
6th Symposium on Security Analytics and Automation, IEEE 2013

1

Discovering Emergent Norms in Security Logs

Olgierd Pieczul∗†, Simon N. Foley†
∗Ireland Lab, IBM Software Group, Dublin, Ireland

†Computer Science Department, University College Cork, Ireland

Abstract—A model is presented that characterizes security
logs as a collection of norms that reflect patterns of emergent
behavior. An analysis technique for detecting behavioral norms
based on these logs is described and evaluated. The application
of behavioral norms is considered, including its use in system
security evaluation and anomaly detection.

I. I NTRODUCTION

Log data is a useful source of information when monitoring
security violations and identifying incidents [14], [17],[15]. A
security log records a sequence of relevant system and/or ap-
plication events in chronological order. Conventional security
(log) analytics systems tend to take anevent-centricview of
these logs whereby potential threats and security anomalies are
defined, and searched for, in terms of relatively straightforward
event interactions. For example, rudimentary tools searchfor
an occurrence of a particular event, an event with a specific
property, or some collection of events over a given period of
time [6]. More advanced tools search for simple patterns or
correlations of events that may represent potential threats [19].
Log analysis, in these cases, characterizes anomalies in terms
of prescribed events and their properties.

This event-centric view of log analysis can require the
specification of a large number of ad-hoc rules that may be
difficult to comprehend and manage. Rather than thinking of
anomalies in terms of low-level log-events, we are interested
their characterization in terms of more abstract system artifacts.
For example, characterizing a separation of duty anomaly in
terms of transactions of log events. While transactions are
effectively sequences of events, we argue that using behavioral
abstractions such as transactions, workflows, and so forth,
can facilitate comprehension of the information in a security
log. This leads to a morebehavior-centricview of security
logs whereby anomaly analysis is characterized in terms of
behavioral abstractions. For example, checking log data for
conformance with business process workflows [23] or work-
flow security requirements [2], or matching a security log
against an automaton [20], temporal logic specification [7]or
n-gram profile [11] that represents acceptable behavior of the
system.

A challenge to taking this behavior-centric approach is find-
ing the right level of abstraction of log events and developing
specifications that adequately represent anomaly-free behavior.
Existing approaches require an a priori user prescription on
event abstraction, for instance, ignoring all event attributes
other than operation name [11]. Given an event abstraction,
a specification of acceptable behavior may be user-defined
[7], [9], [18]. However, the scale of the system may be such
that it is difficult for a user to formulate a complete and
efficacious specification of normal behavior. As a consequence,
security specifications focus on those behaviors perceivedto be

critical, with an assumption that the other behaviors, known or
unknown, are not significant. Often, it is these side behaviors
that can lead to a security compromise of the system.

Behavior mining techniques can be used on system logs
to automate the discovery of models that represent these
potentially known and unknown normal behaviors [8], [11],
[23]. However, the level of abstraction in these models is fixed
and must be a priori specified, with the result that some side
behaviors may not be adequately captured in the discovered
model of acceptable behavior. Deciding one particular level of
abstraction of the log data may conceal behavioral patternsof
interest that emerge at other levels of abstraction. For example,
considering transaction-id, in addition to the operation name, in
events may help to reveal other repeating patterns of behaviors,
such as transactions, in the log. Furthermore, the complexity
of a large-scale system may be such that a full understanding
of the event attributes and behaviors exhibited in a system log
may not be known.

This paper proposes an approach to analyzing system logs
for the purposes of discovering models that represent normal
behavior. The primary contribution of the proposed approach
is that it can be used to identify suitable behavior abstractions
in the system log. Thesebehavioral normsrepresent repeating
patterns of behavior at different levels of abstraction that occur
in the system logs. In following prescribed behavior/security
controls, some norms may already be known, for example, a
secure workflow of transactions implemented by the system.
Other norms, for example, representing side-behaviors, may be
unknown, in that that they have not been explicitly formulated
but emerge as a consequence of normal system operation. Two
experiments, described in this paper, were carried out which
demonstrate the emergence of such norms.

The paper is structured as follows. Section 2 describes the
proposed model of behavioral norms. Section 3 outlines how
system logs can be searched for norms. Experiments that were
used to evaluate the approach using simulated and real log
sources are described in Section 4. The contribution of the
work and related research is discussed in Section 5 and Section
6 concludes the paper.

II. A M ODEL OF BEHAVIORAL NORMS

A. Events and traces

The following is specified using Z notation [21] and
is syntax and type checked using Fuzz checker. Anevent
represents an observation of some interaction with a system.
This paper focusses on events drawn from system logs, e.g.,
[Feb 24 08:15:04 wlan0: authenticated] denotes an event from
a Linux kernel log. LetEvent denote the set of all possible
events. While an event may be regarded as defined in terms of

6th Symposium on Security Analytics and Automation, IEEE 2013

1

1 Feb 24 08:15:04 wlan0: authenticate with 38:60:77:7d:6c:4f
2 Feb 24 08:15:04 wlan0: send auth to 38:60:77:7d:6c:4f
3 Feb 24 08:15:04 wlan0: authenticated

4 Feb 24 08:15:04 wlan0: associate with 38:60:77:7d:6c:4f
5 Feb 24 08:15:04 wlan0: RX AssocResp from 38:60:77:7d:6c:4f
6 Feb 24 08:15:04 wlan0: associated

7 Feb 25 14:12:18 wlan0: authenticate with 38:60:77:7d:6c:4f
8 Feb 25 14:12:18 wlan0: send auth to 38:60:77:7d:6c:4f
9 Feb 25 14:12:18 wlan0: authenticated

10 Feb 25 14:12:18 wlan0: associate with 38:60:77:7d:6c:4f
11 Feb 25 14:12:18 wlan0: RX AssocResp from 38:60:77:7d:6c:4f
12 Feb 25 14:12:18 wlan0: associated

Fig. 1. Linux kernel event log〈k1, k2 . . . , k12〉

a collection of attributes, we do not prescribe any particular
attributes or structure on an event.

