
Analysis and Synthesis of Authentication and

Authorisation Mechanisms Against Subterfuge

by

Hongbin Zhou, B.E., M.E.

THESIS

Presented to the Faculty of Science

National University of Ireland

Cork

for the Degree of

Doctor of Philosophy

September 2007

Abstract

Modern networks are intended to support collaborations between large numbers of au-

tonomous entities. A coalition provides a virtual space across a network that allows its

members to interact in a transparent manner. Coalitions may be formed for various pur-

poses, such as resource sharing, information exchange, and highly structured environments

in which businesses and applications are governed according to regulation and contract.

Malicious entities may exist inside and/or outside of a coalition. Such entities attempt

to use coalition services without legitimate permissions. In order to defend against attacks

from malicious entities, a variety of security mechanisms are needed. For example, authen-

tication protocols provide ways to withstand attempts at impersonation; Trust Manage-

ment/authorisation systems are used to ensure that only authorised entities may perform

requested actions. However, many existing security mechanisms are designed in ad-hoc

manners. Their design follows best practice, and withstand only classes of known malicious

behaviour. Yet effective attacks on these mechanisms are often based on other unexpected

behavior. Due to the lack of systematic design approaches, designing well behaved security

mechanisms is a challenging task.

We are interested in the systematic verification and synthesis of security mechanisms.

We first explore the analysis and synthesis of authentication mechanisms. A logic for verify-

ing authentication protocols, and an automated tool for synthesising authentication proto-

cols from their specifications is proposed. We draw comparisons between delegation chains

and authentication-protocol message exchanges. They are both composed of a number of

ordered messages that are exchanged between principals. We argue that protocol-like flaws

may also affect authorisation environments. As a result, we observe the problem of autho-

risation subterfuge, whereby, a principal receiving a permission in one domain, can misuse

the permission in another domain via some unexpected circuitous but apparently autho-

rised route. Authorisation subterfuge is similar to a combination of freshness attack and

parallel session attack on security protocols. Consequently, a logic for analysing subterfuge

in delegation schemes, and a subterfuge-free authorisation language, are proposed.

i

ii

To Ting

Acknowledgements

First and foremost, I want to thank Dr. Simon Foley, my supervisor, for his guidance,

patience, and encouragement over the last five years. His guidance focused on my research

directions and also on my daily life. I could not integrate into the peaceful city of Cork

without his help. His patience was reflected in our discussions of research problems, and also

in bearing with my initial poor english skills and my delayed work after a serious operation.

I can never thank him enough for his help. If I am a better person after my studies it is

largely because of him.

I also want to thank my external examiner Dr. Babak Friozabadi and Dr. John Herbert

as my internal examiner. They provided a rigorous, but enjoyable, examination. Their

interest and enthusiasm are greatly appreciated.

I am thankful to the Department of Computer Science in UCC. Special thanks to Prof.

John Morrison, Niamh Power and Ann Hawes. I also want to acknowledge the help and

friendship shown to me by the members of the Centre for Unified Computing especially:

Adarsh, Barry, Brian, Chenqi, James, Keith, Max, Padraig, Philip and Tom. Special

mention must go to Barry Mulcahy and Thomas Quillinan, with whom I have shared the

same roof in the past few years.

I also need to thank my many friends in Cork, Zheng Cui, Jia Fan, Chunlong Huang,

Albert Kwan, Wei Lan, Jing Rao, Lizhe Wang, Kaixue Wang, Guanhong Wu, Xueyan Wu,

Zhenyong Yan and Ruizhi Zheng. I owe a great debt to you all. Special thanks must goes

to Kuaixue, Xueyan, their mam, and their young son, Andy. They kindly provided me with

a very comfortable room, delicious food and great fun during my viva preparation.

Last, but never least, thanks to my parents for their unconditional support and love. I

am especially grateful to my dear wife, Ting Yao, for her love at all times. She is always

emotionally supportive and she helped improve the presentation of this dissertation.

iii

Contents

Abstract i

Acknowledgements iii

I Introduction 1

1 Introduction 2

1.1 Security in Coalitions . 2

1.2 Subterfuge Definition . 4

1.3 Security Protocols . 4

1.4 Authorisation Mechanisms . 7

1.4.1 Trust Management . 7

1.4.2 Authorisation Subterfuge . 9

1.5 Security Mechanisms for Coalitions . 9

1.5.1 Centralised Security Mechanisms . 10

1.5.2 Distributed Security Mechanisms . 10

1.5.3 Secure Coalition Establishment . 11

1.6 Contributions . 11

1.7 Layout of Dissertation . 13

II Background 14

2 Security Protocols 15

2.1 Understanding Authentication Protocols . 15

2.1.1 Preliminary Concepts on Cryptography 16

2.1.2 The Categories of Security Protocols 17

2.2 Attacking Security Protocols . 18

2.2.1 Implementation Independent Attacks 18

iv

0.0 CONTENTS v

2.2.2 Implementation Dependent Attacks 20

2.3 Specifying and Analysing Protocols . 21

2.3.1 Specifying Protocols . 21

2.3.2 Analysing Protocols . 22

2.4 Synthesising Protocols . 25

2.4.1 Manual and Semi-automatic Design Approaches 25

2.4.2 Automatic Design Approaches . 27

3 Authorisation 31

3.1 Access Control . 31

3.1.1 Mandatory Access Control . 32

3.1.2 Discretionary Access Control . 33

3.1.3 Role-based Access Control . 33

3.2 Delegation . 34

3.2.1 Direct and Indirect Delegation . 34

3.2.2 The Categories of Delegation Operations 35

3.2.3 Closed and Open Delegation . 35

3.3 Language-Based Approaches for authorisation 37

3.3.1 The SRC logic . 37

3.3.2 Binder . 38

3.3.3 Delegation Logic . 38

3.3.4 Trust Management Systems . 38

4 Coalition Frameworks 42

4.1 Understanding Coalitions . 42

4.2 Coalition Security Features . 44

4.2.1 Membership Management . 45

4.2.2 Regulation-based Authorisation . 45

4.2.3 The Form of Administration . 45

4.2.4 Coalition Structures . 46

4.2.5 Coalition Cooperation . 47

4.2.6 Dynamic Establishment . 48

4.3 Coalition Frameworks . 48

4.3.1 The SRC Frameworks . 48

4.3.2 Enclaves . 51

4.3.3 Virtual Private Network . 51

4.3.4 The Ellison-Dohrmann Model . 52

0.0 CONTENTS vi

4.3.5 The Mäki-Aura Model . 53

4.3.6 Security Frameworks in GRIDs . 54

4.3.7 Other Approaches . 58

III The Design of Security Mechanisms 60

5 The BSW-ZF logic 61

5.1 Notation . 61

5.2 Inference rules . 66

5.3 Analysing Protocols . 69

5.4 Discussion . 70

5.5 The Heuristic Rules for Protocol Synthesis 73

5.5.1 Notation . 75

5.5.2 Heuristic Rules . 76

5.5.3 Manual Synthesis Example . 80

5.5.4 Discussion . 86

6 Automatic Security Protocol Builder 89

6.1 The Requirement Specification and the Parser 89

6.2 The Single Goal Synthesiser . 90

6.2.1 Improving Performance . 92

6.3 The Protocol Composer . 97

6.3.1 Merging Principal sequences . 97

6.3.2 Merging Subprotocols . 100

6.3.3 Realising Idealised protocols . 101

6.3.4 Removing Redundant Components 102

6.4 The Protocol Selector . 104

6.5 Protocol Examples . 105

6.5.1 Mutual Authentication with TTP 105

6.5.2 Mutual Authentication without TTP 106

6.5.3 Mutual Authentication and Key Agreement Protocol 113

6.6 Discussion and Evaluation . 122

7 Authorisation Subterfuge 125

7.1 Authorisation Subterfuge in SPKI/SDSI . 126

7.1.1 Authorisation Examples . 127

7.1.2 Authorisation Subterfuge Examples 128

0.0 CONTENTS vii

7.2 Avoiding Subterfuge: Accountability for Authorisation 131

7.3 Subterfuge in Name Certificates . 134

7.4 Subterfuge in Satan’s Computer . 135

7.5 A Logic for Analysing Certificate Chains . 137

7.5.1 The language . 137

7.5.2 Inference rules . 138

7.6 Analysing Authorisation Subterfuge . 140

7.7 Conclusions . 143

8 DAL: Distributed Authorisation Language 145

8.1 Notation . 145

8.1.1 Principals . 146

8.1.2 Statements . 147

8.2 DAL Examples . 150

8.3 Proof System . 151

8.4 Discussion: DAL and Authorisation Subterfuge 153

8.5 DAL Features . 155

8.5.1 Global Unique Permissions . 155

8.5.2 Global Naming Services . 156

8.5.3 Role in Statements . 156

8.5.4 Coalition Delegation . 158

8.5.5 Complex Principal Expressions . 160

9 Secure Coalition Framework 161

9.1 Coalition Characteristics . 162

9.2 DAL Support for Coalitions . 163

9.3 Core Coalition Regulations . 164

9.4 Coalition Establishment Process . 166

9.5 Security Analysis . 167

9.6 Examples . 168

9.7 Discussion . 173

IV Conclusions and Future Work 175

10 Conclusions and Future Work 176

10.1 Overview . 176

10.2 Subterfuge Revisited . 177

0.0 CONTENTS viii

10.3 Summary of Contributions . 178

10.4 Future Work . 179

Bibliography 182

List of Figures

1.1 A Simple Protocol Example . 5

1.2 Attacking and Fixing the Simple Protocol 6

1.3 A Delegation Example . 8

1.4 A Delegation Subterfuge Example . 9

2.1 Encryption and Decryption . 17

2.2 The Dolev-Yao Model . 21

2.3 A Protocol Synthesis Step of Evolutionary Search 28

3.1 An Access Control List Example . 33

3.2 A Role-based Access Control Example . 34

3.3 A Delegation Example . 34

4.1 An Example for Coalition Structure . 43

4.2 An Example for Coalition Operation . 44

4.3 An Example for Coalition Access Control Structures 44

4.4 The SRC1 Model . 49

4.5 The Enclaves Model . 51

4.6 The GSI Model . 54

4.7 The CAS Model . 56

4.8 PERMIS and Akenti . 57

4.9 Contractual Access Control Model . 58

5.1 Belief Changing after a Protocol Step in Verification 69

5.2 The Protocol Verification Diagram . 70

5.3 Verifying A |≡ (B ‖∼ A) for Example 8 . 71

5.4 Verifying B |≡ (A ‖∼ B) for Example 8 . 72

5.5 The Protocol Synthesis Diagram . 74

5.6 A Protocol Synthesis Step . 75

5.7 Labeled Protocol goals used in Figure 5.14 81

ix

0.0 LIST OF FIGURES x

5.8 Labeled Assumptions used in Figure 5.14 81

5.9 Labeled Subgoals used in Figure 5.14 . 81

5.10 Labeled Protocol Steps used in Figure 5.14 81

5.11 Incomplete and Complete Formula Trees . 82

5.12 One-way authentication Protocol Synthesis for Goal A |≡ (B ‖∼ A) 83

5.13 A Complete formula tree for Goal G1 : A |≡ (B ‖∼ A) 85

5.14 Manual Protocol Synthesis for Goals in Example 8 87

6.1 Overview of Automatic Security Protocol Builder 90

6.2 The complete requirement specification for Example 8 91

6.3 Examples for Early Pruning and Variable Instantiation 93

6.4 Self-Parent Formula Trees and Infinite Search 96

6.5 Sequence Covering Examples . 98

6.6 A Requirement Specification for Mutual Authentication without TTP using

Symmetric Keys . 107

6.7 A requirement specification for Mutual Authentication without TTP using

signature keys . 111

6.8 A requirement specification for Mutual Authentication without TTP using

Public Keys . 112

6.9 The requirement specification for the mutual authentication and key agree-

ment protocol using Trusted Third Party. 114

7.1 Certificate Chains in SPKI/SDSI Example 128

7.2 Delegations in SPKI/SDSI Example . 129

7.3 Attack Graphs: Passive Attack . 129

7.4 Attack Graphs: Outer-Active Attack . 129

7.5 Attack Graphs: Inner-Active attack . 130

7.6 Attack Graphs: Outer-Intercept attack . 130

7.7 Attack Graphs: Inner-Outer Active Attack 131

8.1 New DAL axioms . 152

List of Tables

3.1 A Simple Access Control Function . 32

4.1 Summary: Security Features of the SRC frameworks 50

4.2 Summary: Security Features of Enclaves and VPN 52

4.3 Summary: Security Features of the ED Model and the MA Model 54

4.4 Summary: Security Features of GSI, CAS and VOMS 57

4.5 Summary: Security Features of PERMIS, Akenti and CACM 58

6.1 The time performance comparison between ASPB and APG 122

7.1 A Comparison between Open System and Closed System 132

xi

Part I

Introduction

1

Chapter 1

Introduction

Subterfuge is a deceptive behaviour with the goal of evading the intended controls of a

security mechanism. The design of a security mechanism can be evaluated by answering

the question “Is the security mechanism sufficient to prevent subterfuge from malicious

principals?” This dissertation introduces and explores the notion of subterfuge in coalitions.

Subterfuge provides a new and unifying perspective for understanding authentication and

authorisation. Understanding subterfuge provides a new approach to developing secure

coalitions. This dissertation first investigates the design of authentication protocols and

decentralised authorisation mechanisms based on the analysis of authentication subterfuge

and authorisation subterfuge. Then, a decentralised framework is developed to support the

establishment and the management of secure coalitions.

The remainder of this chapter is organised as follows. We give a general context to our

thesis in Section 1.1. Section 1.2 provides our definition of subterfuge. Section 1.3 describes

the design of authentication protocols, and outlines our contributions in the area. The

design of decentralised authorisation mechanisms is discussed in Sections 1.4 and 1.5. In

Section 1.4, we introduce the design of authorisation languages, and address the research

problem of authorisation subterfuge. In Section 1.5, we focus on the design of secure

coalitions. We restate our contributions of this dissertation in Section 1.6, and give an

overview of the thesis in Section 1.7.

1.1 Security in Coalitions

Modern network environments provide practical mechanisms to interconnect principals.

Each of these principals can be a computer, a process, a person, an organisation, and so

forth. These interconnected principals may collaborate with each other to form coalitions.

A coalition provides a virtual space across a network that allows its members to interact in

a transparent manner.

2

1.1 Security in Coalitions 3

Coalitions may be formed for a wide range of purposes, for example, resource sharing,

business transactions, information exchange, and so forth. A coalition’s purpose should be

accomplished only via a sequence of legitimate actions that are performed by the involved

coalition members. For example, a business transaction should be completed only by nec-

essary business partners; sensitive contract information should be exchanged only between

contract signers.

However, malicious principals may exist inside and/or outside of a coalition. Such

principals attempt subterfuge in order to accomplish the coalition goals of other principals.

For example, obtaining sensitive contract information of other principals, completing a

business transaction on behalf of another principal, and so forth.

Security mechanisms are designed to defend against subterfuge from malicious prin-

cipals. A security mechanism ensures that coalition purposes are accomplished properly.

Here, “accomplished properly” means that coalition purposes are accomplished via a se-

quence of legitimate actions, and each of these actions is legitimately performed by a coali-

tion member.

Designing well behaved security mechanisms is a challenging task, since security mech-

anisms often fail to fulfil their goals for various reasons. One possible explanation for this

is that many existing security mechanisms are designed in an ad-hoc manner. Their design

follows best practice based on the experiences of their designers, and prevent only classes

of known malicious behaviour. However, effective subterfuge is often based on other un-

expected behaviour. Another possible explanation for this is that many existing security

mechanisms are designed to work properly only for coalitions that satisfy a number of spec-

ified assumptions, but they are used for coalitions that do not satisfy all of these specified

assumptions.

We argue that the design of a security mechanism can be evaluated by answering the

question “Is the security mechanism sufficient to prevent subterfuge from malicious princi-

pals?” In order to answer this question, both security mechanism synthesis approaches and

security mechanism analysis approaches are used in literature.

Security mechanism synthesis approaches attempt to generate well behaved security

mechanisms in a systematic manner. These well behaved security mechanisms should be

able to defeat a variety of malicious attempts. These malicious attempts are unified under

the notion of subterfuge in this dissertation. Thus, these well behaved security mechanisms

should be subterfuge-free security mechanisms. When a synthesis approach is provided,

anyone may generate security mechanisms by following the steps that are specified in such

an approach. A security mechanism generated in a systematic manner is sufficient to prevent

known subterfuge vulnerabilities. It does not rely on the experiences of its designers. This

is unlike security mechanisms that are designed by experience.

1.3 Subterfuge Definition 4

Security mechanism analysis approaches attempt to analyse existing security mecha-

nisms under specified assumptions. Such an analysis approach specifies a number of possi-

ble subterfuge vulnerabilities, and verifies whether a given security mechanism may prevent

those subterfuge scenarios under specified assumptions.

In this dissertation, we are interested in the design of three types of security mechanism:

authentication protocols, authorisation languages, and coalition frameworks. Both analysis

and synthesis approaches are proposed and used for evaluating the design of these types of

security mechanisms.

1.2 Subterfuge Definition

A security mechanism allows a number of specified principals to accomplish a given task.

These specified principals perform a sequence of legitimate actions to accomplish the task.

The intended controls of a security mechanism are based on the deduction of these legitimate

actions. Malicious principals are principals that are not allowed to accomplish this task by

the security mechanism. They intend to accomplish this task by misrepresenting the true

nature of the deduction via a sequence of deceptive actions. Subterfuge are these deceptive

actions that are performed by malicious principals with the intention of evading the intended

controls of a security mechanism.

1.3 Security Protocols

A number of security mechanisms are categorised as security protocols [3, 4, 89, 90, 93, 119]

that are widely used for a variety of purposes, such as authentication, cryptographic key

distribution, contract signing, delegation, and so forth. Well-designed security protocols

should be able to withstand malicious attempts at impersonation. In other words, a round

of a well-designed security protocol should be completed only by its legitimate participants.

In this section, we introduce the design of security protocols.

A security protocol is a process composed of a number of ordered messages that are

exchanged between two or more principals in order to achieve a number of purposes. Pro-

tocol messages may contain secret information that is deducible and usable only by certain

protocol participants. When a protocol participant receives a message, it should be able to

determine who sent the message, when the message was issued, and its purpose. Protocol

participants use this information together with assumptions about the secret information

to make decisions on how to respond. For example, protocol participants do not respond to

forged messages. At the end of a round of that protocol, one or more participants can de-

duce their expected security related conclusions. The following example illustrates a simple

1.3 Security Protocols 5

(flawed) authentication protocol for bank transactions.

