
GridAdmin: Decentralising Grid Administration
using Trust Management.

Thomas B. Quillinan, Brian C. Clayton, and Simon N. Foley
Department of Computer Science,
University College, Cork, Ireland.

{t.quillinan, b.clayton, s.foley}@cs.ucc.ie

Abstract— Administration of Grid resources is a time con-
suming and often tedious job. Most administrative requests are
predictable, and in general, handling them requires knowledge of
the local resources and the requester. In this paper we discuss a
system to provide automated support for administrative requests,
such as resource reservation and user account management.
We propose using trust metrics to help judge the merits and
suitability of each request. We outline how these metrics can be
implemented using trust management techniques into a practical
system we call GridAdmin.

KEYWORDS: Grid; Security; Trust Management; Decen-
tralised Administration.

I. INTRODUCTION

Grids [1], [2], [3] consist of numbers of sites cooperating to
share resources. These resources are heterogeneous in nature
and are maintained by a range of administrators, from full-time
professionals to volunteers.

The purpose of these sites is to share their resources and
knowledge throughout the Grid. Grid middleware such as
Globus [1], [4] facilitates the sharing of these resources and
provides an identity based security infrastructure using X.509
certificates. X.509 certificates provide authentication support
for users submitting jobs to remote sites. However, this does
not directly address the issue of administration across the Grid:
It is difficult for an administrator to decide how to react to a
request from a different site, or to know if an executable or
configuration file from another site should be trusted. This is
a hinderance to resource sharing.

Facilitating inter-site administration requires the definition
of policies and some knowledge of each principal in the
Virtual Organisation (VO). This is a major overhead for system
administrators. In this paper we propose an automated system
to support system administrators. In such a system, a request
from a well-trusted administrator at a different site would
be approved automatically, whereas a request from an under
qualified user (for example, a student requesting a resource
reservation) would require further investigation.

It is also important to consider how automation of user
requests, software installation and upgrades, resource reser-
vation, both within, and across sites should be achieved.

Local Problems

At any site, administrators face several basic issues. Users
need accounts to operate in that site. Each user may have a

different software requirement, and will need their specialised
software installed on each resource they intend to use. Users
may wish to request exclusive use of the resource, for example
for critical timing, or simply to reserve access to the resource.
The system administrator will handle these requests according
to his/her knowledge of the user making the request, and
within the constraints of the local policy.

Example 1: Site A has a policy which states that only
postgraduate students and staff are allowed to make requests
on their compute cluster (for accounts, software installation
and for resource reservation and/or co-reservation). Priorities
are assigned based on seniority of the requester and the
urgency of the work. An undergraduate student could not be
granted an account by their supervisor, but couldn’t request a
cluster booking: such a request would have to be brokered by
their supervisor. 4

Cross-site Problems

When these local problems are translated to a Grid environ-
ment, they become more challenging. The same decisions must
be made with less information available to the administrator.

For example, a user at site A wishes to use resources at site
B, where both sites are in the same VO and have a functioning
Grid. Currently, the procedure would be to send an email
to site B’s system administrator requesting that the attached
executable file be installed. This would be accompanied by
a configuration file used to set up the executable file. The
administrator must now decide:

• does the user have a right to access resources on site
B (covered under the terms of the VO agreement and
handled by Globus);

• whether the user at site A is authorised to make such
a request (perhaps local policy dictates that only senior
staff members can make such requests);

• whether he should trust the executable file, or should the
source code be consulted, and

• whether the configuration file is trustworthy.
It is easy to see that the ability to trust the user would

greatly improve cross-site cooperation, and facilitate resource
sharing. Requests from system administrators of different sites
who have established relationships, and thus have some level
of shared trust, are easier to accommodate. These decisions
could be taken according to the established trust relationship
and in terms of the local policy.

In the absence of a trust model, it is tempting to take a
authorise all, or authorise none approach, to requests from out-
side the administrator’s domain. These approaches may hinder
the spirit of the agreement and reduce inter-site cooperation.

System administrators at different sites in a Grid tend to talk
to one another, even if only to exchange the bare information
required to set up a Grid (for example: machine names for
firewalls; usernames for grid mapfiles etc.). For this reason,
some level of trust (or history) is established between them.
This trust can be leveraged, along with the constraints of the
local policy, and the VO agreement to interpret requests. This
is rarely the case with ordinary users. It is more likely that
administrators will have little or no knowledge of individual
users from other sites, but will have established relationships
with their administrators. The user can normally only prove
their identity and their right to access the resources under the
VO agreement through the Globus X.509 security system.

This paper proposes to use Trust Management [5], [6] to
manage the trust relationships between Grid administrators and
Grid users. Trust Management is an approach to constructing
and interpreting the trust relationships between public keys
that are used to mediate security critical actions. Cryptographic
credentials are used to specify delegation of authorisation
among public keys.