An event equivalencerelation ∼ : Event ↔ Event
defines classes of events that are considered to have
common characteristics. LetEqE define the set of all
event equivalence relations. For example, kernel events
[Feb 24 08:15:04 wlan0: send auth to 38:60:77:7d:6c:4f]
and [Feb 24 08:15:04 wlan0: authenticated] are
defined as (date) equivalent as they both occur
on the same date. Alternatively, the events
[Feb 25 14:12:18 wlan0: associate with 38:60:77:7d:6c:4f]
and [Feb 24 08:15:04 wlan0: send auth to 38:60:77:7d:6c:4f]
are defined as mac-equivalent as they refer to the same
hardware device.

The different characteristics of an event can be de-
scribed in terms of itsattributes. For example, a ker-
nel log event could be described in terms of attributes
date, iface, action and device. Let Attribute define the set
of all attributes. Given evente : Event and set of at-
tributes A : P Attribute then the event projection e@A
gives the evente with attributes not inA removed. For ex-
ample, [Feb 24 08:15:04 wlan0: authenticated]@{iface,action}
gives event [wlan0: authenticated]. Intuitively, event projection
can be used to define event equivalence. Given set of attributes
A and eventse, f : Eventthen definee∼A f ⇔ (e@A= f @A).

A trace is a sequence of events. LetTrace define the set
of all traces.

Trace== seq Event

For example, Figure 1 depicts a trace of kernel log events
〈k1, k2 . . . , k12〉.

For the purposes of this paper, system logs are used to
build approximations of system behavior, in particular, sets of
n-grams [11] are used to model acceptable system traces. This
construction is represented as an equivalence relation, whereby
t ≡ s is interpreted to mean that the underlying approximate
model considers tracet to besimilar to traces (n-gram match).
If n-grams are the same length as the trace then similarity is
defined by trace equality. If n-grams are of length one then, for
the kernel log example, we have, for example,〈k1, k2, k3〉 ≡
〈k2, k3, k1〉. N-gram based trace similarity is typically defined
with respect to some threshold [11]. For the purposes of this
paper the reader may taket ≡ s to mean that tracest ands are
similar to an acceptable predefined degree, without any lossof
generality.

Given event projection operation@ then trace pro-
jection t@A is defined as the projection (based on at-
tributes inA) of events int. For example,〈k1, k2〉@{action}
=〈authenticate, send auth〉. This can be further generalized to
projection over sets of traces, where given a set of tracesT
thenT@A returns the set of tracest@A wheret ∈ T.

B. Strands and Partitions

A strand is a trace of events that share a common charac-
teristic. LetEqE be the set of all possible equivalence relations
over Event. Given an equivalence relation∼ defined over
events then defineStrand(∼) to be the set of all possible traces
of equivalent events. Note,P denotes a power set andran(f)
denotes range of the functionf .

Strand: EqE → P Trace

∀ ∼ : EqE •
Strand(∼) = {t : Trace| (∀e, f : ran(t) • e∼ f)}

For example, if∼date denotes date-equivalence of kernel log
events then traces〈k1, k2, k3〉 and 〈k2, k4, k6〉 from Figure 1
are members ofStrand(∼date), while trace 〈k1, k7〉 is not
a member.

Any trace can bepartitioned into a set of strands that pre-
serve the event ordering in the original trace. Define function
prtn(∼, t) to be the partitioning of the tracet into a set of
strands according to the event equivalence relation∼. For
example, partitioning the kernel log in Figure 1 according
to date-equivalence generates exactly two strands〈k1, . ., k6〉
and 〈k7, . ., k12〉.

C. Norms

Sets of event traces can be used to model system behavior
[4]. We are interested in inferring behavioral models of systems
from their logs. These models may contain repeating patterns
of behavior. A behavioralnorm is a set of traces that is
considered to define a comparable behavioral pattern. For
example, traces〈k1, k2〉 and 〈k7, k8〉 from the kernel log in
Figure 1 represent comparable authentication-related behavior
and are (behaviorally) different to〈k2, k3〉.

A trace equivalence relation ≈ : Trace ↔ Trace
defines classes of traces that have a comparable behavioral
characteristic. LetEqT define the set of all trace equivalence
relations. Given a trace equivalence relation≈, thenNorm(≈)
defines the set of all possible norms based on≈.

Norm : EqT → P(P Trace)

∀ ≈ : EqT •
Norm(≈) = {c : P Trace| ∀ t1, t2 : c • t1 ≈ t2}

For example, the set of traces{〈k1, k2, k3〉, 〈k7, k8, k9〉} could
be regarded as an authentication norm drawn from Figure 1 and
characterizing a fragment of authentication behavior during
a wireless network connection. Trace projection can used to
construct a definition for trace equivalence whereby, given
tracest, s, a set of attributesA and a trace projection function
@, then t ≈A s ⇔ t@A ≡ s@A. Note that trace equivalence
(≈) is different to trace similarity (≡), the latter defining
an approximate test for trace equality. In the kernel log

6th Symposium on Security Analytics and Automation, IEEE 2013

1

example and with trace equality as similarity, the authenti-
cation norm is based on the trace equivalence≈{action} and
〈k1, k2, k3〉 ≈{action} 〈k7, k8, k9〉. Under this same interpreta-
tion, {〈k1, k2, k3〉, 〈k4, k5, k6〉} is not an authentication norm.

