
Supporting Heterogeneous Middleware Security

Policies in WebCom

Simon N. Foley∗, Barry P. Mulcahy, Thomas B. Quillinan,

Meabh O’Connor, and John P. Morrison

Department of Computer Science,

University College, Cork, Ireland.

{s.foley,b.mulcahy,t.quillinan,j.morrison}@cs.ucc.ie

February 14, 2006

Abstract

With the growing interest in service-oriented architectures, achiev-
ing seamless interoperability between heterogeneous middleware tech-
nologies has become increasingly important. While much work inves-
tigating functional interoperability between different middleware ar-
chitectures has been reported, little practical work has been done on
providing a unified and/or interoperable view of security between the
different approaches.

In this paper we describe how the Secure WebCom distributed ar-
chitecture provides access control policy interoperability support be-
tween a number of middleware security architectures. Secure WebCom
uses the KeyNote trust management system to help coordinate the
trust relationships between the different middleware systems and their
associated access control policies. Middleware authorisation policies
can be encoded in terms of cryptographic certificates, and vice-versa.
This provides a unified view of access control across heterogeneous mid-
dleware systems and also provides the basis for decentralised support
of middleware access control policies.

Keywords: Middleware; Security; Web Services; Role Based Access Con-
trol; Trust Management; Interoperability.

∗Corresponding Author

1 Introduction

Interoperability between heterogeneous middleware technologies is typically
achieved through the creation of Middleware to Middleware (M2M) bridges
[16, 24]. Separate bridges are created for each combination of differing mid-
dleware. Utilising these different bridges to provide smooth interoperability
is bridge-dependent and is difficult to generalise. While these bridges pro-
vide functional interoperability between different middleware architectures
[15], little practical work has been achieved on providing a unified and/or
interoperable view of security between the different approaches.

Providing a unified view of access control policy facilitates the spec-
ification and integration of heterogeneous middleware components across
complex application systems. This view should address the issues of policy
configuration, comprehension, migration and maintenance.

Policy Configuration. Different middleware architectures may use
different processes for specifying access control policies; getting the right
configuration can be challenging. An approach to specifying a global access
control policy that can, in turn, be commissioned in a consistent manner
across the supported range of middleware architectures is required.

Policy Comprehension. Given a collection of independent access con-
trol policies configured across a range of middleware systems, their synthesis
into a single unified policy is required. This synthesis promotes ease of un-
derstanding of the current state of the overall system security configuration.

Policy Migration. With policy comprehension comes an ability to
migrate policies from one middleware architecture to another. For example,
the ability to comprehend a MicrosoftR© COM+/.NET authorisation policy
and synthesise an equivalent policy for an Enterprise Java Beans server.

Policy Maintenance. Maintaining ongoing changes to access control
policies must be properly coordinated across the different systems to ensure
a consistent view. Changes to individual access control policies must be
propagated across the system to ensure consistency; changes to the global
policy must be coordinated with changes to the individual middleware access
control policies.

Conventional middleware security architectures such as CORBA [2], En-
terprise Java Beans (EJB) [28] and Microsoft COM+/.NET [18] are based
on Role Based Access Controls (RBAC). While providing distributed client-
server architectures, middleware security mechanisms are effectively based
on centralised RBAC security policies. Access is determined either by cen-
tralised authorisation servers, or by (possibly replicated) policies at local
clients; there is little opportunity to coordinate differing access-controls and

2

policies across different domains and regions. System administrators are re-
sponsible for managing user authorisations and ensuring proper coordination
across potentially many different policies.

Trust management schemes [4–6, 9, 25] use public key authorisation cer-
tificates to specify delegation of authorisation between public keys and can
be used to help decentralise authorisation policies. Trust Management is an
approach to constructing and interpreting the trust relationships between
public keys that are used to mediate security critical actions. Cryptographic
credentials are used to specify delegation of authorisation among public keys.

Distributing these access control policies throughout the different Mid-
dleware technologies requires a bridge between the different systems. Web-
Com [21] is a distributed meta-computing architecture that provides interop-
erability between different middleware. WebCom applications are developed
using a variety of middleware components; WebCom coordinates their exe-
cution across the appropriate client/servers, according to a condensed graph
[19] that defines the execution sequencing rules for the application. WebCom
also provides services for Grid middlewares [20]. Secure WebCom [14] uses
Trust Management [4–6, 9, 25] to manage authorisation within WebCom.
Cryptographic authorisation credentials are used to determine whether it
is permitted for a middleware client/server to execute a component. While
Secure WebCom uses a pluggable architecture to support a variety of trust
management engines [22], we use KeyNote [4] in this paper to demonstrate
our approach.

