
A Security Model of Dynamic Labeling Providing a Tiered Approach to
Verification∗

Simon N. Foley
Department of Computer Science

University College
Cork, Ireland

s.foley@cs.ucc.ie

Li Gong and Xiaolei Qian
Computer Science Laboratory

SRI International
Menlo Park, California 94025, USA

{gong,qian}@csl.sri.com

Abstract

In the proposed mandatory access control model, arbi-
trary label changing policies can be expressed. The rela-
tively simple model can capture a wide variety of security
policies, including high-water marks, downgrading, sepa-
ration of duties, and Chinese Walls. The model forms the
basis for a tiered approach to the formal development of
secure systems, whereby security verification can be spread
across what makes up the reference monitor and the security
requirement specification. The advantage of this approach
is that once a trusted computing base (TCB) is in place,
reconfiguring it for different security requirements requires
verification of just the new requirements. We illustrate the
approach with a number of examples, including one policy
that permits high-level subjects to make relabeling requests
on low-level objects; the policy is multilevel secure.

1. Introduction

Information-flow policy models that support dynamic la-
beling, where information labels can change in time, have
been shown to capture a greater variety of security require-
ments than can models where labeling is static. One of the
earliest examples of a system supporting dynamic labeling
is ADEPT-50 [?], where an object’s label can rise to reflect
the classification of the data written to it by a subject. It
is well known that label changes can often be exploited for
covert channels. For example, the effect of a label change
to a low-level object, requested by a high-level subject, may
be visible to a low-level subject in the form of a (necessary)
change of access permissions to reflect its new label.

∗This work was supported in part by the U.S. Department of Defense
Advanced Research Projects Agency and the U.S. Air Force Rome Labo-
ratory under contract F30602-94-C-0198, and in part by the U.S. National
Science Foundation under grant ECS-94-22688.

Covert channels in dynamic labeling schemes can be
minimized or avoided entirely if the nature of the label
change is constrained. A widely used strategy is to per-
mit only upgrades from below. For example, in [?, ?], re-
quests to upgrade the label of an object may be done only
if the classification of the subject is dominated by the cur-
rent classification of the object; label changes may be based
only on information that may already flow to the label clas-
sification. Further examples of constraining relabeling in-
clude the Compartmented Mode Workstation [?] and SER-
CUS [?], a secure document-handling system where drafts
and private documents can have dynamic labels, but once
made public they become static. Other work has shown how
constrained dynamic labeling policies can be used to cap-
ture specific security requirements. Examples are Chinese
Wall policies [?, ?, ?] and segregation of duties [?]. Implicit
in this work is some form of high water mark mechanism,
whereby a subject’s label classification rises to access re-
quested information, thereby excluding access to other in-
formation. The reader is referred to [?] for a general intro-
duction to, and discussion on, dynamic upgrading policies.

We propose a general security model for dynamic label
changing. The relatively simple model is of Bell-LaPadula
style and can capture all the policies mentioned above. Of
note, is that details about how labels may be changed is
considered part of the information flow and security pol-
icy (along with the usual lattice of classifications). The se-
curity model may be thought of as being ‘parameterized’
by this policy: defining what it means for a system to be
secure according to lattice and relabel rules. This aspect
of the model is different from many existing dynamic la-
beling approaches; in these cases specific rules on how la-
bels may change are typically encoded as part of the system
model. Existing models that can be interpreted as having
the effect of supporting parameterized relabeling rules in-
clude McLean’s MAC model [?] and the expressive labels
proposed by Gong and Qian [?]. With the former, subjects
may be given the right to arbitrarily modify particular object

1

labels. In [?] information about future label changes may be
encoded into an object’s label by subjects.

It is this grouping together of lattice and relabel rules
into an abstract security policy that provides the basis for
our tiered approach to security verification. If we build a
security kernel that can support a subset of all possible lat-
tice and relabel rules, then security verification can be per-
formed in two stages. The first stage is to verify that the
low-level kernel implementation is secure against the ax-
ioms of the model, and the second is verification that a par-
ticular policy is supported by the kernel. Reconfiguring the
kernel for a new policy requires verification of just the new
policy.