A set of traces is partitioned by trace equivalence into
a set of norms. Defineprtn(≈, T) to be the partitioning of
the set of tracesT into a set of norms based on the trace
equivalence relation≈. In this paper norms are defined in
terms of the application of a trace-equivalence relation toa
(projected) strand partition of a log. Formally, given a logl, an
event equivalence relation∼ and a strand equivalence relation
≈ then the set of norms is defined asprtn(≈, prtn(∼, l)).

D. Modeling HTTP logs

Figure 2 depicts an HTTP log of events〈h1, . . . , h12〉
generated, for example, by a web-based order processing
system. Each line defines an HTTP request event described
using the Common Log Format [16] with attributes: remote
host, RFC931 authenticateduser, [date], ” request”, status and
bytes. For ease of presentation in this example, trace similarity
(≡) is defined by equality and we omit some attributes that are
not relevant to the discussion.

1) Strands for HTTP events:The behavioral patterns in
the HTTP request log can be modeled in many different ways.
By eventdate-equivalence, the log is partitioned into the two
strands〈h1, . ., h7〉 and 〈h8, . ., h12〉, reflecting the common
practice of “rolling” logs on a daily basis. An alternative view
might consider requests from the same user to be equivalent,
partitioning the log into three strands involvingfrank, alice and
lucy.

Suppose that the path portion of an HTTP request event
is defined in terms of the attributesmethod, action and item.
For example, in Figure 2 the eventh1 is an order (=h1@
{action}) for item 4c4712 (=h1@{item}). In this case an event
equivalence relation∼{item}, defined in terms ofitem-equality,
groups events together as actions carried out on an order; this
partitions the HTTP log into the three distinct strands depicted
in Figure 3. Note that for ease of presentation and when no
ambiguity can arise attributes may be omitted from a log; in
this case Figure 3 is based on the equivalence relation∼{item}

defined overhttpLog@{user,date,method,action,item}. An al-

{〈frank [05/Nov/2012:09:11:26] PUT /order/4c4712,
lucy [05/Nov/2012:16:30:16] GET /order/4c4712,
lucy [05/Nov/2012:16:32:32] PUT /invoice/4c4712,
frank [05/Nov/2012:17:47:33] GET /invoice/4c4712〉,

〈alice [05/Nov/2012:13:18:46] PUT /order/1d261e,
lucy [05/Nov/2012:17:46:06] GET /order/1d261e,
lucy [05/Nov/2012:17:48:35] PUT /invoice/1d261e,
alice [06/Nov/2012:09:58:48] GET /invoice/1d261e〉,

〈frank [06/Nov/2012:09:10:07] PUT /order/61ec0c,
lucy [06/Nov/2012:14:34:31] GET /order/61ec0c,
lucy [06/Nov/2012:14:47:20] PUT /invoice/61ec0c,
frank [06/Nov/2012:16:01:45] GET /invoice/61ec0c〉}

Fig. 3. Strands fromhttpLog partitioned by attributeitem

ternative view that partitions the log into strands of operations
carried out by a given user on a given item is depicted in
Figure 4.

{〈frank PUT /order/4c4712, frank GET /invoice/4c4712〉,
〈frank PUT /order/61ec0c, frank GET /invoice/61ec0c〉,
〈alice PUT /order/1d261e, alice GET /invoice/1d261e〉,
〈lucy GET /order/4c4712, lucy PUT /invoice/4c4712〉,
〈lucy GET /order/1d261e, lucy PUT /invoice/1d261e〉,
〈lucy GET /order/61ec0c, lucy PUT /invoice/61ec0c〉}

Fig. 4. Strands prtn(∼{user,item} , httpLog) projected through
{usr, method, action, item}

2) Norms for HTTP traces:The three strands depicted
in Figure 3 give a projection ofprtn(∼{item}, httpLog) that
reflect an item-centric view of the HTTP log. Within each
item strand there is a common pattern of behavior, specifically,
item ordering actions followed by item invoicing actions. This
repeating pattern in order processing can be characterizedin
terms of the norm:

{〈PUT /order/4c4712, GET /order/4c4712,
PUT /invoice/4c4712, GET /invoice/4c4712〉,

〈PUT /order/1d261e, GET /order/1d261e,
PUT /invoice/1d261e, GET /invoice/1d261e〉,

〈PUT /order/61ec0c, GET /order/61ec0c,
PUT /invoice/61ec0c, GET /invoice/61ec0c〉}

based on the trace-equivalence ≈{method,action}

over the projected strands defined byprtn(∼{item}

, httpLog)@{method,action,item}. Intuitively, the above
norm represents a transaction-style behavior pattern in
the events of the HTTP log. The norm is a collection of
strands that have an equivalent behavior pattern (according to
≈{method,action}), each carried out on an identified target (in
this case,item).

Intuitively, strands define sequences of equivalent events,
while the strands that make up a norm define a (repeated)
equivalent behavior pattern. Different event and trace equiva-
lences result in different norms, reflecting different kinds of
patterns of behavior within the system. For example, Fig-
ure 4 depicts a partition of the log into strands that define
the actions of a given user on an given item. The strand
〈frank PUT/order/4c4712, frank GET/invoice/4c4712〉 from this
partition representsfrank ordering and invoice-processing item
4c4712. Across these strands is a repeating user-order-invoice
behavior norm that can be identified in terms of strands that
have equivalentmethod and action attributes, that is, by the
(strand) trace equivalence relation≈{method,action}. In this case,
the strand partition of the log (given in Figure 4) is partitioned
into a customer norm and a merchant norm, as depicted in
Figure 5. A customer (norm) puts orders and gets invoices
while the merchant (norm) gets orders and puts invoices. These
norms also suggest user-roles whereby Frank and Alice are
customers and Lucy has a merchant role.