Example 1 In order to start a transaction with bank B, customer A is willing to identify

herself to bank B by sending her own account acctA together with her password pwdA to

bank B. However, her password is a secret shared only between bank B and herself, and

should not be sent to B as a plaintext. If pwdA is sent as a plaintext, malicious principals

may obtain pwdA by eavesdropping on the conversation between A and B, and imitate A

in the future. In order to keep pwdA as a secret only shared between A and B, a simple

security protocol is demonstrated in Figure 1.1.

This simple security protocol contains two messages. First, bank B sends a message to

initiate a protocol round with A. When A receives the first message, she sends the second

message. The contents of the second message are her bank account acctA and password

pwdA. This message is encrypted by B’s cryptographic key kb. The reason for this is

to ensure that only B may understand the contents of this message. When B receives the

second message, he deciphers that message and obtains acctA and pwdA. Then, B compares

acctA and pwdA with A’s bank account and password stored in the bank’s database. If they

are the same, A is identified by B. △

customer A oo A,B
bank B

{acctA, pwdA}kb //

Figure 1.1: A Simple Protocol Example

Authentication Subterfuge

A large number of security protocols are designed by experience. Security protocols that

are designed by experience often contain subtle flaws that are difficult to find. Many secu-

rity protocols have been demonstrated as flawed protocols long after they were proposed.

For example, the Needham Schroeder mutual authentication protocol [89] was published in

1978. Seventeen years later, Lowe demonstrated a flaw in the protocol when its protocol

assumptions are subtly changed [94]. This protocol flaw can be interpreted as a subterfuge

vulnerability that allows malicious principals to achieve some protocol purposes by misrep-

resenting the true nature of the deduction via a sequence of deceptive messages. The next

example demonstrates flaws in the simple bank protocol.

Example 2 As shown in Figure 1.2(a), malicious principal I may intercept the second

protocol message for further use. B cannot distinguish the second message of the current

1.3 Security Protocols 6

day1: customer A
{acctA, pwdA}kb // Intruder I

��
day2: ·

{acctA, pwdA}kb // bank B

(a) Attacking the Simple Protocol

customer A oo A,B
bank B

{acctA, pwdA, Ta}
kb //

(b) A Revised Simple Protocol

Figure 1.2: Attacking and Fixing the Simple Protocol

protocol round from the second messages of previous protocol rounds. Thus, on day2, I

may send this message that is intercepted in day1 in order to impersonate principal A.

It is a possible way to prevent this kind of security threat by adding a timestamp Ta in

the second message. The revised protocol is demonstrated in Figure 1.2(b). Bank B only

responds to recently generated messages in this revised protocol. △

In order to detect whether these proposed security protocols may withstand attempts

at impersonation, a variety of approaches [41, 27, 56, 103, 97, 116, 81] to the specification

and analysis of security protocols were developed in the past. These approaches are very

useful for discovering subtle and previously unknown flaws in given security protocols. For

example, a flaw of the Andrew Secure RPC Protocol was found by Burrows, Abadi and

Needham using the BAN logic [27].

These protocol analysis approaches may not be directly used as protocol synthesis ap-

proaches that generate well behaved security protocols in a systematic manner. The reason

for this is that protocol analysis approaches are used after obtaining a protocol, but protocol

synthesis approaches are used to obtain a protocol.

Without protocol synthesis approaches, designing well behaved security protocols re-

mains a challenging task. Without protocol synthesis approaches, the design of existing

security protocols is based mainly on the experience of security protocol designers. Secu-

rity protocols that are designed by experience often contain subtle flaws that are difficult

to find. For example, flaws of the Andrew Secure RPC Protocol, the Needham Schroeder

symmetric key protocol, and the Otway-Rees protocol were discovered long after they were

first proposed [34].

1.4 Authorisation Mechanisms 7

Researchers have recognised this problem, and developed a relatively small number of

protocol synthesis approaches [10, 28, 59, 57, 104, 35, 32, 100]. Existing protocol synthesis

approaches adopt the forward verification strategy from protocol analysis approaches. These

synthesis approaches typically carry out a forward search for candidate protocols. Forward

search means that possible protocol message sequences are extended by the order of protocol

execution. A message may be appended to a candidate message sequence only when the

message may be generated from a set of known assumptions. When a message sequence

upholds all of the protocol goals, the message sequence is a candidate protocol. However,

the message generating processes in these forward searching techniques are brute force, in

the sense that whether a message is useful to generate a valid protocol is indeterminable. A

very large protocol space must be searched in its entirety in order to obtain a valid protocol.

A result of our research is the development of a systematic approach to automatically

generating security protocols in a backward manner from given protocol goals. Unlike

the forward search approaches, message sequences are obtained by the converse order of

protocol execution. A message is added as the first message of a message sequence when

the message is required to achieve a given goal. When a message sequence can be generated

from given assumptions and upholds all of the protocol goals, the message sequence is

a candidate protocol. A prototype generator has been built that performs well in the

automatic generation of authentication and key exchange protocols.

1.4 Authorisation Mechanisms

While security protocols mainly focus on determining the genuine identities of principals,

authorisation mechanisms focus on determining whether an authenticated principal is per-

mitted to access defined resources in defined ways. In this dissertation, we consider autho-

risation mechanisms for coalition schemes [62, 36, 43, 19, 38] which focus on implementing

distributed authorisation. Cryptographic authorisation certificates bind authorisations to

public keys and facilitate a decentralised authorisation approach.

1.4.1 Trust Management

Trust Management [62, 36, 43, 19, 38] is an approach to constructing and interpreting the

trust relationships among public-keys that are used to mediate access control. Authorisation

certificates are used to specify delegation of authorisation among public keys. Determining

authorisation in these systems typically involves determining whether the available certifi-

cates can prove that the key that signed a request is authorised for the requested action.

The following example demonstrates a delegation of authorisation among three principals

using certificates.

1.4 Authorisation Mechanisms 8

Example 3 Figure 1.3 illustrates a chain of delegations. Certificate C1 = 〈BankA,Alice〉t
reflecting permission t for accessing Alice’s bank account is delegated from the certificate

signer BankA to Alice. Since her funds in BankA are small, Alice decides to delegate this

authority to her mobile MobileA by signing C2 = 〈Alice,MobileA〉t. Alice believes that

this is a reasonable strategy as, on the basis of her view of the world, Trust Management

certificate reduction gives a indirect delegation 〈BankA,Alice,MobileA〉t (and no more).

Alice 〈BankA,Alice〉t //

〈BankA,Alice,MobileA〉t
c b b b b a a a a `

--
^]]]] \ \ \ \

Alice 〈Alice,MobileA〉t // MobileA

Figure 1.3: A Delegation Example

△

However, principals in Trust Management mechanisms are often ordinary users and

familiar with only a limited number of resources. No principal has a complete picture of all

users and resources that are available; any principal that makes authorisation/delegation

decisions, does so based on its incomplete view of users and resources that are available

to itself. Malicious principals may have opportunities to obtain permissions that they

should not obtain in Trust Management systems. Example 4 demonstrates that when Alice

delegates permission t from BankA to MobileA in Example 3, MobileA may also obtain a

similar permission t from another bank BankB.

Example 4 Continuing Example 3, suppose that Alice also has a bank account in BankB

and is unaware of the existence of the certificate C3 = 〈BankB,Alice〉t. Alice signs certifi-

cate C2 = 〈Alice,MobileA〉t , as recommended, believing that the resulting certificate chain

(with BankA→ Alice→MobileA) provides the appropriate permission t for MobileA (as

an account holder of BankA). Unknown to Alice, MobileA could use certificate C3 to

provide an alternative certificate chain BankB → Alice → MobileA as proof of authori-

sation for t. When MobileA sends a request for permission t to BankB, BankB verifies

the certificates provided by MobileA, and then, allows MobileA to perform the requested

action. However, Alice, who delegates t to MobileA, does not intend to allow MobileA

perform the requested action for BankB in which Alice keeps a large amount of her money.

△

The reason for this is that binding of public keys to principals does not work as tra-

ditional authentication mechanisms in the sense of withstanding malicious attempts at

impersonation. Consequently, such Trust Management mechanisms are evolved only from

traditional authorisation mechanisms that do not consider malicious attempts at imperson-

ation. For example, even when malicious principals do not hold a permission, they may

1.5 Security Mechanisms for Coalitions 9

BankB

〈BankB,Alice〉
t

ss

〈BankB,Alice,MobileA〉t

_ _ _ _ ^ ^ ^ ^]]

++

[Z Z Z Z Y Y Y Y X

BankA 〈BankA,Alice〉t //

〈BankA,Alice,MobileA〉t

[\ \ \ \]]]] ^
11

` a a a a b b b b
Alice 〈Alice,MobileA〉t // MobileA

Figure 1.4: A Delegation Subterfuge Example

freely delegate the permission to ordinary users. When the resource owner cannot be de-

termined for these ordinary users, then these ordinary users, as intermediate principals of

a delegation chain,

When the resource owner is undecidable for these ordinary users, these ordinary users,

as intermediate principals of a delegation chain, may be misled to inadvertently delegate

un-intended permission to other malicious recipients.

1.4.2 Authorisation Subterfuge

This may result in authorisation subterfuge [51], whereby, a principal receiving a permission

in one domain, can somehow misuse the permission in another domain via some unexpected

circuitous but apparently authorised route. Subterfuge on authorisation mechanisms is sim-

ilar to certain attacks on security protocols. They are both malicious attempts at imperson-

ation. We argue that these protocol-like flaws in authorisation schemes should be analysed

using security-protocol style analysis techniques. Unfortunately, prior to our work, the

problem of authorisation subterfuge was not reported in literature. Consequently, to our

knowledge, no existing approach addresses a particular delegation scheme may withstand

attempts at authorisation subterfuge.

In this dissertation, a logic is proposed to provide a systematic way of determining

whether a particular delegation scheme is sufficiently robust to be able to withstand at-

tempts at subterfuge. We also propose a logic-based language that prevents authorisation

subterfuge in large scale distributed collaborations among autonomous principals in this

dissertation.

1.5 Security Mechanisms for Coalitions

Existing security mechanisms for coalitions have been designed to support both authenti-

cation and authorization of coalition participants. For example, when a customer intends

to withdraw some money from a bank, the bank first verifies customer’s bank account

via an authentication mechanism. Once the customer’s bank account is verified, the bank

authorises the customer to withdraw money via an authorisation mechanism.

1.5 Security Mechanisms for Coalitions 10

1.5.1 Centralised Security Mechanisms

Most traditional coalitions are similar to the above bank example in terms of security mech-

anisms. Such a centralised security mechanism is composed of an authentication mechanism

and an authorisation mechanism. Both the authentication mechanism and authorisation

mechanism rely on a “super” security administrator who controls all coalition users and

permissions, and makes sure that coalition permissions are assigned to appropriate users.

The strategy of first determining who the user is and then whether that user is authorised

provides best security practise for traditional coalitions. Part of the reason for this is that

the “super” security administrator is familiar with all of the resources that are available

and he/she makes sure that users get the appropriate permissions; no more and no less.

Both coalition users and permissions are defined and controlled by the “super” security

administrator and are only meaningful within the coalition. When a principal sends a

request in order to perform a permission, the “super” security administrator verifies who

the principal is and whether the principal is an appropriate user for its request permission.

The opportunity to subvert the intentions of a good administrator is usually small.

1.5.2 Distributed Security Mechanisms

The above traditional strategy is not suitable for many kinds of coalitions. For example,

several autonomous principals come together and establish a coalition to share resources.

Each principal has its own security policies for sharing its resources and cooperating with

others. In this scenario, the concern may be that a “super” administrator can arbitrarily

authorise principals outside of the coalition. Thus, it is preferable that a coalition security

mechanism should not rely on the notion of a “super” security administrator. Without

a “super” security administrator, the “first authenticate, then authorise” strategy is not

applicable.

In another scenario, the original security administrator of a large coalition may not be

familiar with every coalition user or potential coalition user. Consequently, it is hard to

assign appropriate permissions to those users or potential users. One may consider that

roles can be used to help structuring and understanding coalition users. However, a role can

be viewed as a special permission that is a group of several simple permissions. Assigning

roles to unfamiliar principals takes the same risk as assigning permissions to unfamiliar

users. In order to assign appropriate permissions only between familiar users, a delegation

scheme can be introduced. In authorisation mechanisms that support delegation, particular

coalition users may be directly or indirectly authorised to act as a security administrator for

certain permissions. When a user is assigned a permission from one of these particular users,

the user obtains that permission as assigned directly by the original security administrator.

1.6 Contributions 11

Since permissions are not controlled centrally by the original security administrator, it is

possible that the original security administrator does not know whether a user is assigned

certain permission. Thus, it is impossible to have a user who controls and knows all coalition

users and permissions as the “super” security administrator. Without a “super” security

administrator, the “first authenticate, then authorise” strategy is also inapplicable here.

1.5.3 Secure Coalition Establishment

The design of secure coalition establishment is a further challenge. The “super” security

administrator in traditional coalition frameworks [13, 53, 55, 87, 98] and top-level permis-

sion holders in modern coalitions, are appointed outside of the security mechanisms of the

coalitions, and must be accepted by all coalition participants before a coalition can be

established. Regulations concerning the resources under the control of the coalition ad-

ministrator, should be carefully issued by the administrator, and well understood by all

participants in advance. Different coalitions may require different establishment and reg-

ulations, and thus a high degree of expertise is required for an administrator to properly

form and manage a coalition. We believe that coalition establishment should not be done

in this ad-hoc manner, rather, it should be formalised as an integral part of the coalition

framework.

In this dissertation, a formal framework for establishing subterfuge-free secure coalitions

is proposed. With this framework, a coalition can be dynamically formed in a fully dis-

tributed manner without relying on a “super” security administrator, and the framework

can be used to merge and spawn coalitions.

1.6 Contributions

The contributions contained within this dissertation are as follows.

1. The main contribution of this dissertation is based on the problem of subterfuge

in coalitions. Subterfuge provides a unified way to think about coalition security

mechanisms, such as authentication mechanisms and authorisation mechanisms.

2. We propose an automatic security protocol generator that uses logic-based synthesis

rules to guide it in a backward search for suitable protocols from protocol goals.

The approach taken is unlike existing automatic protocol generators which typically

carry out a forward search for candidate protocols from the protocol assumptions. A

prototype generator has been built that performs well in the automatic generation of

authentication and key exchange protocols.

1.6 Contributions 12

3. The problem of authorisation subterfuge is described in detail. A logic, Subterfuge

Logic, is proposed to provide a systematic way of determining whether a particular

delegation scheme is sufficiently robust to be able to withstand attempts at authori-

sation subterfuge. This logic is the first approach to analyse authorisation subterfuge.

We argue that this logic is more appropriate to analyse decentralised authorisation

mechanisms than existing analysis approaches.

4. We propose a logic-based language Distributed Authorisation Language (DAL) to

support distributed delegation in large scale collaborations. DAL is a simple, yet

expressive language. On the other hand, DAL can be used to prevent authorisation

subterfuge without requiring pre-agreed global naming services.

5. Using DAL, a formal framework for establishing secure collaborations is proposed.

With this framework, a collaboration can be dynamically formed in a fully distributed

manner without relying on a “super” security administrator, and the framework can

be used to merge and spawn collaborations.

Early versions of the results in this dissertation have published in peer-reviewed publi-

cations as follows.

• Hongbin Zhou, Simon N. Foley. A Framework for Establishing Decentralized Secure

Coalitions. Proceedings of IEEE Computer Security Foundations Workshop, Venice,

Italy, July 2006, IEEE CS Press.

• Hongbin Zhou, Simon N. Foley. A Logic for Analysing Subterfuge in Delegation

Chain. Workshop on Formal Aspects in Security and Trust (FAST2005), Newcastle

upon Tyne, UK, July 18-19, 2005.

• Simon N. Foley, Hongbin Zhou. Authorisation Subterfuge by Delegation in Decen-

tralised Networks, In the 13th International Security Protocols Workshop, Cambridge,

UK, April, 2005. Lecture Notes in Computer Science, Springer Verlag.

• Hongbin Zhou, Simon N. Foley. A Collaborative Approach to Autonomic Security

Protocols, in Proceedings of New Security Paradigms Workshop 2004(NSPW2004),

pages 9-16, Nova Scotia, Canada, Sept. 20-23, 2004.

• Hongbin Zhou, Simon N. Foley. Fast Automatic Synthesis of Security Protocols using

Backward Search, In Proceedings of the 2003 ACM Workshop on Formal Methods in

Security Engineering (FMSE’03), pages 1-10, Washington DC, October 2003.

1.7 Layout of Dissertation 13

• Simon N. Foley, Hongbin Zhou. Towards an Architecture for Autonomic Security

Protocols, In Proceedings of the 11th International Security Protocols Workshop,

Cambridge, UK. April 2-4, 2003. Lecture Notes in Computer Science, Springer Verlag.

1.7 Layout of Dissertation

The remainder of the dissertation is organised as follows.

Part II examines the background information and current research discussed in this

dissertation. In particular, Chapter 2 examines the existing research on security protocols.

The background information on authorisation mechanisms is investigated in Chapter 3.

Finally, Chapter 4 gives the background information on secure coalition frameworks.

Part III contains the primary contribution provided by this dissertation. Specifically,

Chapter 5 presents the BSW-ZF logic, a BAN-like belief logic. While its inference rules are

similar to those of existing authentication logics, its heuristic rules are used to guide the

protocol synthesis. The Automatic Security Protocol Builder (ASPB) based on the BSW-

ZF logic is described in Chapter 6. In Chapter 7 we discuss the problem of authorisation

subterfuge, a protocol-like flaw in authorisation frameworks. The Subterfuge Logic for ver-

ifying subterfuge in authorisation frameworks are also proposed in this chapter. Chapter 8

describes a subterfuge-free authorisation language, the Distributed Authorisation Language

(DAL). A decentralised framework to support decentralised coalitions that have been spec-

ified using DAL is described in Chapter 9.

Part IV (Chapter 10) concludes the dissertation and shows directions for possible future

work.

Part II

Background

14

Chapter 2

Security Protocols

The work described in this dissertation is related to a number of research areas, including

security protocols, authorisation mechanisms and collaboration frameworks. In this chapter,

we describe some relevant existing research on security protocols. This chapter begins with

the basic notions that are used in security protocols. Then, existing approaches on attacking

and analysing security protocols are reviewed. Finally, this chapter concludes by presenting

existing approaches on designing security protocols.

