain on-
tologies in order to provide a framework for web-resource
reasoning and interoperation. Semantic Web applications are
typically modeled at the application-domain (knowledge) level
[2], [3] and tend not to consider the underlying infrastructure:
it is assumed that the underlying infrastructure is suitably
configured to support the application and its web-resources.
However, there are situations where the infrastructure config-
uration may work against the normal operation of the Semantic
Web and it becomes necessary to consider some knowledge
about the infrastructure and how it relates the application
knowledge.

A practical reality of any system—regardless of the applica-
tion it supports—is that a firewall policy is applied to incoming
and outgoing traffic. A Semantic Web application may span
many systems and, as a consequence, its proper operation is
dependent on the firewall configuration at each system. An
overly-restrictive configuration may prevent normal interaction
of web-resources resulting in application failure. An overly-
permissive configuration, while permitting normal operation
of the application, may leave the system vulnerable to attack,
for example, across open ports.

While the Semantic Web may provide applications with
security services that are domain-knowledge aware [4], [5], it
is argued that firewalls still have a role to play in securing the
low-level infrastructure. Not only do firewalls protect services
that do not provide built-in application-level security, it is
considered best practice to rely on multiple layers of security,
providing ‘belt and braces’. In practice, deploying a firewall

for a web-server or web-client is not simply about opening
port 80 on the server for all traffic; one may wish to deny
certain nodes (IP addresses, etc.), only accept HTTP traffic
from some nodes, require other nodes to use HTTPS and
also deal with HTTP traffic that is tunneled through proxies
available on other ports. Furthermore, web-services do not
necessarily communicate on port 80. In addition, firewall con-
tent sanitation (application layer) provides fine-grained access
control that may cut across the host-based access controls; for
example, certain content may be permitted (or denied) only
to/from particular nodes.

Firewall configurations can be complex, run to many thou-
sands of rules and are typically maintained on an ad-hoc
basis [6], [7], [8]. New rules are added with little regard
to existing rules and may result an overly-restrictive and/or
overly-permissive configuration. The ideal firewall configura-
tion is one that is aligned with the application supported by
the system, that is, it permits valid application traffic, and,
preferably, no more and no less.

The contribution of this paper is the alignment of firewall
configurations with Semantic Web applications. An ontology
is proposed for Linux Netfilter which is used to represent and
reason about instances of firewall configurations. By bridging
this ontology with the application ontology, it becomes possi-
ble to reason about how knowledge within the application may
affect a firewall configuration, and vice-versa. For example, an
airline service provider agent (web-service) may be willing to
offer special discount services to preferred travel broker agents
connecting through port 22 (ssh). Semantic agents can use
this reasoning about the ‘big picture’ to infer new knowledge
and better align firewall configurations to the application in an
autonomic way.

The paper is organized as follows. Description Logic (DL) is
used to represent the ontology; Section II provides an overview
of DL; a more detailed discussion can be found in [9]. A DL
representation of the Netfilter firewall ontology is given in
Section III. Section V describes how the firewall ontology is
bridged with the Semantic Web application E-Tourism case-
study outlined in Section IV. How the resulting ontology can
be reasoned about is discussed in Section VI.

II. DESCRIPTION LOGIC & ONTOLOGIES

An ontology is an explicit specification of a conceptuali-
sation using an agreed vocabulary and provides a rich set of
constructs to build a more meaningful level of knowledge. An
important characteristic of the Semantic Web (as constrained
by DL) is that the information contained in it is specified using
a formal language in order to enable automated reasoning and
the derivation of new knowledge from existing knowledge.

Description Logic (DL) is a family of logic-based for-
malisms that forms part of the W3C recommendation for the
Semantic Web [9]. DL uses classes (concepts) to represent sets
of individuals (instances) and properties (roles) to represent
binary relations applied to individuals. For example, the DL
assertion:

ServerNode vNode u
∃hasSemanticService.Service u
∃hasFirewall.F irewall

specifies that a server node (class) hosts services (class) and
has (property) a firewall (class) protecting them. Note that
properties are conventionally prefixed by “has”; for instance,
hasSemanticService, is the property over the individuals of
the class ServerNode (domain) that host a Semantic Web
service (range).

