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Abstract. Managing the configuration of heterogeneous enterprise
security mechanisms is a wholly complex task. The effectiveness of a
configuration may be constrained by poor understanding and/or man-
agement of the overall security policy requirements, which may, in turn,
unnecessarily expose the enterprise to known threats. This paper pro-
poses a threat management approach, whereby knowledge about the
effectiveness of mitigating countermeasures is used to guide the auto-
nomic configuration of security mechanisms. This knowledge is mod-
eled in terms of Semantic Threat Graphs, a variation of the traditional
Threat/Attack Tree, extended in order to relate semantic information
about security configuration with threats, vulnerabilities and counter-
measures. An ontology-based approach to representing and reasoning
over this knowledge is taken. A case study on Network Access Controls
demonstrates how threats can be analyzed and how automated configura-
tion recommendations can be made based on catalogues of best-practice
countermeasures.

1 Introduction

A significant challenge in the process of securing complex systems is attaining
a degree of confidence that a security configuration adequately addresses the
(security) threats. Threat Trees [1,2], Attack Trees [3] and similar tree-based
threat-modeling methodologies [4,5] are used to help identify, represent and an-
alyze about threats to an enterprise’s assets. Their top-down approach provides
a semi-formal and methodical way to determine viable threat vectors (who, why
and how a system can be compromised). In practice these trees are used for threat
elicitation and analysis: representing threats at a high-level of abstraction and
they tend not to be used to capture low-level or concrete security configuration
detail. For example, while a threat tree may identify a firewall countermeasure
for a Denial of Service attack, it is not advantageous/intended to model, for ex-
ample, the distinctions between SYN-proxy versus SYN-threshold configurations
[6] for a firewall in a sub-net that is downstream from other similarly configured
firewalls. In the latter case much of semantics of the threats and countermeasures
must be modeled implicitly and outside of the tree structure. Threat trees are
useful for analyzing threats in a local context that is decomposed from some root
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threat, however their advantages are diminished when one considers the threat
in a global context (across multiple root threats).

In this paper we consider how a threat tree style approach can provide a basis
for automatically testing whether a security configuration adequately mitigates
the identified threats. In order to achieve this, we extend the threat tree model to
include semantic knowledge about the security configuration and how it relates to
assets, threats, vulnerabilities and countermeasures. Knowledge, such as security
and network configuration, and relationships with vulnerabilities and threats, is
represented using ontologies [7], providing a framework in which to extend threat
trees to Semantic Threat Graphs (STGs).

Semantic threat graphs are used to model knowledge about threat mitigation
by security configurations. We take the Open World Assumption [8], with the
result that semantic threat graphs are easily extended to incorporate knowledge
about the configuration of new threats and/or additional security mechanisms.
For example, building a semantic threat graph using existing firewall and proxy
ontologies [9,10] in order to describe specific syn-proxy and syn-threshold coun-
termeasure configurations.

We can use this model to build a knowledge-base of best-practice defenses
and systems security policies against known threats. For example, bogon firewall
rules [11,12,13] are best-practice protection against spoofing-threats for internal
servers and end-user workstations, while NIST recommend multiple countermea-
sures over an n-tier network hosting a Web-server [14]. This knowledge-base is
searchable—a suitable countermeasure/policy can be found for a given threat—
and provides the basis for autonomic security configuration.

This paper is outlined as follows. Section 2 provides an introduction to threat
trees highlighting their limitation in the context of low-level configuration. Sec-
tion 3 proposes semantic threat graphs as a more a natural approach to construct
and analyse security policies. A formal specification of a semantic threat graph,
grounded in the NAC domain, is modelled in Section 4. Section 5 provides a case
study that describes the basis for automated analysis and synthesis of suitable
catalogue configuration recommendations.

