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ABSTRACT
This paper considers a new security protocol paradigm whereby
principals negotiate and on-the-fly generate security proto-
cols according to their needs. When principals wish to in-
teract then, rather than offering each other a fixed menu of
‘known’ protocols, they negotiate and, possibly with the col-
laboration of other principles, synthesise a new protocol that
is tailored specifically to their current security environment
and requirements. This approach provides a basis for auto-
nomic security protocols. Such protocols are self-configuring
since only principal assumptions and protocol goals need
to be a-priori configured. The approach has the potential
to survive security compromises that can be modelled as
changes in the beliefs of the principals. A compromise of a
key or a change in the trust relationships between principals
can result in a principal self-healing and synthesising a new
protocol to survive the event.

1. INTRODUCTION
Networked services and applications are typically commis-

sioned with a fixed repertoire of security protocols that pro-
vide for necessary authentication, key-exchange, delegation,
non-repudiation, and so forth. Applications and services are
expected to negotiate with each other and agree on appro-
priate security protocols that both can (and are willing to)
use. A simple example is a web-service that requires clients
to establish SSL based connections. When negotiating a
connection, the client and server agree on the version of the
protocol to use. While protocols may be designed to support
a range of different underlying authentication protocols, and
so forth, it is not feasible to expect principals to be, a pri-
ori, conversant in all possible protocols. Protocol agnostic
approaches such as Jini [12] allow resource providers to reg-
ister the protocol, that its clients should use, with a Jini
Server. However, the Jini server does not have any provi-
sion for establishing trust: the communicating parties can-
not gain confidence that they have a trustworthy protocol
implementation or that they are communicating with the
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correct party. While more flexible, the provider’s protocol
is fixed and is not generally suitable for security protocols.

We are investigating the use of protocol synthesis tech-
niques [7, 11, 15, 19] to allow principals negotiate and on-
the-fly generate security protocols. When principals wish to
interact then, rather than offering each other a fixed menu
of ‘known’ protocols, the protocol negotiation process gen-
erates a new protocol that is tailored specifically to their
current security environment and requirements. A princi-
pal’s security environment reflects the keys that it knows,
the trust relationships with other principals and any other
assumptions it holds.

We conjecture that the applications which use such Self-
configuring protocols would not require configuration to pro-
vide a fixed number of ‘known’ protocols. Instead, the appli-
cation designer specifies the necessary security requirements
for valid interaction. For example, a server may be willing to
accept any connection from an authenticated principal; the
security requirements and current environment of the server
(and client) are used to synthesis a protocol that meets these
goals.

Protocols could be generated on the basis of the security
environment of the principals. A change in the security en-
vironment of a principal may result in the re-negotiation of
a new security protocol. This provides a basis for surviv-
able security protocols that have the potential to, in effect,
self-heal and adapt to recover from changes in the security
environment.

These characteristics — self-configuring, self-healing and
survivability — are properties that form part of the auto-
nomic computing manifesto [3]. In [9], Foley and Zhou sug-
gest that automated protocol synthesis techniques may pro-
vide a basis for autonomic security protocols. In this paper
we explore this new paradigm in more depth and consider
some of the issues that arise. We propose a logical frame-
work that extends [19] and supports on-the-fly generation of
protocols. We extend the basis of [9] with the new paradigm
of protocol synthesis by collaboration, whereby the genera-
tion of a new protocol becomes a collaborative effort between
many principals, each with a potential stake in the outcome.

The paper is organised as follows. Section 2 describes the
belief logic on which the framework is based. This logic ex-
tends Zhou and Foley’s [19] — a BAN-like logic based on
the BSW logic [6]. The proposed logic is tailored to sup-
port collaborative protocol synthesis, and Section 3 outlines
existing research in the area of automatic protocol genera-
tion. Section 4 describes how the logic may be used in the
collaborative synthesis of a security protocol. A number of



examples are given in Section 5 and in the appendix.