The Semantic Web Rule Language, (SWRL), complements
DL providing the ability to infer additional information in DL
ontologies, but at the expense of decidability. SWRL rules
are Horn-clause like rules written in terms of DL concepts,
properties and individuals. A SWRL rule is composed of
an antecedent part and a consequent part, both of which
consist of positive conjunctions of atoms [10]. For example,
the requirement: servers hosting ssh based semantic services
protected by a firewall require that firewall to open port 22 is
expressed in SWRL as:

ServerNode(?n) ∧ hasSemanticService(?n, s) ∧
hasPort(?s, ssh) ∧ hasF irewall(?n, ?f)

→ hasPortOpen(?f, ssh)

III. NETFILTER ONTOLOGY

Netfilter is a framework that enables packet filtering, net-
work address translation (NAT) and packet mangling. As a
firewall, it is both a stateful and stateless packet filter that is
characterised by a sequence of firewall decisions against which
all packets traversing the firewall are filtered. Each firewall
decision takes the form of a series of conditions representing
packet attributes that must be met in order for that decision
to be applicable, with a consequent action for the matching
packet (accept, drop, log and so forth).

Netfilter requires the specification of a table (filter, NAT
or mangle), a chain, the accompanying decision condition
details and an associated target outcome. A table is a set of
chains and it defines the global context, while chains define
the local context within a table. Our research focuses on the
firewalling aspects of Netfilter and hence our current model

only incorporates the filter table attributes. A chain is a
set of firewall decisions and those decisions in a chain are
applied to the context defined both by the chain itself and
the particular table. By default there is no need to specify
the filter table (using -t option) when defining firewall
decisions. A Netfilter decision has the following components.

[Table][ChainType][FilterConditions][TargetDecision]

For example, a decision that states that HTTP traffic along
the FORWARD chain outward bound from the trusted internal
interface eth0 is permitted is:

iptables -t filter -A FORWARD -o eth0
-p tcp --dport 80 -j ACCEPT

A. Firewall Decision Components

The Netfilter filter table or overall firewall configuration
policy is composed of a number of sub-governing local
policies controlled by each of its in-built chains (Chain
class) to which various protective packet condition filters
(ConditionF ilter class) and their respective verdict permis-
sions (Target class) are applied. Netfilter provides a mech-
anism of three separate firewall or filtering chains to police
various kinds of network traffic (Figure 1). These chains
filter traffic being routed to, from and beyond the firewall
device itself [11]. Classes in DL represent concepts within

Fig. 1. Linux Netfilter Packet Traversal

the domain of interest and in our formal ontology model,
various domain specific classes provide knowledge of the key
features of Netfilter’s filtering capabilities. Individual objects
that belong to a class are referred to as instances of that class.
We have developed a DL-based ontology for Netfilter. Figure 2
depicts a fragment of the class taxonomy for this model. The
taxonomy provides the classes, subclasses and individuals that
are inferred from the DL specification of the ontology. In
the following subsections, we briefly illustrate some abstract
examples to provide the reader with enough information as to
how we codified the salient features of Netfilter in DL. Both
disjoint and covering axioms are used extensively throughout
our formal model. However, for reasons of space, we have
opted to omit these axioms when presenting DL definitions in
this paper. The reader should assume that all sibling classes
defined in the paper are disjoint unless stated otherwise.
Chain Types & Chain Decision Policy. Each Netfilter firewall
chain must be assigned a default decision policy of ‘accept’
or ‘drop’, such that, if packets that have been correlated

Fig. 2. Netfilter Class Taxonomy

against the complete set of firewall decisions within that chain
have not met any of the filter conditions then the default
decision policy is executed to decide the fate of those packets.
The following is a detailed description of the Chain class
definition; it is also used to explain to the reader some of the
constructors provided by DL.