2 Threat Trees

A threat can be defined as “a potential for violation of security, which exists when
there is a circumstance, capability, action, or event that could breach security and
cause harm”[15]. Threat trees (similarly, attack trees [3]) provide a semi-formal
way of structuring the various threats that an asset may encounter. Various
extensions of the threat tree paradigm have been developed. For example, the
inclusion of countermeasures within the tree provides a new kind of tree called a
Defense Tree or Protection Tree [4,5]. For simplicity, and if no ambiguity arises,
we refer to these approaches collectively as threat trees.

A threat tree is composed of a single root node that defines the primary threat
to an asset (‘Disrupt Web Server’, Figure 1(a)). A threat may be decomposed
into additional fine-grained sub-threats (‘Denial of Service’), thereby forming
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a tree hierarchy [1]. A threat profile can be described as the path from a leaf
node to the root node which represents a specific set of states involved in either
achieving the primary threat or countering it.

Everything is a Threat. Each node is either a threat or a countermeasure. In
practice, threats are not viewed in isolation and additional concepts must be
implicitly encoded within the nodes of the tree. For example in Figure 1(a),
various enterprise Assets are referenced: a Web server and firewall are implicit
by the ‘Disrupt Web Server’, ‘Firewall-1’ nodes respectively. Similarly the Web
server’s TCP/IP stack indicates an implicit Vulnerability in the ‘Exploit 3-way
Handshake’ threat node. By viewing everything as a threat, implicit information
may be overlooked.

Implicit Threat Relations. A threat tree represents threat-decomposition and
does not explicitly model other relationships between threats (or concepts re-
lated to threats). For example, in Figure 1(a), the ‘Syn-Flood Attack’ exploits
(relationship) a TCP/IP 3-way handshake vulnerability (implied concept) and
threatens (relationship) the Web server (implied concept).

Cascading Threats. Countermeasures themselves may have threats whereby the
entity that protects another, is itself vulnerable. Cyclic dependencies between
disparate trees cannot be explicitly modelled using threat tree constraints. From
Figure 1(a), installing a firewall (‘Firewall-1’) with policy configuration ‘Syn-
Threshold-1A’ and ‘Syn-Proxy-1’ will mitigate or reduce the threat of a ‘Syn-
Flood Attack’ on the Web server. The ‘Syn-Proxy-1’ countermeasure in effect
shifts the threat posed to the the Web server onto the firewall itself and thus
the ‘Syn-Flood Attack’ has now indirectly migrated to ‘Firewall-1’ giving rise
to the threat tree outlined in Figure 1(b). One of the ways that ‘Firewall-1’ can
be protected is for ‘Firewall-2’ (implicitly defined asset) to filter traffic via its
‘Syn-Threshold-2B’ and ‘Syn-Proxy-2’ policy, thereby giving rise to the implicit
dependency cycle.

Unclear Threat Hierarchy. Threat trees are typically developed in isolation, that
is they focus on a single threat target (decompose ‘Disrupt Web Server’ threat),
and as a consequence it becomes difficult to inter-relate implicit information
across multiple threat trees. Both ‘Disrupt Web Server’ and ‘Disrupt Firewall’
(Figure 1) form part of a forest of (implicitly related) threat trees. By the defini-
tion of a tree, a node should have one parent in the tree and given that the threat
tree structure allows for one type of relationship, subsumption, a problem arises.
The question is how should the hierarchy be constructed when assembling the
overall tree forest? Either a new root node is created, ‘Disrupt Servers’ where
both ‘Disrupt Web Server’ and ‘Disrupt Firewall’ are treated as disjoint siblings
or the ‘Disrupt Firewall’ tree becomes a sub-node of the ‘Firewall-1’ node within
the ‘Disrupt Web Server’ threat tree. The language provided by threat trees is
not rich enough to state explicitly that the former sibling approach should be
adopted with the inclusion of a dependency relationship that links the two trees
together.
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Tree Complexity. Modeling complex system threats can be challenging [5] due
to tree-explosion and disparate trees (forest). While this may be addressed by
software tools, much of the complexity must be managed implicitly and outside
of the tree.