Trust Management is used to help automate administrative
decisions rather than replacing the existing Globus security
infrastructure. The contribution of our approach is to provide
a framework in which Grid administration becomes more
practical. In this paper we explore two approaches —Explicit
and “fuzzy”— to supporting Trust Management in Grid Ad-
ministration. Explicit delegation of authorisation requires full
authorisation details to be encoded within the Trust Manage-
ment credentials. However, it does not capture the flexible
nature of a real system. To this end, we propose alternative
metrics to provide a means to make “fuzzy” delegations. These
allow administrators to quantify the level of trust they apply
to each of their users.

The rest of this paper is organised as follows: Section II
introduces Trust Management, in particular the KeyNote trust
management system. Utilising these techniques to specify trust
metric supporting automated grid administration in decen-
tralised manner is examined in Section III. Implementing these
concepts in a practial system, WebCom, is discussed in Section
IV. Finally, in Section V, we discuss the results and draw some
conclusions.

II. TRUST MANAGEMENT

Unlike identity based authorisation systems, such as those
using X.509 [7] certificates, where authorisation is based on
linking a detailed identity to a public key, Trust Management
addresses the need to associate abilities to public keys. In
other words, identity based certificates answer the question
“Who is the holder of this public key?” whereas ability based
certificates answer the question “What can I trust this public
key to do?”.

Conventional identity-based secure applications verify that
the certificates presented have not been revoked, and are
signed by a recognised and trustworthy source. The names are
then extracted from the certificates and a database is queried
to determine if the requested action is authorised. This is
cumbersome and aspects, such as the database lookup, are
outside of the scope of the certificate system. Furthermore,
there is the problem of determining the correct identity of
an individual: there may be more than one John Smith in a
particular organisation[8].

Trust management systems eliminate the extraction of
names and database lookup. The certificates holding the
abilities of the public key requesting the action are instead
submitted to the trust management system, along with the
action request. The trust management system verifies that
the action is authorised by the certificates provided. For the
purposes of authorisation, trust management systems are not
concerned with verifying personal identity of a requester.
These questions, while valid security questions, are not rel-
evant to an application attempting to determine whether an
action is authorised.

Trust Management systems have a number of advantages
compared to the traditional systems created using X.509.
Policies and certificates are created and maintained separately
from the application in a very natural way. The attributes
used within the policies/certificates are application defined,
and they are represented in a free-form fashion, allowing
the application designer to decide what characteristics are
required. Changing the format of the attributes does not require
changes to the trust management system used. By removing
the traditional lookup of an identity’s authority, and instead
representing that authority within the certificate, applications
no longer need to consider the security of where this authority
is stored. An additional benefit of utilising a trust management
system within applications is that designers and implementers
of these applications are required to consider trust management
applications explicitly. This in itself encourages good practices
when considering the overall security of such applications.
Trust management policies are easy to distribute across net-
works, helping to avoid reliance on centralised configuration
of distributed applications.

KeyNote [9], [10] is an expressive and flexible trust man-
agement scheme that provides a simple credential notation
for expressing both security policies and delegation. A stan-
dard KeyNote Application Programming Interface is used
by an application to make queries about whether security
critical requests (to the application) have authorisation or
not. The formulation and management of security policies
and credentials are separate from the application, making it
straight forward to support trust management policies across
different applications. KeyNote has been used to provide trust
management for a number of applications including active
networks [11] and to control access to Web pages [12].

Figure 1 illustrates how Trust Management can be integrated

Manager
Resource Grid Resources

Job
Request

Users

Jobs

System

TM

Policy

PKI

TM queries
TM API

Fig. 1. A User-centric view of Trust Management on the Grid

into a Grid environment. Users send job requests to the
resource management server (such as Globus). A job request is
accompanied by the user’s credentials. The resource manager
uses the Trust Management system to determine whether
the requester has sufficient authority; if this is the case, the
resource manager executes the request on it’s grid resources.

When a request from an untrusted principal (key) is made
to a networked application to execute a particular action,
then, authentication notwithstanding, the application must de-
termine whether the key(s) that made the request is authorised.
Authorisation comes in the form of digitally signed public
key credentials that bind public keys to the authorisation to
perform various actions. In practice, authorisation is achieved
by a collection of credentials that exhibit the necessary trust
relationships between their keys. Given a policy (public keys,
trusted in known ways), and a collection of credentials, a net-
work application must determine whether a particular public
key is authorised to request a particular operation.

Example 2: A Grid scheduling application conditionally
accepts work from users. Operation schedule is used to
request the scheduling of a job onto the Grid, while the request
cancel is used to cancel a job. We expect that, in practice, a
user will have the authority to schedule work to the Grid, and
administrators will have the authority to both schedule and
cancel jobs; this authority will be delegated by the operators
of the individual resources.

Assume that the owner of the public key KUCC-Admin is
trusted to administrate the Grid resource, UCC-GRID. This is
specified by the following KeyNote credential.

Authorizer: POLICY
licensees: "KUCC-Admin"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
JobManager =˜ "Globus\|MPI" &&
(Operation == "schedule" ||
Operation == "cancel");

Fig. 2. Policy Credential allowing Administrator UCC-Admin to schedule
and cancel jobs

Figure 2 is a special policy credential that defines the

conditions under which requests from the licensee key
KUCC-Admin may be trusted by the job managers Globus
and MPI. These conditions are defined using a C like expres-
sion syntax in terms of the action attributes, in this example,
App_Domain, Resource and Operation which are used
characterise the circumstances of a request.