The Chain class is defined as a complete class (≡),
subsummed by the FirewallDomainConcept class, and
as a domain concept with restrictions applied to the
hasChainDecision property that binds individuals of the
Chain class to individuals of another class within the firewall
domain called ChainDecision. The hasChainDecision
property is a binary relation that is constrained with an exis-
tential (∃=1) restriction across that property with a cardinality
value of 1. It states that there exists a single relationship
between individuals of the Chain class and individuals of the
ChainDecision class. There is also a closure axiom applied
to the hasChainDecision property via the universal (∀) re-
striction. It states that individuals of the Chain class can only
ever have hasChainDecision relationships to individuals of
the ChainDecision class using that property.

Chain ≡ FirewallDomainConcept u
∃=1hasChainDecision.ChainDecision u
∀hasChainDecision.ChainDecision u
{inputChain, outputChain, forwardChain}

The class ChainDecision defines the vocabulary for a
default policy decision across a firewall chain.

ChainDecision ≡ FirewallDomainConcept u
{decisionDeny, decisionAccept}

Within Netfilter there are two approaches: the first is a
deny everything by default, thereafter explicitly permitting
selected packets; the second approach, is to accept everything
by default, thereafter explicitly denying selected packets. The
first approach is usually implemented as security best practice
[12]. The ChainDecision class is composed of two distinct
individuals: decisionDeny and decisionAccept to represent
the default policy decisions that can be applied to a chain.
Chains have a default policy decision in order to govern how
it processes unmatched traffic. Netfilter provides a mechanism
for traffic to be inspected and analyzed, depending on various
pre-firewall routing decisions (Figure 1). Thus, the Chain
class provides a finite/enumeration set of three individuals
namely, inputChain, outputChain and forwardChain.

For example, the inputChain individual (instance of class
Chain) is a chain to which packet condition filters and
corresponding target decisions can be applied to, in order to
analyze traffic incoming to local services hosted on the actual
firewall itself.
Filter Conditions. Netfilter firewall chains INPUT, OUTPUT
and FORWARD govern routed traffic and can (and normally do)
contain a set of packet filter conditions. Hence, chains act as
containers for firewall decisions. The class ConditionF ilter
represents the kinds of filters defined in our model:

ConditionF ilter v FirewallDomainConcept

Filtering criteria that can inspect individual packets can
be further subdivided into two more specialised categories:
basic filtering techniques (Class BasicF ilter) and advanced
filtering techniques (Class AdvancedF ilter). Basic filtering
has the ability to inspect each packet. It can be applied in
various levels of granularity: to a particular interface or set
of interfaces, to various protocols (MAC address, IP address
or range of IP addresses, TCP, UDP and ICMP), or to a
particular port or set of ports. Netfilter’s advanced filtering
techniques involve deep packet header inspection (TCP flags
and ICMP types) and it can filter based on stateful connection
state (previous packet streaming context).

BasicF ilter, AdvancedF ilter v ConditionF ilter

In the following two examples, we demonstrate of how
condition filters can be modelled in more depth for port and
state filtering.
Basic Filter by Port Type. Port condition filtering occurs at
Layer 4 of the OSI stack. Ports (for example, individuals like
portSSH) in our model are defined as a class of individuals
that should be constrained to protocols TCP or UDP. Hence,
we define a closure axiom that states: should a port be associ-
ated to a protocol along the hasProtocol property relationship
then it must only be to TCPFilter or UDPFilter.