2. THE EXTENDED BSW LOGIC
The BSW Logic [6] is a BAN-style belief logic that uses

abstract channels similar to the Spi Calculus [1] to represent
keyed communication between principals. The set of prin-
cipals that can receive and can send messages via a chan-
nel C is denoted by its reader set s(r(C)) and its writer
set s(w(C)), respectively. For example, s(r(C)) = Ω and
s(w(C)) = {P} represent an authentic channel, whereby
any principal (from Ω) can authenticate messages signed by
the private key of principal P . r(C) and w(C) represent the
principal’s properties.

The logic uses the following basic formulae. P ,Q range
over principals; C represents the channel; X represents a
message which can be data or formulae or both; φ represents
a formula.

• P /X: Principal P sees message X. Someone has sent
X via a channel that P can read.

• P /C(X)1: P sees C(X). Someone has sent a message
X via channel C. If P can not read C then P can not
discover the content of X.

• P |∼ X: P once said X. P sent a message contained
X at some point in the past. We do not know exactly
when the message was sent.

• P ‖∼ X: P says X. P sent X in the current run of the
protocol.

• ](X): Message X is fresh. X has never been said before
the current run of the protocol. This is usually true
for messages containing nonces.

• P |≡ φ: P believes that φ is true. It does not mean
that φ is really true, but P believes it.

In the original BSW logic [6], it is not possible to repre-
sent the holding of nonces or keys by a principal. A principal
can only say what he sees or what he believes, but in the
BSW logic a principal cannot generate a message from his
knowledge. The following formula is added to represent the
holding of a message (in the sense of GNY [10]). The addi-
tion of this formula was necessary in order to reason about
new beliefs held as a consequence of collaboration.

• P 3 X: P holds X. For example, P 3 r(C) represents
P holds the property r(C), he can receive message
from channel C.

The BSW logic also uses the conventional logic operators
∧ (conjunction), ∨ (disjunction) and → (implication) from
propositional logic and some basic notation from set theory.

In the BAN logic principals are treated as trustworthy
and in GNY there are fixed axioms for reasoning about the
trustworthiness of a principal. In BSW, the rules about the
trustworthiness of a principal are expressed as formulae as
part of the assumptions of the protocol.

1Note that we do not use the related formula P /X | C from
[6] which defines that P sees message X via channel C since
it can be replaced by the other formulae in the deduction
axioms without any loss of expressiveness.

Example 1. (Adapted from [6]). Mutual authentication
between principals A and B may be expressed as goals:

G1
∆
= A |≡ (B ‖∼ (A,Na))

G2
∆
= B |≡ (A ‖∼ (B,Nb))

where Na is a nonce (and assumptions include A |≡ ](Na),
and so forth). We assume that A and B share symmetric
keys (abstracted as channels Cas and Cbs, respectively) with
third party S. These assumptions are defined as follows.

S 3 r(Cas));A 3 r(Cas);

A |≡ (s(w(Cas)) = {A, S});S |≡ (s(w(Cas)) = {A, S});
A further assumption is that A trusts S as a trusted third
party:

A |≡ ((S ‖∼ φ1)→ (S |≡ φ1))

A |≡ ((S |≡ (B |∼ φ2))→ (B |∼ φ2))

for arbitrary φ1, φ2. These formulae reflect A’s belief that
S is honest and that S is competent in deciding whether B
at some time in the past said some message. B has similar
beliefs. 4

In addition to basic axioms about sets, the original BSW
logic uses five core axioms.

S1 Seeing. If P receives a message X via a channel C, and
P can read this channel, then P can see the message.

P / C(X), P 3 r(C)

P / X

F1 Freshness. If P believes another principal Q once said
a message X and P believes that X is fresh, then P
believes that Q says X.

P |≡ (Q |∼ X), P |≡ ](X)

P |≡ (Q ‖∼ X)

F2 Freshness. If P believes X is fresh, then P believes X ′

which contains X is also fresh.

P |≡ ](X)

P |≡ ](X)′)

I1 Interpretation. If P believes he receives a message via C,
then he believes that the message was said by some-
one, who he believes is able to write channel C except
himself.

P / C(X), P 3 r(C), P |≡ (s(w(C)) =W)

P |≡ W∀Qi∈W\{P}(Qi |∼ X))

R1 Rationality. This is the well-known K axiom of modal
logic: if P believes φ1 implies φ2, and believes that φ1

is true, then he believes that φ2 is true.

