A Constraint Based Framework for
Dependability

Stefano Bistarelli? and Simon N. Foley®

! Dipartimento di Scienze, Universita “G. D’annunzio” di Chieti-Pescara, Italy
bista@sci.unich.it
2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

3 Department of Computer Science, University College, Ireland.
s.foley@cs.ucc.ie

Abstract. An integrity policy defines the situations when modification
of information is authorized and is enforced by the security mechanisms
of the system. However, in a complex application system it is possible
that an integrity policy may have been incorrectly specified and, as a
result, a user may be authorized to modify information that can lead to
an unexpected system compromise. In this paper we propose a scalable
and quantitative technique that uses constraint solving to model and
analyze the effectiveness of application system integrity policies.

1 Introduction

Conventional security models such as [3,12,26, 31] are operational in nature in
that they define how to achieve integrity but do not define what is meant by in-
tegrity. For example, the Clark-Wilson model [12] recommends that well-formed
transactions, separation of duties and auditing be used to ensure integrity. How-
ever, the model does not attempt to define whether a particular security policy
configuration actually achieves integrity: evaluating a system according to the
Clark-Wilson model gives a confidence to the extent that good design principles
have been applied. However, when we define a complex separation of duty policy,
we cannot use the model to guarantee that a user of the system cannot somehow
bypass the intent of the separation via some unexpected circuitous route.

In [16,17] it is argued that to provide such guarantees it is necessary to
model the behavior of both the system (with its protection mechanisms) and
the infrastructure in which the system operates. Infrastructure is everything that
serves the system requirements: software, hardware, users, and so forth. Even if
a system is functionally correct, the infrastructure is likely to fail: software fails,
users are dishonest, do not follow procedures, and so forth. The system and
its security mechanisms must be designed to be resilient to these infrastructure
failures. Only when a system is characterized in this way can it become possible
to analyze whether a particular system configuration (including security policy)
ensures integrity.

The approach in [16,17] provides a formal trace based semantics for integrity
that requires detailed formal specifications to be provided for the system and its
infrastructure. This requires considerable specification effort and the cost of such
in-depth specification and subsequent analysis may be justified for small critical
security mechanisms. However, we conjecture that such integrity analysis would
not scale well to the configuration of a large and/or complex application system
because it would be necessary to formally specify and reason about the potential
behavior of every infrastructure component, user and so forth. Furthermore,
[16,17] does not consider any approach to mechanizing the analysis and formal
verification process.

In this paper we propose a more abstract and complementary approach to
[16,17] that requires less semantic detail about the operation of the system and
its infrastructure. Rather than attempting to model the complete behavior of
the system and infrastructure (as in [16,17]), we model only those components
that are considered relevant to the security policy and configuration. This is
done by modeling the system and infrastructure in terms of the constraints that
they impose over security relevant components of the system. This results in a
definition of integrity consistency that can be solved as a constraint satisfaction
problem [21,22].

An advantage to expressing integrity analysis as a constraint satisfaction
problem is that there exists a wide body of existing research results on solving
this problem for large systems of constraints in a fully mechanized manner [1,10,
14,19,24]. Constraints have been used in many practical analysis tools, such as
Concurrent Engineering and Computer Aided Verification [9,11,13]. Thus, the
results in this paper provide a basis for the development of practical tools for
integrity analysis of complex application system security policies.

A further advantage to using a constraint based framework is that it becomes
possible to carry out a quantitative analysis of integrity using soft constraints
[4,6-8,15,18,25,28,29]. A quantitative analysis provides a fine-grained measure
of how secure a system is, rather the simple coarse-grained false/true provided
by the conventional ‘crisp’ constraints.

The paper is organized as follows. Section 2 provides an introduction to
constraints and the constraint satisfaction problem. Section 3 adapts the results
in [16,17] and proposes a more abstract approach to modeling systems within
a crisp constraint framework. Section 4 describes how soft constraints are used
to carry out quantitative integrity analysis. A number of examples are used
throughout the paper to illustrate the approach.

2 Introduction to Constraint Solving

Constraint Solving is an emerging software technology for declarative description
and effective solving of large problems. The constraint programming process
consists of the generation of requirements (constraints) and solution of these
requirements, by specialized constraint solvers.