PortF ilter vBasicF ilter u
∀hasProtocol(TCPFilter t UDPFilter)

Advanced Filter by Stateful Operands. The model defines
three advanced filtering techniques (TCP flags, ICMP Types
and Statefulness) that the Netfilter framework is capable of
providing. The Netfilter firewall framework has stateful capa-
bilities (StateF ilter) that can filter at Layer 4 (TCP, UDP)
and Layer 3 (ICMP) of the OSI model to filter packets based
on the context of the traffic’s current stream. Packets can be
filtered based on the following attributes: NEW (equivalent to
the TCP SYN request or initial UDP packet) , ESTABLISHED
(equivalent to ongoing TCP ACK traffic after connection has
been established), RELATED (ICMP error messages or FTP
secondary connections etc) and INVALID operations. The
stateful capabilities augment the stateless, static packet filter
protection. State information is recorded when a TCP connec-
tion or UDP exchange is initiated and subsequent packets are
examined not only based on stateless tuple decisions but also
on the context of the ongoing connection [7]. Stateful filtering
does not apply to MAC addresses or IP addresses so we define
a complement along the universal restriction of MACFilter
or IPFilter.

StateF ilter ≡ AdvancedF ilter u
¬(∀hasProtocol.(MACFilter t IPFilter)) u
{stateESTABLISHED, stateNEW,

stateRELATED, stateINV ALID}

Target Permissions. When a filter condition matches a packet
traversing a particular chain, a firewall target option specifies
the fate of that packet (for example, DROP or ACCEPT the
packet). Netfilter provides a mechanism of packet authori-
sations (class individuals) represented by the Target class
in our model for this purpose. The Target class is defined
as a complete class that details the necessary & sufficient
conditions of class membership. The reader is referred to [9]
for an introduction to DL’s.

Target ≡ FirewallDomainConcept u
{returnTarget, rejectTarget, ulogTarget,

logTarget, dropTarget, acceptTarget}

B. Firewall Decision Composition

In this section, we illustrate some examples of fire-
wall decision constraints that are constructed in terms of
the model vocabulary proposed above. Various kinds of
firewall decisions can be defined as subclasses of the
NamedFirewallDecision class in our model. This class de-
fines the necessary & sufficient conditions for the composition
of a firewall decision. A firewall decision is composed of
exactly one chain, one or more condition filters and a single
permission target.

NamedFirewallDecision ≡ NetfilterF irewall u
∃=1hasChain.Chain u
∃≥1hasCondition.F ilter u
∃=1hasTarget.Target

To instantiate FORWARD decisions, for example, it is
first necessary to define the membership constraints
of class ForwardDecision (a more specialised
NamedFirewallDecision class) whereby FORWARD
decisions must have a relathionship to a specific individual
of the Chain class called forwardChain:

ForwardDecision ≡ NamedFirewallDecision u
∈ hasChain.forwardChain

C. Firewall Configuration

The previous sections describe an ontology for firewall
configuration. A firewall decision instance, defined in terms
of specific ports, protocols, etc., is represented as an instance
of the ontology defined in terms of class individuals. For
example, the firewall decision

iptables -A FORWARD -i eth1
-s 4.3.2.1 -d 1.2.3.4
-p tcp --dport 22 -j ACCEPT

is represented by an individual fd within the ontology
whereby ForwardDecision(fd) holds; intuitively, we can
think of fd as an individual of class ForwardDecision. This

individual is inferred across the ontology whereby,

hasChain(fd,forwardChain)

u hasExternalInterface(fd,eth1)

u hasSrcIP (fd,ip4.3.2.1)

u hasDstIP (fd,ip1.2.3.4)

u hasProtocol(fd,tcp)

u hasDstPort(fd,portSSH)

u hasTarget(fd,acceptTarget)

→ ForwardDecision(fd)

Atomic individuals are written in a typewriter font, while
inferred individuals are given in an italic font. Note that the
low-level facts of a firewall configuration are presented as
individuals rather than classes on the basis that they are atomic
and will not be further decomposed. Using instances (rather
than subclasses) allows subsequent reasoning of collections of
firewall decisions using SWRL, as outlined in [13].