P |≡ (φ1 → φ2), P |≡ φ1

P |≡ φ2

For the purposes of this paper we propose three further
axioms for use when reasoning about message holding.

H1 Holding. If P holds X and Y , and P knows how to
apply function F to them, then P can holds F (X,Y ).

P 3 X, P 3 Y
P 3 F (X,Y )



S2 Seeing. If P sees a message X, then P holds X.

P / X

P 3 X

B1 Self-Believing. If P believes that P believes φ, then P
believes φ. It means P can tell what he believes.

P |≡ (P |≡ φ)

P |≡ φ

3. SECURITY PROTOCOL SYNTHESIS
Security Protocols are widely used in distributed systems

for authentication, key exchange and other security require-
ments. Designing well behaved security protocols is a chal-
lenging task since protocols often contain subtle flaws that
are difficult to find. In the last 20 years, many approaches
for verifying properties of security protocols have been de-
veloped such as [5, 10, 8, ?, 16, 14, 18]. However, little work
has been carried out on systematic approaches to the design
and development of security protocols

Abadi and Needham [2] set out ten principles that help
designers avoid classes of known protocol flaws. However,
the principles are neither necessary nor sufficient: designers
can not necessarily design new protocols by obeying only
these principles. A number of formal design approaches for
security protocols have been proposed. Alves-Foss and Soule
[4] describes a weakest-precondition based approach for the
design of security protocols. The Simple/BSW logic [6] is
a BAN-like logic that provides synthesis rules to guide the
protocol designer in the manual systematic calculation of a
protocol from its goals.

We are interested in the automatic generation of a pro-
tocol from its protocol goals and assumptions. Existing re-
search includes Clark and Jacob’s evolutionary search [7],
Perrig and Song’s Automatic Protocol Generator (APG) [15]
and Zhou and Foley’s Automatic Security Protocol Builder
(ASPB) [19]. All approaches automatically search a large
space of candidate protocols that is far larger than could be
considered via a manual design.

Starting from a set of assumptions, [7] uses the original in-
ference rules of the BAN logic to systematically test whether
candidate protocols uphold the protocol goals. The evolu-
tionary approach starts from a set of assumptions, and uses
a fitness function to guide the application of BAN rules in
a forward manner until a valid protocol is arrived at. How-
ever, providing an accurate fitness function for a protocol is
very difficult, and in cases potentially impossible [7]. Perrig
and Song’s APG [15] uses heuristics to select random can-
didate protocols that are in turn checked for validity using
the Athena [17] security protocol checker.

In [19] Zhou and Foley propose the Automatic Synthesis
Protocol Builder (ASPB) which combines and automates
the manual synthesis rules from the BSW Logic together
with Guttman’s manual design process [11]. The synthe-
sis rules of the BSW logic are adapted to guide an auto-
matic backwards search for a sub-protocol from a single goal.
Given a number of individual goals, an automated technique
is proposed to combine synthesised sub-protocols into final
candidate protocols. For the purposes of the research de-
scribed in this paper, ASPB has been extended to support
the Extended BSW logic in order to support collaborative
synthesis.

4. AUTONOMIC SECURITY PROTOCOLS
In [9] a basic protocol synthesis protocol (BPSP) is out-

lined. A protocol initiator I requests connection to R. R
responds by passing details of its protocol goal GR and the
assumptions AR that it currently holds. Principal I uses
its own assumptions and those presented by R to synthesise
a new protocol P that meets their respective goals. This
protocol is returned to R, which attempts to validate using
the validation tool. If validation is successful then I and R
install and engage in the protocol P .

In this paper we generalise upon this scheme such that a
principal may draw on the help of other principals during
protocol synthesis. This collaboration is necessary when the
principal does not hold sufficient beliefs to synthesise the
valid protocol on its own. By a valid protocol we mean
that the protocol meets the specified goals. The protocol is
valid in our logic. However if the user needs to make sure
it is a real secure protocol, it has to be validated by other
stronger security protocol checkers. It is a way to describe
the properties of the protocol to the user in a comprehensible
way.