(a) — 0.9
(®) — 0.1 (a,a) — 0.8 o~ o0

(b) — 0.5
(e) — 0.9 (a,b) = 0.2 (c) — 0.5
o (a,c) — 0.2 cs
® P O,
(b,b) — 0

€2

(b,c) — 0.1
(c,a) — 0.8
(c,b) — 0.2
(c,c) — 0.2

Fig. 1. A fuzzy CSP.

When the requirements of a problem are expressed as a collection of boolean
predicates over variables, we obtain what is called the crisp (or classical) Con-
straint Satisfaction Problem (CSP). In this case the problem is solved by finding
any assignment of the variables that satisfies all the constraints.

Sometimes, when a deeper analysis of a problem is required, soft constraints
are used instead. Soft constraints associate a qualitative or quantitative value
either to the entire constraint or to each assignment of its variables. Such values
are interpreted as level of preference or importance or cost. The levels are usually
ordered, reflecting the fact that some levels (constraints) are better than others.
When using soft constraints it is necessary to specify, via suitable combination
operators, how the level of preference of a global solution is obtained from the
preferences in the constraints.

Several formalizations of the concept of soft constraints are currently avail-
able. In the following, we refer to the formalization based on c-semirings [4,6-8],
which can be shown to generalize and express both crisp and soft constraints
[5,7].

2.1 Semiring-based CSPs

A semiring-based constraint assigns to each instantiation of its variables an as-
sociated value from a partially ordered set. When dealing with crisp constraints,
the values are the boolean true and false representing the admissible and /or non-
admissible values; when dealing with soft constraints the values are interpreted
as preferences.

The framework must also handle the combination of constraints. To do this
one must take into account such additional values, and thus the formalism must
provide suitable operations for combination (x) and comparison (4) of tuples
of values and constraints. This is why this formalization is based on the concept
of c-semiring.

Semirings. A semiring is a tuple (A4, +, x,0,1) such that: A is a set and 0,1 €
A; + is commutative, associative and 0 is its unit element; x is associative,
distributes over 4+, 1 is its unit element and 0 is its absorbing element. A c-
semiring (“c” stands for “constraint-based”) is a semiring (A, +, x,0,1) such

that + is idempotent with 1 as its absorbing element and x is commutative [4,7].
In the following we will always use the word semiring as standing for c-semiring.

Let us consider the relation <g over A such that a <g b iff a +b = b.
It is possible to prove that: <g is a partial order; + and X are monotone on
<g; 0 is its minimum and 1 its maximum, and (A, <g) is a complete lattice
with lowest upper bound operator +. Moreover, if x is idempotent, then: +
distributes over X, and (A, <g) is a complete distributive lattice with greatest
lower bound operator x. The <g relation is what we will use to compare tuples
and constraints: a <g b it intuitively means that b is better than a.

Constraint Problems. Given a semiring S = (4,4, x,0,1) and an ordered set
of variables V over a finite domain D, a constraint is a function which, given an
assignment 7 : V' — D of the variables, returns a value of the semiring.

By using this notation we define C = n — A as the set of all possible con-
straints that can be built starting from S, D and V.

Consider a constraint ¢ € C. We define his support as supp(c) = {v € V|
In, dy, da.cnfv := di] # enfv := do]}, where

nlv = djv' = d ifv=d,
’ nv’ otherwise.

Note that en[v := di] means ¢’ where 7’ is n modified with the association
v := dy (that is the operator [] has precedence over application).

A constraint satisfaction problem is a pair (C, con) where con C V and C'is a
set of constraints: con is the set of variables of interest for the constraint set C,
which however may concern also variables not in con. Note that a classical CSP is
a SCSP where the chosen c-semiring is: Scsp = ({false, true}, Vv, A, false, true).

Many other “soft” CSPs (Probabilistic, weighted, ...) can be modeled by
using a suitable semiring structure (Sprop = ([0, 1], max, x,0,1), Syeight =
(R, min, +,+00,0), ...).

Example 1 Figure 1 shows the graph representation of a fuzzy CSP!. Variables
X and Y, and constraints are represented respectively by nodes and by undi-
rected (unary for ¢; and c3 and binary for c¢) arcs, and semiring values are
written to the right of the corresponding tuples. The variables of interest (that
is the set con) are represented with a double circle. Here we assume that the
domain D of the variables contains only elements a, b and c.