The owner of public key KUCC-Admin (The resource
administrator) has the authority to delegate this trust to other
keys and does so by signing the credential shown in Figure 3
for a user who owns public key KAlice.

Authorizer: "KUCC-Admin"
licensees: "KAlice"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
JobManager == "Globus" &&
Operation == "schedule";

Signature: ...

Fig. 3. Credential allowing User Alice to schedule operations on the GRID

In signing the credential in Figure 3, authoriser
KUCC-Admin delegates authority for scheduling jobs
to the key KAlice. When Alice attempts to schedule a job
(sending a request signed by KAlice), she presents this
credential as proof of authorisation. We can confirm that this
key is indeed authorised since, by default (policy), we trust
KUCC-Admin to schedule and delete jobs and KUCC-Admin
has delegated some of this trust to KAlice, by virtue of
signing the credential. 4

The delegator of a credential can also attach additional
constraints, such as a prohibition on further delegation. An
application may use a Trust Management (TM) scheme such
as KeyNote [10] to determine whether requests to it are
authorised, without the application having to know how that
determination is made.

Example 3: When the GridAdmin application (Exam-
ple 2) queries the KeyNote TM system to determine whether
it is safe to execute a particular request, it must specify
the circumstances of the query. These circumstances include:
action authorizers, corresponding to the key(s) that made the
request; action attribute set, which is a set of action attribute

name and value pairs that characterise the request; policy
credentials, representing the keys that are trusted, and other
credentials as provided by the requester and/or PKI.

For example, when KAlice requests to schedule a job
then the Grid Scheduler (Globus) queries KeyNote with action
authorizer KAlice, action attribute set:

{App_Domain ← "GridAdmin",
Resource ← "UCC-GRID",
JobManager ← "Globus",
Operation ← "schedule"},

the policy credential for KBob above, and a set of signed
credentials provided by Alice. KeyNote must determine if
the given request is authorised based on the evidence pro-
vided. The application interacts with KeyNote via calls to the
KeyNote API. 4

The KeyNote architecture provides a level of separation
between the provision of security policy authorisation and
application functionality. As a software engineering paradigm,
techniques that support separation of concerns for security
[10], [13], synchronisation [14], and so forth are desirable
since they lead to applications that are easier to develop,
understand and maintain.

III. TRUST METRICS FOR GRID ADMINISTRATION

The previous section outlined how a Trust Management
system can provide a basis for a decentralised security ad-
ministrative infrastructure in the Grid. Such a system has the
ability to make authorisation decisions about user requests.
Considering the problem of how to administrate islands of
resources on the Grid, we can readily recognise the advantages
of using Trust Management credentials to drive administrative
actions.

Analysing the administrative problem further we identify
three common administrative transactions:

1) Adding a remote user to a local Grid resource. Users
in remote systems often request access to local sys-
tems. The local administrators may have no personal
knowledge of the remote user, and are forced to make
blind decisions regarding the user’s eligibility and access
level;

2) Providing the ability to book exclusive resource alloca-
tions. Users often require exclusive access to resources
for diverse reasons. The administrator makes decisions
regarding these requests based on such considerations
such as past behaviour. For example, when the user last
had exclusive access, did they use it properly?, and

3) Providing an infrastructure for users to request custom
software installation. Administrators make decisions on
new software installations again based on the requesting
user’s past performance and the skill level of that user;
An experienced user will often receive a more positive
response than a novice!

There are several potential approaches to solving these
problems with a Trust Management framework.

A

C

B

Fig. 4. A Virtual Organisation, with three organisations sharing resources.

A. Reputation Based Metric

Administration of different domains, such as the VO shown
in Figure 4, rely on informal relationships between the ad-
ministrators of those domains. Formalising these relationships
into a model would provide a more consistent outcome for
user requests. An analogy can be seen in the relationships
between nightclubs in a locality. In general they are competing
businesses. However if a person misbehaves in one club, their
reputation often proceeds them to the other clubs in the area,
through the “network” of doormen. This is a model well suited
to the administration of Grid resources.

Using reputation based metrics for measuring trust is a
well established technique [15], [16], [17]. Analysing the Grid
architecture in order to use reputation to promote data integrity
has previously been explored [18]. Knowing the reputation
of a user can provide an insight into what access you give
that user. Maintaining a measure of each user’s reputation
allows an administrator to make decisions about allocating the
resources of the system to those users. We call this measure a
user’s “Karma”. Karma is a numerical value representing the
level of trust that a user has attained in the local system. This
value represents the user’s previous behaviour in the system.
The higher the value, the greater the user’s potential access.
Applying a numerical weight to users allows creation of more
user-understandable policies. For example, depending on the
karma level of a user, automatic decisions regarding access to
resources may be made.