Section ?? defines what we mean by a dynamic rela-
beling policy and proposes a MAC security model based
on these policies. The model has easily recognizable Bell-
LaPadula origins; this gives us confidence that it is a rea-
sonable characterization and that restricted versions could
be implemented in practice. Section ?? outlines how the
model might be interpreted and verified in practice. While
our relabel policies have the expressiveness of finite state
automatons, their potential is illustrated in Section ??, by
the development of two security policies. The first relabel-
ing policy supports upgrade paths, where a low-level object
can be marked so that when deleted by a low-level subject, it
is upgraded to high, rather than actually deleted. The policy
is developed at an abstract level, rather than in the low-level
detail of the original implementation in [?]. The second pol-
icy is a multilevel Chinese Wall policy applied to users who
are members of different groups. Both these policies can
be verified as upgrade-from-below policies and thus can be
enforced by any security kernel verified to support generic
upgrade from-below-policies.

We believe that it is (relatively) straightforward to build
a secure kernel supporting upgrade-from-below policies.
Sections ?? considers the problems of supporting more gen-
eral upgrade policies, where the requests for upgrade come
from above. Adopting our tiered verification approach, Sec-
tion ?? defines verification conditions that the policy should
have so that it can be enforced by a general security kernel.
The essence of these conditions on the abstract policy is that
it is not possible for changes in low-level labels (requested
by high-level subjects) to be visible to low-level subjects.

2. A Model for Relabeling

2.1. Relabeling Policies

Given a lattice, with security classes L and partial order
≤, a relabeling policy should define the circumstances un-
der which information at one class may be relabeled to an-
other. A relabeling function is a partial function f : relabel
(relabel =̂ L 7→ (L 7→ L)), with an interpretation that f (s)

defines the possible relabeling when requested (by a sub-
ject) at class s ∈ dom f . Evaluation f (s)(a) = b means that
when requested at class s, information at class a may be re-
labeled as class b. A relabeling policy is defined as a set R
of such functions.
Example 1 A simple relabeling policy for the lattice with
ordering lo < hi provides partial relabeling functions

up =̂ λ(s : L) | s = lo • (λ(a : L) | a = lo • hi)
down =̂ λ(s : L) | s = hi • (λ(a : L) | a = hi • lo)

The syntax for lambda abstraction (λ s : L | P(s) • E(s))
specifies that the function is defined only for values of s
that satisfy property P(s). With this policy, upgrades may
be done only from lo: a typical implementation strategy for
avoiding covert channels. Note, however, that we will not
insist in our general model that upgrades must always be
done in this way: in certain cases an upgrade from above
may be considered an appropriate relabel policy.

A slightly more sophisticated relabeling policy might re-
quire that high-level information to be downgraded be first
relabeled for inspection (by a security officer) and then, if
appropriate, downgraded by the officer. The lattice can be
defined by the power-set lattice of {h, d}, where {} repre-
sents low, {h} represents high, and {d} represents the label
of information to be downgraded. The relabeling policy is
defined by functions

sub =̂ λ(s : P L) | s = {h} • (λ(a : PL) | a = {h} • {d})
down =̂ λ(s : PL) | s = {d} • (λ(a : P L) | a = {d} • {})

4
Relabeling policies have the expressiveness of finite-

state automatons, where security classes correspond to
states, and relabel functions to state transitions. Thus, it
is not surprising that a wide variety of security policies can
be captured using relabeling, as will be illustrated in Sec-
tion ??.

2.2. System Model

A system is an abstract state machine, described in terms
of a finite set of subjects S, a finite set of objects O, a finite
lattice of security classifications (L,≤), a relabeling policy
R, and a set A of access rights that subjects can have on
objects (for our purposes, the rights read and write).

A (security) state v of the system is given by the tuple
(M, amin, vmax, lab), where M : S × O → PA is an access
matrix, indicating the rights that subjects currently have on
objects, lab : O→ L gives the security classification associ-
ated with each object, each subject s ∈ S is associated with
an interval from the lattice, vmax(s) (view maximum) gives
the highest class of information that the subject is trusted
to read, and amin(s) (alter minimum) gives the lowest class

of information the subject is permitted to write, that is, sub-
jects may have partial trust in the sense of [?]. We have for
every subject s : S that amin(s) ≤ vmax(s). Let V denote
the set of all states.

A subject can request that the system moves from one
state to another, under a transition operation op. The set of
all transition operations that can change the security state is
given by the set T. Transitions include operations to grant
accesses, create objects, and so forth. However, for the pur-
poses of this paper, we are interested only in transitions that
result in relabeling of information (subject or object labels).
We call these transition operations primitive relabel oper-
ations, and a function R : T → R associates a relabeling
function R(op) from relabel policy R with each transition
operation op ∈ T.