If semiring values represent probability/fuzziness values then, for instance,
the tuple (a,¢) — 0.2 in constraint cs can be interpreted to mean that the
probability /fuzziness of X and Y having values a and ¢, respectively, is 0.2. A

Combining constraints. When there is a set of soft constraints C, the combined
weight of the constraints is computed using the operator ® : C x C — C defined
as (c1 ® co)n = c1m X g can.

! Fuzzy CSPs can be modeled in the SCSP framework by choosing the c-semiring
Srcsp = ([0, 1], maz, min, 0, 1).

Given a constraint ¢ € C and a variable v € V', the projection of ¢ over V—{v},
written ¢ {(y_qy}) is the constraint ¢’ s.t. ¢'n = >, cnfv := d]. Informally,
projecting means eliminating some variables from the support. This is done by
associating to each tuple over the remaining variables a semiring element which is
the sum of the elements associated by the original constraint to all the extensions
of this tuple over the eliminated variables. In short, combination is performed
via the multiplicative operation of the semiring, and projection via the additive
one.

Solutions. The solution of a SCSP P = (C,con) is the constraint Sol(P) =
(QC) Veon. That is, we combine all constraints, and then project over the
variables in con. In this way we get the constraint with support (not greater than)
con which is “induced” by the entire SCSP. Note that when all the variables are
of interest we do not need to perform any projection.

Solutions are constraints in themselves and can be ordered by extending the
<g order. We say that a constraint c; is at least as constraining as constraint cs
if ¢1 £ co, where for any assignment 7 of variables then

c1 Eco =c1n <gcom

Thus, if ¢; C ¢y holds, then constraint ¢; may be thought of as a refinement, or
‘suitable’ (more restrictive) replacement of constraint cs.

Example 2 Consider again the solution of the fuzzy CSP of Figure 1. It asso-
ciates a semiring element to every domain value of variable X. Such an element
is obtained by first combining all the constraints together and then projecting
the obtained constraint over X.

For instance, for the tuple {a,a) (that is, X =Y = a), we have to compute
the minimum between 0.9 (which is the value assigned to X = a in constraint
1), 0.8 (which is the value assigned to (X = a,Y = a) in ¢3) and 0.9 (which is
the value for Y = a in ¢3). Hence, the resulting value for this tuple is 0.8. We
can do the same work for tuple (a,b) — 0.2, (a,c) — 0.2, (b,a) — 0, (b,b) — 0,
(b,c) — 0.1, {¢,a) — 0.8, {¢,b) — 0.2 and (c,c) — 0.2. The obtained tuples are
then projected over variable X, obtaining the solution (a) — 0.8, (b) — 0.1 and
() — 0.8. A

3 Integrity Analysis with Crisp Constraints

In [16,17] functional requirements are expressed as properties over the possible
traces of actions at the interface of a system. In this section we take a more
abstract approach by describing requirements in terms of constraints on variables
that are invariant over the lifetime of the system.

Example 3 A simple enterprise receives shipments, and generates associated
payments for a supplier. Requirements Analysis identifies the actions shipnote
and payment, corresponding to the arrival of a shipment (note) and its associated

Supplier

Notelship| [pay] represent constraint variables

Fig. 2. A simple payment enterprise

payment, respectively. For the purposes of integrity, the analysis has identified
a requirement that the system should not pay its supplier more than the stated
value of goods shipped.

Let the constraint variables ship and pay represent the total value of goods
shipped to date and the total value of payments made to date, respectively.
Constraint Probity describes the requirement as an invariant over variables ship
and pay.

Probity = pay < ship

Figure 2 outlines a possible implementation of this requirement. A clerk
verifies shipment notes and enters invoice details (action invoice) to a computer
system, which in turn, generates payment to the supplier. This implementation
is described in terms of variables ship, pay and variable inv which represents the
total value of invoices generated to date.

A clerk should not process more invoices than shipments and, therefore, the
clerks behavior is represented by the following constraint.