{{〈frank PUT /order/4c4712, frank GET /invoice/4c4712〉,
〈frank PUT /order/61ec0c, frank GET /invoice/61ec0c〉,
〈alice PUT /order/1d261e, alice GET /invoice/1d261e〉},

{〈lucy GET /order/4c4712, lucy PUT /invoice/4c4712〉,
〈lucy GET /order/1d261e, lucy PUT /invoice/1d261e〉,
〈lucy GET /order/61ec0c, lucy PUT /invoice/61ec0c〉}}

Fig. 5. prtn(≈{method,action} , prtn(∼{user,item} , httpLog) projected
through{usr, method, action, item}

6th Symposium on Security Analytics and Automation, IEEE 2013

1

1 10.20.3.11 - frank [05/Nov/2012:09:11:26] "PUT /order/4c4712 HTTP/1.1" 200 1724
2 10.43.9.1 - alice [05/Nov/2012:13:18:46] "PUT /order/1d261e HTTP/1.1" 200 4354
3 10.1.12.1 - lucy [05/Nov/2012:16:30:16] "GET /order/4c4712 HTTP/1.1" 200 6356
4 10.1.12.1 - lucy [05/Nov/2012:16:32:32] "PUT /invoice/4c4712 HTTP/1.1" 200 2326
5 10.1.12.1 - lucy [05/Nov/2012:17:46:06] "GET /order/1d261e HTTP/1.1" 200 8320
6 10.20.3.11 - frank [05/Nov/2012:17:47:33] "GET /invoice/4c4712 HTTP/1.1" 200 2925
7 10.1.12.1 - lucy [05/Nov/2012:17:48:35] "PUT /invoice/1d261e HTTP/1.1" 200 221

8 10.20.3.11 - frank [06/Nov/2012:09:10:07] "PUT /order/61ec0c HTTP/1.1" 200 3327
9 10.76.13.8 - alice [06/Nov/2012:09:58:48] "GET /invoice/1d261e HTTP/1.1" 200 6366

10 10.1.12.2 - lucy [06/Nov/2012:14:34:31] "GET /order/61ec0c HTTP/1.1" 200 2727
11 10.1.12.2 - lucy [06/Nov/2012:14:47:20] "PUT /invoice/61ec0c HTTP/1.1" 200 9326
12 10.20.3.11 - frank [06/Nov/2012:16:01:45] "GET /invoice/61ec0c HTTP/1.1" 200 332

Fig. 2. httpLog trace of HTTP requests〈h1, . . . , h12〉

III. I N SEARCH OFNORM

A norm identifies common sequences ofoperationscarried
out relative to atarget. Let O and T denote sets of attributes
intended to represent the operation and the target of events,
respectively. Event equivalence∼T distinguishes targets while
strand equivalence≈O distinguishes operations. For example,
in Figure 5, order-invoice operations are carried out relative
to user-item targets. We are interested in identifying likely
target and operation attributes (event and strand equivalence
relations) that generate norms that provide meaningful charac-
terizations of a system’s behavior. Considering a norm defined
as adate operation on amethod target, that is,prtn(≈{date}

, prtn(∼{method}, httpLog)), does not reveal anything interest-
ing about thehttpLog. However, the norms in Figure 5 do
reveal potentially interesting customer and merchant related
norms.

Given operation and target attribute setsO andT, respec-
tively, then l@(O∪ T) gives the view of interest of the logl.
In this case, the norms of logl, defined as

NO
T (l) = prtn(≈O, prtn(∼T, l))@O

are intended to represent patterns of operations on targets.
Note that events not inO∪T are considered superfluous while
targets are not explicitly included in the final set of norms since
their existence is implicit in the strands they relate to. These
normsNO

T (l) are computed on the basis of a singlelearning
log l. The effectiveness of usingNO

T (l) as a representative
model of the given system’s behavioral norms is determined
by comparison with the norms generated by a furthertest log
t of valid interactions of the system.

Let MO
T (l, t) define an operation that compares the norms

of NO
T (l) and NO

T (t) and returns a measure in[0..1] that
indicates their degree of similarity to each other, wherebya
higher value indicates a greater degree of similarity. Intuitively,
MO

T (l, t) gives a measure of the false negatives when one treats
NO

T (l) as a model of the behavioral norms in the system.
A measure of the false positives forNO

T (l) as a model of
behavioral norms is given byMO

T (l, c), wherec is a control
log of the system, that is a log with sequence perturbations that
are known not to occur in the system. Section III-A outlines
our current encoding ofMO

T(l, t) based on n-grams.

A. N-gram based Norm Similarity

N-grams are used to provide approximate models of system
behavior [11]. An observed trace of the system is encoded as
a set of n-grams of sizen. The objective is to find a suitable

n-gram size such that this set of n-grams can be used to test, to
some degree of accuracy, the validity of any execution trace
of the system. Forrest [11] describes a strategy for building
this set from a log trace and uses system test and control logs
to indicate accuracy. The simplicity of this approach makesit
attractive for initial implementation, where we focus on testing
for norms existence.