This paper is a revised version of the paper originally presented as [11].
In this paper we describe how Secure WebCom provides interoperable ac-
cess control policies across different middleware environments. This support
integrates the authorisation schemes provided by the underlying operating
system, the middleware system, and trust management based authorisation
provided by Secure WebCom. The approach provides a number of advan-
tages, addressing the issues of policy configuration, comprehension, migra-
tion and maintenance. While conventional middleware security architectures
typically rely on a centralised notion of authorisation, KeyNote certificates
may be used to promote a decentralised approach.

The paper is organised as follows. Section 2 provides an interpretation of
common middleware authorisation policies in terms of a simple Role Based
Access Control Model (RBAC). An introduction to Trust Management and
the KeyNote system in particular, are given in Section 3. Section 4 describes
how KeyNote is integrated into WebCom and how interoperability between
KeyNote and the underlying middleware access control policies is supported.
WebCom facilitates the support of both trust management based policies

3

and underlying middleware policies, as described in Section 6. WebCom
provides an environment for developing distributed applications built from
different middleware components; Section 7 outlines how such applications
can be developed when taking security into consideration.

2 Middleware RBAC Security

Role-based access control (RBAC) [27] is widely used to provide access con-
trol in database management systems, operating systems and Middleware
architectures. In RBAC, access rights (permissions) are associated with
roles, and users are members of these roles. When a user is assigned to a
role, they gain all the permissions of that role in the system. This allows an
organisation to model its security infrastructure along the lines of its busi-
ness. For the purposes of this paper we make more concrete the conventional
RBAC model of Users, Roles and Permissions, to include Domains.

• Permission: represent actions, capabilities, applications or any other
active behaviour that can be “performed” and, to which, we intend to
control authorisation.

• Domain: administrative boundaries that group permissions and man-
age their underlying resources. In general, domains do not intersect
in their underlying permissions.

• Role: roles are logical groupings of permissions that reflect a particular
task that can be assigned to some user. We assume that roles do
intersect in their underlying permissions.

• User : include humans or any other entity that can be assigned a role.

An RBAC policy is defined in terms of the following relations.

RolePerm : (Domain×Role)↔ Permission

RoleUser : (Domain×Role)↔ User

where RolePerm((d, r), p) means that the role r (in domain d) holds per-
mission p (on some object), and RoleUser((d, r), u) means that user u is
assigned to domain-role pair (d, r). Table 1 uses this model to provide a uni-
form interpretation of basic COM+, EJB and CORBA middleware RBAC
policies.

4

Enterprise Java Beans (EJB) [28] EJB components encapsulate the
business logic of Sun Microsystems Java 2 Enterprise Edition (J2EE) appli-
cation model. Components reside in a bean container located on a server,
running on a host machine. The combination of host, EJB server, and the
relevant bean container JNDI [29] name provide the domains of the policy.
Roles are bean-specific in each container. Users exist globally in each EJB
server, and as such can be members of roles in different domains. Users are
unique to each EJB server, and are managed by that server. Permissions
represent method calls that a role is permitted to make on an EJB object.

Microsoft COM+/.NET [18] COM objects can be anything from a
simple software program right up to a complex program, such as Word.
COM’s RBAC model is an extension of the Windows security model and
provides Windows NT Domains, Roles unique to each Domain, and Per-
missions comprised of primitive COM permissions and object references.
For the purposes of this paper, the set of primitive COM permissions used
are Launch, Access, and RunAs.

Common Object Request Broker Architecture (CORBA) [2] The
CORBA RBAC model consists of Roles, Users and Permissions. We con-
sider a domain to be the name of the machine and the CORBA ORB server
name, similar to the EJB system. Roles are assumed unique to each domain,
and users can be members of one or many roles. Permissions relate to the
method calls on objects of the given object type.

Example 1 A stock market trading application system ShareTrader man-
ages the trading of shares. This system is configured across a trading man-
ager’s Windows workstation (domain mgmt) and a J2EE server (domain
staff) that supports trading operations. The application system has opera-
tions setlimit, analyzerisk, pricedeal, and capturedeal. We have the role hier-
archy Sales < Trader < TraderMgr, and Figure 1 provides a simple example
of the RBAC policy.