We envision karma to be represented by a value between
0 and 1. Users could potentially receive their initial karma
level (Ku

dl
) depending on their introducer’s karma in the local

domain (Ki

dl
) and the user’s karma in the introducer’s domain

(Ku

di
). An introducer is an authority in an associated domain,

trusted to some level by the authorities in the local domain.
For example:

K
u

dl
= K

i

dl
∗K

u

di

Over time, depending on the user’s behaviour, karma will
rise and fall. Good behaviour, such as properly using reserved
resources, is rewarded with increased karma, and therefore

Authorizer: "KUCC-Admin"
licensees: "KBob"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
karma = 0.52;

Signature: ...

Fig. 5. Karma Credential for User kBob.

Authorizer: POLICY
licensees: "KUCC-Admin"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
(node_request > 5) -> (karma > 0.6);

Fig. 6. Karma Policy, allowing conditional access to Compute nodes.

access. Consequently bad behaviour, such as requesting new
software, but not using it, will result in reduced karma.

Karma could be encoded into trust management credentials,
such as the KeyNote credentials such as those shown in
Section II. For example, Figure 5 shows a karma credential
for user KBob. This credential, signed by an administrator of
the UCC-GRID domain, sets his karma level as 0.52. The
flexibility of this system is apparent when examining the
sample policy shown in Figure 6. This policy indicates that
if a user wishes to reserve more than 5 compute nodes in
the local domain, their karma must be over 0.6. Additional
conditions could be placed in this policy such as, if a user was
below 0.6, they would need to provide a request co-signed by
another user.

Other usage of karma could include assigning a karma
level to machines, based on their setup. This would allow the
creation of policies where machines that are very stable (high
karma) would be reserved for users who also have high karma.
When machines have problems, their karma drops. Conse-
quently a high availability increases the machine’s karma level.

Difficulties with a karma-based metric are in the adminis-
tration of updates to the user karma values. How are changes
to the user’s karma level stored and enforced? Users will
probably be willing to throw-away an old credential, where the
replacement has a higher karma level. However getting them
to use a new credential with lower karma is more difficult.
This issue can be addressed in a number of ways. Expiry
dates could form part of the user karma credential, forcing the
user to obtain a new credential periodically to continue using
the system. Unlike Certificate Revocation Lists (CRLs), this
places the burden of proof of authorisation on the user [19].
Another solution would be to store changes to each user’s
karma in a central “Karma Server”. This, however, introduces
a single point of failure into the system, and does not have
the advantages of a decentralised approach.

Furthermore we must consider how to handle multiple
introducer credentials for a given user. How do we aggregate
different karma levels from different introducers? Also should
changes to the introducer’s karma reflect on the karma of
the user? An example of such a system can be seen in [20].
Finding adequate solutions to these problems is important in

order to create a useable system, and is a topic for future
research.

B. Monetary based metric

Using money as a trust metric has been growing in popu-
larity in recent years. Applying monetary or insurance [21],
[22], [23] terminology to trust decisions is appealing as the
stakes involved in a system are readily understandable. Unlike
the reputation based metric, a monetary based metric requires
no storage of the changes in each user’s fortunes: users take
care of their own money.

In a monetary based system, money is exchanged between
principals. To use a resource, an agreed sum must be paid
to the owner of the resource. It is important that the trust
mechanism has a low computational and administrative cost,
and also that contracts between users must be both verifiable
and subject to conflict resolution. Such a system can be
implemented using a trust management system [24], [25], [26].
These systems work on the basis that either the payments act
as electronic cheques, that are reimbursed later, or are used as
a closed currency. In a closed currency system, payments take
the form of coupons, traded for resources. Ideally principals
must either “save up”, or several principals must combine, to
request an “expensive” resource. Such a system discourages
bad behaviour, as the abuser will lose money in the transaction.

A difficulty with such a metric becomes apparent when
considering problems experienced in economics. For example
in [27], Krugman introduces the problems with Babysitter
clubs, that are common in the US. In these clubs, each set
of parents are initially issued a fixed number of seed coupons.
These coupons are used to pay other parents when a babysitter
is required. When a parent wants a night out, they spend a
coupon and another parent babysits for them. However over
time, the system collapses due to hoarding of coupons by
parents “saving up” for a special occasion. Other parents
noticing the lack of babysitting jobs also stay in, preferring to
save their coupons for emergencies. Applying this behavioural
result to the proposed metric, leads to the conclusion that
similar problems may well be experienced.

Instead of a coupon based metric, consider instead a deposit
based system. In such a system, a “promissory note” is
signed by the principal requesting the resource. If they behave
properly, the contract is returned after some period. However
if abuse of the resource takes place, the owner of that resource
cashes in the contract, reducing the future purchasing power
of the principal. This is analogous to an insurance policy.

Seeding the system requires that a trusted source, for
example a bank, must set limits on all the principals using
the system. This can be achieved using a trust management
system. Initially authorities in a Virtual Organisation are
delegated a certain amount of credit. These authorities can
then pass on portions of this credit to their local users.

Example 4: In the Virtual Organisation shown in Figure 4,
there are three component domains, A, B and C. The KeyNote
policy shown in Figure 7 assigns a credit of 1000 to KAngela,
the Administrator of domain A’s key.