2.1 Understanding Authentication Protocols

In the previous chapter, we characterized a security protocol as composed of a number of

ordered messages that are exchanged between principals. Each of these principals can be a

computer, a process, a person, an organisation, and so forth. Principals use information in

their received messages, together with their assumptions about secret information to make

decisions on how to respond. At the end of a round of a security protocol, one or more

involved principals may draw certain conclusions, such as authentication, key exchange, and

so forth. For example, the following protocol [100] is composed of three messages in order

to implement mutual authentication between principal A and principal B.

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb,B}Kab
,

Message 3 A→ B : Nb.

In computer security, authentication, also known as identification or identity verifica-

tion, is the process of attempting to verify identities of communication participants. It

allows a principal (the authenticator) to assure that the identity of another principal (the

15

2.1 Understanding Authentication Protocols 16

authenticatee) is as claimed, thereby preventing impersonation. Here, mutual authentica-

tion between A and B means that both A and B may ensure the participation of the other

principal after a protocol round.

The first message is an intelligible message that is sent from A to B. An intelligible

message is a plaintext that may be generated and understood by any principals, including

malicious principals. For example, the first message (A,Na) can be generated and under-

stood by any principal if principal identifier A and a fresh nonce Na are given. Generally,

a fresh nonce is a random number that is generated by a participant of the current protocol

round, and is intended to be used once and only in the current protocol round.

When principal B receives Message 1, B generates the second message by using a

cryptographic algorithm and a symmetric key Kab that is shared only between A and B.

Some cryptography-related concepts will be introduced in Section 2.1.1. For the moment,

we only need to know that the second message is an unintelligible message that may be

generated and understood only by protocol participants A and B.

Since the content of Message 2 is understandable only by A and B, and other principals

are not able to obtain Nb in the second message, Message 3 may be generated only by A

(assuming that B does not respond to his own generated message). The mutual authenti-

cation between A and B is satisfied, since the current protocol round may be accomplished

only by A and B.

2.1.1 Preliminary Concepts on Cryptography

As shown in the above protocol, in order to ensure that only certain principals can under-

stand and use the messages that they should receive in a given protocol round, cryptographic

algorithms are used in security protocols. In order to prevent intruders (malicious princi-

pals) obtaining the intelligible message M by monitoring the network, the message sender

P uses both a cryptographic algorithm and a key K to convert M to a form C that is un-

intelligible to anyone that is monitoring the network before transmission over the network.

The conversion process is called encryption. The unintelligible form is called ciphertext.

When C is received by the intended receiver Q, a reverse process uses the second key K−1

to recover the origin message M . The reverse process is called decryption. The complete

process is illustrated in Figure 2.1.

The cryptographic algorithms used in encryption and decryption are generally public

knowledge. The reason for this is that in the 19th century, Auguste Kerckhoffs [65] argued

that a cryptosystem should be secure even if everything about the system, except the key, is

public knowledge. This is widely accepted by cryptographers. By restricting who may know

the encryption and decryption keys, the ability of encryption and the ability to determine

2.1 Understanding Authentication Protocols 17

key : K

��

key : K−1

��

plaintext : M // Sender P ciphertext:C // Receiver Q // plaintext : M

Encryption Decryption

Figure 2.1: Encryption and Decryption

the plaintext from a ciphertext are restricted only to necessary principals.

Cryptographic algorithms are classified as symmetric key algorithms and public key

(also called asymmetric key) algorithms. With symmetric key algorithms, such as DES [1],

AES [2], and RC4 (designed by Rivest), the key K for encryption and the corresponding key

K−1 for decryption are the same, or may be deduced from one another. Unlike symmetric

key algorithms, two different but mathematically related keys, a public key and a private

key, are used in public key algorithms, such as Diffie-Hellman [39] and RSA [102]. However,

the calculation of the private key from the public key is infeasible. Typically, the public key

is used for encryption, and may be freely distributed, while its paired private key is used

for decryption, and must remain private. Public key algorithms are also used to implement

digital signature schemes. In digital signature schemes, the secret key is used to process the

message (or a hash of the message, or both), and the matching public key is used with the

message to check the validity of the signature.

2.1.2 The Categories of Security Protocols

Security protocols can be categorised by various criteria as follows.

• According to the use of cryptographic algorithms, security protocols are categorised

as symmetric key protocols, public key protocols, and hybrid protocols (in which both

symmetric and public key algorithms are used);

• according to the involvement of Trusted Third Parties, security protocols are cat-

egorised as with Trusted Third Party protocols and without Trusted Third Party

protocols;

• according to the number of protocol messages, security protocols are categorised as

one-pass, two-pass, three-pass, and so on;

• according to the different protocol goals, security protocols can be categorised as one-

way authentication, mutual authentication, key agreement, non-repudiation protocols,

2.2 Attacking Security Protocols 18

and so forth.

These criteria can also be used jointly to categorise security protocols more precisely.

For example, when all above criteria are used, the above protocol may be described as a

three-pass mutual authentication protocol without Trusted Third Party using symmetric

keys. In this dissertation, security protocols are categorised by these jointly used criteria.

2.2 Attacking Security Protocols

As illustrated in Section 1.3, the proper use of cryptographic algorithms is insufficient to

guarantee proper completion of a protocol round. In this section, we demonstrate some

classes of protocol attack.

2.2.1 Implementation Independent Attacks

Implementation independent attacks are the attacking strategies that rely on breaking cryp-

tographic algorithms used in security protocols. In this section, we demonstrate freshness

attack and parallel session attack. Interested readers are referred to the survey [34] in order

to understand implementation-independent attacks in more detail.

Freshness Attack

Consider the following security protocol that is a variation of the protocol used by the bank

B in order to authenticate customer A in the previous chapter.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na}Kab
,

Message 3 A→ B : {A, pwd}Kab
.

Customer A indicates that she wishes to start a round of this protocol with bank B by

sending her own identifier A and a fresh nonce Na to B. When B receives Message 1,

he encrypts Message 1 using the symmetric key Kab shared between A and B, and sends

it to A. Since only A and B know the key Kab, A is sure that Message 2 is sent by B.

Then, A sends her identifier together with her password pwd to B. To avoid a malicious

principals from obtaining pwd by monitoring the network, A encrypts the message by Kab.

When B receives Message 3, B authenticates A by checking whether the message contains

the correct password of customer A.

2.2 Attacking Security Protocols 19

In fact, an intruder I may complete some protocol rounds with B, and convince B

into believing that the initiator of those protocol rounds is A. The following attack works

when an intruder I intercepts Message 3 from a previous round of this protocol. Here,

I(A) means that the intruder I represents another principal, a regular principal A, in the

message exchange.

Message 1′ I(A)→ B : A,Na′

Message 2′ B → I(A) : {A,Na′}Kab
,

Message 3′ I(A)→ B : {A, pwd}Kab
.

The above attack is a freshness attack, whereby, “when a message (or message component)

from a previous run of a protocol is recorded by an intruder and replayed as a message

component in the current run of the protocol” [34].

Parallel Session Attack

Consider the following mutual authentication protocol that corresponds to the original

Needham-Schroeder Public Key protocol [89].

Message 1 A→ B : {A,Na}Kb
,

Message 2 B → A : {Na,Nb}Ka
,

Message 3 A→ B : {Nb}Kb
,

Here, principal A first uses B’s public key Kb to encrypt her identifier A and a fresh nonce

Na. This is a nonce challenge to authenticate B, since B is the only principal (other than

A) that may obtain Na by decrypting Message 1. When A receives the correct responding

message Message 2 that contains Na, she can confirm that the other protocol participant

is B. In order to provide a nonce challenge to A, B also encrypts a fresh nonce Nb in

Message 2. When B receives the correct responding message Message 3 that contains Nb,

he ensures that the other protocol participant is A.

However, the following scenario indicates that an intruder I may also complete a protocol

round with B, and convince B to believe that the initiator of the protocol round is A. The

2.3 Attacking Security Protocols 20

attack works by starting another protocol run in response to the initial challenge.

Message 1 A→ I : {A,Na}KI
,

Message 1′ I(A)→ B : {A,Na}Kb
,

Message 2′ B → I(A) : {Na,Nb}Ka
,

Message 2 I → A : {Na,Nb}Ka
,

Message 3 A→ I : {Nb}KI
,

Message 3′ I(A)→ B : {Nb}Kb
.

The above attack is a parallel session attack, whereby, “when two or more protocol runs are

executed concurrently and messages from one are used to form messages in another.” [34].

2.2.2 Implementation Dependent Attacks

Implementation dependent attacks are attacking strategies that rely on concrete protocol

implementation, including type flaw attacks, and so forth.

A type flaw attack occurs, when a field in a message that was originally intended to have

one type is subsequently misinterpreted as having another type by the message recipient

[110]. For example, suppose both nonces and keys are represented at the concrete level of a

security protocol as bit sequences of the same length. When a principal B receives message

(A,Na) in which the second component Na is originally intended to be a nonce, he accepts

the message as (A,Kab), and misinterprets the second component as a session key Kab. If

Na is available publicly, then an intruder can listen to the conversation between A and

B now. Type flaw attacks can be prevented if all protocol message components are well

tagged with the information that indicates its intended type [61].

If attacks on a protocol may occur only when particular cryptographic algorithms are

used in the protocol, these attacks are implementation dependent attacks. Implementation

dependent attacks can be prevented if proper cryptographic algorithms are used.

Here, we do not discuss these attacking strategies that are based on concrete imple-

mentation in detail. The reason for this is that the automatic security protocol generator

described in this dissertation generates only abstract protocol specifications. The concrete

implementation of these security protocols is a further research topic, and is not consid-

ered in this dissertation. Readers who are interested in protocol attacks based on concrete

implementation are referred to Clark and Jacob’s survey [34].

2.3 Specifying and Analysing Protocols 21

2.3 Specifying and Analysing Protocols

Designing well behaved security protocols is a challenging task since protocols often contain

subtle flaws that are difficult to find. For example, the above Needham-Schroeder Public

Key protocol [89] was proposed in 1978, and was assumed to be flawless for seventeen

years. However, a flaw was discovered by Gavin Lowe [76] when its protocol assumptions

are changed [94]. The protocol attacks in the previous section demonstrate that malicious

principals may impersonate regular protocol participants in flawed security protocols even

if perfect cryptographic algorithms are used in these protocols. In order to discover subtle

flaws in security protocols, many approaches [41, 27, 56, 103, 82, 97, 116] for specifying and

analysing security protocols have been developed in literature. In this section, we outline

the basic approaches for specifying and analysing security protocols.

2.3.1 Specifying Protocols

Properly modeling malicious behavior is pre-requisite to analysing security protocols. How-

ever, since malicious principals are considered to be omnipotent in these early formal efforts,

they are very difficult to be modelled precisely.

The Dolev-Yao Threat Model

Dolev and Yao [41] formulate a threat model to precisely represent the possible behavior of

malicious principals. The Dolev-Yao threat model is well accepted as the standard threat

model in protocol analysing approaches. In the Dolev-Yao threat model, malicious principals

can be an individual or a group of attackers that have the complete control of the entire

network. They exist between any message senders and receivers as shown in Figure 2.2.

Sender : P
m // Malicious

Principals

m′

// Receiver : Q

Figure 2.2: The Dolev-Yao Model

• Malicious principals are legitimate users of the network as well. They can participate

in protocol rounds as legitimate protocol participants.

• When any message is sent through the network, malicious principals can not only

eavesdrop passively, but can also intercept, alter, or re-route the message actively.

• They can send messages to any principal by impersonating any other principal.

2.3 Specifying and Analysing Protocols 22

However, malicious principals are not powerful enough to solve hard computational

problems. This means that malicious principals do not have the following abilities:

• they cannot guess a random number that is chosen from a sufficiently large space;

• without the correct cryptographic key, malicious principals cannot compute plaintext

from given ciphertext, and cannot create valid ciphertext from given plaintext, with

respect to the perfect encryption algorithm;

• they cannot find the private component, such as the private key that matches a given

public key.

Variant Threat Models

The Dolev-Yao threat model may express all possible powers of attackers. However, at-

tackers in some specialized scenarios [11, 14, 26] are not as powerful as the attackers of the

Dolev-Yao threat model. For example, messages are broadcast in a wireless communication

environment. It is reasonable to assume that an attacker can eavesdrop any message or

prevent the delivery of any message by some form of jamming. However, it is debatable to

suppose that an attacker can do both at the same time.

Creese et al. proposed a number of variant threat models [37]. Each threat model

variant satisfies one or more of the following restrictions that are placed on the powers of

the Dolev-Yao attacker:

• the attacker cannot intercept messages on a given channel. It means that the attacker

can eavesdrop a message or prevent its delivery, but cannot do both at the same time;

• the attacker cannot generate and send messages on a given channel at will;

• the attacker cannot eavesdrop messages on a given channel.

2.3.2 Analysing Protocols

Many mathematical models [27, 56, 103, 82, 97, 116] for analysing security protocols have

been developed based on proper threat models. For a given security protocol, each of these

models intend to determine whether it is possible for an intruder to complete a round of

the given security protocol under given assumptions. A round of a well behaved security

protocol should be completed only by involved principals, and these involved principals

should achieve their goals under given protocol assumptions after the protocol round. If

intruders can complete a round of a security protocol by impersonating other principals,

the protocol is flawed. These mathematical models should be able to uncover protocol flaws

or prove that a given protocol is flawless.

2.3 Specifying and Analysing Protocols 23

The BAN Logic

The first influential approach to protocol analysis in the literature is the BAN logic, a

belief logic proposed by Burrows, Abadi, and Needham [27]. The BAN logic provides a

formal language to represent logical statements. For example, statement P |≡ X means

that principal P believes that statement X is true; statement P |∼ X means that P has

sent a message containing X. This notation helps reveal hidden assumptions and flaws in

protocols.

The BAN logic also defines a number of inference rules that are used during protocol

message exchanges to change the beliefs of protocol participants. The logic applies inference

rules on the protocol assumptions at each protocol step to reason about the beliefs that

can be achieved by honest principals in the final state. For the sake of demonstration, we

consider the following most commonly used inference rule.

Message meaning

P |≡ P K←→ Q,P ⊳ {X}K
P |≡ Q |∼ X

That is, “if P believes that the key K is shared with Q and sees the message X encrypted

under key K, then P believes that Q once said X.” [27] This rule implicitly encodes the

limit of the ability of a Dolev-Yao attacker that “without the correct cryptographic key,

malicious principals cannot compute plaintext from given ciphertext, and cannot create

valid ciphertext from given plaintext, with respect to the perfect encryption algorithm”.

The BAN logic is easy to understand and use, and it has been highly successful in

determining many protocol flaws, required assumptions, and so forth. However, the BAN

logic is restricted in many aspects. First, the logic does not provide a systematic way to

idealise protocol messages into logic statements. If a protocol message is idealised into an

improper logic statement, improper beliefs are derived in the final statements. Consequently,

a flawed protocol may be considered as a well behaved protocol [91, 24]. Second, the logic

inference rules are not precise. For example, the logic can not represent specified trust

relationship between principals. Third, the logic cannot represent some malicious behavior

in the Delov-Yao threat model, such as intercept and re-route messages. Therefore, the

logic fails to uncover flaws caused by these types of malicious behavior.

Due to the above mentioned restrictions, a large number of belief logics and knowledge

logics, such as GNY logic [56], SVO logic [115] have been proposed by refining the protocol

formalisation and redefining inference rules. However, the formalisation of belief logics is

still somewhat ambiguous; the determination of protocol assumptions and the definition of

inference rules are still done in an ad hoc manner. Belief logics are considered to be unable

to prove the correctness of security protocols [80].

2.3 Specifying and Analysing Protocols 24

Strand Spaces

Thayer, Herzog, and Guttman [116] propose the strand space model to prove the correctness

of security protocols. The use of graph theory makes the strand space model very intuitive.

In strand spaces, a protocol and its security environment are decomposed to a set of

strands that represent the legitimate behavior of protocol participants and the malicious

behavior of other principals. The behavior of malicious principals is modeled by penetra-

tor strands. These malicious principals have the same power as in the Delov-Yao threat

model. A bundle (a graph structure) is constructed by causal interactions (possible mes-

sage exchanges) among all principals. The correctness of a protocol is proven if the bundle

does not contain any penetrator strand. The proofs of the strand space model are reli-

able, because the model has a clear semantics, and a simple yet explicit model of possible

behavior.

Compared with BAN-like logics, a significant advantage of the strand space model is

that the strand space model does not idealise protocols into specific forms. Consequently,

the strand space model avoids problems caused by improper protocol idealisation. In order

to avoid these problems in the belief logics, Syverson [113] provides a semantics to the BAN

logic based on strand spaces. Another advantage is that the Dolev-Yao threat model is

explicitly expressed in strand space. Consequently, strand space may uncover all of the

possible flaws caused by the Dolev-Yao attackers.

Automated Tools

Both the BAN logic and strand space are designed for manually analysing security protocols.

Only experienced security experts can properly use these models to specify and analyse

security protocols. In order to simplify the process of human analysis, a number of analysis

approaches, such as Isabelle-based [95], Interrogator [85], the NRL Analyser [82], FDR-

based [76], and Athena [107] attempt to provide automated analysis of protocols. These

automated tools require that candidate protocols are described in specialised languages.

These tools help understand and exclude protocols at the initial research stages.

These automated tools can be categorised into theorem proving tools and model-checking

tools, and they can be used complementarily, because a protocol can only be correct (flaw-

less) or incorrect(flawed).

Theorem proving tools attempt to prove the correctness of those protocols. With the-

orem proving tools, such as Isabelle [95], the protocol running environment is formalised

as a set of traces that may communicate with each other. Then, a higher-order logic is

used to state and prove theorems that are protocol goals. The main drawback of theorem

provers is that analysis can be time consuming and provides limited support for uncovering

2.4 Synthesising Protocols 25

attacks when protocols are flawed. On the other hand, existing theorem provers are not

fully automated. Considerable expertise is also required as they require a degree of manual

direction.

Model-checking tools attempt to disprove the correctness of candidate protocols. This

type of automatic tools, such as the NRL Analyser [82], FDR [76], and Athena [107] pro-

vide fully automatic support for protocol analysis. They simulate malicious behavior to

determine whether protocols may withhold the attacks. Disproving the correctness of a

candidate protocol is based on the discovery of attacking paths on the candidate proto-

col. Reprensenting an attacking path on the candidate protocol intuitively points out its

corresponding protocol flaws. If attacks cannot be found then the correctness of protocol

is considered to be proved. For example, using strand space, Song [107] develops an au-

tomated tool Athena that is effective to determine the correctness of a protocol without

manual guidance.