In practice, policy attribute values are defined in terms of architecture
specific details. For example, a share trader application running on a Java
EJB server staffserver, port 1050, would have a domain specified as

“staffserver/1050/ShareTrader/ShareTraderEJB′′

and offer java EJB permissions such as ”captureDeal java.lang.String”, and
so forth. On the windows’s workstation, policy attributes are encoded

5

in terms of the COM+ policy attributes. For example, the permission
(“ref:A4C....”,Launch) indicates the authority to launch the COM component
referenced by “A4C....”. If a middleware operation is referred to within a We-
bCom application then it will also have a local WebCom name. For example,
a share trader application that is managed by Secure WebCom would have
sample WebCom permission name ”webcom.nodes.ShareTrader.PriceDealOp”.
In practice, Secure WebCom uses a SDSI-like naming system to provide con-
sistent naming across the many different middleware platforms [22]. △

3 Trust Management

Cryptographic delegation certificates/credentials specify delegation of au-
thorisation between public keys. When a request from an untrusted prin-
ciple (key) is made to a networked application to execute a particular ac-
tion, then, authentication notwithstanding, the application must determine
whether the key(s) that made the request is authorised. Trust Manage-
ment approaches such as KeyNote [4] and SPKI [9] provide assistance to
applications in making these decisions. Trust Management facilitates a de-
centralised approach: authorisation may be determined without having to
consult some central authorisation server, and users may choose to further
delegate their authority without having to refer to a Central Authority.

Authorisation is determined via digitally signed public key credentials
that bind public keys to the authorisation to perform various actions. For
example, Sally may hold a credential, signed by her manager’s private key,
binding her public key to her authorisation to capture deals up to a value
of $100.00. Sally’s public key signs an order request to the purchasing ap-
plication; her credential provides proof of authorisation.

In practice, authorisation is achieved by a collection of credentials that
exhibit the necessary trust relationships between their keys. For example,
we may trust Sally’s public key for orders up to $100.00, if her manager’s
public key is trusted to delegate orders up to $100.00 (or more), and so forth
along a delegation chain that ends in a key that is known to be appropri-
ately trusted. Given a policy (public keys, trusted in known ways), and a
collection of credentials, a network application must determine whether a
particular public key is authorised to request a particular operation.

KeyNote [3, 4] is a flexible trust management scheme that provides a sim-
ple credential notation for expressing both access control policies and delega-
tion. A standard KeyNote Application Programming Interface is used by an
application to make queries about whether security critical requests (to the

6

application) have authorisation or not. The formulation and management of
security policies and credentials are separate from the application, making it
straightforward to support trust management policies across different appli-
cations. KeyNote has been used to provide trust management for a number
of applications including Secure WebCom [14], Grid Administration [23],
managing Security Associations in IPSec [7] and web servers [1].

Example 2 Suppose that the share trader application (Example 1) is im-
plemented on a single server and uses KeyNote to determine whether user
requests (to execute application operations) are authorised. Trading Man-
ager Mandy is authorised for all actions; this is specified by the following
ad-hoc1 KeyNote credential.

Authorizer: POLICY

licensees: "KMandy"

Conditions: app_domain=="ShareTrader" &&

(oper=="setlimit" || oper=="analyzerisk"

|| oper=="pricedeal"|| oper=="capturedeal);

This policy credential defines the conditions under which requests from the
licensee key KMandy may be trusted by the application ShareTrader. These
conditions are defined using a C like expression syntax in terms of the ac-
tion attributes. In this example, attributes app_domain and oper are used
characterise the circumstances of a request. Note that for the purposes of
illustration in this paper we use short simple names to represent public keys
rather than encoding them as proper cryptographic keys.

The owner of public key KMandy has the authority to delegate this trust
to other keys and does so by signing the following credential for a salesperson
who owns public key KSally.

Authorizer: "KMandy"

licensees: "KSally"

Conditions: app_domain=="ShareTrader" &&

(oper=="pricedeal || oper=="capturedeal");

In signing this credential, authoriser KMandy delegates authority for pricing
and capturing deals to the key KSally.

When KSally requests to capture a deal (sending a request signed by
KSally) then the application queries KeyNote with authoriser KSally, ac-
tion attributes {app_domain ← "ShareTrader", oper ← "capturedeal"},
the policy credential above, and a set of signed credentials provided by Sally.

1Section 4 will consider the encoding of RBAC policies in terms of KeyNote credentials.

7

KeyNote confirms that this key is authorised since, by default (policy), we
trust KMandy for all share trader operations and KMandy has delegated some
of this trust to KSally, by virtue of signing the credential. △

4 Secure WebCom

Secure WebCom [14, 21] is a distributed secure and fault-tolerant architec-
ture that is used to coordinate the distributed execution of middleware com-
ponents across a network. A Secure WebCom environment [14, 22] supports
a variety of pluggable trust management engines, including KeyNote [4] and
SPKI/SDSI [9]. Figure 2 outlines the role of trust management in Secure
WebCom. The WebCom master uses the client credentials to determine
what operations it may schedule to them. Similarly, each WebCom client
uses the master’s credentials to determine whether the master is authorised
to schedule the operation. WebCom clients may also act as masters to other
WebCom clients.