Clerk = inv < ship
The requirement on the invoice processing application system is
Appl = pay < inv
and the enterprise design is specified as the constraint
Impl = Appl ® Clerk

obtained by combining together Appland Clerk constraints. Intuitively, integrity
is ensured in this system since Impl ensures the high-level requirement Probity.
VAN

In the above example, the supplier’s interface V' to the system is modeled
in terms of the variables ship and pay. Constraints between these variables are
used to characterize our requirements for the system. We want to ensure that
the implementation upholds probity through this interface, that is,

IMmp1y (ehip,payy &= Probity

We are unconcerned about the possible values of the ‘internal’ variable inv and
thus the constraint relation Impl iy nayy describes the constraints in Impl that
exist between variables ship and pay. By definition, the above equation defines
that all of the possible solutions of Impl s nay} are solutions of Probity, that
is, for any assignment 7 of variables then

Implll{ship,pay} n <s Probity n

Definition 1 We say that the requirement S locally refines requirement R
through the interface described by the set of variables V' iff Syy C Ryy. A

Example 4 Continuing Example 3, assume that the application system will
behave reliably and uphold Appl. However, it is not reasonable to assume that
the clerk will always act reliably as Clerk. In practice, the clerk could take on
any behavior:

Clerk = (inv < ship V inv > ship) = true
Imp2 = Clerk ® Appl

Imp2 is a more realistic representation of the actual enterprise. It more accurately
reflects the reliability of its infrastructure than the previous design Impl. How-
ever, since inv is no longer constrained it can take on any value, and therefore,
pay is unconstrained and we have

Imp2uship’pay} IZ Probity

that is, the implementation of the system is not sufficiently robust to be able
to deal with internal failures in a safe way and uphold the original probity
requirement. A

In [20], integrity is given as one attribute of dependability. Dependability
is characterized as a “property of a computer system such that reliance can be
Justifiably placed on the service it delivers” [20]. In [16,17] we argue that this
notion of dependability may be viewed as a class of refinement whereby the
nature of the reliability of the enterprise is explicitly specified.

Definition 2 (Dependability) If R gives requirements for an enterprise and S
is its proposed implementation, including details about the nature of the relia-
bility of its infrastructure, then S is as dependably safe as R at interface that is
described by the set of variables E if and only if Sy CE Ryg A

Separation of duties [12] is a common implementation technique for achieving
integrity. While fault-tolerant techniques replicate an operation, separation of
duties can be thought of as a partitioning of the operation across different user
domains.

Example 5 When a shipment arrives a clerk verifies the consignment at goods-
inwards (entering consign into the system). When an invoice arrives, a different

P3
update
consign

Supplier

H
H
i
ol
1
o
STATUS ||
H
B
i
H
B
ol
il
|

| L Application System
I Enterprise e |

Fig. 3. Supporting separation of duties

clerk enters details into the system, and if the invoice matches a consignments,
a payment is generated. So long as the operations are separated then a single
clerk entering a bogus consignment or invoice can be detected by the system.
This is depicted in Figure 3.

Let variables inv and con represent the total value of invoices and consign-
ments, respectively, received to date. Specifications Clerkl, Clerk2 and App3 de-
fine the constraints on the system variables, reflecting invariants that are ex-
pected to be upheld by the clerks and the application system.

Clerkl = con < ship
Clerk2 = inv < ship
App3 = pay < min(con,inv)

This system is as dependably safe as Probity even when a single clerk fails, that
is, we have

(Clerkl ® Clerk2 @ App3) {ship,pay} = Probity
(Clerk2 @ App3) y{ship,pay} = Probity
(Clerkl ® App3) {ship,pay} = Probity

Note that the absence of a constraint means that it does not restrict variables
to any values. However, the system is not resilient to the failure of both clerks
nor to the failure of the application software. Removing the ‘normal behavior’
constraints imposed by both clerks or by the application yields the following.

APP3 | (ship,pay} £ Probity
(Clerkl @ Clerk2) {ship,pay} £ Probity

As currently defined, our specification favors the payment-enterprise, not the
supplier: payments may be very late, or not made at all, but are never bogus. If
a clerk fails then payment may not be made. In reality, the infrastructure contains

many additional components; audit logs to record failures and supervisors, who
make judgments and rectify these inconsistencies. A

Example 6 Another approach to dealing with unreliable systems (infrastruc-
ture) is to replicate the faulty components and make the system fault tolerant.
We can make the payment enterprise fault tolerant if we replicate the clerk. We
assume that every shipment is processed by 2k + 1 replicated clerks. The system
votes (on the 2k + 1 invoices) to decide whether or not a consignment is valid. In
this case, the abnormal behavior of the infrastructure is represented by properly
constraining the behavior of at least k + 1 clerks, and we can argue that the
resulting system is as dependably safe as Probity. A

4 Quantitative Integrity Analysis

The examples in the previous section use crisp constraints to describe system
requirements and implementations. When a quantitative analysis of the system is
required then it is necessary to represent these properties using soft constraints.