Authorizer: POLICY
licensees: "KAngela"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Credit = 1000 &&
Validity <= 200404312359;

Fig. 7. Administrator Angela is delegated a credit of 1000.

These credentials have a validity date, up to when the
credentials are valid. These validity dates allow the legitimate
reuse of the credit that a user holds, without requiring the
administrator to explicitly return the deposits. KAngela can
then delegate parts of this total to users in her domain.
Such a delegation is shown in Figure 8. This credential

Authorizer: "KAngela"
licensees: "KBob"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Credit = 100 &&
Validity <= 200404142359;

Signature: ...

Fig. 8. Administrator Angela delegates a credit of 100 to user KBob

delegates a credit of 100 to KBob. KBob could now use this
credential to generate a contract, guaranteeing good behaviour
when requesting a resource in domain B. As each of the
domains would trust administrators in the other domains, such
a contract would be honoured in domain B. 4

The metric outlined is essentially the opposite of a reputa-
tion based metric. Good behaviour simply guarantees continual
access to resources. Bad behaviour would result in default of
the contract, reducing the amount of money available in the
future. If a principal misbehaves, a conflict resolution process
would be enacted. Using this process, the complaintant would
furnish the contract credential, and some proof of the bad
behaviour. If the complaint is upheld, at the start of the next
renewal period for the user credit credentials, the credit of the
misbehaving principal would be reduced, and the credit instead
issued to the complaintant. Over time, if principals can show
good behaviour, in terms of contracts successfully completed,
their issuing authority could choose to raise their credit limit.
This is comparable to a credit card company increasing the
credit limit of a good customer.

There is a potential problem with such a metric. Due to the
decentralised nature of the proposed system, double spending,
or promising the same deposit to more than one principal,
becomes possible. A principal could make guarantees in do-
mains B and C using the same collateral. However, we propose
that this is in fact a desirable characteristic. If a principal
acts properly in both domains, the double spending will never
become apparent. However if a default occurs in both domains,
the digital signatures will prove the guiltly principal, and a
conflict resolution process would take over. Such a system will
reward a principal who takes more risks, yet who’s behaviour
is good. Good behaviour is likely to be increased, as principals
are risking potential disaster if discovered.

IV. TOWARDS TRUST MANAGEMENT SUPPORT FOR GRID

ADMINISTRATION

We will now further examine the concepts discussed in
Sections II and III, and apply them to the WebCom system.
The WebCom system [28], [29], [30] is a distributed secure
and fault-tolerant architecture that can be used to coordinate
the distributed execution of functional components across a
network. The system uses implicit program parallelism, sepa-
rates the application program from the underlying computation
engine and is efficient yet compact. The heart of the WebCom
system is the Condensed Graphs computational model that
it employs [31], [32]. Applications are coded as hierarchical
graphs which provide a simple notation in which lazy, eager
and imperative computation can be naturally expressed. A
Secured WebCom environment [28] uses KeyNote to help
manage the trust relationship with other Secured WebCom
environments.

Connection Manager Module

Execution Engine Module

Load Balancer Module

Fault Tolerence Module

Security Manager Module

Scheduler

Fig. 9. WebCom Architecture Diagram

A WebCom environment [33], [34], [35] (Figure 9) is made
up of several modular components: Execution Engine Mod-
ules, Connection Manger Modules, Load Balancing Modules
and Security Manager Modules. The Scheduler initialises the
required modules and handles communication between them.
Execution Engine Modules take functional components and
runs them; Connection Manager Modules handle communica-
tion between WebCom clients and servers; Load Balancing and
Fault Tolerance Modules handle faults and balances the load
over the clients of the server; Security Manager Modules check
each executable component and ensure adherence to the local
system security policy. Each WebCom server can have as many
of each type of module as required; each is consulted where
appropriate. For example a WebCom system might have two
Execution Engine Modules, one handling Condensed Graph
Applications and the other acting as a gateway to a Globus
grid. Thus when a Globus job is uncovered, it is targeted to
the Globus Engine Module.

A. Trust Management in WebCom

The default security architecture in WebCom utilises the
KeyNote trust management system to ensure only authorised
clients are scheduled secured components [28], [29]. Providing

support for either reputation based or monetary based met-
rics becomes a matter of performing additional authorisation
checks. For example, when an attempt is made to reserve re-
sources in a grid, the request takes the form of an authorisation
check and should be accompanied by credentials supporting
the request. However, these authorisation credentials can only
provide an approximation of the metrics described. There are
limitations, such as the need for a centralised karma server,
and the conflict resolution protocols required for a monetory
based system.

B. Reputation based metric in WebCom

Supporting a reputation based metric in WebCom requires
checking the requesting user’s karma level, compared to the
level required by the system policy for the requested ad-
ministration action. If the user’s karma is high enough, the
request is accepted. If not, either a request for confirmation
is made to an administrator, or, if the policy so dictates, the
request is automatically denied. These administrative actions
are specified as Condensed Graph Workflow applications.