In practice, a WebCom master/client is launched by, and runs as, a
user of the system. While a WebCom master might run as a special user
on a network server, individual users can run copies of WebCom clients on
their local workstations. Instances of WebCom masters and/or clients use
their owner’s X509 certificates to achieve secure authentic connections via
SSL/TLS. Note that the identities provided by these certificates are not used
by Secure WebCom; rather they provide a practical way to link messages
that are sent over secure (SSL) connections to public keys (X509) that are
authorised by KeyNote credentials. Secure WebCom uses Trust Manage-
ment credentials to determine the authorisation of X509 authenticated SSL
connections

5 Supporting RBAC Policies in Secure WebCom

RBAC-like policies can be encoded in terms of equivalent cryptographic
certificates/policies [17, 25]. In addition to supporting ad-hoc KeyNote poli-
cies, Secure WebCom supports middleware RBAC-like security policies by
effectively encoding the corresponding middleware RolePerm and RoleUser
relationships (from Section 2) within KeyNote authorisation credentials.
This is unlike [17] which integrates authorisation certificates as part of the
lower-level middleware system. Secure WebCom uses KeyNote to determine
whether it is safe to execute a middleware component.

8

A Secure WebCom environment can automatically convert middleware
RBAC policies to their equivalent KeyNote policies/credentials, and vice-
versa. This provides a high degree of policy interoperability, between the
middleware and trust management layer, and also within the different mid-
dlewares. In addition to providing a uniform way of specifying RBAC poli-
cies for different middleware systems, it also becomes possible to enforce
standardised RBAC middleware policies across middleware systems that do
not have a configured RBAC policy.

There are a variety of approaches to supporting roles in KeyNote. En-
coding the fixed relationships from the RolePerm table as a single KeyNote
credential provides a straightforward representation of the RBAC policy.
Individual credentials are then issued, associating users to roles.

Example 3 The ShareTrader Domain-Role-Permission table can be en-
coded as the following policy credential.

Authorizer: POLICY

Licencees: "Kwebcom"

Conditions: app_domain="ShareTrader" &&

(Domain=="mgmt"&&(role=="TraderMgr") ->

(perm=="setlimit"||perm=="analyzerisk"||...);

....

(Domain=="staff"&&(role=="sales") ->

(perm=="pricedeal"||perm=="capturedeal");

This specifies that a WebCom administration key Kwebcom is authorised to
administer rights in connection with this policy. This could be used as the
policy credential for a WebCom master that is under the control of the owner
of KWebCom. The credential

Authorizer: "Kwebcom"

Licencee: "Kjoe"

Condition: app_domain=="ShareTrader" &&

role=="TraderMgr";

authorises public key Kjoe as a share trader. This means, for example, that
Joe may make analyzerisk requests from a WebCom client executing on
his local workstation. △

The above approach promotes a more centralised policy administration, with
the WebCom environment (administrator) managing delegation and is com-
parable to the conventional middleware approach.

Alternatively, the Domain-Role-Permission table can be decentralised
and spread across a number of credentials and additional authorisations and

9

role memberships delegated to other keys. A common strategy is to represent
roles (from domains) in terms of public keys; delegation is used to create
the role-permission and role-user relationships. In practice, roles are best
supported using SDSI-like local names [25], however, we can approximate
the role membership effect in KeyNote as follows.

Example 4 Public keys KRtrader and KRsales, etc., are used to represent
roles. Credentials associate authorisations to the roles. For example,

Authorizer: KRtrader

Licencee: KRsales

Condition: app_domain=="ShareTrader" &&

perm=="pricedeal"||perm=="capturedeal";

Sally is assigned this role using a credential, signed by KRtrader, authorising
Ksally. In practice, if Joe is a member of the KRtrader and is permitted to
further delegate the associated permissions, then Joe could authorise Sally
to be in the KRsales role. △

A disadvantage of this more flexible and decentralised approach is that in
giving administration authority to individual users it provides only limited
control of how these users subsequently delegate their authority; trading
manager Mandy can decide to directly authorise salesperson Sally to setlimit,
regardless of the intended role hierarchy. In [10] we describe how distributed
workflow rules supported by WebCom are used to place constraints on the
delegation actions of such users.