This n-gram model provides (approximate) trace matching
and can be used to implement the trace similarity relation (≡).
This is generalized to norms, whereby a set of strands (a norm)
is encoded as a set of n-grams that provide an (approximate)
method to test a strand for membership of a norm. A variation
of the Jaccard coefficient [5] is used to provide a measure of
the similarity between two sets (norms) of n-grams. This gives
the size of the intersection of the sets divided by the size ofthe
union of the sets. LetJ (n, m) denote this measure between
normsn andm.

Given a logl and a test tracet then the average of the best
of the Jaccard coefficients from the log norms inNO

T (l) to the
test norms inNO

T (t) defines a similarity measure between the
sets of norms. Thus, given operator and target attributesO and
T; log and test tracesl andt, and an underlying n-gram model
then define:

MO
T (l, t) =

∑

n∈NO
T (l)

(

maxm∈NO
T (t) J (n, m)

| NO
T (l) |

)

The same calculation is used to define the similarityMO
T (l, c)

between the log tracet and the control tracec.

B. Implementation

Given tracesl (log), t (test) andc (control), then a norm
search finds operation attributesO, target attributesT and an
n-gram model (≡) resulting in the best values forMO

T (l, t) and
MO

T (l, c). A prototype of this search has been implemented.
The objective of this paper is to demonstrate the existence and
potential utility of norms. While the current implementation is
quite effective for demonstrating this for the moderately-sized
logs and attribute sets described in the next section, we have
not focussed on search efficiency. In principle, the search is
exponential in its parameters. However, many techniques exist
for dealing with these kinds of problems and developing a
scalable norm search is a topic for future research.

IV. EVALUATION

Two experiments were carried out in order to evaluate
whether norms emerge from system logs. Section IV-A de-

6th Symposium on Security Analytics and Automation, IEEE 2013

1

scribes the emergence of norms from the logs of a simulated
system. Section IV-B documents norms that emerged in our
study of a complex enterprise-grade application system.

A. Norms in a simulated system

A system that simulated the execution of the HTTP exam-
ple in Section II-D was developed. It was extended to include
additional actions likecart, payment, dispatch, return, etc. The
objective of this experiment was to demonstrate that norms
could be discovered in logs of systems that were fabricated
deliberately to have repeating patterns within their apparently
random-looking behavior. In particular, that the norm search
would find the sets of operationO and targetT attributes as
expected.

The system was built as a collection of concurrent users,
engaging HTTP events. A simple control-flow model was
used to specify user behavior scenarios in terms of repeating
sequences of events to be carried out across (random) items.
During simulation, a user repeatedly selects, at random, ex-
ecution sequences from the choice defined by the scenario.
This control-flow model was used to generate system traces
by (randomly) interleaving the user behavior scenarios.

The simulation comprised of 500 executions by 25 users,
each selecting executions at random from the choice of 30
sequences defined by the user-scenario. Running the simu-
lation twice generated different learningl and testt traces,
each containing approximately 50,000 events. A similar sized
control logc was generated by re-running the simulation, but
making random perturbations to the sequences to generate
invalid scenario behaviors. The search considered n-gramsof
3, 5 and 7 in length.

While the event attributes includeduser,method,action and
item, it should be noted that in this experiment no information
was provided to the search algorithm that might a priori
suggest candidate operation and target attributes. Each event
also included a transaction identifier (trans) that tied the event
to a unique execution sequence within a user behavior scenario.

Table I provides a selection of operation and target at-
tributes, along withMO

T (l, t) (false positive) andMO
T(l, c)

(false negative) measures computed for given n-gram sizesn
and based on the simulated log tracesl, t andc.

operationO targetT n MO
T (l, t) MO

T (l, c)
trans user 3 0.14 0.45
item method, user 7 0.18 0.47
trans item 3 0.18 0.46
method, action user 5 0.28 0.00
method, user trans 3 0.32 0.01
method, action item, user 3 0.75 0.02
method, action trans 7 0.78 0.03
method, action trans 5 0.81 0.00
method, action trans 3 0.85 0.02

TABLE I. SOME NORMS IN THE SIMULATED SYSTEM

These results suggest, as expected, that the repeating pat-
tern of method−action operations carried out on transactions
(trans) is a good norm; providing a high-degree of similarity
between the learning and test logs (few false positives) anda
low-degree of similarity between the learning and control logs
(few false negatives). While attributetrans was intentionally

constructed to provide a unique transaction identifier for the
user-scenario, it is interesting to note that the search also
suggests the pairuser,item as a reasonable set of target
attributes. On further investigation it turned out that in the
simulation logs, it was more likely that the execution scenarios
of different users involved different items, that is, therewere
relatively few instances of order-invoice transactions involving
multiple users. This could be regarded as an unexpected norm
that emerged as a consequence of the simulation design. Note
that presented similarities are mertics that are relevant to
establishing best attrbiutes for norm model and they have no
relation with similarity levels in possible application ofnorms
in anomaly detection.

Recall that a norm (set of strands) is implemented as a set
of n-grams which, by its nature, provides an approximation for
the behavior pattern. It is instructive to consider the effect that
the n-gram approximation model (encoding trace similarity)
has on the number of norms identified inNO

T (l), for the
given O and T. Figure 6 compares the numbers of norms
discovered for different degrees of trace similarity. Witha
degree of similarity of 1 traces must exactly match and as
consequence, there are a large number of distinct norms,
many with very similar but strictly different behavior. With
a degree of similarity of 0 then traces of the same events,
but differently ordered, are considered matched and as a result
there is effectively one norm, matching all possible behaviors.