Semi-Formal. The semi-formal nature of a threat tree means that, in practice,
any reasoning must be done outside of the tree structure [4]. For example, it
would be useful to reason whether the concept of ‘Denial of Service’ has the
same meaning in both trees of Figure 1.

Disrupt Web Server

Denial of Service Other

Syn-Flood Attack Other DoS

Exploit TCP 3-way Handshake

Firewall-1 Syn-Cookie

Syn-Threshold-1A Syn-Proxy-1

Tree Key

solid-line: threats
dashed-line: countermeasures

(a) Partial Threat Tree: Web Server Syn-Flood DoS Attack

Disrupt Firewall-1

Denial of Service Poor Admin

Syn-Flood Attack Other DoS

Exploit TCP 3-way Handshake

Syn-Threshold-1B Firewall-2

Syn-Threshold-2A Syn-Proxy-2 Bogon Blacklist

(b) Partial Threat Tree: Firewall Syn-Flood DoS Attack

Fig. 1. Threat Tree Forest
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3 Semantic Threat Graphs

A semantic threat graph is an extended threat tree that addresses the issues
discussed in Section 2. A semantic threat graph can be defined as a graph that
represents the semantics (meaning) of a threat domain. Intuitively, a semantic
threat graph makes explicit the information that is typically implicit in a threat
tree.

Figure 2 provides a model of the components in a semantic threat graph and
Figure 3 depicts an instantiation of this model for the threat tree example in the
previous section. Enterprise IT assets are represented as instances of the Asset
concept. An asset may have one or more hasWeakness ’s (property relationship)
that relate to individuals categorised in the Vulnerability concept (Figure 2).
Instances of the Vulnerability concept are exploitable (exploitedBy) by a threat
or set of threats (Threat concept). As a consequence, an asset that has a vulner-
ability is therefore also threatenedBy a corresponding Threat. A Countermeasure
mitigates particular vulnerabilities. Countermeasures are deemed to be kinds-of
assets, thus are defined as a subConceptOf Asset. Note, the subConceptOf has
a double arrow head and defines a subsumption relation.

Explicit Concepts & Relationships. Domain experts explicitly specify the con-
cepts (set of instances) of the threat domain and characterise their relationships
to other instances and/or concepts. For example, a Network Access Controls ex-
pert specifies firewall configurations that adequately mitigates threats identified
by a security manager.

Cascading Threats. With the graph-based approach cascading threats are identi-
fied explicitly within the threat graph model. Figure 3 demonstrates a threat that
cannot be easily represented within a threat tree structure. Asserted relation-
ships (for example protects) define that the web server is protected by firewall-1
which, in turn, is protected by firewall-2, thus identifying the cascade threat. For
simplicity, the scenario shown in Figure 3 models the 3-way handshake as the
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Fig. 2. Abstract Threat Graph Model
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Fig. 3. Threat Graph: Web Server & Firewall Syn-Flood Countermeasure Dependency

same vulnerability for firewalls and systems. As a result of firewall-1 mitigating
the syn-flood-1A threat on the web server by way of a syn-proxy-1, it then adopts
that threat while proxying the web servers TCP stream vulnerability.

Taxonomic Graph Hierarchies. Although threat trees provide hierarchies of the
Threat concept, it lacks the capability to define a hierarchy for the implicit
concepts within the tree. The threat graph model presented in Figure 2 can
be further refined with sub-concepts that are more refined than their parent
concepts. For example, the Asset concept can define a sub-concept Server to
represent the set of servers (instances) an enterprise might have. This concept
can in turn be further categorised as Business Server (containing Web, Email,
Application servers and so forth) and Protection Server (for example, Firewalls,
IDS’s, VPN’s, Anti-Spam). The Threat concept, as an additional example, can
define a number of sub-concepts in accordance with best practice such as the
Microsoft STRIDE standard (an acronym) whereby threats are categorised as
follows: Spoofing identity, Tampering with data, Repudiation, Information dis-
closure, Denial of service and E levation of privilege [16].