However, failure to discover any flaw from a protocol does not guarantee that the pro-

tocol is correct (flawless). For example, when flaws of the original Woo-Lam protocol were

discovered, a number of variations of the original protocol were proposed by modifying some

protocol messages, and claimed to be flawless. However, flaws in these variations have been

discovered subsequently [77].

2.4 Synthesising Protocols

Many approaches [41, 27, 56, 103, 97, 116] for verifying properties of security protocols

have been developed in literature, however, little work has been carried out on systematic

approaches to the design and development of security protocols.

2.4.1 Manual and Semi-automatic Design Approaches

Early design approaches do not provide a systematic way to construct security protocols.

They only intend to help designers avoid classes of known protocol flaws. For example,

Abadi and Needham [8] set out ten principles as informal guidelines for protocol design.

The principles are neither necessary nor sufficient: designers can not necessarily design new

protocols by obeying only these principles. Syverson [112] presents exceptions on some of

the design principles by providing a number of examples. These examples show that some

security protocols do not meet the principles but they are well behaved.

A number of formal design approaches [10, 28, 59, 57, 104] for security protocols have

been proposed. They provide systematic ways to construct security protocols. However,

these approaches are still not fully automated, and considerable expertise is required for

2.4 Synthesising Protocols 26

their use. Therefore, only experienced security experts can properly use these models to

specify and design security protocols.

Gong and Syverson [57] present a novel methodology to facilitate the design and analysis

of secure protocols. They introduce a novel notion of a fail-stop protocol, which automati-

cally halts in response to any active attack. Protocol analysis in this methdology is reduced

to the analysis of passive attacks. Following this methodology, the concerns of protocol

design are also restricted to passive attacks, and based on well-defined practice. This is

unlike general protocol analysis mechanisms. The complexity of general protocol analysis

mechanisms is increased, when they intend to deal with every newly discovered attack.

Gong and Syverson suggest that security protocols should be fail-stop. However, it may not

be practical for some particular environments. Keromytis and Smith [66] present a generic

method to create efficient fail-stop security protocols.

The Simple/BSW logic [28] is a BAN-like logic that uses the notion of channels with

various access restrictions to abstract cryptographic keys. In particular, based on the logic

for protocol analysis, they construct synthesis rules to guide the protocol designer in the

manual systematic calculation of a protocol from its goals. However, the BSW inference

rules cannot deal with authentication protocols based on message secrecy and key agreement

protocols. The synthesis rules in [28] are based on the inference rules of the BSW logic.

This limitation of the original BSW logic implies that only certain classes of authentication

protocols can be synthesised. For example, authentication protocols based on message

secrecy and key agreement protocols may not be synthesised within the BSW logic. Alves-

Foss and Soule [10] describes a similar approach that generates weakest-precondition of a

protocol based on the protocol operations and desired goals, although they do not actually

use their results to derive security protocols.

Guttman [59] proposes a manual protocol design methodology that is based on au-

thentication tests [60]. For different goals, individual subprotocols are generated that are

combined together to form the final protocol. However, it is a manual design process and

relies on the skill of the protocol designer.

Saidi [104] proposes a semi-automatic design tool based on BAN logic. It provides

several commands for human intervention of the generation process. While it may simplify

the protocol design process, it does not fully automatically generate protocols, and still

relies on the skill of the protocol designer.

2.4 Synthesising Protocols 27

2.4.2 Automatic Design Approaches

We are interested in the automatic generation of a protocol from its protocol goals and

assumptions. The automatic generation of security protocols does not rely on the expe-

rience of protocol designers. When a protocol requirement, that includes desired protocol

assumptions and goals, are specified, automatic design tools may automatically generate

one or more security protocols that satisfy the protocol requirement.

Existing research includes Clark and Jacob’s evolutionary search [35], their successor

[32], Perrig and Song’s Automatic Protocol Generator (APG) [100], and ASPB described

in this dissertation. All of these approaches are intuitive, easy to prove, and automatically

search a large space of candidate protocols that is far larger than could be considered via a

manual design.

The Evolutionary Search Approaches

Clark and Jacob propose the evolutionary search approach [35] that is the first full automatic

protocol generating tool. The evolutionary search approach is based on a genetic algorithm,

a fitness function, and the BAN logic.

In order to generate a protocol, the evolutionary search approach requires a set of

BAN-style assumptions and intended goals. The assumptions are initial beliefs held by

protocol participants. The protocol goals are beliefs that should be held after a round of

the generated protocol.

The evolutionary search approach starts from a set of assumptions. A genetic algorithm

is used to generate protocol message sequences in a forward manner. A fitness function is

used to guide the search over the space of feasible protocols by evaluating the fitness of

the current generated message sequence. This guided search approach allows increasingly

fit protocols to be evolved, eventually leading to valid protocols that meet all the intended

goals. The original inference rules of the BAN logic are used to systematically test whether

candidate protocols uphold all protocol goals.

The evolutionary search approach is a forward search approach that generates protocol

message sequence in a forward manner. Figure 2.3 demonstrates a protocol synthesis step

of evolutionary search. Before step i, a sequence of messages message1, . . . , messagei−1

constructs an incompleted candidate protocol, and a set of beliefs belief1, . . . , beliefj are

derived from the incompleted candidate protocol and the initial protocol assumptions using

the BAN logic. At step i, messagei is generated based on the fitness function. Messagei,

together with known beliefs, are used to derive new derivable beliefs within the BAN logic.

After step i, messagei is appended to the incomplete protocol, and the set of known beliefs is

expanded to contain both the already known beliefs before step i and the new derived beliefs

2.4 Synthesising Protocols 28

Before step i:

Incompleted protocol

message1,
message2,
...
messagei−1

Known beliefs

belief1,
belief2,
...
beliefj

Step i:
messagei

Derivable beliefs

beliefj+1,
...
beliefk

After step i:

Incompleted protocol

message1,
message2,
...
messagei−1,
messagei

Known beliefs

belief1,
belief2,
...
beliefj ,
beliefj+1,
...
beliefk

Figure 2.3: A Protocol Synthesis Step of Evolutionary Search

at step i. If the current set of known beliefs meet all the protocol goals, the message sequence

message1, . . . , messagei is a complete candidate protocol, and the search is terminated.

Otherwise, protocol synthesis steps of evolutionary search are repeated.

Unlike the original evolutionary search approach [35] based on the BAN logic, their

successor [32] is based on the SVO logic [115], which is more suitable for describing and

analysing key agreement protocols.

However, these evolutionary search approaches have several limitations. First, some

valid protocols are missed by both of these approaches. The reason for this is that both

of these approaches do not search the entire space of feasible protocols. The part of the

protocol space, which will be searched in an execution round, is determined by genetic

parameters that are arbitrarily chosen by users. Second, providing an accurate fitness

function for a protocol is very difficult, and in cases potentially impossible [35, 32]. For

example, it is hard to determine how many messages and which messages are required to

2.4 Synthesising Protocols 29

construct a complete candidate protocol that meet all the protocol goals after step i in

Figure 2.3. Third, protocols that are generated by evolutionary search are only proved to

be valid within the corresponding belief logic. Since belief logics are unable to prove the

correctness of security protocols, further correctness proof of these protocols are desired.

APG

Perrig and Song propose another automatic protocol generating tool APG [100]. APG is

composed of an automatic protocol generator and an automatic security protocol checker

Athena [107].

In order to generate a usable protocol, a set of security requirements and a set of

desired security properties are provided. The security requirements are defined as a metric

function, which defines the cost of the protocol primitives, such as protocol operations and

components. The cost of a protocol is the sum of the costs of all the protocol primitives.

For example, given the cost to send a nonce or a principal name and the cost to generate a

fresh nonce are 1, and the cost to encrypt a message with a symmetric key is 3, the cost of

the following protocol is 10.

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb,A}Kab
,

Message 3 A→ B : Nb.

The automatic protocol generator generates candidate protocols with respect to the order

of increasing cost on the metric function. Some syntactical restriction rules are used to

discard most severely flawed protocols in the generation process. After these generated

candidate protocols are sorted by their costs, the automatic protocol checker Athena [107]

examines whether these protocols satisfy the desired security properties. If a candidate

protocol satisfies all the desired security properties, the generating process stops. This

candidate protocol is the minimal cost valid protocol.

Since the protocols generated by APG have been verified with a powerful protocol

checker Athena, the correctness of the generated protocols is guaranteed1. Another ad-

vantage is that APG always generates a minimal cost correct protocol, since protocols are

generated with respect to the order of increasing cost.

1To the extent that the protocol validation approach can make such a guarantee.

2.4 Synthesising Protocols 30

ASPB

In this dissertation, we develop an automated synthesis tool ASPB to automatically generate

security protocols.

ASPB is based on the BSW-ZF logic, an extension of of the BSW logic. By extending

the BSW logic to the richer BSW-ZF logic, the proposed heuristic rules can synthesis a

wider range of authentication and key-exchange protocols, including authentication pro-

tocols based on message secrecy and key agreement protocols. Additionally, the BSW-ZF

heuristic rules have temporal order built-in so that the ordering of protocol messages can be

done automatically. This is unlike the synthesis rules of the origin BSW logic that do not

consider the temporal order of subgoals. When two subgoals in a synthesis rule correspond

to messages exchanged between principals, then the proper order of these messages is not

specified within the BSW logic. The BSW synthesis rules rely on the user to manually

order the synthesised protocol steps to work effectively and are therefore insufficient to

automatically generate security protocols that require a number of ordered messages.

Chapter 3

Authorisation

Beyond the design of security protocols, this dissertation is also concerned with the design of

authorisation mechanisms. In computer security, authorisation ensures that only authorised

principals may access data, computer programs, computer devices and other functionality

provided by computer applications. Authorisation is generally implemented using access

control and delegation.

This chapter starts from the basic concepts in authorisation, including access control

and delegation. This section also introduces the notion of authorization subterfuge and how

it relates to open and closed systems. Then, we review existing language-based approaches,

including the SRC logic, Binder, and the delegation logic in Section 3.3. Our thesis concerns

subterfuge in trust management and, therefore, this chapter focuses on related approaches.

3.1 Access Control

The basic access control model is a four-tuple: (S, O, A, M), where S is the set of subjects,

O is the set of objects, A is the set of actions, and M is an access control function. A subject

is an active entity, such as a person or process; a object is a passive entity, such as a system

or file; an access control function is a matrix that maps each tuple (s, o, a) ∈ S × O × A
to an authorisation decision ∈ {ture, false}, where true means that the access request is

permitted; false means that the access request is denied.

Example 5 Table 3.1 illustrates a simple access control function of a system. The first

column on the left indicates that the system has two subjects, Alice and Bob; the first

row on the top indicates that the system has three objects, FileA, FileB, DirectoryC. The

remaining cells display the actions that subjects may take on the objects. For example,

Alice has access right read to FileB, but does not have access right write to FileB. When

Alice sends the access request (Alice, FileB, read) to the system, the access control function

31

3.1 Access Control 32

of the system returns authorisation decision true. However, if Alice sends the access request

(Alice, FileB, write) to the system, the access control function of the system will return

authorisation decision false.

FileA FileB DirectoryC

Alice read, write read

Bob read read, write write

Table 3.1: A Simple Access Control Function

△

Access control can be categorised as mandatory access control, discretionary access

control, and role-based access control.

3.1.1 Mandatory Access Control

Mandatory access control is an access control policy determined centrally by system ad-

ministrators instead of by object owners. In other words, the most important feature

of mandatory access control is that users, who create resources, do not control these re-

sources. The system security policy set by the administrator entirely determines the access

rights granted. A user may not grant less restrictive access to their resources than the

administrator specifies. For example, in Multilevel Security, system administrators assign

a classification label to each subject and object. The classification label of a subject spec-

ifies the security level that the subject is trusted to access. The classification label of an

object specifies the security level that is required to access that object. The security levels

are partially ordered. For example, the security levels, top-secret, secret, confidential, and

unclassified have the order top-secret > secret > confidential > unclassified. In order to

access a given object, the subject must have a security level equal to or higher than the

requested object.

Many different types of mandatory access control models are proposed in literature, such

as Bell LaPadula (BLP) [16], Biba [18], Clark-Wilson [33], Chinese Wall [25]. Currently,

mandatory access control is used only in systems that process highly sensitive data, such as

classified government and military information. However, mandatory access control is not

particularly suited to be used in many scenarios where sensitive information is not classified

in a particular order. For example, in a company or an organisation, access control policies

are derived from general regulations that cannot be easily classified in security levels. Role-

based access control is proposed to model access control policies in such scenarios.

3.2 Access Control 33

3.1.2 Discretionary Access Control

Discretionary access control(DAC) is an access control policy determined by the subject

that is the owner of the object. Lampson [71] proposed a number of abstract models

that are considered as early DAC work. The owner decides who is allowed to access the

object and what kind of permission they should have. The controls are discretionary in the

sense that a subject who holds an access permission may also delegate the permission to

others. Since the access policy is determined by the object owner in discretionary access

control, every object in a system is required to have an owner. Access control lists provide

a flexible method to implement the access control function in discretionary access control.

For example, Figure 3.1 demonstrates an identity based access control strategy.

An Identity-based Access Control Model

FileA

read

writeAlice

Bob

Clark

Alice read, write FileA
Bob read, write FileA
Clark read FileA

Identity-Permission Map

Figure 3.1: An Access Control List Example

3.1.3 Role-based Access Control

Role-based Access Control(RBAC) [105] is an access control policy that associates users

and permissions with roles within an organisation. Roles are created to perform various

functions. Users obtain permissions to perform certain function by holding membership of

the permission’s corresponding role. Since users are not assigned permissions directly, but

only acquire permissions through their roles, and it is not necessary for the system to know

the full identity information of all users. For example, a request can be allowed as long as

the permission requester can prove that it is associated with the proper role. In this way,

RBAC helps to simplify management of individual user and their permissions. For example,

Figure 3.2 demonstrates a role based access control strategy for the system in Figure 3.1.

3.2 Delegation 34

A Role-based Access Control Model

FileA

read

writeAlice

Bob

Clark

manager

user

Alice manager
Bob manager
Clark user

User-Role Map

Manager read, write FileA
User read FileA

Role-Permission map

Figure 3.2: A Role-based Access Control Example

3.2 Delegation

This section considers delegation that is the operation of giving other principals or groups

permissions to perform certain operations. In a delegation operation, the principal who gives

permissions to others is the delegator; principals who receive permissions are delegatees.

Example 6 Assume Alice is the authority of permission T in Figure 3.3. The delegation

operation between Alice and Bob means that Alice allows Bob to assign T to other users

by issuing “Bob may assign T”. In this delegation operation, Alice is the delegator, and

Bob is the delegatee. △

Alice Bob Clark

Bob may assign T Clark holds T

Clark holds T

Figure 3.3: A Delegation Example

3.2.1 Direct and Indirect Delegation

If a principal obtains a permission directly from another principal, the delegation between

them is a direct delegation. Otherwise, it is an indirect delegation. An indirect delegation

is obtained via a chain of direct delegations.

3.2 Delegation 35

Example 7 (Continuing Example 6) Figure 3.3 illustrates a chain of delegations. If Alice

allows Bob to assign T to other users by issuing “Bob may assign T”, and Bob delegates T

to Clark, then Clark obtains T from Alice indirectly. The delegation between Bob and Clark

is a direct delegation. The delegation between Alice and Clark is an indirect delegation. △

Indirect delegation is inapplicable in collaborations that are based on centralised access

control. In such a collaboration, all of the delegation operations are centrally controlled by

a single security administrator. The unique security administrator is assumed familiar with

all of the collaborating users and all of the available collaboration resources. The security

administrator assigns the appropriate permissions to every user directly by itself; any user,

other than the administrator, may not perform permission assigning operations.

In many collaborations that are established between large numbers of autonomous prin-

cipals, the above centralised authorisation strategy is ineffective, since nobody is familiar

with all of the users within the system and all of the resources that are available. In or-

der to implement authorisation in such collaborations properly, decentralised authorisation

approaches use indirect delegation based on trust relationships among collaboration users.

For example, the security administrator of a collaboration allows a number of trusted users

to assign permissions to other collaboration users. A trusted user may assign permissions to

other users based on the trust relationships between the trusted user and other collaboration

users.

3.2.2 The Categories of Delegation Operations

Various categories of delegation operations are implemented in order to satisfy different

purposes in flexible distributed environments. For example, if the delegatees of a delegation

operation are identities, the delegation operation is an identity-based delegation. Similarly,

if the delegatees of delegation operation are roles, the delegation operation is a role-based

delegation. If a principal authorises anyone who satisfies one or more conditions to do a

particular action, it is a conditional delegation. Delegation in literature supports threshold

structures as well. A threshold structure means that at least a given number of principals

are required to perform an operation. If all of the possible principal identities are listed in

a threshold structure, the threshold structure is a static threshold structure. Otherwise, it

is a dynamic threshold structure.

3.2.3 Closed and Open Delegation

This dissertation explores a particular delegation problem in distributed environments which

we refer to as permission name conflict: when the same permission name is used to specify

different operations in different collaborations, principals may not correctly specify the

3.3 Delegation 36

current use of that permission name. For example, two different collaborations use the

same permission name 〈Alice buy ∗ ≤ $500〉 to specify that Alice is allowed to buy anything

less than $500 for the current collaboration. When Alice uses this permission, nobody can

specify which collaboration Alice is buying goods for.

This is similar to the problem of name conflict in distributed environments, whereby,

when the same name is used to identify different objects in different conditions, principals

may not correctly determine which object is identified by the name. Many practical mech-

anisms solve this name conflict problem using global name providers, for example CORBA

[58], the X.500 naming architecture [120], Enterprise Java Beans (EJB) [83] and Secure We-

bCom Names [101]. The use of global name providers may solve permission name conflict

in closed systems. In a closed system, all of the collaborations are effectively coordinated

by the same security administrator. The security administrator has a complete picture of

the entire name schema for all of the resources and services that are available within those

collaborations. The security administrator assigns every permission name with a unique

meaning. In this way, a permission may be safely delegated in a closed system. We regard

delegations in closed systems as closed delegations.

However, the use of global name providers may not solve the problem of permission name

conflict in open systems. In an open system, collaborations are coordinated by different

security administrators; no individual has a complete picture of the entire name schema

for all of the resources and services that are available. Since global name providers are not

collaboration security administrators, they only provide each name with a unique meaning.

Principals from different collaborations may still use arbitrary names to represent their own

resources, based on its incomplete view of the world.