Figure 1 depicts the agents and their exchanges in this
collaborative protocol synthesis protocol (CPSP). A princi-
pal receives a protocol goal specification GS from which it is
requested to synthesise a suitable protocol PS. This is coor-
dinated by the Logic Deriver. Synthesis is carried out based
on the (long-term and short term) assumptions held by the
principal. A principal’s assumptions are represented in its
long-term and short-term assumption databases. Long-term
assumptions represent a principal’s basic beliefs about oth-
ers, channels that represent long-term keys, and so forth.
Short-term assumption are short-term assumptions that as-
sist in the synthesis of a particular protocol and include as-
sumptions regarding nonces, short-term keys and temporary
beliefs.

The desired goal GS is synthesised using ASPB into a
collection of partial protocol steps and further protocol sub-
goals (which are synthesised further). When a sub-goal can-
not be synthesised further, assistance is sought from trusted
others; the subgoal (QS) is forwarded to the Helper agent
of another principal; which, in turn, attempts to synthe-
sise the protocol as described above, generating the proto-
col AS. These principals may use further principals to help
them synthesise their own subgoals. To what extent a prin-
cipal trusts a potential collaborator is specified as part of
the assumptions (beliefs) of the principal.

4.1 Protocol Agent Interactions
All beliefs that are held by principals are represented

within the (Extended) BSW Logic. These include the (long-
term and short-term) assumptions held by principals and the
goals and protocol steps that are exchanged between their
(Deriver and Helper) agents.

Appendix A gives as an example of a series of exchanges
QS, AS of beliefs between two principals during the syn-
thesis of a goal GS. The goal specification GS defines the
goals to be synthesised (by the Deriver agent). Normally,
the assumption section is empty, however it can be used
for short-term assumptions used in the establishment of the
protocol (for example, regarding the freshness of a nonce).

The query specification QS is used to request help in the
synthesis of a subgoal that is included in in the goal section
of QS. The assumption section may contain the Deriver’s
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Figure 1: Collaborative Protocol Synthesis Protocol

useful assumptions for this subgoal as an optional section.
The requester may sends its QS to a selected principal who
is trusted by it and may help it, or a group of principals. It
depends on the requester’s asking strategy.

On receiving QS, a Helper agent attempts to synthesise
the subgoal. The answer specification AS provides assump-
tions held by the helper (unknown to the Deriver) and that
were used by the Helper agent during the synthesis of the
subgoal. If the Deriver agent trusts the Helper agent (that
is, Deriver |≡ (Helper |≡ φ → φ)) then these Helper as-
sumptions2 can be believed by the Deriver and be added to
its assumption database. The protocol to be synthesised by
ASPB is derived from the new (and existing) assumptions
as specified in the requirement specification RS.

From the requirement specification, ASPB may generate
different protocols. In the current implementation, ASPB
choose one of them randomly: all generated protocols meet
the principals’ goals. By adding cost functions to protocol
operations, the problem becomes one of searching, for an op-
timal protocol, an ordered set of generated protocols. This
is a topic for future work.

4.2 Extended BSW Protocol Synthesis
The BSW Logic includes a synthesis technique that can

be used to guide the systematic calculation of a protocol

2Note that it will not detect contradictory assumptions held
by two parties or a single party, since the derivers search
for the assumptions that they require, and there should no
contradictory assumptions in the same searching tree within
the logic. Therefore, we do not consider this problem.

from its goals. Synthesis rules take the general form

G

↪→ G1

↪→ ...

which means that in order to reach the goal G, all sub-
goals G1, G2, ... have to be reached. A goal G can have
the form G′/G′′, which means that either G′ or G′′ have
to be reached. In [19] we adapted the synthesis rules in [6]
to form a a series of heuristic rules used to guide the au-
tomatic backward search for candidate protocols from their
goals. These heuristics are effectively theorems within the
logic and, therefore, any protocol synthesised under these
rules is valid (within the constraints of the logic). The syn-
thesis heuristics, adapted to support the Extended BSW
Logic proposed in Section 2 are defined as follows.

Heur1 To hold F (X,Y ), P must hold X and Y .