Example 5: Reservation of Grid resources is specified in a
Condensed Graph workflow application shown in Figure 10.
When a user wishes to reserve such resources, this workflow
is launched and the components executed on the relevant
resources. This security policy of the environment, in which

Request
Grant

Resource
Book

XE
Display
Result

karma > 0.6

karma > 0.4

karma > 0

Fig. 10. Condensed Graph Workflow application to reserve a resource

the workflow application is running, defines that the Book
Resource operation should be scheduled to a principal
whose karma is greater than 0.4; The Grant Request
operation is only allowed to be scheduled to a principal with
karma greater than 0.6; The Display Result operation
can be scheduled to any valid user. This policy is defined in
a policy credential, such as in Figure 6.

KBob’s credential (shown in Figure 5) indicates that he has
sufficient karma to make a request to book a resource, however
he would need someone else to approve that request, as he
does not have enough karma to do so by himself. The result
of the request would be displayed on KBob’s machine, as he
is a valid user of the system (i.e. his karma is greater than
zero). 4

Using this combination of the workflow abilities of Con-
densed Graphs, and the Security Managers of WebCom we can
construct a flexible automated security administrator. However,
this does not address the accounting problems with such a
reputation metric.

C. Monetory based metric in WebCom

Alternatively, supporting a monetory based metric in We-
bCom requires a different type of credential infrastructure.
When a user wishes to make an administrative request, they
create and sign a contract credential. This credential is then
sent to the Administrator of the resource requested. If the
Administrator accepts the contract, the request is granted.
These decisions are taken based on the local policy of the
resources requested. For example, if the policy stated the cost
per minute of reserving a node, the user would have to offer
at least this amount for the request to succeed. Even though
this metric is in practice the opposite of the reputation metric:
principals must prove their worth, the system is not required to
maintain state; These administrative requests can be specified
in the same form as those used with the reputation metric.

Example 6: Principal KClare wants to reserve 15 compute
nodes, for 10 hours in order to generate some accurate results.
In order to achieve this, she creates a contract credential,
shown in Figure 11.

Authorizer: "KClare"
licensees: "KUCC-Admin"
Conditions: App_Domain == "GridAdmin" &&

Resource == "UCC-GRID" &&
Request == "BookResource" &&
Nodes = 15 &&
Time = 600 &&
Deposit = 100 &&
Validity <= 200404142359 &&
[...];

Signature: ...

Fig. 11. KClare contract for reserving 15 compute nodes for 10 hours.

This contract credential allocates a deposit of value 100 to
KUCC-Admin to guarantee KClare’s good behaviour while
using the requested compute nodes. For this request to be
successful, KClare would have to provide a credential from
a source trusted by KUCC-Admin, giving her the right to
create such a contract credential. Figure 12 shows a credential
fulfilling these requirements.

Authorizer: "KUCC-Finance"
licensees: "KClare"
Conditions: App_Domain == "GridAdmin" &&

Deposit <= 250 &&
Validity <= 200404312359;

Signature: ...

Fig. 12. Credit Credential from UCC’s Finance Department, giving KClare’s
Credit limit.

This credential, signed by a key belonging to the Finance
department in UCC, gives KClare the right to sign contracts up
to value 250, in the GridAdmin application. Finally, KUCC-
Admin’s local policy must declare what price the Administra-
tor is willing to accept for reservation of nodes. The policy
must also trust the KUCC-Finance key for this request to be
successful.

Authorizer: POLICY
licensees: "KUCC-Finance" ||\

"KNUIG-Finance" ||\
"KTCD-Finance"

Conditions: App_Domain == "GridAdmin" &&
((Request == "BookResource" &&

(Deposit >= Time * Nodes * 0.01)) ||
(Request == "InstallSoftware" &&
(Deposit >= Nodes * 100)));

Fig. 13. KUCC-Admin’s policy, trusting the keys of several Finance
departments to assign credit limits. It also dictates the terms acceptable to
the Administrator.

Figure 13 shows such a policy. In this policy credential the
administrator has defined the conditions under which certain
administrative requests are acceptable. Specifically, in order to
reserve nodes, principals must provide a deposit based on the
number of nodes required and the length of time (in minutes),
they are required for. 4

This system can be extended to encompass all the ad-
ministrative actions concerning the administrator. Placing a
monetory value on the actions allows the administrator to dis-
courage certain actions, without outright refusal. For example
in Figure 13, the administrator has defined the value 100 as the
price to install a new piece of software on each node. These
conditions can be as fine-grained as the administrator requires.
For example, reserving an SMP machine could be much more
expensive than a uni-processor node.

Additionally, using the architecture of the WebCom sys-
tem, we can implement the “Nightclub” model previously
discussed. Using the communication capabilities of WebCom,
advisory credentials, written by administrators, could be dis-
tributed throughout the system and integrated into the trust
management decision. These credentials could specify that a
higher “Entrance fee” is required from users who have misbe-
haved on other systems. This provides a means to instantly
reduce the purchasing power of individual users, without
waiting for the renewal of credit credentials. This concept is
similar to the idea of Certificate Cancellation Notices (CCN)
in SPKI [36]. CCNs are an informal version of Certificate
Revocation Lists (CRLs) with most of the benifits, but at
reduced cost.