This can result in authorisation subterfuge [124], whereby, in a poorly designed authori-

sation system, delegation chains that are used by principals to prove authorisation may not

actually reflect the original intention of all of the participants in the chain. For example,

the cross-domain delegation that is used by the the payment systems [22, 23, 52] based on

Keynote, are vulnerable to authorisation subterfuge if care is not taken to properly identify

the ‘permissions’ indicating the payment authorisations when multiple banks and/or pro-

visioning agents are possible. Authorisation subterfuge will be discussed in Chapter 7 in

detail.

We regard delegations in truly open systems as open delegations, whereby, a permission

can be safely delegated in a decentralised way from one collaboration to another without

ambiguity or subterfuge. To our knowledge, there is no existing authorisation mechanism

that supports true open delegation. We believe that without the proper underlying support,

open delegation is unreliable.

3.3 Language-Based Approaches for authorisation 37

3.3 Language-Based Approaches for authorisation

Language-based approaches for authorisation aim to provide languages that support various

access-control policies and various delegations in distributed systems. In this section, we

review some of the most influential languages-based approaches [72, 67, 17, 20, 19, 43].

3.3.1 The SRC logic

In an early study, Lampson et al. [72] developed the SRC logic for authentication and

access control in distributed systems. The basic concepts of the SRC logic are principals

and statements. Principals can be basic named entities, such as users, machines, groups,

roles, and so forth. Principals can also be compound principals, such as principals in

roles, principals on behalf of other principals. Statements can be primitive statements,

such as request, assertion, and so forth. Statements can also be composed of principals

and/or statements. For example, given principals A and B, statements s and s′, compound

statements can be A ‖∼ s (A says s), s∧s′ (s and s′), s→ s′ (s implies s), A⇒ B (A speak

for B), and so forth. The “speak for” formula is used to represent delegation of authority.

The statement A⇒ B is interpreted to mean that A gets all authority from B.

A number of axioms are used in the SRC logic to reason about a principal’s authority by

deducing statements. Some axioms are inherited from propositional logic, such as axioms

s ∧ s′ → s, (A ‖∼ s ∧ A ‖∼ (s → s′)) → (A ‖∼ s), and so forth. A novel category of the

SRC axioms are the handoff axioms. They introduce new facts about⇒. The basic handoff

axiom is A ‖∼ (B ⇒ A)→ (B ⇒ A). It means that B speaks for A when A says so. Using

this axiom, A can delegate all its authority to another principal B.

As a language for authentication and access control, the SRC logic first formally mod-

elled many traditional security mechanisms in centralised or closed distributed systems.

However, it is limited in many respects to support open distributed systems in modern net-

work environments. First, the SRC logic does not have re-delegation control mechanisms.

Every delegation can be freely re-delegated to any other principal. However, organisa-

tions in open distributed systems prefer to provide delegation in a controlled way. For

example, certain sensitive permissions may only be delegated to certain qualified princi-

pals; re-delegating these permissions to other principals is not allowed. Second, the SRC

logic does not directly support threshold structures. Without this support, a delegation to

a threshold of principals can only be implemented by an conjunction of many delegation

statements and each statement delegates the same permission to a conjunction of principals.

This kind of complex statement is difficult to implement and manage in practice. Third,

SRC does not provide a formal interpretation for primitive statements.

3.3 Language-Based Approaches for authorisation 38

3.3.2 Binder

Detreville [38] proposed a general and flexible logic-based security language, Binder. Binder

is an extension of datalog, which is a restricted subset of the well-known Prolog logic

programming language.

The Binder logic deduction is based on statements. A primitive statement in Binder

is a function-like formula, which can be defined by any principal. For example, statement

employee(Alice, ComA) represents that Alice is an employee of ComA. Given a term t and

a primitive statement s, both s and t ‖∼ s(t says s) are atomic statements. Given atomic

statements s1, s2, . . ., sn, both s1 and (s2, . . . , sn) → s1(s2, . . . , sn implies s1), are clause

statements. Given clause statements si and sj, an axiom (si ∧ (si → sj)) → sj is used in

Binder to reason about principal authorities by deducing statements. Delegation and trust

between principals can be defined arbitrarily by principals.

Binder is well-designed and expressive. However, it is limited in many respects. First,

since Binder allows ordinary users to define their own statements and policies arbitrarily,

the flexibility of Binder makes it easy to mis-specify requirements. Second, similar to the

SRC logic, Binder does not have re-delegation control mechanisms and does not directly

support threshold structures.

3.3.3 Delegation Logic

Li et al. proposed another logic-based language, Delegation Logic [75], that supports au-

thorisation with delegation in large-scale distributed systems.

Delegation logic [75] can represent a wide range of policies, credentials and requests

in distributed authorisation. For example, Delegation Logic supports threshold structures.

With this support, a delegation to a threshold of principals can be implemented by a simple

delegation statement in practice.

While expressive, delegation logic is a very complex language and with 30 definitions.

It can be quite challenging to write policies accurately. For example, delegation depth in

Delegation logic is designed to relate just to delegation statement; however, a principal

can bypass this and implement deeper delegation using the if-statement [121].

3.3.4 Trust Management Systems

Trust Management [62, 36, 43, 19] is an approach to constructing and interpreting the trust

relationships among public-keys that are used to mediate access control. In trust manage-

ment systems, public keys are used to represent principals; authorisation certificates are

used to specify delegation of authorisation among public keys. Each certificate delegates

3.3 Language-Based Approaches for authorisation 39

several specified permissions from a delegator to a number of delegatees. Determining au-

thorisation in these systems typically involves determining whether the available certificates

can prove that the key that signed a request is authorised for the requested action.

Trust Management systems are distinguishable from the SRC logic, Binder, and Dele-

gation logic. The reason for this is that principals can only be represented using public keys

in Trust Management systems. Contrasted with SRC, Binder and Delegation Logic, where

principals can be represented by both global names and public keys.

A global name is a simple string that may not sign certificates as public keys. Therefore,

a global name may not be verified as a public key.

These trust management languages are very expressive. Using these languages, we may

express various (simple or complex) permissions and a wide range of delegation opera-

tions, for example identity-based delegation, role-based delegation, conditional delegation

and threshold structures. On the other hand, all of these trust management languages

allow principals to freely describe permissions. While principals may use arbitrary names

to represent their own permissions, two or more permissions for different resources may

be syntactically the same. As described in Section 3.2, this may result in authorisation

subterfuge.

PolicyMaker and KeyNote

PolicyMaker [21] and its successor Keynote [19] first introduced the concept of trust man-

agement systems. They use policies and credentials to describe authorisation of particular

actions. Both policies and credentials are written in a specific human-understandable asser-

tion language to describe the conditions under which a principal authorises actions to other

principals. Policies are issued by the local authority of actions that is the trusted root for

granting these actions. Credentials are issued by principals to express delegation between

principals. When there is a request for actions, a set of credentials and policies related

to the requested actions are received by the local authority of the requested actions, the

local compliance-checking engine provides proof-of-compliance, whereby a request complies

with the local security policy if a set of credentials may prove that the requester holds the

permission.

SPKI/SDSI

SPKI/SDSI [43, 36] is a trust management language merged from two independent ap-

proaches SPKI(Simple Public Key Infrastructure) and SDSI(Simple Distributed Security

Infrastructure). It aims to provide a standard form of authorisation certificates. SPKI/S-

DSI has two kind of certificates, name certificates and authorisation certificates.

3.3 Language-Based Approaches for authorisation 40

SPKI/SDSI name certificates are inherited from the original SDSI to provide local names

as a consistent scheme for naming keys relative to one another. The reason for providing

local names is that SPKI/SDSI [43] relies on the cryptographic argument that a public key

provides a globally unique identifier that can be used to refer to its owner in some way,

but public keys are not particularly meaningful to users. For example, the local name that

Alice uses for Bob is (Alice’s Verisign’s Bob), which refers to Bob’s public key as certified by

the Versign that Alice knows. By binding local names to public keys with name certificates,

principals may delegate their authorisation to others beyond their locality through a chain

of local relationships.

A SPKI/SDSI name certificate is a four-tuple (K,A, S, V), where K specifies the cer-

tificate issuer’s signature key, A is defined by the issuer as the local name for the subject

S, and V is a validity specification to indicate the certificate’s valid period. For example,

(KBob, student,KAlice, V) means that Bob uses the local name student to indicate Alice

in a valid period V . Given two name certificates (K1, A1,K2B1, V1) and (K2, B1,K3, V2),

we conclude (K1, A1,K3, V1 ∩ V2) using four-tuple reduction rules.

SPKI/SDSI authorisation certificates are inherited from SPKI to delegate permissions

between principals. A SPKI/SDSI authorisation certificate is a five-tuple (K,S, T, d, V),

where K specifies the certificate issuer’s signature key; tag T is the authorisation delegated

from the issuer K to subject S; d is the delegation bit (0/1); and V is a validity specification

to indicate the certificate’s valid period. If the delegation bit is 1, the subject of this

certificate is allowed to re-delegate tag T to others. If it is 0, the subject can not re-

delegate T to others. Authorisation tags are expressed by s-expressions that is a LISP-

like parenthesized expression. For example, when Alice is authorising Bob to perform the

operations specified in T by signing authorisation certificate 〈KAlice,KBob, T, 0, V 〉, Bob is

not allowed to delegate this authority to anyone else. For the sake of simplicity we do not

consider the SPKI/SDSI validity period in the rest of this dissertation. We assume that all

credentials are within their validity periods.

Given two authorisation certificates (K1, S1, 1, T1) and (S1, S2, d, T2), if the subject of

the first certificate is the issuer of the second certificate, and the delegation bit of the first

certificate is 1, then SPKI/SDSI reduction rules conclude (K1, S2, d, (T1 ∩ T2)), whereby

T1 ∩ T2 means that if T1 (or T2) is a subset permission of T2 (or T1), then T1 (or T2) is the

result of this operation. If subject S2 is someone’s local name. SPKI/SDSI use four-tuple

reduction rules to resolve S2 to public keys of related principals.

3.3 Language-Based Approaches for authorisation 41

RT

RT [74] is a family of role-based trust management languages that inherits local name spaces

and linked local names from SPKI/SDSI. RT reinterprets the concepts of local name in SPKI

to local roles, and parameterised local roles. By parameterising local roles, traditional local

roles (such as student, manager) and traditional permissions are unified into the concept of

RT local roles, and the problem of permission delegation and role assignment in traditional

trust mangement systems are unified into one problem in RT, RT’s role assignment. Since

the logical correctness of the SPKI/SDSI name scheme has been proved in the literature [6,

31], the correctness of compliance checking in RT is automatically achieved. In addition, RT

also provides the support of various threshold structures, and a credential chain discovery

algorithm to locate and retrieve credentials that are not available locally.

Constrained Delegation

Constrained Delegation [15] provides a delegation language that focuses on transferring

authority among organisations in a flexible and controllable way. Constraint structures are

used to control the shape of a delegation chain. A constraint structure is a chain of group

names. Only members of the last group of a constraint structure may be allowed to access

a given resource. Members of other groups of the constraint structure may only be allowed

to delegate permissions. In this way, a service provider may separate resource management

from resource access, and decide only principals in a specified group may access its resource.

Chapter 4

Coalition Frameworks

In addition to the design of subterfuge-free security protocols and authorisation mechanisms,

this dissertation is concerned with the design of secure coalition frameworks. Principals may

authenticate each other using security protocols and delegate authority to other principals

using authorisation mechanisms. However, neither security protocols nor authorisation

mechanisms provide direct support for organising principals and cooperation controls across

networks. Secure cooperation and sharing of resources across networks are supported by

coalition frameworks.

This chapter begins with the concepts of coalition frameworks. This section also de-

scribes a general model for the requirements for coalition supporting frameworks. These

requirements can be used to understand the existing approaches in a consistent/uniform

way. Then, coalition security features are discussed in Section 4.2. Section 4.3 reviews

existing coalition frameworks in the literature.

4.1 Understanding Coalitions

With the rapid growth of the Internet, information services and applications are migrat-

ing from centralised systems to distributed network-based systems. New frameworks are

required to support secure cooperation and sharing of resources across networks. Sharing

and cooperation controls are defined in terms of coalitions, and are also defined as groups

[54, 55, 72, 108, 109] or Virtual Organizations (VOs) [53, 64, 87] in the literature. A coali-

tion provides a virtual space across a network that allows its members to interact in a

transparent manner.

A coalition may be established for various purposes. These range from simple spaces

used by individuals to share resources and exchange information, to highly structured en-

vironments in which businesses and applications operate and may be governed according

42

4.1 Understanding Coalitions 43

to regulation and contract (security policy). For example, a coalition might provide a vir-

tual space that supports the normal operational working relationship between an employee

and employer. Another coalition might provide the necessary operational structure and

regulation for a business-to-business relationship between organizations. Such a coalition

provides a framework for forming further coalitions for business transactions; access to re-

sources, and so forth, that constitute the procedures in the agreed relationship. At a system

level, coalitions can be used to manage the relationships between its resources. For example,

a distributed application may be thought of as forming a coalition between its execution

components and the system resources that are available for it to use.

Coalitions may spawn further coalitions and coalitions may come-together and/or merge.

Different coalitions may have their own security policies and structures. A coalition’s inter-

nal regulations should not influence other coalitions or be influenced by other coalitions by

reason of the language’s expressive limitation, even if it’s a part of another coalition. On

the other hand, one coalition may be influenced by another coalition when it is necessary.

Authority

Member1 Member2 Member3

Figure 4.1: An Example for Coalition Structure

Figure 4.1 demonstrates a coalition that is constituted by a coalition authority who man-

ages the coalition and three coalition members who provide and/or use coalition services.

A coalition member can be a service provider and/or a service user. A service provider

provides services to other coalition members. A service user uses services that are provided

by service providers.

Figure 4.2 demonstrates the working process of an example coalition. Before a coalition

user may use a coalition service, he/she should obtain a permission from a service authority

who makes access decisions in step (1). Then, the user sends a request to the service

provider who hosts the service in step (2). If the service provider believes that the client

is authorised by a service authority to use the service in step (3), the request is allowed in

step (4).

4.2 Coalition Security Features 44

Authority

User Service Provider

(1) (3)

(2)

(4)

Figure 4.2: An Example for Coalition Operation

In order to manage a coalition, two kinds of access control structure are used. Principal-

Member control structures are used to affiliate principals’s global identifiers with the local

name within the coalition. Member-Permission control structures are used to map coalition

members to their permissions. For example, Figure 4.3 demonstrates these kinds of coalition

access control structures.

Alice manager
Bob manager
Clark user

(a) Control Structure: Principal-Member

Manager read, write FileA
User read FileA

(b) Control Structure: Member-Permission

Figure 4.3: An Example for Coalition Access Control Structures

4.2 Coalition Security Features

In order to achieve the purposes of a specified coalition, the coalition designers should

consider many security aspects, such as coalition membership management, coalition au-

thorisation mechanisms, the form of coalition administration, and so forth. In this section,

we consider these security aspects in brief.

4.2 Coalition Security Features 45

4.2.1 Membership Management

A coalition is constituted by its members. These coalition members are a subset of all prin-

cipals over the entire network. In order to assign proper permissions only to the members

of a coalition, it is important to explicitly distinguish its members from other principals.

4.2.2 Regulation-based Authorisation

Definition 4.2.1 Regulation based authorisation is a mechanism that uses regulations to

govern the relationship between authorised principals and specified permissions.

Generally, a regulation indicates that one or more principals may use a specified service.

The mechanism requires the client to acquire such regulations before using a service and

presenting them at the time of using the service.

This mechanism is unlike the traditional access control. In a traditional access control

mechanism, all the information needed for computing a client’s access rights is internally

available in the service provider. In this traditional scenario, the service provider is also

the service authority. However, a coalition is a virtual space for its members to cooperate.

In order to cooperatively use services from different members within a coalition, some sort

of coalition governors, who are not service providers, are necessary to be elected as the

authorities of these services. All the information that is necessary for computing an access

decision for using a service is in regulations issued by the authorities. These regulations are

available outside of the service providers.

4.2.3 The Form of Administration

Coalitions can be categorised as centralised coalitions and decentralised coalitions.

Definition 4.2.2 A centralised coalition relies on a “super” security administrator.

The “super” security administrator is familiar with all of the resources that are available

and he/she makes sure that users get the appropriate permissions; no more and no less.

Both coalition users and permissions are defined and controlled by the “super” security

administrator. When a principal sends a request in order to perform a permission, the

“super” security administrator verifies who the principal is and whether the principal is an

appropriate user for its request permission. The opportunity to subvert the intentions of a

good administrator is usually small.

However, the problem of single point failure is unavoidable in a centralised coalition.

The reason for this is that all operations of a centralised coalition rely upon its one and

only security administrator. The compromise of the security administrator results in the

4.2 Coalition Security Features 46

compromise of the entire coalition. On the other hand, the security administrator has

unlimited authority for the corresponding coalition. A “super” security administrator may

not be suitable for many kinds of coalitions. For example, several autonomous principals

may come together and establish a coalition to share resources. Each principal has its own

security policies for sharing its resources and cooperating with others. In this scenario, the

concern may be the fairness among principals, whereby no principal has advantages over

any other in the coalition. This fair coalition does not allow any “super” administrator who

can arbitrarily authorise any principal of the coalition. Furthermore, centralised coalitions

that have a single security administrator do not scale. A “super” security administrator is

inapplicable in many coalitions that are established among large numbers of principals. In

such coalitions, it is possible that nobody is familiar with all users and resources within the

coalition.

Decentralised coalitions are proposed in order to avoid the above problems. The opera-

tions of a decentralised coalition are controlled by a group of security administrators. There

are two primary forms of decentralised coalitions.

Definition 4.2.3 A decentralised coalition in the first form has two or more security ad-

ministrators. Each of these administrators has the same authority within the coalition.

This kind of decentralised coalition is not subject to the problem of single point failure. The

reason for this is that when one of these administrators fails, other security administrators

may ensure that legitimate operations are allowed.

Definition 4.2.4 A decentralised coalition in the second form has two or more security

administrators as decentralised coalitions in the first form. However, each administrator in

the second form of decentralised coalition controls different authority within the coalition.

This is unlike every administrator having the same authority within the first form of de-

centralised coalition. This kind of decentralised coalitions allows autonomous principals to

share resources. Each principal can be one of the coalition administrators that is the only

authority for sharing its own resources to other coalition members. On the other hand, the

failure of an administrator affects only authorities that are controlled by this administrator.

Other authorities of the coalition may still work properly.