Fig. 6. Number of norms for different n-gram approximations(simulated
system)

Our goal is to find a similarity level that results in n-gram
approximation that is useful to build norms. Such level of sim-
ilarity should allow some scope of difference between traces
while still consider them as being behavioraly equivalent.

Inspecting Figure 6 reveals that 30 distinct norms are
identified for a substantial range, between 0.5 and 0.05, of
the degree of trace similarity. Recall that in configuring the
control-flow model, logs were generated by users repeatedly
selecting, at random, from a choice of 30 different execution
scenarios. On inspection, each norm corresponds to one of the
execution scenarios, confirming that the proposed operation O
and targetT attributes reflect the patterns of behavior that were
intended.

This experiment demonstrated that analyzing norms in a
log trace can be used to test for existence of behavioral patterns
in a simulated system. The search discovers the attributes that
characterize the sequences of operations carried out on targets
along with the best n-gram profiles for matching the identified
norms.

The problem of finding optimal attributes is exponential

6th Symposium on Security Analytics and Automation, IEEE 2013

1

with respect to number of attributes in the event. For five
attributes, an exhaustive search over space of all possible
combinations of attribute for target (25), operation (also25)
and n-gram sizes (3) would require 3072 algorithm iterations.
Thanks to some basic optimizations (like not considering
operation attributes in targets) in the experiment we reduced
that number to 510 which took about 30 minutes on a laptop
with 1.6GHz four core CPU.

1) Simulating anomaly:In the following side experiment,
the system simulating HTTP application was extended to
model an access control mechanism. The access control is
implemented by assigning each of the scenarios and each of
the users one of five roles. The simulation has been modified,
so that scenarios are only executed by users with a matching
role. For illustration, the scenario related to making an order
may be only executed by a users with the roleCustomer while
scenario related to issuing an invoice by users with the role
Merchant. Information about user role was included as an event
attribute and new events contained 6 attributes (method, action,
user, item, role, trans).

The norm search was performed for the modified system.
Optimal values identified by the search arerole, method, action
for the operation andtrans for the target. It should be noted
that, compared with the system without the access control
capability, the operation includesrole in addition to method
and action. Inclusion of role attribute makes the operation
more precisely defined (e.g. ”GET invoice as Customer”
compared to just ”GET invoice”) and produces more accurate
norm model. The search for similarity level, as presented on
Figure 7 (normal) shows the result similar to the original
system (without access control) and reflects 30 scenarios for
a large similarity range.

In the second part of this experiment, the simulation was
modified to model a security flaw. The access control was
disabled so any user could run any scenario regardless of
their role. The intention of this change was to simulate an
accidental misconfiguration that breaks security control and
check how such change will reflect on system’s norms. The
search for similarity level was performed on the trace from
modified system. Figure 7 shows number of norms in relation
to similarity for both executions (normal and abnormal) of the
system with the access control capability.

Fig. 7. Number of norms for different n-gram approximationsfor two
configurations of simulated system with access control

This experiment shows that system with broken access
control produces much more norms than the one with the ac-
cess control functioning properly. Although both systems were

executing the same same 30 scenarios, they produce traces
that are behaviorally different according to identified norm
attributes. In the system with enabled access control, different
executions of the same scenario produced traces different only
because of the control flow. For n-gram similarity between 0.5
and 0.05 they were considered equivalent. In the system with
broken access control, executions of the same scenario, but
with different roles, produced traces in whichoperationswere
also different. Even at low similarity levels such traces could
not be considered equivalent as they represented completely
different behaviors.

This experiment demonstrates that a change in system’s
behavior may be identified by observing amount of norms that
emerge from that system. This is possible even without insight
in what individual norms actually represent.

B. Norms in an Enterprise system

The second experiment was based around an enterprise
Java-based social software application. This applicationpro-
vides its users with social communication and content man-
agement. The objective of this experiment was to investigate
the emergence of norms in an existing large-scale application
system.

The application server running the application was con-
figured to include a custom Java Security Manager [12] that
recorded every permission check as an event. Six attributes
of the events logged by the manager were considered: type
of permission (attributeperm, with values FilePermission,
SocketPermission, etc.);action (with values,open, read, etc.);
name of application server’sthread used to perform the opera-
tion; application’suser on behalf of which the thread executes,
and name of theclass that invoked the code requiring the
permission. Time was recorded using reduced precision.

The application was invoked 1,500 times via its REST API
in order to execute 11 different high-level actions (such asfile
upload, download, adding file to folder, etc.) concurrentlyfor
10 different application users. This was done twice in orderto
generate the learning and test traces, each containing about
30,000 events. The control trace was created by randomly
reordering events from the test trace. N-gram sizes of 3, 5
and 7 were used in the search for norms. Table II provides a
selection of operation and target attributes, along withMO

T (l, t)
(false positive) andMO

T (l, c) (false negative) measures that
were computed during the search. The results in Table II are
for an n-gram size of 3, which, when analyzing this system,
produced better results than for other sizes.

operationO targetT M
O
T(l, t) M

O
T (l, c)

perm action, thread, user 0.38 0.49
class, user action, prtm, time 0.15 0.01
name, perm thread, trace 0.51 0.37
perm time, user 0.99 0.11
class, perm time, user 0.97 0.07
class, perm thread,time,user 0.99 0.08
action, class thread,time,user 0.92 0.00
action,class,perm thread,time,user 0.92 0.00

TABLE II. SOME NORMS IN THE ENTERPRISE SYSTEM

The results show that the best candidates for operation
attributes are combinations ofaction, perm andclass attributes.