P 3 F (X,Y )

↪→ P 3 X
↪→ P 3 Y

Heur2 To hold X, P must see the message X.

P 3 X
↪→ P / X

Heur3 To see message X, P must receive C(X) and be able
to read C.

P / X

↪→ P / C(X)

↪→ P 3 r(C)



Heur4 To believes φ, a principal must have self-belief.

P |≡ φ
↪→ P |≡ (P |≡ φ)

Heur5 To believe Q says X, P must believe that Q said X
and X is fresh.

P |≡ Q ‖∼ X

↪→ P |≡ Q |∼ X
↪→ P |≡ ](X)

Heur6 To believe that message X is fresh, P must believe
that some part X ′ of X is fresh.

P |≡ ](X)

↪→ P |≡ ](X ′)

Heur7 To believe that Q said X, P has to receive X via
a channel C that he can read and that he believes it
can be written only by Q, or P and Q. Furthermore,
Q has to see X.

P |≡ Q |∼ X

↪→ P / C(X)

↪→ P 3 r(C)

↪→ P |≡ (s(w(C)) = {Q})/
P |≡ (s(w(C)) = {P,Q})

↪→ Q / X

If X is a formula and P believes that Q is honest, then
Q must also believe X.

P |≡ Q |∼ X

↪→ P / C(X)

↪→ P 3 r(C)

↪→ P |≡ (s(w(C)) = {Q})/
P |≡ (s(w(C)) = {P,Q})

↪→ Q |≡ X

↪→ P |≡ ((Q ‖∼ X)→ (Q |≡ X))

Heur8 To believe φ1, P must believe φ2 and φ2 → φ1.

P |≡ φ1

↪→ P |≡ φ2

↪→ P |≡ (φ2 → φ1)

4.3 The Logic Deriver
The Automatic Prototol Sythesis Builder (ASPB) [19] has

been adapted to use these new extended heuristic rules to
guide its backwards search for candidate protocols 3. The
Logic Deriver directs the ASPB, by building the require-
ment specification to be synthesised with the collaboration
of other Helper agents. The Logic Deriver takes a set of
protocol goals GP (obtained by parsing goal specification
GS) and assumptions A (obtained from the principal’s as-
sumption databases). and returns a synthesised protocol.
Algorithm 1 describes this process.
3BAN-style logics are much simpler than programming lan-
guages (e.g., no looping structures and thus it is not nec-
essary to search for loop invariants), and, therefore, a few
simple production rules guide the search efficiently without
external intervention.

G = GP ;
while ¬ empty(G) do

g = choose(G);
G = G \ g;
State s = syn(g);
if empty(s) then

Spec qspec = genQS(s);
Spec aspec = helper(qspec);
s = genState(aspec);

end if
G′ = goals(s);
A′ = assumptions(s);
G = add(G, G′);
A = add(A, A′);

end while
Spec rspec = genRS(Gp, A);
return rspec;

Algorithm 1: Spec deriver(Set Gp, Set A)

Operation choose(G) picks an arbitrary goal from the goal
set G.

Operation syn(g) applies the currently applicable heuris-
tic rules to the goal g, generates all conclusions by all ap-
plicable logical rules, returns a state s containing a set of
assumptions and subgoals derived from g. If s is empty,
then there are no local reachable assumptions for the goal
and, in this case, the Deriver agent generates a query spec-
ification qspec using operation genQS(s).

Operation helper(qspec) sends qspec to other principals
who are willing to help with this query specification, and
waits the answer specification aspec as a synthesising result
set. A security protocol between deriver and helper is used
to ensure the authenticity of the answer specification. The
details will be discussed in next section.

After the application of the heuristic rules, the Deriver
agent checks whether the resulting subgoals are interim or
terminal subgoals. If the subgoal matches a protocol mes-
sage or an assumption then it is a terminal subgoal and the
searching at this point will complete. Otherwise, in the case
of an interim subgoal it added to the current goal set G.
If no heuristic rule can be applied to a subgoal then it is a
terminal subgoal. If it matches an assumption from local as-
sumption database, or has the format P /C(X) (a protocol
step), then it is a local reachable terminal subgoal.