5.1 Policy Configuration

It is not necessary to rely on just the access control (KeyNote) mechanism
of Secure WebCom; the underlying middleware and operating system also
provide RBAC security mediation. In this case, it is necessary to translate
the specified KeyNote RBAC policy into its equivalent middleware RBAC
security configuration.

A WebCom environment provides an administrator-privileged service
called KeyStar that accepts network requests to update the underlying mid-
dleware security policy. The KeyStar service accepts a request that is au-
thenticated as coming from a user/WebCom with public X509 key K. This
request may be to AddRole(R), AddUser(U), AddUsertoRole(U,R), or Assign-
PermtoRole(R,P), where U is the userid of a middleware user, R a role and
P a permission. KeyStar uses the credentials provided with the request to

10

check whether the requesting key K is authorised for this action, and if so,
then it updates the middleware policy to reflect the request.

In practice, KeyStar is implemented as superclass, providing an uniform
interface and carrying out the Trust Management compliance check. This
superclass is extended when implementing the middleware-specific policy
update operations. Secure WebCom currently provides KeyBean and Key-
COM services which extend KeyStar to support COM+ RBAC and EJB
RBAC policy update, respectively. A Keynix service provides support for
standard Unix policies, with user-groups approximating roles.

For example, Figure 3 outlines how a user, currently registered only in
Domain B, is integrated into a COM+ RBAC policy within Domain A. The
KeyCOM service of WebCom accepts a policy update request (plus KeyNote
credentials) and if valid it updates the security policy in the COM+ Cata-
logue (middleware/Windows RBAC policy) with the equivalent authorisa-
tion. KeyCOM acts, in effect, as an automated Windows/COM adminis-
trator, processing client authorisation requests, while the KeyNote crypto-
graphic credentials facilitate users in delegating authorisation without re-
quiring assistance of non-automated (that is, human) administrators.

5.2 Policy Comprehension

It is also useful to translate middleware RBAC policies into equivalent (We-
bCom) KeyNote RBAC policies. In this case the middleware RBAC policy
can alternatively be enforced by Secure WebCom. A middleware RBAC
policy comprised of relations RolePerm and RoleUser is converted into
KeyNote credentials as follows. This translation process uses Table 1 to in-
terpret the middleware RBAC policy in terms of domains, roles, permissions
and users.

• The RolePerm is encoded as a KeyNote policy credential that autho-
rises the WebCom Key as administrator for the middleware system’s
RBAC policy and is authorised for the given values over attributes do-
main, role, and Permission. Example 3 illustrates this translation with
the KeyNote policy credential encoding the RolePerm table.

• For each user in the RoleUser table, a KeyNote credential is generated,
and signed by the WebCom administration key (owner of the given
middleware system), authorising the user public-key to be a member
of the corresponding roles from RoleUser. The credential for Kjoe

illustrates this in Example 3.

11

In practice, the generation of KeyNote credentials from middleware poli-
cies is provided by WebCom middleware interrogators. These extract infor-
mation on avaliable middleware components, including policy information,
for use within the WebCom IDE (Section 7). The RBAC policy obtained by
the interrogators is also translated into corresponding KeyNote credentials.
Secure WebCom currently supports COM+, EJB and CORBA interroga-
tion.

5.3 Policy Migration

Migration of existing policies from one middleware system to another is also
possible. This interoperability of disparate access control policies allows, for
example, a new system to be configured with the same policy as an existing
system.

Figure 4 illustrates this interoperability with a sample configuration.
System Z is a WebCom Server, while systems X, Y and Z are WebCom
clients. System Z security relies on the Windows (W) operating system,
COM middleware and KeyNote trust management. These systems could
have independent policies, or might require a more homogeneous policy
across the different platforms. A WebCom client running on Windows with
COM middleware security policy inter-operates with the server. If required,
the KeyNote RBAC credentials held by users of System Z can be used
to update the COM+ catalogue of System Y . On the other hand, the
COM middleware RBAC policy on System Y can be translated to equiva-
lent KeyNote credentials and these, in turn, used by System W which does
not have a middleware security mechanism. In addition, if System Y was
a legacy system under migration to System X, then the KeyNote creden-
tials generated from the legacy COM policy can be used to automatically
configure the replacement EJB RBAC policy.

Policy migration is currently supported in Secure WebCom via policy
comprehension (using policy interrogators to extract equivalent credentials
from middleware policies) and policy configuration (using KeyStar autho-
risation services to update middleware policies). This is a straightforward
translation when the middleware names (users, roles, etc.) referred to are
identical. However, it requires administrator intervention when different
names are to be considered ‘equivalent’ during a migration. For exam-
ple, it might be decided that the COM role TraderMgr in domain mgmt
is considered equivalent to an EJB role TraderMgr in domain staff. Inter-
rogated policies must be modified to reflect these equivalences before the
KeyStar service is used. For example, replacing term (Domain=="mgmt")

12

by (Domain=="mgmt"||Domain=="staff") in the KeyNote policy in Exam-
ple 3. Credential similarity metrics [12] can be used to provide control over
more flexible equivalences between names.