6th Symposium on Security Analytics and Automation, IEEE 2013

1

It is interesting to note that the operation with attributes
{action,class} has results comparable to{action,class,perm}.
Intuitively, the latter seems to be a better choice as it de-
fines actual operation more precisely ([SomeClass, open, file]
compared to just [SomeClass, open]). This is not surprising
since Java tends to define different permission classes accord-
ing to different kinds of actions and targets. For example,
FilePermission is defined in terms of read/write/execute/delete
actions (on file targets), whileSocketPermission is defined
in terms of accept, connect, listen and resolve actions (on
socket targets). Thus, for this system, permission name does
not provide any additional information regarding the target of
the norm.

Studying the effect that the n-gram approximation model
(encoding trace similarity) has on the number of norms identi-
fied inNO

T (l), for the bestO andT, provides some interesting
insights. In Figure 8, when the degree of trace similarity
varies between, 0.34 and 0.17, then 11 norms are identified.
This is as expected, as these 11 norms effectively correspond
to the underlying behavior patterns resulting from repeatedly
invoking the 11 different REST API calls in order to populate
the log.

Fig. 8. Number of norms for different n-gram approximations(simulated
system)

However, Figure 8 also points to the presence of other
potential norms in the system. There are three other regionsin
the graph that suggest different numbers of norms. For degrees
of similarities: between 0.66 and 0.55 there are 140 norms, be-
tween 0.49 and 0.45 there are 68 norms, and there are 7 norms
between 0.17 and 0.05. We conjecture that these additional
norms are a consequence of the application, or its underlying
infrastructure, performing different kinds of internal operations
for the the same REST API calls. For example, in the same
API call we may, at one time, retrieve an object from remote
storage while retrieving it from local cache another time; an
application may once have established a connection, while at
another time uses a previously established connection froma
connection pool. Traces generated by different execution paths
may be sufficiently different to be considered distinct norms
where a high degree of trace similarity is required. This means
that it may be possible to generate multiple norm models
differing only by degree of trace similarity to have larger
number of more precise norms or smaller number of more
general ones. While we believe that the 11 norms identified
between 0.34 and 0.17 correspond to the events resulting from
the REST calls, investigating the cause of the other, emergent,
norms is a topic for future research. This experiment was a
preliminary attempt to validate that meaningful norms can be
identified in a real and complex enterprise system. In building

the experiment, many simplifications had to be made, such as
ignoring client-side caching and calling only the REST API
rather then accessing application resources as the user.

The false positive measure should compare generated
norms with norms of abnormal behaviour. Because no traces
of abnormal behaviour were available we generated such
trace by randomly reordering events in one of existing traces.
Investigation on effectiveness of this approach and possible
alternatives is a topic for future research.

While the strategy of exhaustive norm search is effective
for moderately sized logs, further research is required to
develop a scheme to search much larger logs of a scale that is
typical of complex enterprise systems.

V. D ISCUSSION AND RELATED RESEARCH

The previous section demonstrates that it is possible to
search for norms that characterize underlying patterns of
behavior without any prior knowledge about the system.

Norms may provide an efficient way to compare and
evaluate system behavior during its lifecycle. If the number of
norms increase after system change, such as reconfigurationor
patching, it may indicate that some of the security controls(in
or outside of the system) are no longer effective. Such behavior
was seen in Section IV-A1. Monitoring changes in the number
of norms may be useful in detecting potential problems.

The norm model relates to anomaly detection based on
trace analysis. One of the problems recognized in this area
is finding an anomalous sequence with regards to a sequence
database [8], also known as a ‘sense of self’ [11]. It can be
considered to be a part of norms model to a limited extent, as
it effectively treats the system as a single homogenous norm
in which one looses many of the subtleties of interaction.
Norms, when used for anomaly detection, are similar to
another problem – detecting anomalous sub-sequences within
a longer log, calleddiscords. They are, however, richer and
more accurate then currently used techniques [8]. Rather than
using fixed size windows, norm model provides much more
adaptive variable length sequences that base on event equiv-
alence. Another advantage of norms is an automatic attribute
discovery. Study of anomaly detection recognizes n-grams as
one of the techniques for modeling behavior, referred to as
window-based [8]. Applicability of other techniques, suchas
kernel and Hidden Markov Models, to norm model is a subject
for future research.

Intrusion detection systems may benefit from using norms
at multiple precision levels. As it was demonstrated by ex-
periment in Section IV-B, using different trace similaritylevel
may result in different distinct levels of norms precision.A
hybrid IDS employing this technique may match at multiple
precision levels and, depending on configuration, adjust alert
levels or automatically learn new rules.

Behavioral norms are related to process mining techniques
[3], [22] whereby process models, such as Petri-nets, are
generated from low level audit logs. These techniques have
been used for security conformance [1]. These models tend to
use coarse-grained event abstractions, such as operation-name
and date. Future research will investigate how the results in this
paper might be used as pre-processing step in order to identify

6th Symposium on Security Analytics and Automation, IEEE 2013

1

additional attributes that that could be used in subsequent
process mining.

Research in the area of activity recognition shows that
patterns of behavior may be identified by observation [13] and
that n-grams may be used to build an underlying model [10].
Investigating the relationship between behavioral norms and
activity recognition techniques is a topic for future research.