4.4 The Helper Agent
The Helper agent accepts query specifications and uses its

own local Deriver agent to determine the assumptions that
that are needed to synthesise the protocol. This exchange
of protocol specifications requires a security protocol in it-
self; an attacker may attempt to trick one of (or both) of the
principals into using a different protocol. Rather than fixing
on a fixed protocol, we follow our own autonomic security
protocol paradigm and envisage the parties involved syn-
thesising a protocol that will be used to exchange protocol
specifications.

Suppose that agents are not concerned with establishing a
secure protocol exchange then the query QS and answer AS
protocol specifications are exchanged as plain text. For ex-
ample, suppose that the requester A has subgoal B/(A,Na).
A doesn’t know which channel B can read, and doesn’t care
about it. What she requires is that B can read from some
channel that she can write to. If, during the synthesis of the



protocol, an intruder C masquerading as the Helper agent
modifies the subgoal or the returned assumptions leading to
then B may not see the message, and B may not send the
message. The generated protocol will not run to comple-
tion. Though the protocol can be generated in a false way,
the intruder C can not masquerade as the intended principal
B.

Alternatively, suppose that the requester A needs to be-
lieve that B received her query specification QS and sent his
answer specification AS back to her recently. The synthesis
exchange protocol goal

G3
∆
= A |≡ (B ‖∼ (A,Na,AS → QS))

means that A believes B says AS in the same round of the
helping protocol which A sent QS. To believe B can help A
with the query specification QS, A should believe that B is
honest and competent in deciding what is the answer spec-
ification AS for QS. These assumptions may be expressed
as:

A |≡ ((B ‖∼ φ)→ (B |≡ φ))

A |≡ (B |≡ (AS → QS)→ (AS → QS))

B has a further assumption:

B |≡ (AS → QS)

which means B believes that AS can be synthesised to QS.
finally, suppose that the helper B also needs to believe

that A sent her query specification to him recently. The
goal may be expressed as:

G4
∆
= B |≡ (A ‖∼ (QS,Nb,B))

The helper B may also have three levels of trusted beliefs
for A 4 We list them as follows:

• B |≡ (B / (Na,A,QS) → (Na,A,QS)): If principal
B sees a message contained (Na,A,QS), B believes A
sent (Na,A,QS).

• B |≡ (A |∼ (Na,A,QS)→ (Na,A,QS)): If B believes
A sent a message contained (Na,A,QS) at some point
in the past, B believes A sent (Na,A,QS).

• B |≡ (A ‖∼ (Na,A,QS) → (Na,A,QS)): If B be-
lieves A says a message contained (Na,A,QS), B be-
lieves A sent (Na,A,QS).

The helping protocol is generated by the principal who
needs help based on his assumptions. A typical helping pro-
cess between A and B may have three steps. At first, A gen-
erates the help protocol(HP) achieving G3 and G4. Then,
A generates a pre-help protocol for the goal

G5
∆
= B |≡ (A ‖∼ (B,Nb,HP ))

and sends it to B. B verifies the help protocol. A and B
execute the help protocol in the end.

4The underlying BSW logic is based on a small number of
core axioms. A variety of trust relationships such as prin-
cipal truthfullness and honesty are specified as assumptions
held by principals. We assume that the specifier of these as-
sumptions accurately reflects the desired trust relationships.

5. EXAMPLES
In this section, two examples are used to demonstrate how

our paradigm operates. In the first example, a trusted third
party(TTP) is used to help principals to synthesise proto-
cols. In the second example, two TTPs are used to help
them.

Example 2. WebCom D is in UCC and provides a spe-
cial campus computing service to all students in Irish uni-
versities. A student from an Irish universities who wishes to
use WebCom, must prove his student identity to Webcom.
However, different universities have different requirements
for authentication. Webcom uses a signature key KD. TCD
students use symmetric keys that are shared with their de-
partment. For example, student Bob B shares a symmetric
key Kab with his department manager Alice A. When B
wants to use WebCom D, D has a goal

G6
∆
= D |≡ (B ‖∼ (D,Nd1))

which means D believes when B says (D,Nd), B proves his
identity to D.

WebCom D’s long-term assumption database is as follows.