IV. E-TOURISM APPLICATION

A semantics-aware travel broker provider service (Figure 3)
provides travel broker (intelligent) agent clients with an ability
to query and purchase complete vacation/business packages
based on user preferences. Typically, the travel broker client

Fig. 3. E-Tourism Abstract Architecture

will interface with one or more travel broker service providers
with which they have a subscription. The travel broker agent
service provider interacts with various service providers (trans-
port, accommodation, activities and so forth) on behalf of
client requests. The ETourismDomain ontology defines the
knowledge within the E-Tourism application. For example,
ETourismDomain is sub-classed to describe the kinds of
classes that are transport related:

TransportService v ETourismDomain

A simple taxonomy of the overall E-Tourism ontology of
this application is provided in Figure 4. In this example, we
focus on the operation of the airline service that provides three
different levels of service (gold, silver and bronze) based on
client contract. These service types are modeled as individuals
of the FlightService class:

FlightService v TransportService u
{gold,silver,bronze}

Fig. 4. E-Tourism Taxonomy

The gold service provides unlimited access to the airline
booking system which is offered to the airline’s sales branch
itself along with premium business partners (for example,
travel brokers). The silver grade service provides a more
constrained service offering but at a cheaper rate, while the
bronze grade is offered to all public users.

V. BRIDGING APPLICATION & FIREWALL

A. Mapping Services to Infrastructure
The E-Tourism application requires, among other things,

network resources and associated business partners.

ETourismDomain v∃hasNetRequirement.NetDomain u
∀hasPartner.ETourismDomain

The kinds of network resources (class NetDomain) re-
quired by Semantic Web applications include (Figure 5):
hosting nodes modeled as IP addresses (class IPAddress),
communication protocols (class Protocol) and listening ports
(class Port). Service individuals and their corresponding

Fig. 5. Service Network Taxonomy

relationships to network resources can be instantiated from
the ontology model. For example, a gold service individual
may have a requirement to be hosted on a particular node
(ip1.2.3.4) opening a tcp communication channel listen-
ing on port 22, (ssh), to provide secure access for premium
business partners (for example, at IP address 4.3.2.1).

hasNetRequirement(gold,ip1.2.3.4)

u hasNetRequirement(gold,ssh)

u hasNetRequirement(gold,tcp)

u hasPartner(gold,ip4.3.2.1)

→ FlightService(gold)

B. Relating Services to Firewall Decisions

A business domain ontology is used to relate service access
requirements and firewall decisions. Figure 6 outlines the
taxonomy of the BusinessPolicyDomain ontology. Within

Fig. 6. Business Policy Taxonomy

this ontology, we define a class ServicePolicy to represent
how we map semantic services to firewall access control:

ServicePolicy v BusinessPolicyDomain u
∃hasManagedService.ETourismDomain u

∃hasF irewallDecision.NamedFirewallDomain

This class is further subdivided into three disjoint classes:
IntranetAccess, ExtranetAccess and InternetAccess.
An (inferred) individual gep (gold Extranet policy) of the
ExtranetAccess class that associates a gold service to
an appropriate (forward) Netfilter firewall decision fd is
described as follows:

hasManagedService(gep,gold)

u hasF irewallDecision(gep, fd)

→ ExtranetAccess(gep)

While the NetDomain and BusinessPolicyDomain on-
tologies bridge firewall knowledge and application knowledge,
the concrete examples (bridge configuration of individuals fd,
gold and gep) are manually constructed, presumably ex-
tracted from configuration data. The following section consid-
ers how a suitable firewall configuration can be automatically
selected from an existing knowledge-base and based on an
E-Tourism configuration.

VI. SYNTHESIZING FIREWALL CONFIGURATIONS

Reasoning provides the ability to analyze a configuration in
order to discover conflicts, for example, whether the firewall
blocks a service or has conflicting decisions. It also allows the
synthesis of a suitable firewall configuration, given application
and bridging configuration. In this section, we consider firewall
configuration synthesis. While DL-based reasoners support
inferences about classes within an ontology, SWRL supports
reasoning about relationships between individuals. In this
paper, SWRL is used to provide synthesis of new knowledge
about configuration and its integration back into the ontology.