Managing Graph Complexity. Like threat trees, semantic threat graphs are prone
to excessive graph complexity due to a large number of concept relationships.
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The ability to compute a taxonomic hierarchy for a graph can assist navigation
of complex graphs. Additionally, semantic reasoners and tools such as Protégé
[17] help manage, navigate and ensure verifiable consistent graphs.

Formal Semantics. The concepts and relationships in semantic threat graphs are
formally specified in terms of an ontology using Description Logic (DL) [8]. This
is a decidable portion of first-order logic and is well-suited to the representation
of and reasoning about domain knowledge.

4 An Ontology for Semantic Threat Graphs

An ontology provides a conceptual model of a domain of interest [7]. It does so by
providing a vocabulary describing various aspects of the domain of interest and
provides a rich set of constructs to build a more meaningful level of knowledge.
Figure 2 depicts an abstract model for semantic threat graphs, whereby classes
(concepts) represent sets of individuals (instances) and properties (roles) repre-
sent binary relations applied to individuals. Note that in presenting the model
components, for reasons of space, we do not provide complete specifications in
particular, definitions do not include disjoint axioms, sub-properties, data type
properties or closure axioms.

Asset. Class Asset represents any entity of interest within the enterprise that
may be the subject of a threat. While assets can include people and physical
infrastructure, in this paper we consider computer-system based entities such as
Web servers, firewalls, databases, and so forth.

Individuals of class Asset may have zero or more vulnerabilities (∀ restriction)
along property hasWeakness. As a result, those assets may be exposed to various
individuals of the Threat class. An asset may have the capability to implement
a countermeasure to protect itself or other assets.

Asset � ∀hasWeakness.V ulnerability �
∀threatenedBy.Threat � ∀implements.Countermeasure

For example, an instance webServer of the Asset class that is vulnerable to a
syn-flood based Denial of Service (DoS ) attack can be defined by the following
DL assertion (A-box), representing a fragment of knowledge in the ontology.
Note atomic individuals are written in a typewriter font.

Asset(webServer)← hasWeakeness(webServer, tcpHandshake) �
threatenedBy(webServer, synFlood)

Class Asset can be further sub-classed, to more specific kinds of asset concepts,
for example, ProtectionServer � Server, whereby Server is a sub-class of Asset.
The class ProtectionServer represents the NAC system individuals within the
network (Cisco Pix, Linux Netfilter and so forth) and have a role in protecting
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(protects) internal servers (including themselves). The ProtectionServer defini-
tion further restricts the implements property by requiring a protection server to
implement one or more (∃≥1) countermeasures.

ProtectionServer � Server �
∃≥1protects.Server � ∃≥1implements.Countermeasure

For example, the following fragment of knowledge in the ontology defines that
the perimeter firewall (gatewayNAC) protects the Web server from a DoS by
implementing a syn-threshold filtering countermeasure.

ProtectionServer(gatewayNAC)← protects(gatewayNAC, webServer) �
implements(gatewayNAC, synThres)

Threat. A threat is a potential for violation of security [15]. An individual of the
Threat class is considered to exploit one or more vulnerabilities (∃≥1 restriction):

Threat � ∃≥1exploits.V ulnerability � ∃≥1threatens.Asset

For example, the DoS threat synFlood threatens a DMZ webServer.

Threat(synFlood)← exploits(synFlood, tcpHandshake) �
threatens(synFlood, webServer)

Vulnerability. A vulnerability is a flaw or security weakness in an asset that has
the potential to be exploited by a threat.

V ulnerability � ∃≥1isExploitedBy.Threat� ∃≥1isWeaknessOf.Asset

For example, mis-configured NAC configurations have the potential to expose
both internal servers and NAC ’s alike to threats. The following fragment in the
ontology states that the webServer is susceptible to a synFlood attack via the
weakness tcpHandshake.

V ulnerability(tcpHandshake)← isExploitedBy(tcpHandshake, synFlood) �
isWeaknessOf(tcpHandshake, webServer)

Countermeasure. A countermeasure is an action or process that mitigates vul-
nerabilities and prevents and/or reduces threats.