4.2.4 Coalition Structures

A coalition can be structured in a top-down or bottom-up manner. Both top-down coalitions

and bottom-up coalitions classify their members and/or regulations into different levels.

4.2 Coalition Security Features 47

Definition 4.2.5 In a top-down coalition, all low level regulations are created after ob-

taining all high level regulations, and must be set according to high level regulations. This

means that a low level regulation may not conflict with any high level regulation.

For example, when a high level regulation defines that only coalition managers may access

a file, a low level regulation may not allow other coalition members to access the specified

file. Such top-down coalitions are not suitable for many scenarios. For example, a number

of organisations intend to come together and establish a coalition. These organisations al-

ready have their own structures and regulations before establishing such a coalition. These

regulations may conflict with each other since they are used separately. While these con-

flicting regulations may be considered as low-level regulations of the expected coalition,

they may not result in agreed high-level regulations of the expected coalition. Therefore, a

top-down coalition, which requires agreement in regulations, is not appropriate in this kind

of scenario. Bottom-up coalitions can be used in the above scenarios.

Definition 4.2.6 In the above bottom-up coalition, a low level regulation may conflict with

a high level regulation. When a low level regulation conflicts with a high level regulation,

the applicable scope of the low level regulation is restricted.

For example, when a number of organisations establish a coalition, existing regulations of

these organisations can be considered as low level regulations in the forming coalition, and

the newly defined regulations can be considered as high level regulations in the forming

coalition. When a low level regulation conflicts with newly defined high level regulations

in the forming coalition, an organisation may obey low level regulations within its own

organisation, and obey high level regulations within the forming coalition.

4.2.5 Coalition Cooperation

The criteria to distinguish closed coalitions and open coalitions is whether a specified coali-

tion may cooperate with other coalitions.

Definition 4.2.7 If a coalition may properly represent itself when it cooperates with other

coalitions, it is an open coalition. Otherwise, it is a closed coalition.

A closed coalition only defines and allows possible operations within the coalition. Such

a closed coalition may not cooperate with principals outside the coalition. The reason for

this is that a closed coalition does not have any global unified identifier to represent itself.

It is impossible to distinguish a given coalition from other coalitions in current networked

environments.

4.3 Coalition Frameworks 48

In order to implement cooperations among coalitions, open coalitions are proposed. An

open coalition uses a global identifier to represent itself. When cooperating with other coali-

tions, the members and permissions of an open coalition are bound to its global identifier.

Therefore, the members and permissions of an open coalition can be recognised.

4.2.6 Dynamic Establishment

Before forming or joining a coalition, the parties/principals involved may need to decide

whether it would be appropriate and/or safe for them to establish the coalition. This

decision is based not just on the security mechanisms and protocols that a secure coalition

may provide, but also by negotiating agreeable trust relationships between the parties. This

negotiation must determine to what extent the members of a coalition can be trusted and

this is based on a number of attributes.

Definition 4.2.8 Coalition establishment frameworks are mechanisms that provide tem-

plates to establish coalitions that solve the above problems.

The parties/principals involved may also need to decide which category of a coalition

is desired. For example, the coalition could be a centralised coalition or a decentralised

coalition. When the category of a coalition is decided, a suitable coalition management

framework is used to provide a template to manage a specified category of coalitions.

4.3 Coalition Frameworks

A coalition framework provides a systematic approach to establishing and managing a cat-

egory of coalitions that have a number of the above features. Many coalition frameworks

[53, 55, 87, 72] have been proposed to establish and manage coalitions. In this section, we

review many influencing frameworks for establishing and managing coalitions.

4.3.1 The SRC Frameworks

At an early study, Lampson et al. [72] used the SRC logic to describe three frameworks

SRC1, SRC2, and SRC3 for managing group membership. These frameworks are the origin

of many other important frameworks.

In the SRC frameworks, a group is a virtual space that may not speak for itself. Instead,

other principals speak for the group; they are its members. In order to speak for a group, a

principal must become a member of that group. This is done by gaining membership from

the certificate authority of the group.

4.3 Coalition Frameworks 49

SRC1

In the first framework SRC1, a group is indicated by a group name, and does not have

its own public key. The certificate authority manages the group membership by listing all

group members and the group name in a single membership certificate. The membership

certificate is signed by the private key of the certificate authority and issued to all group

members. Other than the certificate authority, any other group member may not admit

or expel group members by modifying the membership certificate. When a principal is

listed in a membership certificate, a principal may prove that it is a member of the listed

group by presenting the membership certificate. For any principal who receives the group

membership list certificate, it may distinguish whether a principal is a member of the group

or not.

Figure 4.4 demonstrates how David joins group G. Membership certificate Cert1 is issued

by the authority of group G and held by all members of group G. In order to join group G,

David sends a request to certificate authority of group G in step (1). If David is allowed to

join G, the authority generates and issues cert2 to all group members in step (2).

Authority

David Alice, Bob, Clark

(2)(1)

(2)

Alice G’s member
Bob G’s member
Clark G’s member

Cert1

Alice G’s Member
Bob G’s Member
Clark G’s Member
David G’s Member

Cert2

Figure 4.4: The SRC1 Model

However, if the group has a large number of members, the group membership list cer-

tificate is large. Group maintenance is difficult: gaining or losing a member results in the

group having to update and re-issue the entire membership list certificate to all related

principals. On the other hand, a group is controlled by a single certificate authority. Thus

it is subject to the problem of single point failure. Furthermore, groups may not merge or

4.3 Coalition Frameworks 50

spawn further groups. The reason for this is that a group is only represent by a group name

that may not uniquely identify the group over the network. Without a global unique iden-

tity, it is impossible to distinguish a given group from other groups. Therefore, cross-group

cooperation is not possible.

SRC2

The second framework SRC2 is similar to SRC1. The only difference is that SRC2 separates

the single membership certificate into a number of individual membership certificates. Each

individual membership certificate only lists a principal and a group name to indicate the

principal is a member of the listed group.

In this approach, gaining or losing a member does not require the update and re-issue

of a certificate for the entire group member lists. To lose a member, a revocation certificate

should be sent to all principals. However, it is impossible to prove whether a principal is

not a member of a group without negotiating with the certificate authority.

SRC3

The third framework SRC3 assumes that a group has a group key. The certificate authority

issues a membership certificate that lists a group key and a group name. The group key

is then obtained by group members. A group member may speak for the group by issuing

certificates signed by the corresponding group key.

However, a dishonest or compromised group member may leak the group key to others.

There is no way to distinguish who uses the group key. To lose a member, the group key

should be replaced by a new one, and sent to all current members in a secure way. For a large

group, it’s not practical. On the other hand, all of the group permissions are bound to the

group membership. It is impossible to delegate an individual permission to a non-member

or assign different permissions to different group members.

Table 4.1: Summary: Security Features of the SRC frameworks
Security Features SRC1 SRC2 SRC3

membership management
√ √ √

regulation based authorisation
√ √ √

the form of administration centralised centralised centralised

coalition structure top-down top-down top-down

coalition cooperation × × √

dynamic establishment × × ×
√

: This feature is supported.
×: This feature is not supported or specified

4.3 Coalition Frameworks 51

4.3.2 Enclaves

Gong presented a centralized framework, enclaves [55], to support short-term groups of

principals across a network. Enclaves is similar to SRC3. Comparing with SRC3, Enclaves

provides details on the establishing process, and it is fully implemented.

Group leader

David Alice, Bob, Clark

(1)

(2)

(3)

Figure 4.5: The Enclaves Model

The group leader (the same as certificate authority in SRC3) plays the key role in a

group. It controls the group session keys used to provide secure communication between

principals. Figure 4.5 demonstrates how an enclave group works. In order to admit a new

member, the group leader and a principal mutually authenticate each other in step (1).

Once authenticated, the group session key is distributed to new members (2). When a

member leaves the group, the group session key is revoked and updated. The new group

key is distributed only to all current group members in step (3). The leaving member

may no longer access the group. The group leader maintains a role list of group members

which is communicated to all members. To limit authority, a group member may only

invoke predefined group communication operations though a predefined security protocol

interface.

However, in a distributed environment, maintaining a large group with a high member-

ship turnover becomes problematic. Since the session key is a symmetric key, a member

may not prove its membership to non-members1. Another issue is that the compromise of

the group leader’s key results in the compromise of the entire group.

4.3.3 Virtual Private Network

Virtual Private Network (VPN) [54] is proposed for supporting secure cooperation from

different physical locations of the same company. Its basic structure should be regarded as

1Enclaves focus on providing secure communication among members in the same group. Therefore,
proving a principal’s membership to non-members is not a design objective of enclaves.

4.3 Coalition Frameworks 52

similar to SRC3 and enclaves. It supports symmetric key and public key authentication.

The routers or the AAA (authentication, authorization and accounting) servers are the

security administrators. They keep all user information about keys and identities. In a

VPN, there could be many routers, each assigned a subnet, making it scalable. However,

it focuses on the authentication of individual users to join a group, and it does not address

permissions and cooperation.

Table 4.2: Summary: Security Features of Enclaves and VPN
Security Features Enclaves VPN

membership management
√ √

regulation based authorisation
√ ×

the form of administration centralised centralised

coalition structure top-down top-down

coalition cooperation × ×
dynamic establishment × ×√
: This feature is supported.
×: This feature is not supported or specified

4.3.4 The Ellison-Dohrmann Model

Ellison and Dohrmann [42] proposed a model based on SPKI name certificates for access

control of mobile computing platforms.

A group has a group leader that controls all permissions of a group. The group leader

represents the corresponding group using its local name. The group leader may directly

admit group members by issuing name certificates that relate its local name for the group

with the public keys of principals. For example, SPKI name certificate (KG, G,KA) means

that principal KA is a member of the leader KG’s group G. The group leader may also

delegate the permission “admitting members” to other principals. For example, in order

to allow a principal KA to admit members, the group leader KG defines a large random

number n, which will be used as KA’s local name for indicating KG’s membership. Then,

KG issues certificate (KG, G,KA.n) to KA which means that if KA accepts a principal as

KA’s n, the principal also becomes KG’s group G’s member.

This approach separates the “admit member” duty and delegate to others. It may be

decentralized to admit members. However, no one can have the entire membership list,

which means there is no way to prove non-membership. The roles of group members can

not be distinguished. This approach is robust enough in the paper’s scenario. The paper’s

scenario assumes that face-to-face verification about the certificate content is used when a

person issues a name certificate to another. However, we found the following subterfuge

problem, which limited this approach’e usage. Without a face-to-face verification, malicious

4.3 Coalition Frameworks 53

principal KI may join KG’s G by hoaxing KA. First, KI intercepts certificate (KG, n,KA.n

and issues KI , G,KA.n by using the same random number n. When KA issues (KA, n,KC)

to admit KC as a member of KI ’s group G. However, KC may use (KA, n,KC) and

(KG, n,KA.n to prove that it is admitted by KA as a member of KG’s group G.

4.3.5 The Mäki-Aura Model

Mäki and Aura [79, 13] presented a distributed security architecture based on groups and

public-key certification for access control in ad-hoc networks.

A principal establishes a new group by generating a group identifier that is a signature

key. At the moment, the principal is the only member of the group. Since the group

identifier is a signature key, it is used to sign certificates to admit new members and verify

membership. The principal is a group leader because he/she owns the group key. A group

leader may admit a group member by issuing a member certificate. A group leader may also

appoint another group leader by issuing a leader certificate. When a principal is appointed

as a group leader, he/she can use its own signature key to sign certificates for admitting

members and appointing leaders.

All leaders have the same authority as the original leader. As a consequence, a group

can survive the leaving of a group leader. In this way, the model does not rely on centralised

administration. However, as in [42], the membership list is distributed across leaders, and

the resignation of a leader can result in an incomplete view of the group membership.

Several revocation methods are supported: group reconstitution (replace the original group

key and reissue all certificates) and short membership validity time (members must renew

their membership regularly).

This model supports group spawning. To spawn a subgroup, a group leader generates

a signature key for identifying a subgroup first. Then a subgroup certificate is issued to

indicate that the subgroup key is the group identifier for a subgroup of the origin group.

Now, the subgroup key can be used to admit members and appoint leaders for the subgroup.

By defining different group roles, this model may delegate different rights to different

types of members. However, this model has some limitations. Firstly, the compromise of

a group leader key results in the compromise of the entire group. Secondly, regardless of

whether the other group leaders agree, a group leader can use its own full authority to

issue group credentials. Once a principal has obtained the group leader role, it can not be

stopped from issuing legal or illegal credentials.

4.3 Coalition Frameworks 54

Table 4.3: Summary: Security Features of the ED Model and the MA Model
Security Features Ellison-Dohrmann Mäki-Aura

membership management
√ √

regulation based authorisation × √

the form of administration decentralised decentralised

coalition structure top-down top-down

coalition cooperation × ×
dynamic establishment × ×√
: This feature is supported.
×: This feature is not supported or specified

4.3.6 Security Frameworks in GRIDs

GRIDs provide collaborative computing infrastructures that allow collections of users and

institutions from different regions to work together under certain prearranged rules. Many

architectures for GRID security are proposed, such as GSI [53], CAS [98], VOMS [9],

PERMIS[30], and Akenti [117].

The GRID Security Infrastructure

The GRID Security Infrastructure (GSI) [53] is a groundwork of GRID security frameworks.

GSI uses a modified version of the X.509 Public Key Infrastructure (PKI) [62]. GSI uses

centralised security administrator CA to identify and manage grid users or services. The

CA has complete and absolute control over the grid that she manages. Its user information

is stored in the grid mapfile, which is a map file for mapping the principal’s global identifiers

to local identifiers within the current grid.

CA

User Service Provider

(1) (2)

(3)

Figure 4.6: The GSI Model

Any user must register and sign-on to the grid before using it. As shown in Figure 4.6, a

user, who wants to join a grid, sends the X.509 certificate which proves its global identifier

to the CA (step (1)). The CA verifies this X.509 certificate, and assigns a local name to this

4.3 Coalition Frameworks 55

user. At the meantime, CA updates, signs and re-issues the grid mapfile to all local service

providers (step (2)). After receiving the new grid mapfile, Service providers maintain the

current grid user list. Since a service provider controls its own service, she maps the user’s

local names in the grid to its local name space, and manages the access control policies for

grid users as local users. Now, a grid user may access a grid service by negotiating with the

corresponding service provider in step (3).

Since a service provider (not the CA) decides whether a grid user may use a specified

service, GSI does not manage services at the coalition level. On the other hand, GSI does

not support roles, subgroups in the current implementation. When gaining or losing a user,

the mapping file should be updated and sent to all service providers. The service providers

should update its local policies based on the mapping file. Therefore, managing a large

number of users that are not categorised by subgroups and roles is an arduous challenge

to both CA and resource providers. Different grids may use different architectures and,

therefore, cross-GRID authorisation must be done manually: dynamic establishment of

virtual organisations is not possible.

Community Authorisation Service

Based on GSI, Pearlman et al. [98] describe a Community Authorisation Service (CAS) for

solving the above problem. Similar to enclaves, a CAS server serves as the grid permission

authority. As shown in Figure 4.7, the rights for accessing grid services are delegated from

service providers to the CAS server in step (1). When a user wishes to join a grid, it

authenticates itself to the CAS server using the same approach in GSI. Then, the CAS

server does not only map a user’s global identity to the grid’s local identity, but also maps

the user’s local identity to suitable permissions. In this way, a CAS server manages both

the grid membership list and the grid access control list. The grid mapfile contains not only

the columns for user’s public keys, global identifiers and their local identities in the GRID,

but also the “permission” column, which means CAS also delegates the grid permissions to

its local identities. In a service provider’s local access control list, only the CAS server’s

identity is mapped to a local identity. Therefore, a service provider does not need to know

and manage the whole grid user list in its local user list. When a user wants to access a

grid service, she must login to the CAS server in step (2). The CAS server then verifies

the user’s identity, and signs a suitable authorisation certificate based on the grid mapfile.

This authorisation certificate is issued to the user in step (3). After that, the user uses its

membership certificate from the CAS server to prove its identity, and uses the authorisation

certificate from the CAS server to prove that it is authorised to access a service provider’s

service in step (4). The service provider responds in step (5).

4.3 Coalition Frameworks 56

CAS server

User Service Provider

(2)

(3)
(4)

(1)

(5)

Figure 4.7: The CAS Model

In the CAS model the grid policy determines whether a user may access a grid service.

After delegating the right to the CAS server, a local administrator has no right to stop

the CAS server delegating rights to an unexpected principal, who is a grid user, but an

unaccepted user by the service provider’s local policy. Like GSI, CAS does not support

roles or subgroups. Managing a large number of users without subgroups and roles is still

an arduous challenge for the CA. A coalition is still a centralised identity-based system.

The CAS server does not support the automatic establishment of new grids.

Virtual Organization Management Service

Virtual Organization Management Service(VOMS) [9] is another security solution based on

GSI. Unlike GSI and CAS, VOMS is a role-based security architecture. Similar to GSI,

a VOMS server also maintains a grid mapfile. However, a VOMS mapfile does not only

contain global and grid local identities of its members, but also their roles within the grid. It

means that VOMS supports group and roles in a grid. On the other hand, unlike mapfiles in

CAS, a VOMS mapfile does not contain the permission column. The reason for this is that

the grid service is not controlled by the VOMS server, but remains the right to the service

providers. The service providers may authorise a group of grid users certain permission

once. Generally, the work flow in VOMS is the same as in GSI. However, since the access

control is based on roles and groups, managing a service provider’s local permission is much

easier than GSI and CAS.

PERMIS and Akenti

PERMIS[30] and Akenti [117] are two further models. While PERMIS supports grid roles,

Akenti does not support grid roles. Their grid architectures and mapfiles are similar to CAS.

However, their working processes are different from above models. As shown in Figure 4.8,

4.3 Coalition Frameworks 57

Table 4.4: Summary: Security Features of GSI, CAS and VOMS
Security Features GSI CAS VOMS

membership management
√ √ √

regulation based authorisation × √ ×
the form of administration centralised centralised centralised

coalition structure top-down top-down top-down

coalition cooperation × × ×
dynamic establishment × × ×√
: This feature is supported.
×: This feature is not supported or specified

when a user wants to access a service, it first sends a request, together with useful certificates

obtained by the user, to the service provider in step (1). The service provider checks the

certificate first. After the provider’s local verification, the request, and related certificates

are sent to the grid CA in step (2). The CA verifies the request by local policies and received

certificates and makes the final decision. Then, the decision is sent to the service provider

in step (3). At the last step, the service provider responds to the user.