5.4 Policy Maintenance

The maintenance of a consistent global policy across the different hetero-
geneous middlewares is important for the overall security of the system.
Making changes to the underlying middleware access control policies can
lead to inconsistencies between the authorisation of principals on different
systems.

Maintaining both middleware and trust management policies is an im-
portant aspect of the Secure WebCom system. For example, if a new em-
ployee is to be added to the existing policy, changes must be propagated
to all the relevant heterogeneous system policies. It is possible to add en-
tries to the underlying middleware access control policies and then utilise
the translation services to propagate these policy changes to the other sys-
tems. However, we recommend changing the trust management policy to
reflect required changes in the system. This enables the changes to be prop-
agated where necessary, while maintaining the consistency of the overall
access control policy. Making the changes to the trust management pol-
icy has additional benefits. For example, a manager can delegate authority
to a new employee without requiring detailed knowledge of the underlying
systems in use.

Continuing the Share Trader example, the manager can achieve this by
the creation of new credentials, assigning the employee the roles required.
The administrative translation services can update the middleware policies
to permit the new employee to use the services appropriate to their function.
Maintaining the policy in this fashion has the additional benefit that it
provides a high-level view of the overall policy of the organisation. There are
advantages to this approach over existing work, such as [17]. For example,
we have the ability to both abstract existing access control policies into Trust
Management policies and conversely enforce portions of Trust Management
policies in terms of middleware RBAC policies.

6 Stacked Authorisation

Using the trust management architecture in Secure WebCom requires that
the WebCom environment be trusted in the sense that part of the secu-
rity mediation (authorisation) is performed by the WebCom environment

13

and not the underlying operating system. An advantage of this approach is
that, since it is independent of the security architecture of the underlying
system then it provides a better opportunity for interoperation between het-
erogeneous platforms that run the WebCom environment. However, since
it does not rely on the underlying operating system/middleware authorisa-
tion mechanisms, a result is that it increases the software in the trusted
computing base.

In the case where the WebCom system is not trusted by the operating
system, the access control policy of the middleware applications may be
enforced. This implies that a choice between enforcing the middleware and
WebCom security policies must be made.

We address this property by considering how the security mechanisms
of the underlying middleware/operating system can be used to provide the
basis of security mediation and form a part of the overall WebCom security
architecture. This provides a stack of security layers, as depicted in Figure 5.
Note that the Level 3 security corresponds to mechanisms encoded within
the condensed graph that is used to coordinate the application components.
It is used to implement application level workflow security, for example [13],
and is not considered in this paper.

These stacked layers of secure WebCom are ‘pluggable’ in the sense of
[26]; for example, in the absence of CORBASec support for a particular
ORB, a WebCom environment could be configured so that authorisation is
based only on a combination of KeyNote (trust management) and underlying
operating system policy.

Using this stackable architecture, applications can be developed that use
trust management policies for new components and the middleware security
architectures for existing security mediations. This has the benefit of using
legacy code and policies, minimising inconsistencies in the conversion of
applications.

7 Secure Application Development

A distributed WebCom application is constructed as a condensed graph [19]
of components using an Integrated Development Environment (IDE). The
IDE provides a platform to build distributed middleware applications based
on existing middleware business logic and access control policies. Through
this approach, programmers can easily build secure and complex distributed
applications from legacy components.

To incorporate the existing middleware components as part of a Web-

14

Com application, existing middleware services are interrogated and made
available to application developers through the use of a component palette
on the WebCom IDE. Interrogation is achieved using a WebCom plugin spe-
cific to the middleware service in question. The interrogated RBAC policy
(Section 5.2) is also available within the IDE as an additional palette (Fig-
ure 6). The IDE analyses the middleware component currently highlighted,
and determines which combinations of domain, role and user is suitably
authorised (holds permissions) to execute the selected component.

The programmer may specify any valid combination of domain, role and
user for a component to execute under. The WebCom scheduler ensures
components are scheduled to the specified domain, role, and user. A partial
specification is also supported, for example, allowing the programmer to
specify a domain and role for a given component, in which case it will be
scheduled to any authorised user in the specified domain and role.