Countermeasure � Asset � ∃≥1mitigates.V ulnerability

Countermeasures can be further sub-classed into specific concepts, if desired. For
example, an AccessCtrlPolicy is a countermeasure configured as one or more
NACPolicy rules.

AccessCtrlPolicy � Countermeasure � ∃≥1configuredAs.NACPolicy
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Countermeasure synThresmitigates the vulnerability tcpHandshake on the Web
server (webServer); this countermeasure is configured as a collection of device-
specific (Netfilter) NACPolicy rules, synDoSLimit and synDoSDrop.

AccessCtrlPolicy(synThres)← mitigates(synThres, tcpHandshake) �
configuredAs(synThres, synDoSLimit) �
configuredAs(synThres, synDoSDrop)

An example of a low-level Netfilter syn-threshold rule-set that: a) limits the num-
ber of TCP connections to the web server to 1 per second after 4 connections
have been observed and b) offending packets that exceed the limit are dropped,
is expressed as follows:

“iptables -A FORWARD -d WebServerIP -p tcp –syn -m limit –limit 1/s –limit-burst
4 -j ACCEPT”
“iptables -A FORWARD -d WebServerIP -p tcp –syn -j DROP”

Based on previous research [9,10], the following are DL fragments that are rep-
resentative of the above Netfilter rules:

NetfilterRule(synDoSLimit)← hasChain(synDoSLimit, forward) �
hasDstIP (synDoSLimit, webServerIP) �
hasProtocol(synDoSLimit, tcp) �
hasTCPFlag(synDoSLimit, syn) �
hasLimit(synDoSLimit, 1) �
hasLimitBurst(synDoSLimit, 4) �
hasTarget(synDoSLimit, accept)

NetfilterRule(synDoSDrop)← hasChain(synDoSDrop, forward) �
hasDstIP (synDoSDrop, webServerIP) �
hasProtocol(synDoSDrop, tcp) �
hasTCPFlag(synDoSDrop, syn) �
hasTarget(synDoSDrop, drop)

Threshold. This value is used to define the minimum degree of effectiveness of a
countermeasure in mitigating the impact of a threat on an asset.

Countermeasure � ∃=1minEffect.Threshold

Simlarly, each threat has a threat level that defines the maximum impact on the
asset.

Threat � ∃=1maxImpact.Threshold

For example, Threshold can be defined as enumerated class:

Threshold � {high,medium,low,nil}
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and a fragment in the ontology is

Threat(synFlood)← exploits(synFlood, tcpHandshake) �
threatens(synFlood, webServer) �
maxImpact(synFlood, high)

The threshold level is used to characterize the extent to which a countermeasure
mitigates a threat: an asset is considered secure if the effectiveness (threshold)
of the countermeasures are greater than the impact (threshold) of the related
threats. For example, if a synCookiewas considered to have medium effectiveness
at mitigating a synFlood then the asset remains under threat, albeit less threat
than having no countermeasure. While CVSS [18], CVE [19], DREAD [20] and
OSVDB [21] for example may provide suitable threshold metrics, the elicitation
of threshold weightings is not the focus of this paper.

5 Case Study

5.1 Network System Configuration

A simplified 3-tier e-commerce NAC architecture is illustrated in Figure 4. The
network at tier-1, also known as a Demilitarized Zone (DMZ ), hosts the Web
server that is accessible from the Internet. The gateway NAC, a firewall, im-
plements a configuration that permits inbound packets from the Internet to the
Web server on ports HTTP and HTTPS by way of an AccessCtrlPolicy cntrweb

countermeasure and drops all other irrelevant packets (cntrdenyOtherPkt). The
following is a fragment of knowledge that defines the gateway firewall:

ProtectionServer(gatewayNAC)← protects(gatewayNAC, webServer) �
implements(gatewayNAC, cntrweb) �
implements(gatewayNAC, cntrdenyOtherPkt)

Within tier-2, the application server communicates with the Web server over
an SSL tunnel. The application firewall, (appNAC), implements countermeasure
cntrsslTunnelApp to permit the correct SSL access.