VI. CONCLUSION

Behavioral norms are emergent repetitive patterns that pro-
vide a behavior-centric view of a security log. These patterns
can emerge at different levels of abstraction. At the highest
level of abstraction, a single norm may be identified, corre-
sponding to the conventional [11] ‘sense of self’. However,as
demonstrated by the experiments described in Section 4, this
normal behavior pattern may actually contain further patterns
of behavior. These other norms are determined by choosing
the right operation and target event abstractions. Some suitable
abstractions may be a priori known, such as an event method
(operation) carried out on a transaction-id (target), as described
in the example in Section IV-A. However, other and/or better
abstractions may emerge from analysis of the log; for example,
it was demonstrated that the attribute pair(user,item) provides
a good alternative to the transaction-id target. In the enterprise
system example, analysis points to previously unknown norms
in the system. The existence of these emergent norms is not
surprising given that the complexity of modern systems is such
that a full understanding event attributes/behaviors may not be
a priori known.

This paper proposes a model and approach to analyzing
system logs and identifying behavioral norms at different
levels of abstraction. In identifying these repeating patterns
of behavior, norms can be used to help determine the right
level of abstraction at which to monitor security violations
and incidents in a security log. The contribution in this paper
is a behavior-centric approach to security log modeling anda
demonstration that emergent norms can be searched for, and
exist, at different levels of abstraction. A rudimentary norm-
search based on an n-gram model of behavior was used in this
paper. The model is not limited to these and future research
will investigate alternative behavior models and more efficient
search/data mining techniques.

REFERENCES

[1] R. Accorsi, “A security-aware simulation method for generating busi-
ness process event logs,” inSymposium on Data-Driven Process Dis-
covery and Analysis, number to appear in Lecture Notes in Business
Information Processing. Springer, 2012.

[2] R. Accorsi, C. Wonnemann, and T. Stocker, “Towards forensic data flow
analysis of business process logs,” inIMF. IEEE Computer Society,
2011, pp. 3–20.

[3] R. Agrawal, D. Gunopulos, and F. Leymann,Mining Process Models
from Workflow Logs, ser. EDBT ’98. Springer-Verlag, 1998. [Online].
Available: http://dl.acm.org/citation.cfm?id=645338.650397

[4] B. Alpern and F. Schneider, “Recognizing safety and liveness,” Dis-
tributed Computing, vol. 2, pp. 117–126, 1987.

[5] M. R. Anderberg,Cluster analysis for applications, ser. Probability and
mathematical statistics. Academic Press, 1973. [Online].Available:
http://books.google.com/books?id=BZBYAAAAMAAJ

[6] T. Atkins, “Simple log watcher,” http://sourceforge.net/projects/swatch,
June 2013.

[7] D. A. Basin, F. Klaedtke, and S. Müller, “Policy monitoring in first-
order temporal logic,” inComputer Aided Verification, 22nd Inter-
national Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010.
Proceedings, 2010, pp. 1–18.

[8] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for
discrete sequences: A survey,”IEEE Transactions on Knowledge and
Data Engineering, vol. 24, no. 5, pp. 823–839, 2012.

[9] N. Dinesh, A. K. Joshi, I. Lee, and O. Sokolsky, “Checkingtraces
for regulatory conformance,” inRuntime Verification, 8th International
Workshop, 2008, pp. 86–103.

[10] K. Farrahi and D. Gatica-Perez, “Extracting mobile behavioral patterns
with the distant n-gram topic model,” inWearable Computers (ISWC),
2012 16th International Symposium on. IEEE, 2012, pp. 1–8.

[11] S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff, “A sense of self
for unix processes,” inIEEE Symposium on Security and Privacy, 1996,
pp. 120–128.

[12] L. Gong, G. Ellison, and M. Dageforde,Inside Java 2 Platform
Security: Architecture, Api Design, and Implementation. Addison-
Wesley Professional, 2003.

[13] T. Gu, Z. Wu, X. Tao, H. Pung, and J. Lu, “epsicar: An emerging
patterns based approach to sequential, interleaved and concurrent activ-
ity recognition,” in Pervasive Computing and Communications, 2009.
PerCom 2009. IEEE International Conference on. IEEE, 2009, pp.
1–9.

[14] ISO/IEC 27001:2005 – Information technology – Security techniques –
Information security management systems – Requirements, International
Organization for Standardization, 2005.

[15] K. Kent and M. Souppaya, “SP 800-92. Guide to Computer Security
Log Management,” Gaithersburg, MD, United States, Tech. Rep., 2006.

[16] A. Luotonen, “The common logfile format,” http://www.w3.org/pub/
WWW/Daemon/User/Config/Logging.html, 1995.

[17] Payment Card Industry Data Security Standard (PCI DSS), Payment
Card Industry Security Standards Council, 2010.

[18] M. Roger and J. Goubault-Larrecq, “Log auditing through model-
checking,” in Proceedings of the 14th IEEE workshop on Computer
Security Foundations, ser. CSFW ’01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 220–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=872752.873518

[19] J. P. Rouillard, “Real-time log file analysis using the simple event
correlator (SEC),” inLISA. USENIX, 2004, pp. 133–150.

[20] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni, “A fast automaton-
based method for detecting anomalous program behaviors,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2001,
pp. 144–155.

[21] J. M. Spivey,The Z notation - a reference manual, ser. Prentice Hall
International Series in Computer Science. Prentice Hall, 1989.

[22] W. M. van der Aalst, , T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,”Knowledge and Data
Engineering, IEEE Transactions on, vol. 16, no. 9, pp. 1128–1142,
2004.

[23] W. M. van der Aalst, K. van Hee, J. van Werf, and M. Verdonk,
“Auditing 2.0: Using process mining to support tomorrow’s auditor,”
IEEE Computer, vol. 43, no. 3, pp. 90–93, 2010.