These decisions take place in a fully decentralised manner.
Different administrators have different priorities, and so the
policies will vary from domain to domain. Another advantage
of this decentralised architecture is the ability to “sub-contract”
work. It would be possible that KUCC-Admin decides to sub-
contract some work to another domain. This is achieved by
the creation of a new contract credential by KUCC-Admin to
another administrator, delegating the deposit from the received
contract credential. The original contract credential would be
passed along to preserve the delegation chain.

D. GridAdmin Architecture

Supporting these automated administrative requests for any
metric, requires an administrative helper “daemon” running on
the Grid resources. These agents take administrative requests,

such as node reservation, and perform the low-level changes
to the resources. For example, a successful request to reserve
compute nodes would call the agent in charge of those nodes,
and modify the system to only allow that user to log in during
the reservation period.

Security Manager Module

GridAdmin Module (GAM)GridAdmin
Daemon

Fig. 14. GridAdmin Module and Administrative Daemon

Figure 14 shows a representation of the GridAdmin architec-
ture. It is made up of two parts; a GridAdmin Module within
the WebCom architecture and the trusted GridAdmin Daemon
executing as the administrator on the machine. The daemon
acts on requests from the module, making the required low-
level changes to the system setup.

V. DISCUSSION AND CONCLUSION

In this paper we have introduced GridAdmin, an automated
administrator, empowered to handle the tedious administrative
requests, such as the reservation of compute nodes, common in
grids today. This system provides a “value-added” service to
Grid administration, sitting on top of the existing Grid archi-
tecture rather than replacing the existing security architecture.
For example, the cryptographic keys used to sign credentials
are the same keys used by the principals to authenticate
themselves to the Grid management software, such as Globus.

Explicit delegation of authorisation as described in Section
II requires full authorisation details to be encoded within the
Trust Management credentials. However, it does not capture
the flexible needs of a real users. To this end, Section III
proposes alternative trust metrics that provide a “fuzzier”
notion of trust. Each approach was found to have advantages
and disadvantages, such as problems of aggregation in the
karma system and conflict resolution in the monetory system.
How these schemes might be implemented within a practical
Grid environment was considered in Section IV.

The metrics proposed encompass alternative ends of the
possible design of such a system. However we believe that
the monetory metric provides an interesting, yet useful simu-
lation of the real-life situations administrators find themselves
in. Often we ask ourselves: “Whats in this for me?; What
guarantees do I have that this will not break our system?”
These questions are addressed using a monetory system, with
the cost/benefit analysis being readily understandable.

We are in the process of deploying such an automated
system in regards to the Cosmogrid [37] project. This will
reduce the time required to administrate, and increase both

flexibility and sharing of resources between the component
sites.

In the future, we intend analysing both the usability of the
GridAdmin architecture, and the suitability of the proposed
metrics over time. The flexibility of a trust management
based approach allow each site to alter their policies to suit
local conditions, while providing a consistent infrastructure
throughout the sites. Integrating some of the features of both
proposed metrics into a combined metric also may provide
some interesting results. More research into these metrics is
required.

ACKNOWLEDGEMENTS

The support of both the Informatics Research Initiative of
Enterprise Ireland and the Cosmogrid project are gratefully
acknowledged.

REFERENCES

[1] I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure
toolkit,” The International Journal of Supercomputer Applications and
High Performance Computing, vol. 11, no. 2, pp. 115–128, Summer
1997.

[2] B. S. White, M. Walker, M. Humphrey, and A. S. Grimshaw, “Le-
gionFS: A secure and scalable file system supporting cross-domain high-
performance applications,” in SC2001: High Performance Networking
and Computing, Denver, Colorado, November 10–16 2001.

[3] The Message Passing Interface (MPI) standard, http://www-
unix.mcs.anl.gov/mpi/.

[4] I. Foster et al., “A security architecture for computational grids,” in 5th
ACM Conference on Computer and Communications Security, 1998.

[5] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust manage-
ment,” in Proceedings of the Symposium on Security and Privacy. IEEE
Computer Society Press, 1996.

[6] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The role of
trust management in distributed systems security,” in Security Issues for
Mobile and Distributed Objects, J. Vitek and C. Jensen, Eds. Fourth
International Workshop, MOS’98, Brussels, Belgium: Springer-Verlag
Inc., July 1998.

[7] CCITT Draft Recomendation, The Directory Authentication Framework,
Version 7, Nov. 1987.

[8] C. M. Ellison, “The nature of a useable PKI,” Computer Networks,
no. 31, pp. 823–830, 1999.

[9] M. Blaze, “Using the KeyNote trust management system,”
http://www.crypto.com/trustmgt, December 1999.

[10] M. Blaze et al., “The keynote trust-management system version 2,” Sept.
1999, internet Request For Comments 2704.

[11] M. Blaze, J. Ioannidis, and A. Keromytis, “Trust management and
network layer security protocols,” in Security Protocols International
Workshop. Springer Verlag LNCS, 1999.

[12] “Apache-ssl release version 1.3.6/1.36,” Open source software distribu-
tion. http://www.apache.org.