ProtectionServer(appNAC)← protects(appNAC, appServ) �
implements(appNAC, cntrsslTunnelApp) �
implements(appNAC, cntrdenyOtherPkt)

Hosted in tier-3 is the database server. The backend data NAC is configured to
permit SSH traffic, (cntrsshTunnelDB), from the application server destined for
the database server only.

ProtectionServer(dataNAC)← protects(dataNAC, dbServer) �
implements(dataNAC, cntrsshTunnelDB) �
implements(dataNAC, cntrdenyOtherPkt)



An Approach to Security Policy Configuration 43

Internet

G
a
te

w
a
y

N
A

C

WebServer

A
p
p
li
c
a
ti

o
n

N
A

C

AppServer

D
a
ta

N
A

C

DatabaseServer

Tier-1 Tier-2 Tier-3

http(s)

http(s)

ssl

ssl

ssh

ssh

Fig. 4. Abstract 3-Tier Enterprise E-Commerce NAC Architecture

5.2 Threshold Satisfiability Analysis

The ideal NAC configuration is one that permits only valid traffic, and, no more
and no less. An example of threats to the database, asserted within the ontology,
is identified in Table 1. The focus here is on the threat of permitting a set of
clients (IP Addresses) direct or indirect access to the database. For example,
whether the database be accessible directly by the Web server IP address, in
which case this threat impact is considered high as identified by threatweb.
Note that threattier1 subsumes threatweb since the Web server’s IP address is
contained in the network IP range of tier-1.

Table 1. Example Threats of Unintended IP Address Access to the Database

Asset Threat Unintended IP Access ThreatmaxImpact

dbServer threatweb webServIP high

dbServer threattier1 tier1Subnet high

dbServer threattier2 tier2Subnet medium

dbServer threatapp appServerIP nil

The following DL fragment represents the multiple NAC systems protecting
the database server as part of a defense-in-depth strategy:

DatabaseServer(dbServer)← isProtectedBy(dbServer, gatewayNAC)
isProtectedBy(dbServer, appNAC) �
isProtectedBy(dbServer, dataNAC)

A sample collection of NAC policy configurations (defense-in-depth) currently
protecting the database is provided in Table 2. We consider a number of inad-
equate countermeasures that expose the database to unintended access. The
table outlines the name of the NAC system, its implemented countermeasure
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Table 2. Example NAC Policy Countermeasures and their associated Effectiveness

NAC NACcntr cntrminEffect NACrule Src IP Dst IP DstPort

appNAC cntrwebTrafficGen low nacrapp1 webServIP tier2Subnt any

dataNAC cntrsshTunnelDB high nacrbac1 appServIP dbServIP 22

dataNAC cntrsshTunnelDBGen medium nacrbac2 tier2Subnet dbServIP 22

dataNAC cntrsshTier1Gen low nacrbac3 tier1Subnet dbServIP 22

(NACcntr), the mitigation effectiveness (cntrminEffect) and the corresponding
low-level NACrule components (such as source IP address).

The appNAC firewall implements a generic access countermeasure that enables
much more than the intended SSL access to the application server. In effect,
cntrwebTrafficGen permits the Web server access to all systems and services
in tier-2 and is rated as having a low effectiveness in mitigating unnecessary
database access. A compromised Web server can now be used as a launch pad
for attacks on systems in tier-2, inclusive of the dataNAC Ethernet interface
within that network tier. A more restrictive countermeasure (cntrsslTunnelApp)
is required.