CA

User Service Provider

(1)
(2)

(3)

(4)

Figure 4.8: PERMIS and Akenti

In PERMIS and Akenti, the grid CA does not directly deal with requests from grid

users. Instead, the service provider deals with them the first place. Only valid requests are

passed to the grid CA. CA’s workload can be significantly decreased when a great lot of

invalid requests are received. This helps a CA to survive from DoS attacks.

Contractual Access Control Model

Firozabadi et al. [47] proposed a framework, Contractual Access Control Model, for sharing

resources among coalitions. Unlike other GRID security frameworks, CACM does not rely

on a grid security administrator. Cooperation among coalition members is regulated by a

particular type of contract that is agreed by corresponding users and service providers.

4.3 Coalition Frameworks 58

As shown in Figure 4.9, after negotiating with a user, a service provider defines and signs

a contract in step (1). The contract is a coalition security policy that defines a sequence

of agreed obligations of the service provider that can be provided to a user. Each of these

obligations specifies the type of service that can be used over a given time period. Different

obligations specify the different amount of service that are available over different time

periods. In this way, a user may freely choose the time period and the amount of service

to use according to the contract provided by the service provider. Then a user may send a

request for using the service in step (2).

User Service Provider

(1)

(2)

Figure 4.9: Contractual Access Control Model

In CACM, a coalition is a decentralised identity-based system. A service provider deter-

mines whether a user may access its service according to its own decision, and the decision

may violate its local policy when it is necessary. On the other hand, the CACM supports

cooperation only among identifiable principals. An identifiable principal should have a sig-

nature key for verifying its identity by other users. How an newly established coalition

obtains its signature key and who controls this signature key is not specified. Therefore,

whether a multi-level coalition can be established in this approach is still in question.

Table 4.5: Summary: Security Features of PERMIS, Akenti and CACM
Security Features PERMIS Akenti CACM

membership management
√ √ ×

regulation based authorisation
√ √ √

the form of administration centralised centralised decentralised

coalition structure top-down top-down bottom-up

coalition cooperation × × √

dynamic establishment × × √
√

: This feature is supported.
×: This feature is not supported or specified

4.3.7 Other Approaches

Law-governed interaction (LGI) [87] is a top-down coalition management framework. As we

discussed in Section 4.2.4, a top-down coalition, which requires agreement in regulations, is

not appropriate in many scenarios.

4.3 Coalition Frameworks 59

Trust Management-based approaches provide finer-grained security and greater scope

for forming coalitions. However, frameworks for dynamically establishing coalitions have

not been proposed.

Dynamic Administrative Coalitions (DAC) [50] is a decentralised coalition management

framework that introduces distributed administration workflows based on condensed graphs.

However, since DAC is based on Keynote[19], cross-coalition delegation in DAC is vulnerable

to authorisation subterfuge if care is not taken.

Part III

The Design of Security

Mechanisms

60

Chapter 5

The BSW-ZF logic

In this chapter, we present the BSW-ZF logic, a BAN-like belief logic. The BSW-ZF logic

improves and extends the BSW logic [28] to support reasoning about message secrecy, fresh

channels, and ’holding’ statements. While the inference rules of the BSW-ZF logic are

used to verify some properties of security protocols, the heuristic rules of BSW-ZF logic are

used in ASPB as the core technique to guide the automatic backward search for candidate

subprotocols from their goals. Section 5.1 introduces the notation of the BSW-ZF logic.

The inference rules of the BSW-ZF logic are given in Section 5.2. Section 5.3 describes how

the inference rules are used to verify security protocols. Section 5.4 discusses our rationale

for extending the BSW logic. Section 5.5 presents the heuristic rules of the BSW-ZF logic,

and describes how these rules are used to guide the ‘calculation’ (in the sense of [40]) of a

protocol from its goals. How these rules are used to guide an automated search for protocols

is described in the next chapter.

5.1 Notation

The BSW-ZF logic uses abstract channels similar to the Spi Calculus [7] to represent keyed

communication between principals. The capability to write into (e.g., using the encryption

key) and to read from (e.g., using the decryption key) a channel C is denoted by w(C) and

r(C), respectively. The formula P ∋ r(C) means that principal P has the capability to

receive messages from channel C, and correspondingly, P ∋ w(C) means that principal P

has the capability to send messages to channel C.

Let σ(X) denote the set of principals that share a secret X. The secret X can be

a temporary secret that is held during several protocol steps, or a long term secret. We

assume that the secret X is never leaked to any principal outside σ(X), other than to those

principals that are trusted by the members of σ(X). For example, P |≡ (σ(X) = {P,Q})
means that P believes X is a secret shared between P , Q, and any third parties who (trusted

61

5.1 Notation 62

by P and/or Q) may be privy to X. In this case, it is assumed that a trusted principal

will neither use X as a proof of identity nor as a channel to communicate with. With this

assumption, only two principals, P and Q, may use X as a proof of identity or as a channel

to communicate with. When either of them receives X in a message, the principal may

determine whether the message was sent by itself or by the other party. Thus, the message

origin can be safely determined. Also note that this assumption implies that principals

trusted by other protocol participants will not attack the current protocol.

The set of principals that can receive and can send messages via a channel C is de-

noted by its reader set σ(r(C)) and its writer set σ(w(C)), respectively. For example, if Ω

represents the set of all principals, then σ(r(C)) = Ω and σ(w(C)) = {P} represents an

authentic channel, whereby any principal can authenticate messages signed by the private

key of principal P .

In the following, P ,Q range over principals; C represents a channel; X represents a

message which can be data or formulae or both; φ represents a formula. Data, such as

principal identities, nonces, and read and write channel properties, are atomic messages

that may be held by principals. The BSW-ZF logic uses the following basic formulae.

P ⊳ X: Principal P sees message X. Someone has sent X via a channel that P can read.

P ⊳ C(X): P sees X on channel C. Someone has sent a message X via channel C. If P

can not read C then P can not discover the contents of X.

P |∼ X: P once said X. P sent a message containing X at some point in the past. We do

not know exactly when the message was sent.

P ‖∼ X: P says X. P sent X in the current run of the protocol.

♯(X): Message X is fresh. X has never been said before the current run of the protocol.

This is usually true for messages containing fresh nonces or messages sent using a

fresh session key (channel).

P |≡ φ: P believes that φ is true. It does not mean that φ is actually true, rather, P believes

it.

P ∋ X: P holds X, and therefore, may freely combine X with other messages and send

the resulting combinations out to other principals. Unlike P ⊳ X requires that X is

obtained by P during a round of protocol, P ∋ X can be obtained as an assumption

before a round of protocol.

P 7→ X: P generates X. This formula represents the origin of message X. The message

X is used to represent constants or the atomic messages that are generated by the

principal. Examples include nonces and principal identifiers.

5.1 Notation 63

The logic also uses the conventional logic operators ∧ (conjunction), ∨ (disjunction) and

→ (implication) from propositional logic and some basic notation from set theory, such as

= (equality), and ∪ (union).

Example 8 Consider a mutual authentication requirement between principals A and B.

We require that A believes that B speaks with A, and vice versa. These goals may be

expressed as follows.

G1 : A |≡ (B ‖∼ A)

G2 : B |≡ (A ‖∼ B)

We assume that A and B share symmetric keys (abstracted as channels Cas and Cbs,

respectively) with a third party S. Assumptions are defined as follows.

A ∋ r(Cas);
S ∋ r(Cas);
B ∋ r(Cbs);
S ∋ r(Cbs);
A |≡ (σ(w(Cas)) = {A,S});
A |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(r(Cas)) = {A,S});
B |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(w(Cbs)) = {B,S});

A ∋ w(Cas);

S ∋ w(Cas);

B ∋ w(Cbs);

S ∋ w(Cbs);

A |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(w(Cas)) = {A,S});
B |≡ (σ(w(Cbs)) = {B,S});
B |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(r(Cbs)) = {B,S});

We express the public channel, to which everyone may read from and write to, by the

term Cp. In this way, all messages are exchanged via some channel. Assumptions about

this channel are defined as follows.

A ∋ r(Cp);
B ∋ r(Cp);
S ∋ r(Cp);

A ∋ w(Cp);

B ∋ w(Cp);

S ∋ w(Cp);

5.1 Notation 64

Further assumptions are that both A and B trust S as a trusted third party:

A |≡ ((S ‖∼ φ1)→ (S |≡ φ1)) [honesty]

A |≡ ((S |≡ (B |∼ φ2))→ (B |∼ φ2)) [competent]

B |≡ ((S ‖∼ φ1)→ (S |≡ φ1)) [honesty]

B |≡ ((S |≡ (A |∼ φ2))→ (A |∼ φ2)) [competent]

for arbitrary φ1, φ2. These formulae reflect the beliefs of A (and B) that S is honest and

that S is competent in deciding whether B (and A) at some time in the past said some

message.

Further assumptions include A |≡♯(Na) and A 7→ Na. These reflect that Na is a fresh

nonce that is generated by A. B has similar beliefs: B |≡♯(Nb) and B 7→ Nb. These reflect

that Nb is a fresh nonce that is generated by B.

Assumption A ∋ A means that A holds its own identity. It reflects that a regular

protocol participant freely uses its own identity. Identities of other principals are used only

when the corresponding principals demand it. In other words, regular protocol participants

do not masquerade as others. For the same reason, assumption that B holds its own identity

is represented by B ∋ B. △

Syvernson and Cervesato [114] proposed six forms of authentication goals for the SVO

logic [115]. We categorise these forms of authentication goals into authentication goals and

key-agreement goals in the BSW-ZF logic. Authentication goals in the BSW-ZF logic only

consider the ping authentication goal “a principal P wants to know whether an interlocutor

Q is alive”, and the entity authentication goal “P ’s interlocutor Q said something relevant

to their present conversation”.

In the original paper that describes the BSW logic [28], it is noted that the formula A |≡
(B ‖∼ Na) does not properly capture the entity authentication goal that A authenticates

B. This is due to an attack based on the fact that B cannot judge whether Na is from A,

and therefore, says Na to another principal I [28]. For example, we consider the following

one-way authentication protocol.

Message 1 A→ B : A,Na,

Message 2 B → A : {Na}Kb

A initiates a round of this protocol by sending its own identity A and its fresh nonce Na to

B. A expects that B will sign this nonce by using B’s signature key Kb, and send it back

to A in Message 2. Because no one may hold B’s signature key other than B, then A may

5.1 Notation 65

safely believe that B says Na recently. While this protocol achieves the ping authentication

goal, it does not achieve the entity authentication goal. This is because B’s response does

not necessarily mean that B is responding to A’s nonce challenge. In the following attack B

considers the nonce challenge is initiated by another principal I, and B intends to respond

the nonce challenge to I. Therefore, the formula A |≡ (B ‖∼ Na) does not mean that A is

authenticating B.

Message 1(α) A→ I(B) : A,Na,

Message 1(β) I → B : I,Na,

Message 2(β) B → I : {Na}Kb
,

Message 2(α) I(B)→ A : {Na}Kb

It is proposed in [28] that the authentication goal should be expressed as A |≡ (B ‖∼
(A,Na)). This means that A believes that B says the nonce Na to A [28]. However, while

this kind of goal correctly captures the fresh nonce challenge, the authentication goal of the

following protocol (a variation of Yahalom protocol [27]), which relies on a fresh session key

(channel) Kab, cannot be expressed in this form.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {B,Na,Nb,Kab}Kas
, {A,Nb,Kab}Kbs

,

Message 4 A→ B : {Nb}Kab
, {A,Nb,Kab}Kbs

,

Message 5 B → A : {A}Kab
.

The latter components of Message 3 are amended to contain B’s nonce Nb. When B

receives this component, B may be sure that it is in the current round of this protocol.

Message 5 extends this modified Yahalom protocol. When A receives {A}Kab
, A is sure

that B received the fresh session key Kab and is talking to A.

The BSW-ZF formula A |≡ (B ‖∼ A), that represents an authentication goal of the

above variation of the Yahalom protocol, captures these two authentication goals. The

formula represents the situation that A may distinguish whether the responder B is alive

(ping authentication [114]) by whether B says something, and whether B is participating

in their present conversation (entity authentication [114]) by B says (to) A.

The other various forms of authentication in the SVO logic [114] are considered as key-

agreement goals in our BSW-ZF logic as follows. Note that the key k is represented by

5.2 Inference rules 66

channel C in the following BSW-ZF formulae.

Secure key establishment indicates “that a principal P believes that he has a good key

k to communicate with a counterpart Q” [114]. This goal is formalised by the BSW-ZF

formula:

P |≡ (σ(r(C)) = σ(w(C)) = {P,Q})

Key freshness requires that “principal P believes a key k (represented as abstract channel

C) to be fresh” [114]. This goal is formalised by the BSW-ZF formula:

P |≡♯(w(C))

Mutual understanding of shared keys “applies to situations where a principal P can

establish that an interlocutor Q has sent a key k as an unconfirmed secret between

the two of them (from Q’s point of view)” [114]. This is formalised by the following

formula:

P |≡ (Q ‖∼ (σ(r(C)) = σ(w(C)) = {P,Q}))

Key confirmation describes “scenarios in which principal P believes that an interlocutor

Q has proved to have received and successfully processed a previously unconfirmed

secret key k between the two of them” [114]. This is formalised by the following

BSW-ZF formula:

P |≡ (σ(w(C)) = {P,Q} ∧Q ‖∼ C(X))

Note that the logic inference rules are required to fully understand these goals.

5.2 Inference rules

Seeing rules

S1 If P receives a message X via a channel C, and P can read this channel, then P can

see the message.
P ⊳ C(X), P ∋ r(C)

P ⊳ X

S2 If P receives a compound message (X,Y), then P can also see parts of the message,

(that is X and Y).
P ⊳ (X,Y)

P ⊳ X,P ⊳ Y

5.2 Inference rules 67

Freshness rules

F1 If P believes that another principal Q once said a message X and P believes that X is

fresh, then P believes that Q says X.

P |≡ (Q |∼ X), P |≡♯(X)

P |≡ (Q ‖∼ X)

F2 If P believes that another principal Q says a compound message (X,Y), then P believes

that Q also says parts of the message, (i.e. X and Y).

P |≡ Q ‖∼ (X,Y)

P |≡ Q ‖∼ X,P |≡ Q ‖∼ Y

F3 If X is a part of a compound message (X, Y), and P believes that X is fresh, then P

believes that the whole message (X, Y) is fresh.

P |≡♯(X)

P |≡♯(X,Y)

F4 If P believes that the capability to write into channel C is fresh, then P also believes

the capability to read from that channel is fresh, and vice versa.

P |≡♯(w(C))

P |≡♯(r(C))
and

P |≡♯(r(C))

P |≡♯(w(C))

In the BSW-ZF logic, fresh channels may represent fresh session keys. The F4 rules

reflect the fact that when one believes the encryption (decryption) key is fresh, then one

must also believe that the corresponding decryption (encryption) key is fresh. This is

typically true when using conventional cryptography. In this dissertation, we do not consider

cryptography algorithms, such as the identity-based cryptography [106], that conflict with

the above assumption.

Interpretation rules

I1 If P believes that he receives a message via C, and P believes that only Q and himself

may send messages to C, then P believes that the message was said into channel C

by Q, and he also believes that Q has the capability to write to channel C.

P ⊳ C(X), P ∋ r(C), P |≡ (σ(w(C)) = {P,Q})
P |≡ (Q |∼ X), P |≡ (Q |∼ C(X)), P |≡ (Q ∋ w(C))

5.2 Inference rules 68

I2 If P believes that he receives a message via C, and P believes that only Q may send

messages to C, then he believes that the message was said into channel C by Q, and

he also believes that Q has the capability to write to channel C.

P ⊳ C(X), P ∋ r(C), P |≡ (σ(w(C)) = {Q})
P |≡ (Q |∼ X), P |≡ (Q |∼ C(X)), P |≡ (Q ∋ w(C))

I3 If P believes that he received a message X via C, and that X is a secret shared between

P and Q, then he believes that the message was said into channel C by Q, and he

also believes that Q has the capability to write to channel C.

P ⊳ C(X), P ∋ r(C), P |≡ (σ(X) = {P,Q})
P |≡ (Q |∼ X), P |≡ (Q |∼ C(X)), P |≡ (Q ∋ w(C))

Note that, in the BSW-ZF logic, we use the conventional assumption that a principal

may recognize its own generated messages within a round of a protocol. Therefore, when

P sees X from C, P may tell whether X was sent by itself or by Q.

Furthermore, note that each of the above rules I1 – I3 may be rewritten, each in turn,

as three simpler rules, whereby, each has the same assumptions and only one conclusion

formula. However, for the sake of simplicity and space, the rules are presented in a more

compact form.

Rationality rules

R1 This is the well-known K axiom [70] of modal logic: if P believes φ1 implies φ2, and

believes that φ1 is true, then he believes that φ2 is true.

P |≡ (φ1 → φ2), P |≡ φ1

P |≡ φ2

Holding rules

H1 If P holds messages X and Y , then P holds the compound message (X,Y).

P ∋ X,P ∋ Y
P ∋ (X,Y)

H2 If P generates message X, then P holds X.

P 7→ X

P ∋ X

5.3 Analysing Protocols 69

H3 If P sees message X, then P holds X.

P ⊳ X

P ∋ X

Message Secrecy rules

M1 If P believes that X is a secret between P and Q, then he believes that the compound

message (X,Y) is also a secret between P and Q.

P |≡ (σ(X) = {P,Q})
P |≡ (σ(X,Y) = {P,Q})

M2 If P believes that X is a secret within principal set Set1 and the principal set Set2 in

which the principals may read from channel C, then P believes that the message X

is a secret among Set1 and Set2. when X is sent to channel C. Trusted principals

are omitted, because of the assumption that a trusted principal will neither use X as

a proof of identity nor as a channel to communicate with.

P |≡ (σ(X) = Set1), P |≡ (σ(r(C)) = Set2), Q ⊳ C(X)

P |≡ (σ(X) = Set1 ∪ Set2)

5.3 Analysing Protocols

Beliefs before
the protocol step

��

A protocol step // The deriving
process

// Beliefs after
the protocol step

The BSW-ZF
inference rules

OO

Figure 5.1: Belief Changing after a Protocol Step in Verification

Before a round of a security protocol, each principal holds a number of beliefs (assump-

tions) about nonces, channels, and their trust relationship. Each protocol step represents

that a specified message is sent from one principal to another principal. After a protocol

step, a number of new beliefs are derived by applying all of the BSW-ZF inference rules

to their current beliefs and the current protocol message. At the same time, a number of

previous beliefs are out of date. For example, a secret shared within a principal set before a

5.4 Discussion 70

protocol step may be discovered by other principals in the current protocol step. Principals

update their beliefs according to the derivation. The diagram in Figure 5.1 describes how

beliefs are changed in a protocol step.