[13] S. Foley, “A kernelized architecture for multilevel secure application
policies,” in European Symposium on Research in Security and Privacy.
Springer Verlag LNCS 1485, 1998.

[14] C. Lopes and K. Lieberherr, “Abstracting process-to-process relations
in concurrent object-oriented applications,” in European Conference on
Object-Oriented Programming (ECOOP). Springer Verlag LNCS 821,
1994.

[15] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The eigen-
trust algorithm for reputation management in p2p networks.” in In
Proceedings of the Twelfth International World Wide Web Conference
(WWW2003). Budapest, Hungary: ACM Press, May 20-24 2003.

[16] J. Sabater and C. Sierra, “Social regret, a reputation model based on
social relations,” SIGecom Exch., vol. 3, no. 1, pp. 44–56, 2002.

[17] L. Xiong and L. Liu, “Peertrust: Supporting reputation-based trust in
peer-to-peer communities.” IEEE Transactions on Knowledge and Data
Engineering (TKDE), 2004, to appear in Special Issue on Peer-to-Peer
Based Data Management.

[18] A. Gilbert, A. Abraham, and M. Paprzycki, “A system for ensuring data
integrity in grid environments,” 2004, to Appear.

[19] R. L. Rivest, “Can we eliminate certificate revocation lists?” in Pro-
ceedings of Financial Cryptography ’98, R. Hirschfeld, Ed., no. 1465.
Springer Lecture Notes in Computer Science, February 1998, pp. 178–
183.

[20] Advogato’s trust metric, http://www.advogato.org/trust-metric.html.
[21] B. Schneier, Managed Security Monitoring: Closing the Window of

Exposure, 2000, http://www.counterpane.com/window.html.
[22] M. K. Reiter and S. G. Stubblebine, “Path independence for authentica-

tion in large-scale systems,” in Proceedings of the 4th ACM conference
on Computer and communications security (CCS97). ACM Press, 1997,
pp. 57–66.

[23] J. K. Millen and R. N. Wright, “Reasoning about trust and insurance in
a public key infrastructure,” in Proceedings of the 13th IEEE Computer
Security Foundations Workshop (CSFW’00), Cambridge, England, July
03–05 2000, pp. 16–23.

[24] S. N. Foley and T. B. Quillinan, “Using trust management to support
micropayments,” in Proceedings of the Second Information Technology
and Telecommunications Conference. Waterford Institute of Technol-
ogy, Waterford, Ireland.: TecNet, October 2002, pp. 219–223.

[25] S. N. Foley, “Using trust management to support transferable hash-
based micropayments,” in Proceedings of the 7th International Financial
Cryptography Conference, Gosier, Guadeloupe, FWI, January 2003.

[26] M. Blaze, J. Ioannidis, and A. D. Keromytis, “Offline micropayments
without trusted hardware,” in Financial Cryptography, Grand Cayman,
February 2001.

[27] P. Krugman, The return of Depression Economics. WW Norton & Co,
1999, 176 pages.

[28] S. N. Foley, T. B. Quillinan, and J. P. Morrison, “Secure component
distribution using webcom,” in Proceeding of the 17th International
Conference on Information Security (IFIP/SEC 2002), Cairo, Egypt,
May 2002.

[29] S. N. Foley, T. B. Quillinan, M. O’Connor, B. P. Mulcahy, and J. P.
Morrison, “A framework for heterogeneous middleware security,” in Pro-
ceedings of the 13th International Heterogeneous Computing Workshop.
Santa Fe, New Mexico, USA.: IPDPS, April 2004.

[30] J. Morrison, D. Power, and J. Kennedy, “A Condensed Graphs Engine to
Drive Metacomputing,” Proceedings of the international conference on
parallel and distributed processing techniques and applications (PDPTA
’99), Las Vegas, Nevada, June 28 - July1, 1999.

[31] J. Morrison, “Condensed Graphs: Unifying Availability-Driven,
Coercion-Driven and Control-Driven Computing,” Ph.D. dissertation,
Eindhoven, 1996.

[32] J. Morrison and M. Rem, “Speculative computing in the condensed
graphs machine,” proceedings of IWPC’99: University of Aizu, Japan,
21-24 Sept 1999.

[33] J. P. Morrison, B. Clayton, D. A. Power, and A. Patil, “Webcom-g: Grid
enabled metacomputing,” Neural, Scientific and Parallel Computations
Journal., 2004, to Appear.

[34] D. A. Power, A. Patil, S. John, and J. P. Morrison, “WebCom G,”
in Proceedings of the 2003 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’03). Las
Vegas, Nevada: CSREA Press, June 2003.

[35] J. P.Morrison, B. Clayton, A. Patil, and S. John, “The information
gathering module of the WebCom-G operating system,” in Proceedings
of the Second International Symposium on Parallel and Distributed
Computing (ISPDC03), Ljubljana, Slovenia, October 2003.

[36] Internet Engineering Task Force, “Simple public key infrastructure
[SPKI],” http://www.ietf.org/html.charters/spki-charter.html.

[37] The Cosmogrid Project, 2004, http://www.cosmogrid.ie/.