Firewall synthesis relies on the existence of a knowledge
base of candidate firewall decisions. These could, for exam-
ple, represent considered best-practice for systems that host
semantic web applications. The synthesis process selects the
firewall decisions that are consistent with the configuration of
the services (and bridge).

The following SWRL rule selects a firewall decision given
a particular Extranet service access policy that currently man-
ages an application service.

ExtranetAccess(?x) ∧ FlightService(?y)∧
ForwardDecision(?z) ∧ hasManagedService(?x, ?y)∧
hasNetRequirement(?y, ssh) ∧ hasDestIP (?z, ip1.2.3.4)∧
hasPort(?z, sshF ilter) ∧ hasTarget(?z, acceptTarget)

→ hasF irewallDecision(?x, ?z)

The SWRL variable ?x represents a service policy that cur-
rently manages a service, (?y), but has no firewall decision ap-
plied that provides it with the required network access controls.
Should the firewall decision be deemed appropriate, this new
knowledge can be asserted back into the ontology by setting
the hasFirewallDecision property of the ExtranentAccess
individual ?x to reflect its relationship to the firewall decision
?z.

SWRL also provides an SQL-like notation that can be used
to query the DL knowledge base. For example, the query
fragment:

· · ·
FlightService(?y) ∧ ForwardDecision(?z)∧
hasNetRequirement(?y, ssh) ∧ hasPort(?z, sshF ilter)

→ query : select(?y, ?z)

returns a list of tuples of the form y 7→ z, where y is a
application service and z the firewall decision that provisions
network access control. For example, it would be expected
to return the tuple gold 7→ fd. In practice, the above rule
should contain additional filtering information to consider the
protocol, interface, etc.

SWRL can be used to synthesize a variety of configuration
scenarios. For example, SWRL rules can be provided, which
given a specific firewall configuration can determine which
services of an application can be reliably supported. This is
useful when a network topology requires specific controls for
systems in specific locations.

VII. DISCUSSION & CONCLUSION

This paper, outlined a novel approach to using a DL
constrained ontology to represent: Netfilter, semantic-aware
E-Tourism and business policy configurations. The Netfilter
ontology reflects the semantic knowledge that a firewall ad-
ministrator should ‘keep in their head’ when writing and/or
updating firewall decisions based on the semantic application
it offers protection to. We provided an E-Tourism case study
to illustrate how Semantic Web applications cannot operate
in a standalone manner when incorporating security features
because there are situations where the infrastructure configu-
ration (firewalls, Web proxies and so forth) may work against
the normal operation of the semantic application. The business
policy ontology, through the use of SWRL inferencing, facil-
itates access control alignment between a list of appropriate
Netfilter firewall decisions and various services grades within
the E-Tourism application.

The provision of reasoning, in particular within the context
of the open world assumption, provides our ontology with

flexibility and extendability of incorporating new knowledge.
For example, our firewall ontology not only provides infras-
tructure knowledge that supports alignment with semantic-
aware applications but it also facilitates subsequent reasoning
of firewall configuration conflict anomalies as outlined in [13].

The ontologies have been implemented in OWL-DL, a
language subset of OWL, a W3C standard that includes DL
reasoning semantics [14]. Protégé [15], with an incorporated
OWL-DL plug-in, provide a frame-like GUI structure to create
the ontologies. Pellet [16], an open world DL compliant
reasoner, provides consistency checking and automatic poly-
hierarchy structuring accross the ontology. The SWRL [10],
[17] Protégé plug-in, SWRLTab, interfaces with the Jess closed
world inference engine to reason over relationship properties
(for example, hasFirewallDecision) between individuals of
our ontology.

We are currently developing a prototype autonomic architec-
ture that is based on this ontology and reasoning framework.
Firewall semantic agents are responsible for managing the
configuration of a firewalls. These agents negotiate firewall
settings that are constrained by the current knowledge base,
which is in turn controlled by the firewall agents and other
application agents, managing for example, the business rules.
The knowledge base is controlled by adding or deleting facts
based on new knowledge and inferences by the agents. For
example, a business agent informs a firewall agent of a new
customer whereby the firewall agent must reconfigure (new
facts) to enable access.