8 Discussion and Conclusion

We have described how interoperable access control is supported for the
different middleware environments that are supported by WebCom. With
this approach, authorisation certificates provide a decentralised approach
for authorisation. We also described how existing middleware RBAC poli-
cies can be encoded in terms of KeyNote credentials and vice-versa. This
provides a unified view of access control of a heterogeneous middleware ap-
plication system, and also provides the basis for the support of centralised
and decentralised RBAC middleware security.

Secure WebCom [14, 22] is a distributed secure and fault-tolerant archi-
tecture that is used to coordinate the distributed execution of middleware
components across networks. We use WebCom in this paper to provide an
infrastructure to support our approach to middleware RBAC interoperabil-
ity. The interested reader is referred to [14, 21, 22] for further information
on the underlying WebCom architecture.

Work in the area of trust management has focused on replacing existing
security models with Trust Management systems. The emphasis in our
research has been more of one to use trust management in a practical setting
where it is not feasible to re-engineer legacy application systems. We have
developed a system that uses the existing RBAC systems, and uses Trust
Management to create more integrated policies.

15

Acknowledgements

The authors would like to thank the anonymous referees for their helpful
comments on this paper. The authors would also like to thank the members
of the Centre for Unified Computing in UCC, without whose support this
work would not have been possible. This work was supported in part by the
Informatics Research Initiative of Enterprise Ireland.

References

[1] Apache-ssl release version 1.3.6/1.36. Open source software distribu-
tion. http://www.apache.org.

[2] G.R. Blakley. Corba Security. An Introduction to Safe Computing with
Objects. Object Technology Series. Addison-Wesley, 2000.

[3] M. Blaze. Using the KeyNote trust management system.
http://www.crypto.com/trustmgt, December 1999.

[4] M Blaze et al. The keynote trust-management system version 2.
September 1999. Internet Request For Comments: 2704, IETF.

[5] M Blaze et al. The role of trust management in distributed systems
security. In Secure Internet Programming: Issues in Distributed and
Mobile Object Systems. Springer-Verlag Lecture Notes in Computer Sci-
ence, 1999.

[6] M Blaze, J Feigenbaum, and J Lacy. Decentralized trust management.
In Proceedings of the Symposium on Security and Privacy. IEEE Com-
puter Society Press, 1996.

[7] M. Blaze, J. Ioannidis, and A. Keromytis, Trust Management for IPsec,
In Proceedings of Network and Distributed System Security Symposium,
The Internet Society, 2001,

[8] M. Blaze, J. Ioannidis, and A.D. Keromytis. Trust management and
network layer security protocols. In Security Protocols International
Workshop. Springer Verlag LNCS, 1999.

[9] C. Ellison et al. SPKI certificate theory. September 1999. Internet
Request for Comments: 2693, IETF.

16

[10] S.N. Foley, B.P. Mulcahy, and T.B. Quillinan. Dynamic administrative
coalitions with webcom DAC. In WeB2004 The Third Workshop on
e-Business, Washington D.C., USA, December 2004.

[11] S.N. Foley, T.B. Quillinan, M. O’Connor, B.P. Mulcahy, and J.P. Morri-
son. A framework for heterogeneous middleware security. In Proceedings
of the 13th International Heterogeneous Computing Workshop, Santa
Fe, New Mexico, USA., April 2004. IPDPS.

[12] S.N. Foley. Supporting imprecise delegation in keynote. In Proceedings
of 10th International Security Protocols Workshop, April 2002, Springer
Verlag LNCS 2845.

[13] S.N. Foley and J.P Morrison. Computational paradigms and protection.
In ACM New Computer Security Paradigms, Cloudcroft, NM, USA,
2001. ACM Press.

[14] S.N. Foley, T.B. Quillinan, and J.P. Morrison. Secure component dis-
tribution using webcom. In Proceeding of the 17th International Con-
ference on Information Security (IFIP/SEC 2002), Cairo, Egypt, May
2002.

[15] R. Geraghty, S. Joyce, T. Moriarty, G. Noone, and Sean Joyce. COM-
CORBA Interoperability. Number ISBN: 0-130-96277-5. Prentice Hall
PTR, 1998.

[16] J. Hugues, F. Kordon, L. Pautet, and T. Quinot. A case study of
middleware to middleware: Mom and orb interoperability. In Proceed-
ings of the 4th International Symposium on Distributed Objects and
Applications (DOA’02), Irvine, CA, USA, October 2002. University of
California, Irvine.

[17] T. Lampinen. Using SPKI certificates for authorization in CORBA
based distributed object-oriented systems. In 4th Nordic Workshop on
Secure IT systems (NordSec ’99), pages 61–81, Kista, Sweden, Novem-
ber 1999.