Example 7 Consider again the Probity requirement and suppose that we aim
not only to have a correct implementation, but, if possible, to have the ”best”
possible implementation. To do this we consider a soft constraint between vari-
ables ship and pay that assigns to the configuration ship = a and pay = b the
preference level represented by the integer a — b%. If we are looking for the best
implementation for the buyer, then we will try to maximize this level. In this
way, different instances of the same system can be compared, and different im-
plementations can be checked and analyzed.

Soft constraints also provide a basis for evaluating and comparing less re-
silient implementations that cannot uphold the intended requirement. For ex-
ample, if an acceptable implementation Imp cannot be found to satisfy

Impu{ship’pay} C Probity

then one might be satisfied (in some sense) by selecting the best of the less
resilient, but acceptable implementations. Given insufficiently resilient imple-
mentations Imp; and Imp, then their corresponding semiring levels provide a
relative ordering that allow the selection of the ‘best’ of the less resilient imple-
mentations.

Probabilistic based reasoning can also be done within the soft constraints
framework. For example, consider an implementation Imp3 that ensures that the
number of payments is never more than 3, regardless of the number of shipments
received. This is represented as:

Imp3 = pay < 3.

2 This value represent how much pay differs from ship. Our goal is to have pay=ship,
but sometimes this is impossible and our goal will be to minimize the a — b difference.

Assume that there is a constraint on variable ship that specifies the probability
of the possible number of shipments made at a certain time. If the nature of the
probability distribution is such that it is generally more likely that the value of
ship is greater than 3, then Imp3 is a not unreasonable implementation (despite
IMmP3 {ship,pay} = Probity not holding). A

The following example illustrates how one might consider the probability of
component failure within a specification.

Example 8 Consider the assignment of probability of failure to the infrastruc-
ture components of Example 5.

For the sake of efficiency, assume that in this implementation Imp4, rather
than verifying consignment values (and details), Clerkl computes batch to-
tals [32] by simply counting the number of consignments received to date. Let
the variable contot represent this value. The invoice processing application also
counts the number of invoices received to date (as invtot) and compares this
against contot. If there is a discrepancy then an error is flagged and it is as-
sumed that it is investigated and repaired.

The implementation is characterized by relationships between these variables
that include:

— If contot = invtot (totals match) then the probability that the invoice is
accurate is P1, that is, the probability that inv = ship is P1.

— If contot # invtot then the probability that the invoice is accurate is P2,
that is, the probability that inv = ship is P2.

— The application program could fail with an incorrect value for pay resulting
in an incorrect relationship pay = inv or pay # inv. Let P3 represent the
probability of the application failing, regardless of the relationship between
pay and inv.

The application Imp4 is obtained combining all the constraints. We will easily
obtain

— If contot = invtot then the probability that payment is safe (not over pay-
ment, pay < ship) is P1 x (1 — P3) where P3 is the probability of the
application failing.

— If contot # invtot then the probability that payment is safe (pay < ship)
is P2 x P3. We assume that when such a discrepancy is found then the
application software can repair it and, therefore, the probability that the
payment is safe in this case is also P2 x P3.

The constraints between pay, ship, contot and invtot are built over the prob-
ability semiring Sp.op = ([0, 1], maz, %, 0, 1).

When using probability in the implementation, then the specification must
be defined in similar way. In this case, a correct specification must ensure that
the probability that pay < ship is at least P4.

Thus, the system specification is

Probity,,.., = Prop : (pay x ship) — R

Prop(a, b) P4 if a <b,
a =
PAg; 1 — P4 otherwise.

To check correctness of our implementation we have to check that

Imp4 @{payship}g Probity,,,..,

5 Discussion and Conclusion

The contribution of this paper is a scalable and quantitative technique for ana-
lyzing the configuration of application system integrity policies.

By modeling the system and its infrastructure only in terms of abstract
constraints, we argue that it becomes more realistic (than [16]) to consider mod-
eling large complex application systems. Constraint solving can be done for large
problems and, therefore, the proposed integrity analysis (as a constraint satis-
faction problem) should scale up to similarly large/complex application systems
configurations.