REFERENCES

[1] H. P. Alesso and C. F. Smith, Thinking on the Web: Berners-Lee, Gdel
and Turing. Wiley-Interscience, September 2006.

[2] J. Cardoso, Semantic Web Services: Theory, Tools and Applications. IGI
Global, March 2007.

[3] J. R. S. A. F. Salam, Semantic Web Technologies and E-Business: Toward
the Integrated Virtual Organization and Business Process Automation.
IGI Global, January 2007.

[4] S. K. Nair, B. Crispo, and A. S. Tanenbaum, “Zodac-Towards a Secure
Policy Enforcement Architecture,” Fourteenth International Workshop
on Security Protocols, March 27-29, 2006.

[5] N. Kodali, C. Farkas, and D. Wijesekera, “Enforcing semantics-aware
security in multimedia surveillance,” Journal of Data Semantics, 2004.

[6] L. Gheorghe, Designing and Implementing Linux Firewalls with QoS
using netfilter, iproute2, NAT and l7-filter. PACKT Publishing, October
2006.

[7] S. Suehring and R. L. Ziegler, Linux Firewalls: Third Edition. Novell
Publishing, 2006.

[8] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan, “Conflict Classifi-
cation and Analysis of Distributed Firewall Policies,” In IEEE Journal
on Selected Areas in Communications, Volume 1-1, 2005.

[9] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, The Description Logic Handbook: Theory, Implementation
and Applications. Cambridge University Press, March 2003.

[10] M. J. O’Connor, H. Knublauch, S. W. Tu, B. Grossof, M. Dean, W. E.
Grosso, and M. A. Musen., “Supporting Rule System Interoperability
on the Semantic Web with SWRL,” Fourth International Semantic Web
Conference (ISWC2005).

[11] R. Russell, “Linux 2.4 Packet Filtering HOWTO,” www.netfilter.org,
January 2002.

[12] J. Wack, K. Cutler, and J. Pole, “Guidelines on Firewalls and Firewall
Policy: Recommendations of the National Institute of Standards and
Technology,” NIST, Special Publication 800-41, 2002.

[13] W. M. Fitzgerald, S. N. Foley, and M. O’Foghlu, “Confident Firewall
Policy Configuration Management using Description Logic,” Twelfth
Nordic Workshop on Secure IT Systems, short presentations (unpub-
lished), Reykjavik, Iceland, October 11-12, 2007.

[14] M. K. Smith, C. Welty, and D. L. McGuinness, “OWL Web Ontology
Language Guide,” W3C Recommendation, Technical Report.

[15] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubezy,
H. Eriksson, N. F. Noy, and S. W. Tu., “The Evolution of Protege: An
Environment for Knowledge-Based Systems Development,” in Proceed-
ings of International Journal of Human-Computer Studies, Volume 58 ,
Issue 1, 2003.

[16] B. Parsia and E. Sirin, “Pellet: An OWL DL Reasoner,” 3rd International
Semantic Web Conference, ISWC, 2004.

[17] E. J. Friedman-Hil, “Jess the Rule Engine for the Java Platform,” Version
7.0p1, 2006.

APPENDIX

APPENDIX: DESCRIPTION LOGIC

DL belongs to a family of logic that represents a decidable
portion of first-order logic. The logic is characterised by a set
of constructors (Table I) that allows the construction of com-
plex concepts and roles from atomic concepts or roles. Classes
(concepts) represent sets of individuals and properties (roles)
represent binary relations applied to individuals. Tables I and
II illustrate parts of DL that are used in this paper. The reader
is referred to [9] for further information.