[18] Microsoft Corporation. Microsoft Platform SDK. The COM Li-
brary. Microsoft Developer Network., 0.9 edition, October 1995.
http://www.msdn.microsoft.com.

[19] J.P. Morrison. Condensed Graphs: Unifying Availability-Driven,
Coercion-Driven and Control-Driven Computing. PhD thesis, Eind-
hoven, 1996.

17

[20] J.P. Morrison et al. WebCom-G: Grid enabled metacomputing. Neural,
Scientific and Parallel Computations Journal., Vol. 12(3), PP. 419-438,
September, 2004

[21] J.P. Morrison, D.A. Power, and J.J. Kennedy. A Condensed Graphs En-
gine to Drive Metacomputing. Proceedings of the international confer-
ence on parallel and distributed processing techniques and applications
(PDPTA ’99), Las Vagas, Nevada, June 28 - July1, 1999.

[22] T.B. Quillinan and S.N. Foley. Security in WebCom: Addressing nam-
ing issues for a web services architecture. In Proceedings of the 2004
ACM Workshop on Secure Web Services (SWS)., Washington D.C.,
USA., October 2004. ACM.

[23] T.B. Quillinan, B.C. Clayton, and S.N. Foley. GridAdmin: Decentralis-
ing grid administration using trust management. In Proceedings of the
Third International Symposium on Parallel and Distributed Computing
(ISPDC04), Cork, Ireland, July 2004. To Appear.

[24] T. Quinot, F. Kordon, and L. Pautet. From functional to architec-
tural analysis of a middleware supporting interoperability across het-
erogeneous distribution models. In Proceedings of the 3rd International
Symposium on Distributed Objects and Applications (DOA’01). IEEE
Computer Society Press, September 2001.

[25] R Rivest and B Lampson. SDSI - a simple distributed security infras-
tructure. In DIMACS Workshop on Trust Management in Networks,
1996.

[26] V. Samar and R. Schemers. Unified login with pluggable authentication
modules (PAM). Request for Comments 86.0, Open Software Founda-
tion, October 1995.

[27] R Sandhu et al. Role based access control models. IEEE Computer,
29(2):38–47, 1996.

[28] Sun Microsystems. Enterprise JavaBeans(tm) Specification, Version
2.1, June 2003. http://java.sun.com/products/ejb/docs.html.

[29] Sun Microsystems Inc. Java Naming and Directory Interface, 1.2 edi-
tion. http://java.sun.com/products/jndi/.

18

Domain Role Permission

mgmt, staff TraderMgr setlimit, analyzerisk, pricedeal, capturedeal
staff Trader analyzerisk, pricedeal, capturedeal
staff sales pricedeal, capturedeal

Domain Role User

mgmt TraderMgr Mandy
staff Trader Joe
staff Sales Sally

Figure 1: RBAC relations for ShareTrader System

19

Type Domain Role User Permission

EJB Combination of
Host, EJB Server,
relevant bean
container.

Application Spe-
cific for each
server.

Exist globally on
each server, can
be members of
different roles.

Method calls (of
an object type)
that roles are per-
mitted to make.

COM Windows NT Do-
mains.

Unique to Do-
mains.

Windows Users.
Unique to each
Domain.

Considering only
Launch, Access

and RunAs in this
paper.

CORBA Machine name
and ORB server
name.

Unique to Do-
mains.

Can be members
of different roles,
unique to each
server.

Relate to method
calls on objects of
the given object
type.

Table 1: Interpretation of Middleware RBAC Models

20

System

TM

c d

e

baconnect

op

connect

op

Policy

TM API

PKI

scheduler
WebCom

Application
TM queries

Untrusted

Environment
Trusted Environment

WebCom

WebCom

Client/parent

Client/parent

WebCOM Parent

Untrusted Principals

SSL connection

Figure 2: WebCOM-KeyNote Architecture

21

KeyNote

security policy

KeyCOM

Windows Server Domain A

Clientcredentials

Policy

COM Catalogue

Domain B

WebCom
Service

Policy update request

Figure 3: COM+ Authorisation Service

22

T(KN)

OS(W)

M(E)

OS(U)
X

Y

Z

W

OS(W)

M(COM)

T(KN)

OS(W)
M(COM)

Figure 4: Interoperating Security Policies

23

Application Security

Trust Management

Middleware Security

OS SecurityL0

L1

L2

L3

Security Mechanisms Interoperability

W
eb

C
om

Stack

Figure 5: Stacked Security Architecture in WebCom

24

Figure 6: The WebCom Integrated Development Environment

25