In [27] a policy analysis technique is proposed for detecting possible conflicts
between separation of duty, user role assignment and role inheritance rules. This
can be thought of as providing an analysis on, what is, in effect, the constraints
on user role assignments. While useful, it is limited since it does not consider any
further semantic information about the system and/or infrastructure. It would
be interesting to apply the integrity analysis techniques proposed in this paper
to extend the results in [27] for RBAC models.

Section 4 describes how soft constraints provide a basis for a quantitative
analysis of integrity. Soft constraints may be used in two ways. Firstly, they
can be used to provide a measure of integrity to compare the effectiveness of
different system configurations. If it is not possible to develop a resilient system
configuration that fully meets the set of system requirements, then one may
wish to consider the best of the less resilient, but acceptable (in some sense)
configurations. For example, if it is not possible to configure a system that is
resilient to all internal fraud, then an acceptable alternative might be to keep
the fraud within some limit. Example 7 sketches a simplistic example of this;
further research is required to develop this in general.

The second application of soft constraints to the analysis of integrity is that
it allows the use of quantitative information in modeling the system and in-
frastructure configuration. By associating probability measures with component
failures, Example 8 described the validation that a system configuration/policy
achieved integrity within some degree of probability. Soft constraints provide a
practical framework in which such sophisticated models can be analyzed.

In [2] soft constraints are used to represent confidentiality and authentication
properties of security protocols. This approach is not unlike the strategy taken
in this paper. The solution of the resulting constraint system gives a measure
of the confidentiality /authentication of the system. In [2] a protocol run is com-
pared with an ”ideal” run without spies, When the solutions differ an attack
to the protocol is identified. The proposed integrity analysis must consider var-
ious ‘spy’s, each characterizing the threats that a protection mechanism must
withstand.

Sections 3 and 4 use constraints to describe invariant relationships between
constraint variables over the lifetime of the system. This abstract approach
means that it is possible to use verification tools to describe and automati-
cally analyze whether system configurations achieve integrity. Developing such
a environment is a topic for future research.

However, we are not limited to only this style of abstract reasoning. In [16]
an unwound form of local refinement is given in terms of conditions (constraints)
on states and state transitions. A system that is specified in a model-oriented
manner (for example, [30]) can be characterized in terms of constraints over
state variables and transitions, and therefore, this unwound version of local re-
finement can be used to analyze integrity of more concrete specifications within
a constraint framework.

The use of soft constraints permit us to perform a quantitative analysis of
system integrity (see Section 4) useful to compare two system implementation.
In [23] they follow a similar strategy by approximating the notion of probabilistic
non-interference with a notion of e-similarity. To do this they use a concurrent
constraint probabilistic language. Despite the fact that the use of constraints is
common between their and our approach, they rely on the notion of path (or
trace) and on the probability of each path.

References

[1] G.J.Badros, A. Borning, and P. J. Stuckey. The cassowary linear arithmetic con-
straint solving algorithm. ACM Transactions on Computer Human Interaction,
8(4):276-306, dec 2001.

[2] G. Bella and S. Bistarelli. Soft Constraints for Security Protocol Analysis: Con-
fidentiality. In Proc. of the 3rd International Symposium on Practical Aspects of
Declarative Languages (PADL’01), LNCS 1990, pages 108-122. Springer-Verlag,
2001.

[3] K.J. Biba. Integrity considerations for secure computer systems. Technical Report
MTR-3153 Rev 1 (ESD-TR-76-372), MITRE Corp Bedford MA, 1976.

[4] S. Bistarelli. Soft Constraint Solving and programming: a general framework. PhD
thesis, Dipartimento di Informatica, Universita di Pisa, Italy, mar 2001. TD-2/01.

[5] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schiex, and G. Verfaillie.
Semiring-based CSPs and Valued CSPs: Frameworks, properties, and comparison.
CONSTRAINTS: An international journal. Kluwer, 4(3), 1999.

[6] S. Bistarelli, U. Montanari, and F. Rossi. Constraint Solving over Semirings. In
Proc. IJCAI95, San Francisco, CA, USA, 1995. Morgan Kaufman.

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

[25]

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, 44(2):201-236, Mar 1997.