TABLE I
DL CONSTRUCTORS

Constructor DL Syntax Example
Intersection Of C1 u ... u Cn P rotocol u P ort

Union Of C1 t ... t Cn P rivilegedP ort t UnprivilegedP ort

Complement Of ¬C ¬P rivilegedP ort

Universal Quantifier ∀P.C ∀hasP ort.P rivilegedP ort

Existential Quantifier ∃P.C ∃hasP ort.P rivilegedP ort

Max Cardinality ≤n P ≤16 hasP ort

Min Cardinality ≥n P ≥1 hasP ort

Exact Cardinality =n P =1 hasP ort

TABLE II
DL AXIOMS

Axiom DL Syntax Example
SubClass Of C1 v C2 T CP P aram v T CP F lag u P ort

Equivalent Class C1 ≡ C2 P ort ≡ P rivilegedP ort t UnP rivilegedP ort

Disjoint With C1 v ¬C2 P rivilegedP ort v ¬UnP rivilegedP ort

Sub Property OF P1 v P2 hasSrcP ort v hasP ort

a) Classes & Properties: Classes are interpreted as sets
of individuals and can be organised into a superclass-subclass
hierarchy. For example, Protocol is a class that represents the
set of all individual protocols and its subclasses include TCP
and UDP classes. Subsumption represents the superclass-
subclass hierarchy, for example, TCP v Protocol indicates
that TCP is a subclass of Protocol.

Properties are used to construct binary relationships between
classes. They are used when making statements about classes.
For example, the following defines the concept of “ports are
either privileged or unprivileged but not both”:

Port ≡ PrivilegedPort t UnPrivilegedPort

PrivilegedPort v ¬UnPrivilegedPort

Like classes, subproperties specialise their superproperties.
For example, the property hasSrcPort specialises the prop-
erty hasPort. This states that if two classes are related by

the hasSrcPort property then an attributed source port is a
more specific relationship than the general case of having a
port relationship. Properties in our model are prefixed with
the word “has”. DL has the following properties: functional,
inverse functional, transitive and symmetric.

b) Property Restrictions: Object property restrictions are
used to create constraints on individuals that belong to a
particular class. Restrictions fall into three categories: Quan-
tifier, Cardinality and hasValue restrictions. An existential
(∃) restriction requires at least one relationship for a given
property to an individual that is a member of a specific class.
A universal (∀) restriction mandates that the only relationships
for the given property that can exist must be to individuals
that are members of the specified class. A property restric-
tion effectively describes an anonymous or unnamed class
that contains all the individuals that satisfy the restriction.
When restrictions are used to describe classes they specify
anonymous superclasses of the class being described.

c) Partial & Complete Classes: A partial class definition
is specified with necessary conditions and is of the form
Class v SuperClass u PropertyConditions. This states
that if an individual is a member of the defined class it
must satisfy the conditions that it characterises. However, it
cannot be said that any (random) individual that satisfies these
conditions must be a member of this class. When a class
is defined with necessary and sufficient conditions (≡), like
partial classes,then if an individual is a member of the class
then it must then satisfy those conditions. However, with the
sufficient condition included, then any (random) individual that
satisfies these conditions must be a member of this class.
Classes that have at least one set of necessary and sufficient
conditions are known as complete classes.

d) Open World Assumption: The Closed World Assump-
tion (CWA) and the Open World Assumption (OWA) represent
two different approaches of how to evaluate implicit knowl-
edge in a knowledge base [9]. The CWA approach makes the
presumption that what is not currently known to be true in a
knowledge base is false, hence the interpretation of negation
as failure. However, OWA assumes that its knowledge of the
world is incomplete. If something cannot be proved to be true
in the known knowledge base, then it does not automatically
become false. A simple example of OWA would be to assume
that we know that a firewall decision has been applied to a
range of privileged ports and from this information using the
OWA approach one can not conclude that a firewall decision
also has or has not some unprivileged ports assigned. Hence,
if a class is to be confined to certain constraints, it must be
explicitly stated that other unwanted constraints do not exist.
In DL, OWA characteristics can be contained by stating exactly
the components of a class using both disjointness and covering
axioms.