The correctly implemented countermeasure (cntrsshTunnelDB) within the
dataNAC policy configuration helps in mitigating the misconfiguration of fire-
walls upstream. Thus defence-in-depth is borne out as a result. However, in
practice, managing NAC policy configurations is complex [9] and there may
be a requirement for multiple application servers within tier-2 to communi-
cate with the database server. Rather than defining specific countermeasures
for each application server, an administrator may, in the knowledge of being
protected by a firewall upstream, implement a generic countermeasure such as
cntrsshTunnelDBGen, that provides blanket SSH access to the database server
from all systems in tier-2. Other non-bastion hardened servers (such as intranet
LDAP server) in tier-2 could then be used as launch pad when attacking the
database server in tier-3, for example a SSH brute force attack. On individ-
ual basis both cntrwebTrafficGen and cntrsshTunnelDBGen may appear as minor
oversights in their respective tiers, however it is their conjunction that provides
indirect and unacceptable access from the Web server to the database.

The dataNAC firewall inadequately mitigates the threat threattier1 (outlined
in Table 1), as countermeasure cntrsshTier1Gen directly permits SSH access
from all tier-1 systems to the database. Perhaps remote database administra-
tion is a requirement through an SSH proxy server in the DMZ. Unintended
access from the tier-1 through the dataNAC may be considered to have less of a
threat impact if one can guarantee that firewalls upstream apply more restric-
tive port-forwarding controls. However, and in keeping with the defense-in-depth
approach, countermeasure cntrsshTier1Gen should be refined to have a more re-
strictive access policy.

Analysis of security policy configuration is performed using the Semantic Web
Rule Language SWRL [22]. SWRL complements DL providing the ability to
infer additional information from DL constrained ontologies. SWRL rules are
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Table 3. Inadequate Countermeasure Analysis Report

Threat ThreatmaxImpact NAC NonCompliantNACcntr cntrminEffect NACrule

threatweb high appNAC cntrwebTrafficGen low nacrapp1

threattier1 high dataNAC cntrsshTier1Gen low nacrbac3

Horn-clause like rules written in terms of DL concepts, properties and individ-
uals. A SWRL rule is composed of an antecedent (body) part and a consequent
(head) part, both of which consist of positive conjunctions of atoms.

The following is an excerpt of a SWRL query (sqwrl : select) that analyses
the overall NAC configuration for breaches in threshold satisfiability due to
inadequate countermeasures. It reports if countermeasures (?c) implemented by a
NAC (?nac) to protect vulnerable assets (?a) are not effective (swrlb : lessThan
comparison) in mitigating the threat impacts (maxImpact).

threatenedBy(?a,?t) ∧ hasWeakness(?a,?v) ∧ exploits(?t, ?v) ∧ mitigates(?c,?v)∧
isProtectedBy(?a,?nac) ∧ implements(?nac, ?c) ∧ maxImpact(?t,?imp)∧
minEffect(?c, ?eff) ∧ . . . ∧ swrlb : lessThan(?effvalue, ?impvalue)

→ sqwrl : select(?t, ?imp, ?nac, ?c, ?eff, ?nr)

Table 3 depicts the results of this query on the knowledge-base regarding inad-
equate threat mitigation of unintended client access.

5.3 Configuration Recommendation Synthesis

Synthesis provides configuration recommendations from a catalogue of best-
practice countermeasures. For example, it is considered best practice that NAC ’s
implement anti-spoofing bogon rules as described by [11,12,13] to protect its in-
ternal servers and end-user work stations. As a consequence, a NAC policy
should prohibit incoming packets claiming to originate from the internal net-
work. Similarly both [6,23] are examples of best practice with regard to mitigat-
ing DoS attacks. Countermeasures synDoSLimit and synDoSDrop introduced in
Section 4 are examples of DoS catalogue countermeasures.