D 3 w(Cd), D 3 r(Ca),

D |≡ (s(w(Ca)) = {A}),
D |≡ ](Nd1), D |≡ ](Nd2),

D |≡ ((A ‖∼ (B |∼ X))→ (B |∼ X)),

D |≡ ((A ‖∼ φ)→ (A |≡ φ)),

D |≡ ((A |≡ (AS → QS)→ (AS → QS))

D believes A is honest and competent in deciding what is
the answer specification and what B said.

Bob B’s long-term assumption database is as follows.

B 3 r(Cab), B |≡ (s(w(Cab)) = {A,B})

Alice A’s assumption Database:

A 3 r(Cab), A 3 r(Cd),

A |≡ ](Na1), A |≡ ](Na2),

A |≡ (s(w(Cab)) = {A,B}),
A |≡ (s(w(Cd)) = {D}),
A |≡ (AS → QS)

Other than the symmetric keys shared with their students,
Alice can also use signature key Ka to sign messages.

At the epoch, W uses his Logic Deriver to obtain the as-
sumptions necessary for G6. Having using Heuristic rules
5,8,7, D gets subgoal

A |≡ (B |∼ (D,Nd1))

which he can not synthesise. However, D trusts that A can
provide some help and launch a round of the help protocol
with A. B generate a query specification QS (see appendix A
for details). The help protocol achieves the following Goals,

D |≡ (A ‖∼ (D,Nd2, AS → QS)),

A |≡ (D ‖∼ (QS,Na1, A))

D obtains the help protocol by using ASPB.



The help protocol HP1 is

D / (Na1, A),

A / Cd(Na1, A,Nd2, D,QS),

D / Ca(Nd2, D, AS → QS).

A should accept this protocol HP1, the goal expressed as

A |≡ (D ‖∼ (Na2, A,HP1))

The pre-help protocol for this goal can express as

D / (A,Na2),

A / Cd(A,Na2, HP1).

Having negotiated these protocols, D obtains the required as-
sumptions. D then generates the security protocol P1 to au-
thenticate B’s identity. The protocol P1 is expressed as

B / (D,Nd1),

A / Cab(D,Nd1),

D / Ca(B |∼ (D,Nd1).

4

The next example is similar to Example 2, however, D
does not trust A any more. The Department manager Trent
T in UCC is trusted by D.

Example 3. In this scenario, D has the same goal G6.
D’s new assumption database:

D 3 w(Cd), D 3 r(Ct),
D |≡ (s(w(Ct)) = {T}),
D |≡ ](Nd1), D |≡ ](Nd2),

D |≡ ((T ‖∼ φ)→ (T |≡ φ)),

D |≡ ((T |≡ φ)→ φ)),

D |≡ ((T |≡ (AS → QS)→ (AS → QS))

D believes T is honest and competent in deciding what is
the answer specification.
T ’s assumption database:

T 3 w(Ct), T 3 r(Ca),

T |≡ (s(w(Ca)) = {A}),
T |≡ (s(w(Cd)) = {D}),
T |≡ ](Nt),

T |≡ ((A ‖∼ (B |∼ X))→ (B |∼ X)),

T |≡ ((A ‖∼ φ)→ (A |≡ φ)),

T |≡ ((A |≡ (AS → QS)→ (AS → QS))

T believes A is honest and competent in deciding what is
the answer specification and what B said.
A changes her assumption

A |≡ (s(w(Cd)) = {D})
to

A |≡ (s(w(Ct)) = {T})
the other assumptions are the same as in Example 2 and B
has the same assumptions as in Example 2.

To synthesise a suitable protocol, D launches a round of
the help protocol with T , and T launches another round of

help protocol with A. Finally, D generate a protocol P2 to
authenticate B. P2 is expressed as

B / (D,Nd1),

A / Cab(D,Nd1),

T / Ca(B |∼ (D,Nd1),

D / Ct(B |∼ (D,Nd1).

4

From example 3 we can see this new paradigm can gener-
ate n-party protocols based on their beliefs. It is not unlike a
cascading authentication protocol such as PGP [?] with the
the trusted chain generated automatically by the security
agents. If two parties have never met before, they may also
try to establish security protocols. In this case, one party
must exactly know the other’s unique identity.