Thus, (R(op) s) = f defines that operation op, when
requested at class s, may relabel information according to
function f (s). Which objects or subjects actually get rela-
beled is part of the implementation. The behavior of the
state transition functions is defined by Σ : S× T × V → V,
where a subject s : S requesting operation op : T in state v
moves the system to state v′ = Σ(s, op, v).

2.3. Security Axioms

Axiom 1 A state is secure if the accesses currently held by
subjects on objects do not violate the lattice policy: for all
states v reachable from the initial state, then

∀ s : S; o : O •
read ∈ M[s, o]⇒ lab(o) ≤ vmax(s) ∧
write ∈ M[s, o]⇒ amin(s) ≤ lab(o)

This axiom is simply the partial trust adaptation of the star
property and simple security condition. As with the Bell-
LaPadula model [?], we implicitly assume that an object
does not change from state to state unless someone has write
access to it.

A transition operation is secure if any changes made to
the security state conform to the relabeling policy. Specif-
ically, for each transition Σ(s, op, v) = v′, where v =
(M, amin, vmax, lab) and v′ = (M′, amin′, vmax′, lab′),
then for every subject x and object o:

• Axiom 2 If lab(o) 6= lab′(o), then the requesting sub-
ject s must be trusted to make this alter request, that
is, lab′(o) = op(amin(s)) lab(o). Note that we relax
our syntax, using op(i) as a shorthand for (R(op))(i),
where no ambiguity can arise.

• Axiom 3 If amin(x) 6= amin′(x), then the request-
ing subject s must be trusted to make this alter re-
quest, that is, amin′(x) = op(amin(s)) amin(x) And
similarly, if vmax(x) 6= vmax′(x) then vmax′(x) =
op(amin(s)) vmax(x).

Example 2 General upgrading (for objects) could be pro-
vided for by a transition operation UpgradeO(o, b), which
corresponds to a request that object o be upgraded from its
current class to class b. The relabeling policy for this oper-
ation is described in terms of a family of relabel functions
of the form upgrade(b), where

upgrade(b) =̂ λ(s : L) • (λ(a : L) | s ≤ a < b • b)

and we have R(UpgradeO(o, b)) = upgrade(b). In this
case, upgrade is not defined if it is not requested from be-
low. A similar function could be devised for an upgrade
transition on a particular subject’s amin and vmax. 4
Example 3 Low-level information may be marked, so that
when deleted it is upgraded to a higher level rather than ac-
tually deleted. Consider a lattice with classes lo and hi,
and a special class mlo, which represents lo information
that has been marked for upgrade. The lattice has order-
ing lo ≤ mlo ≤ hi, and the relabeling operations can be
defined in terms of the upgrade function from Example ??,

mark =̂ upgrade(mlo)
mdel =̂ λ(s : L) | s ≤ mlo • (λ(a : L) | a = mlo • hi))

Note that with this interpretation, a typical low-level subject
s should run with partial trust amin(s) = lo, vmax(s) =
mlo, reflecting that the subject is trusted to simultaneously
handle all kinds of low-level information (both marked and
unmarked). In Section ?? we will illustrate how a more
general marking policy can be specified. 4

Our axioms give necessary but not sufficient conditions
for security. We view the model as one that provides a
guideline on how to approach implementing general rela-
beling policies. As with any access-control-based model,
covert channel analysis of the implementation will be nec-
essary. For example, a relabeling must leave the system in
a secure state, and this may result in subjects loosing access
rights to reflect the relabeling. Any covert channel analy-
sis will depend on what flows are considered acceptable or
unacceptable. If an upgrading function permits low-level
upgrades requested from high-levels then it is possible that
a covert channel will result from high to low. One could
argue that such a flow has been implicitly specified in the
policy and should be acceptable (in the same way that a
trusted downgrade is acceptable). If it is not, then either
the implementation is analyzed to ensure that these covert
channels do not exist, or the implementation will accept
only a restricted class of policies. A simple example of this
will be considered in Section ??. Some work already exists
on noninterference models for particular dynamic labeling
policies, including downgrading [?] and Chinese Walls [?].
Formulating general relabel policies in terms of noninter-
ference is a topic for future research.