The following SWRL rule excerpt, states if an asset is threatened by a spoofing
attack (spoof individual) as a result of a particular weakness in the TCP/IP
stack, ipHeaderForgery (individual) then that asset’s protecting NAC should
implement a set of best practice catalogue countermeasures that adequately
(swrlb : greaterThanOrEqual) reduce the threat.

threatenedBy(?a,spoof) ∧ hasWeakness(?a,ipHeaderForgery)∧
exploits(spoof, ipHeaderForgery) ∧ mitigates(?c,ipHeaderForgery)∧
isProtectedBy(?a,?nac) ∧ maxImpact(spoof, ?imp) ∧ minEffect(?c, ?eff)∧
. . . ∧ swrlb : greaterThanOrEqual(?effvalue, ?impvalue) → implements(?nac, ?c)
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6 Tool Support

The semantic threat graph (ontology) and case study described in this paper
where implemented in OWL-DL, a language subset of OWL which is a W3C
standard that includes DL reasoning semantics [24]. Protégé is a plug-and-play
knowledge acquisition framework that provides a graphical ontology editor [17].
Protégé interfaces with a DL based reasoner called Pellet providing model classi-
fication and consistency [25]. In conjunction to DL reasoning support, the SWRL
Protégé plug-in (SWRLTab), allows for the creation of horn-like logic rules that
interfaces with an expert system called Jess [26,22]. In practice, a domain expert
using such tools can avoid or at least limit having to become an expert in DL
and/or OWL notation, as these semantic editors and underlying reasoning tools
hide much of the underlying complexity.

7 Related Research

A number of existing research approaches extend the threat tree model in partic-
ular [4,27,5,28]. Additional boolean node operators: NAND, XOR and NOR, and
the incorporation of defense nodes as countermeasures is described by [28]. Edge
et al [5] define a Protection Tree and Bistarelli et al [4] define a Defense Tree
as countermeasure-centric extensions to the threat tree approach. The research
carried out by [27] describes an Enhanced Attack Tree (EAT) that supports tem-
poral dependencies and sequential threat events that must occur for an attack
to be successful.

While these approaches are aimed at resolving particular inadequacies within
the vanilla threat tree model, they still operate at rather high-levels of abstrac-
tion and are limited with regard to viable threat-only-vectors that contain im-
plicit information such as assets, vulnerabilities and so forth. Our approach dif-
fers by extending the threat tree model to include semantic knowledge about
fine-grained security configuration and, how it relates to assets, threats, vulner-
abilities and countermeasures. Thus, the graph based approach makes explicit
the information that is typically implicit in a threat tree. The semantic threat
graph model is implemented in a knowledge representation system (Protégé) that
provides a language for defining an ontology and an ability to conduct inferences
accross the graph.

While the semantic threat graph model proposed in this paper is applica-
ble to any threat and countermeasure domain, the case study focused on NAC
countermeasures, building on existing ontologies [9,10]. An ontology for Netfil-
ter firewall is described in [10] and is used to (binary) test the consistency of
firewall rules with respect to a Semantic Web application policy. [9] considers
the inter-operation of multiple Netfilter firewall and TCPWrapper proxies with
respect to business and network service requirements.
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8 Conclusion

This paper outlined a threat management approach using an ontology to con-
struct, reason about and manage security policy configurations in the context of
semantic threat graphs. Threat tree models used to represent threats at a high-
level of abstraction, their singular threat vector focus and their practical suitably
in a localised context (individual trees) do not explicitly capture all the entities
involved in the threat management process. The STG extends the threat tree
model to include semantic knowledge about low-level security configurations.

The model was used to build a knowledge-base of best-practice countermea-
sures (e.g. PCI-DSS & NIST) and system security policies against known threats.
The ontology was populated with around one hundred threat, vulnerability and
countermeasure combinations providing a relatively small catalogue for testing
purposes. A case study on NAC demonstrated how security configurations can be
analysed using knowledge about the countermeasures effectiveness in mitigating
threats and how automated security mechanism configuration recommendations
can be made based on catalogues of best-practice countermeasures.

Future research shall investigate how larger catalogues might be pre-populated
from existing vulnerability databases such as OSVDB using knowledge engi-
neering techniques such as case-based reasoning. An investigation of scalability
regarding our approach will also need to be conducted. Emphasis on dynamic
elicitation of threshold weightings also needs to be considered.

Acknowledgments. This research has been supported by Science Foundation Ire-
land grant 08/SRC/11403.
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