S. Bistarelli, U. Montanari, and F. Rossi. Soft concurrent constraint programming.
In Proc. ESOP, April 6 - 14, 2002, Grenoble, France, LNCS. Springer-Verlag,
2002.

J.A. Bowen and D. Bahler. Constraint-based software for concurrent engineering.
IEEE Computer, 26(1):66—68, January 1993.

Kirchner C. Kirchner and M.Vittek. Designing clp using computational systems.
In P. Van Hentenryck and S. Saraswat, editors, Proceedings of Principles and
Practice of Constraint Programming. MIT Press, 1995.

W. Chan, R. Anderson, P. Beame, and D. Notkin. Combining constraint solving
and symbolic model checking for a class of systems with non-linear constraints.
In Orna Grumberg, editor, Computer Aided Verification, 9th International Con-
ference, CAV’97 Proceedings, volume 1254 of Lecture Notes in Computer Science,
pages 316-327, Haifa, Israel, June 1997. Springer-Verlag.

D. D. Clark and D. R. Wilson. A comparison of commercial and military computer
security models. In Proceedings Symposium on Security and Privacy, pages 184—
194. IEEE Computer Society Press, April 1987.

G. Delzanno and T. Bultan. Constraint-based verification of client-server proto-
cols. In Proceedings CP2001, volume 2239 of Lecture Notes in Computer Science,
pages 28677 Springer-Verlag, 2001.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language chip. In Proceedings of FGCS, pages
693-702, 1988.

H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a prob-
abilistic approach. In Proc. Furopean Conference on Symbolic and Qualitative
Approaches to Reasoning and Uncertainty (ECSQARU), volume 747 of LNCS,
pages 97-104. Springer-Verlag, 1993.

S.N. Foley. Evaluating system integrity. In Proceedings of the ACM New Security
Paradigms Workshop, 1998.

S.N. Foley. A non-functional approach to system integrity. IEEE Journal on
Selected Areas in Commications, 2003. forthcoming.

E.C. Freuder and R.J. Wallace. Partial constraint satisfaction. AI Journal, 58,
1992.

T. Frithwirth. Theory and practice of constraint handling rules. Journal of Logic
Programming - Special Issue on Constraint Logic Programming, 37(1-3):95-138,
oct-dec 1998.

J. Laprie. Dependability: Basic concepts and terminology.

A K. Mackworth. Constraint satisfaction. In S.C. Shapiro, editor, Encyclopedia
of AI (second edition), pages 285-293. John Wiley & Sons, 1992.

U. Montanari. Networks of constraints: Fundamental properties and applications
to picture processing. Information Science, 7:95-132, 1974. Also Technical Report,
Carnegie Mellon University, 1971.

A. Di Pierro, C. Hankin, and H. Wiklicky. On approximate non-interference. In
editor, Proceedings of WITS 02 — Workshop on Issues in the Theory of Security.
IFIP WG1.7, 2002.

J.F. Puget. A c++ implementation of clp. In Proceedings of the 2nd Singapore
International Conference on Intelligent Systems, 1994.

Zs. Ruttkay. Fuzzy constraint satisfaction. In Proc. 3rd IEEE International Con-
ference on Fuzzy Systems, pages 1263—1268, 1994.

[26]
[27]

[28]

[29]

[30]

31]

32]

R Sandhu et al. Role based access control models. IEEE Computer, 29(2), 1996.
A. Schaad and D. Moffett. The incorportation of control principles into access
control policies. In Workshop on Policies for Distributed Systems and Networks,
Bristol, UK, 2001.

T. Schiex. Possibilistic constraint satisfaction problems, or “how to handle soft
constraints?”. In Proc. 8th Conf. of Uncertainty in Al pages 269-275, 1992.

T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. IJCAI95, pages 631-637, San Francisco, CA,
USA, 1995. Morgan Kaufmann.

J. M. Spivey. The Z Notation: A Reference Manual. Series in Computer Science.
Prentice Hall International, second edition, 1992.

U. S. Department of Defense. Integrity-oriented control objectives: Proposed re-
visions to the trusted computer system evaluation criteria (TCSEC). Technical
Report DOD 5200.28-STD, U. S. National Computer Security Center, October
1991.

United States General Accounting Office, Accounting and Information Manage-
ment Division. Financial Audit Manual, December 1996. GAO/AFMD-12.19.5A.