6. CONCLUSIONS
This paper considers a new paradigm whereby principals

negotiate and on-the-fly generate suitable security protocols.
When principals wish to interact then, rather than offering
each other a fixed menu of ‘known’ protocols, the protocol
negotiation process generates a new ”session” protocol that
is tailored specifically to their current security environment
and requirements 5. We believe that this paradigm shift pro-
vides a basis for autonomic security protocols, that is pro-
tocols that are self-configuring, survivable and self-healing.
Protocols can be generated on the basis of the security en-
vironment of the principals and their collaborators.

In [9] we suggest that automated protocol synthesis tech-
niques may provide a basis for autonomic security protocols.
In this paper we explore this new paradigm in more depth
and also consider some of the issues that arise. In particular,
we propose a new paradigm of protocol synthesis by collab-
oration, whereby a principal may draw upon the help of
other principals during protocol synthesis. This collabora-
tion is necessary when the principal does not hold sufficient
beliefs to synthesise the protocol on its own. In this paper
we outline how the Automatic Synthesis Protocol Builder
[19] has been extended to support this paradigm.

There are many interesting research directions in this area.
In our current prototype, the Deriver and Helper agents
communicate with each other using a fixed exchange pro-
tocol. In Section 4.4 we argued that this exchange protocol
could be synthesised automatically based on the require-
ments of the principals involved. We are exploring how
techniques such as [13] can be used to translate (generated)
protocol specifications into executable code, which in turn
would form the helper protocols that are used during the
synthesis. We are also exploring how this framework can be
used to manage more sophisticated protocols such as non-
repudiation and delegation.
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APPENDIX
A. AUTHENTICATION WITH TTP

A.1 Goal Specification
declarations {

Principal D, B;
Nonce Nd1;

}
assumptions {

D |≡ ](Nd1);
}
goals {

D |≡ (B ‖∼ (D,Nd1)); /*G1*/
}

A.2 Query Specification
declarations {

Principal D, B, A;
Nonce Nd1;

}
goals {

A |≡ (B |∼ (D,Nd1)); /*G2*/
}

A.3 Answer Specification
declarations {

Channel Cab,Cp;
Principal D, B, A;
Nonce Nd1;

}
assumptions {

A 3 r(Cab);
A |≡ (s(w(Cab) = {A,B});
B 3 r(Cp);

}
goals {
}

A.4 Requirement Specification
declarations {

Channel Cab, Cd, Ca, Cp;
Principal A, B, D;
Nonce Nd1;
Message X;



Formula φ;
}
assumptions {

A |≡ (s(w(Cab)) = {A,B});
D |≡ (s(w(Ca)) = {A});
D 3 r(Ca);
B 3 r(Cab); A 3 r(Cab);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cp); B 3 w(Cp);
D 3 r(Cp); D 3 w(Cp);
D |≡ ](Nd1);
D |≡ ((A ‖∼ φ)→ (A |≡ φ));
D |≡ ((A |≡ (B |∼ X))→ (B |∼ X));

}
goals {

D |≡ (B ‖∼ (D,Nd1)); /*G1*/
}

A.5 The protocol Specification
declarations {

Channel Cab, Cd, Ca, Cp;
Principal A, B, D;
Nonce Nd1;
Message X;
Formula φ;

}
assumptions {

A |≡ (s(w(Cab)) = {A,B});
D |≡ (s(w(Ca)) = {A});
D 3 r(Ca);
B 3 r(Cab); A 3 r(Cab);
A 3 r(Cp); A 3 w(Cp);
B 3 r(Cp); B 3 w(Cp);
D 3 r(Cp); D 3 w(Cp);
D |≡ ](Nd1);
D |≡ ((A ‖∼ φ)→ (A |≡ φ));
D |≡ ((A |≡ (B |∼ X))→ (B |∼ X));

}
protocols {

B / (D,Nd1);
A / Cab(D,Nd1);
D / Ca(B |∼ (D,Nd1);

}
goals {

D |≡ (B ‖∼ (D,Nd1)); /*G1*/
}