The protocol verification process verifies whether all of the protocol goals can be derived

from the initial assumptions after a round of the protocol. If all of the protocol goals are

derived after a round of the security protocol, then it is a valid protocol within the BSW-ZF

logic. The diagram in Figure 5.2 describes the protocol verification process.

Initial
assumptions

��

A round of the protocol // The deriving
process

// achieved
protocol goals

The BSW-ZF
inference rules

OO

Figure 5.2: The Protocol Verification Diagram

Example 9 Given the assumptions in Example 8, the inference rules of the BSW-ZF logic

is used to verify whether a mutual authentication protocol meets the authentication goals

A |≡ (B ‖∼ A) and B |≡ (A ‖∼ B). The idealised protocol is described as following.

B ⊳ A,Na,

S ⊳ Cbs(A,Na,Nb),

A ⊳ Cas(B |∼ (A,Na,Nb)),

B ⊳ Cp(B |∼ Nb)

For the purpose of easy reading, only necessary deductive results are listed in Figure 5.3

and Figure 5.4. In these figures, each line is composed by the line number, a BSW-ZF

formula, and a commentary. The commentary interprets the current formula as a proto-

col step, an assumption, or a deduction. If the current formula is a deduction, then the

commentary lists the line numbers of its premises and the applied inference rule. △

5.4 Discussion

Much of the notation of the BSW-ZF logic is taken from the BSW logic [28].

5.4 Discussion 71

1 A ⊳ Cas(B |∼ (A,Na,Nb)) protocol step

2 A ∋ r(Cas) assumption

3 A |≡ (σ(w(Cas)) = {A,S}) assumption

4 A |≡ (S |∼ (B |∼ (A,Na,Nb))) 1, 2, 3, using I1

5 A |≡♯(Na) Assumption

6 A |≡♯(A,Na,Nb) 5, using F3

7 A |≡♯(B |∼ (A,Na,Nb)) 5, using F3

8 A |≡ (S ‖∼ (B |∼ (A,Na,Nb))) 4, 7, using I1

9 A |≡ (S ‖∼ (B |∼ φ2)→ S |≡ (B |∼ φ2)) Assumption

10 A |≡ (S |≡ (B |∼ (A,Na,Nb))) 8, 9, using R1

11 A |≡ ((S |≡ (B |∼ φ))→ (B |∼ φ)) Assumption

12 A |≡ (B |∼ (A,Na,Nb)) 10, 11, using R1

13 A |≡ (B ‖∼ (A,Na,Nb)) 6, 12, using F1

14 A |≡ (B ‖∼ A) 13, using F2

Figure 5.3: Verifying A |≡ (B ‖∼ A) for Example 8

The BSW logic does not provide the notion of message holding ”∋”, which we adopt

from the GNY logic [56]. The set of principals that can receive and can send messages via

a channel C is directly represented in the BSW logic by its reader set which we denote as

rBSW (C) and its writer set which we denote as wBSW (C), respectively.

The BSW logic does not provide a notion for the representation of cryptographic keys

as objects that may be held by principals or exchanged between principals. Key-agreement

protocols require that principal P obtains a new key from the current round of protocol.

In the BSW logic, it means that an assumption P ∈ wBSW (C) is not held before a

round of protocol, but it should be obtained after several protocol steps. However, while

beliefs about keys, such as P |≡ (wBSW (C) = {P,Q}), and P |≡ (P ∈ wBSW (C)), may

be exchanged among principals in the original BSW logic, principals may not derive new

assumptions, such as P ∈ wBSW (C). This means that principals may not obtain new

keys in the original BSW logic. As a result, while the original BSW logic can verify sim-

ple ping/entity authentication goals, it cannot be used to verify and synthesise the other

key-establishment goals in Chapter 5.1. In the BSW-ZF logic, w(C) and r(C) represent

encryption and decryption key objects, respectively. The corresponding principal sets are

5.4 Discussion 72

1 B |≡ (σ(Nb) = {B}) assumption

2 B |≡ (σ(B |∼ Nb) = {A,B}) 1, using M1

3 S ⊳ Cbs(A,Na,Nb) protocol step

4 B |≡ (σ(r(Cbs)) = {B,S}) assumption

5 B |≡ (σ(B |∼ Nb) = {B}) 2–4, using M2

6 A ⊳ Cas(B |∼ (A,Na,Nb)) protocol step

7 B |≡ (σ(r(Cas)) = {A,S}) assumption

8 B |≡ (σ(B |∼ Nb) = {A,B}) 5–7, using M2

9 B ⊳ Cp(B |∼ Nb) protocol step

10 B ∋ r(Cp) assumption

11 B |≡ (A |∼ (B |∼ Nb)) 8–10, using I3

12 B |≡♯(Nb) Assumption

13 B |≡♯(B |∼ Nb) 12, using F3

14 B |≡ (A ‖∼ (B |∼ Nb)) 11, 13, using F1

15 B |≡ (A ‖∼ B) 14, using F2

Figure 5.4: Verifying B |≡ (A ‖∼ B) for Example 8

represented by σ(r(C)) and σ(w(C)) in the BSW-ZF logic. When r(C) (or w(C)) is sent in

a protocol message, the message receiver may hold r(C) (or w(C)). Therefore, the BSW-ZF

logic can be used to verify and synthesise key-agreement protocols.

The BSW logic cannot be used to reason about message secrecy. Message secrecy is

dealt with by many belief logics such as GNY [56] and SVO [115] by providing axioms for

reasoning about the secret contents of a message. In our logic, σ(X) is used in axioms,

such as I3, M1 and M2, for reasoning about message secrecy. For example, the proof for

the authentication goal B |≡ (A ‖∼ B) in Example 2 is based on message secrecy. This

verification cannot be done within the original BSW logic.

In the BAN logic [27], principals are treated as trustworthy, and in the GNY logic [56],

fixed axioms are used for reasoning about the trustworthiness of a principal. In both of

the BSW logic and the BSW-ZF logic, the rules about the trustworthiness of a principal

are expressed as formulae as part of the assumptions of the protocol. This is illustrated in

5.5 The Heuristic Rules for Protocol Synthesis 73

Example 1 by the following formulae.

A |≡ ((S ‖∼ φ1)→ (A |≡ φ1))

A |≡ ((S ‖∼ (B |∼ φ2))→ (B |∼ φ2))

B |≡ ((S ‖∼ φ1)→ (B |≡ φ1))

B |≡ ((S ‖∼ (A |∼ φ2))→ (A |∼ φ2))

Rules S1, S2, F1, F3, R1, and the first part of I1, I2 are based on the BSW logic.

The axioms of the BSW-ZF logic are more compact, yet as expressive as the BSW logic.

The original BSW logic [28] has a formula P ⊳X | C which defines that P sees message

X via channel C. The inference rule I1BSW in the BSW logic is defined as

P |≡ (wBSW (C) =W)

P |≡ ((P ⊳ X | C)→ ∨
∀Qi∈W\{P}(Qi |∼ X))

.

We refine it by observing the following. The rule S1′
BSW

P ⊳ C(X), P ∈ rBSW (C)

P |≡ (P ⊳ X | C)

is a part of S1BSW in [28]. Since this is the only axiom in the logic that allows P |≡
(P ⊳ X | C) to be deduced, then apart from the rule S1′

BSW, formula P |≡ (P ⊳ X | C)

appears only in the interpretation rule I1BSW of the original BSW logic. By replacing the

formula P |≡ (P ⊳ X | C) by P ⊳ C(X) and P ∈ rBSW (C) in all inference rules, then the

formula P |≡ (P ⊳X | C) and the rule S1′
BSW can be safely removed from the logic without

any loss of expressiveness.

The following rule is easily obtained by variable substitution from the rationality rule

R1BSW.
P |≡ (P ⊳ X | C), P |≡ ((P ⊳ X | C)→ ∨

∀Qi∈W\{P}(Qi |∼ X))

P |≡ ∨
∀Qi∈W\{P}(Qi |∼ X)

By combining the three rules above, the modified interpretation rules I1 and I2 are

obtained (when only P and Q, or only Q is in the principal set W) and S1′
BSW can be

safely removed from the logic.

5.5 The Heuristic Rules for Protocol Synthesis

To verify a security protocol, an idealised protocol and initial principal assumptions are

given beforehand. The inference rules are used to guide the search from initial assumptions

to further beliefs in the order of protocol execution. Belief logics verify whether expected

5.5 The Heuristic Rules for Protocol Synthesis 74

protocol goals are covered by initial assumptions and these further derived beliefs.

To synthesise (design) a security protocol, only protocol goals and initial principal as-

sumptions are given beforehand. A number of well-ordered protocol steps need to be derived

from given protocol goals and given assumptions. Figure 5.5 depicts the protocol synthe-

sis process. Note that this diagram is effectively the ‘reverse’ of the diagram for protocol

verification in section 5.2.

Initial
assumptions

��

Protocol goals // The synthesis
process

// A round of the protocol

The BSW-ZF
heuristic rules

OO

Figure 5.5: The Protocol Synthesis Diagram

While the inference rules of the BSW-ZF logic are used to verify security protocols,

the BSW-ZF logic can also be used for synthesising security protocols. Since our protocol

synthesis process is a reversed version of the protocol verification process, we effectively

“reverse” the inference rules described in Section 5.2 to obtain heuristic rules for protocol

synthesis. The validity of the heuristic rules are justified by the corresponding inference

rules. To verify a protocol synthesised using these heuristic rules, the satisfied subgoals

and protocol steps serve as the premises of the inference rules. It is sufficient to deduce

protocol goals from these subgoals and protocol steps using the corresponding inference

rules. Therefore, the heuristic rules can be used as synthesis rules to guide the backward

construction for candidate subprotocols from their goals. In this case, the backward con-

struction means that the protocol steps are constructed by the backward order of protocol

execution. The reason for this is that the last required protocol step for a given protocol

goal is naturally derived from applying heuristic rules to the protocol goal. The diagram in

Figure 5.6 presents the synthesis process of a protocol step.

5.5 The Heuristic Rules for Protocol Synthesis 75

Required beliefs before
the protocol step

a protocol goal // The synthesis
process

//

OO

a protocol step

The BSW-ZF
heuristic rules

OO

Figure 5.6: A Protocol Synthesis Step

5.5.1 Notation

Our heuristic rules take the general form of a rooted tree of temporally ordered goals. A

rooted tree is a directed acyclic graph (DAG) with a vertex that is singled out as the root.

GOO

C1

oo
``WW

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

G1

...

Gi+1 Gi

This is interpreted to mean that in order to reach the goal G, all subgoals G1, ..., Gi,

have to be established without any conditions or in any particular temporal order. Subgoal

Gi+1 is an optional conditional subgoal under condition C1, with the interpretation that

if condition C1 is satisfied, then Gi+1 has to be established before the goal G can be

established. Otherwise, Gi+1 does not need to be considered. Arcs indicate the temporal

relationship between a goal and its subgoals.

In some scenarios, subgoals have to be established in a particular temporal order. For

example, before a principal receives a message via a channel, there must be another principal

who first sent the message in that channel. Therefore, we use the following form to illustrate

the ordered subgoals.

GOO

C1

oo G1OO
oo
aa

BB
BB

BB
BB

G5

G2 G3 G4

This is interpreted to mean that in order to establish the goal G, all subgoals G1, ...,

5.5 The Heuristic Rules for Protocol Synthesis 76

G5, have to be reached in a particular temporal order. Here, G3, G4, and G5 must be

established before G1. However, G3, G4, and G5 do not need to be reached in any temporal

order relative to each other.

The goals are expressed in the heuristic rules using a composed form G′;G′′, as follows,

G′ ;
G′′

OO

oo
__

??
??

??
??

G1

G3 G2

This is an abbreviated form of two heuristic rules and means that these rules have the same

subgoals but different goals. They can be rewritten as

G′
OO

oo
aa

BB
BB

BB
BB

G1

G3 G2

and

G′′
OO

oo
aa

BB
BB

BB
BB

G1

G3 G2

5.5.2 Heuristic Rules

Heur1 (derived from S1) To see message X, P must receive X on channel C and be able

to read C. Before P receives X from C, some principal Q should hold X and may

write in channel C. In addition, if the honesty assumption is presented, then Q is

required to believe X before it can hold X.

P ⊳ XOO
oo P ⊳ C(X)

OO
oo Q ∋ XOO

P |≡((Q‖∼X)→(Q|≡X))

P ∋ r(C) Q ∋ w(C) Q |≡ X

That P ⊳ X can be synthesised from P ∋ r(C) and P ⊳ C(X) is justified by Axiom

S1. These subgoals are sufficient to verifying the goal for a given protocol. However,

they are not sufficient to synthesise a practical protocol. The reason for this is that

when there are no given protocols, the origin of the message C(X) is undecidable. For

the fact “P sees a message, only when there is a principal who sends the message”

and fact “principals say only messages that they hold”, the subgoals have to follow

a particular temporal order, that is, to ensure that practical protocols are generated,

we require that some principal Q holds X and that Q may write in C before P may

receive X from channel C. This is similar in intent to the “required precondition”

that is used in [10].

5.5 The Heuristic Rules for Protocol Synthesis 77

Heur2 (derived from H1) To hold a compound message (X,Y), P may hold the message

components X and Y separately.

P ∋ (X,Y)
OO ff

NNNNNNNNNN

P ∋ X P ∋ Y

Note that this rule does not require that P must hold the message components X

and Y separately. The reason for this is that P may obtain the compound message

(X,Y) from the same message that he received. For example, when principal B sees

a compound message (A,Na), it is not necessary for B to hold A and Na separately

in order to hold the compound message.

Heur3 (derived from H2) To hold a message X, P may see X.

P ∋ X oo P ⊳ X

Heur4 (derived from H3) To hold a message X, P may generate X.

P ∋ X oo P 7→ X

This rule is used to track the origin of all message components in a protocol on the

basis that even if a principal holds all components of a message, he may not be willing

to send out the message, unless he receives some request to do so or as the protocol

initiator.

Heur5 (derived from F1) To believe Q says X, P may believe that Q said X and X is

fresh.

P |≡ Q ‖∼ X
OO gg

OOOOOOOOOOO

P |≡ Q |∼ X P |≡♯(X)

Sometimes a principal may believe another principal says something when it was once

said with something fresh. This is reflected by Heur6.

Heur6 (derived from F1 and F2) To believe Q says X, P may believe that Q said (X,Y)

and Y is fresh.

5.5 The Heuristic Rules for Protocol Synthesis 78

P |≡ Q ‖∼ X
OO hh

QQQQQQQQQQQQ

P |≡ Q |∼ (X,Y) P |≡♯(Y)

When the subgoal P |≡♯(Y) is reached, by F2 P |≡♯(X,Y) is also reached. Thus,

together with P |≡ Q |∼ (X,Y), and by rules F1 and F4, P |≡ Q ‖∼ (X,Y) and

P |≡ Q ‖∼ X are reached.

Heur7 (derived from F1 and F2) To believe Q says X, P may believe that Q said X on

C and w(C) is fresh.

P |≡ Q ‖∼ X
OO hh

RRRRRRRRRRRRR

P |≡ Q |∼ C(X) P |≡♯(w(C))

Heur8 (derived from I2) To believe that Q said X, Q said X on channel C, and Q holds

w(C), P has to receive X via a channel C that he can read and that he believes that

it can be written to only by Q. Furthermore, Q must hold X and w(C). If X is a

formula and P believes that Q is honest, then Q must also believe X.

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q ∋ w(C)

OO hh

QQQQQQQQQQQQQQ

oo P |≡ (σ(w(C)) = {Q})

P ∋ r(C) P ⊳ C(X) oo
OO

Q ∋ XOO

P |≡((Q‖∼X)→(Q|≡X))

Q ∋ w(C) Q |≡ X

Heur9 (derived from I1) To believe that Q said X, Q said X on channel C, and Q holds

w(C), P has to receive X via a channel C that he can read and that he believes it

can be written to only by P and Q. Furthermore, Q must hold X and w(C). If X is

a formula and P believes that Q is honest, then Q must also believe X.

5.5 The Heuristic Rules for Protocol Synthesis 79

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q ∋ w(C)

OO hh

RRRRRRRRRRRRRRR

oo P |≡ (σ(w(C)) = {P,Q})

P ∋ r(C) P ⊳ C(X) oo
OO

Q ∋ XOO

P |≡((Q‖∼X)→(Q|≡X))

Q ∋ w(C) Q |≡ X

Heur10 (derived from I3) To believe that Q said X, P has to receive X via a channel C

that he can read and that he believes X is a secret between Q and himself before he

sees it. Furthermore, P must believe that Q is able to write to C, and that Q must

believe that he sees X.

P |≡ Q |∼ X;
P |≡ Q |∼ C(X);
P |≡ Q ∋ w(C);

OO hh

QQQQQQQQQQQQQQ

P |≡ (σ(X) = {P,Q})

��
P ∋ r(C) P ⊳ C(X) oo

OO
Q ∋ XOO

P |≡((Q‖∼X)→(Q|≡X))

Q ∋ w(C) Q |≡ X

Heur11 (derived from R1) To believe φ1, P must believe φ2 and φ2 → φ1.

P |≡ φ1OO gg

OOOOOOOOOOOO

P |≡ φ2 P |≡ (φ2 → φ1)

Heur12 (derived from F3) To believe a compound message X is fresh, P must believe

some part X ′ of X is fresh.

P |≡♯(X) oo P |≡♯(X ′)

Heur13 (derived from F4) To believe w(C) is fresh, P must believe r(C) is fresh.

P |≡♯(w(C)) oo P |≡♯(r(C))

Heur14 (derived from F4) To believe r(C) is fresh, P must believe w(C) is fresh.

5.5 The Heuristic Rules for Protocol Synthesis 80

P |≡♯(r(C)) oo P |≡♯(w(C))

Heur15 (derived from M1) To believe a message X is a shared secret only between P and

Q, P must believe some part of the message is a shared secret only between P and Q.

P |≡ (σ(X) = {P,Q}) oo P |≡ (σ(X ′) = {P,Q})

Heur16 (derived from S2) To see a compound message (X,Y), P may see the message

components X and Y separately.

P ⊳ (X,Y)
OO ff

MMMMMMMMMM

P ⊳ X P ⊳ Y

Proposition 5.5.1 (Provable Synthesis)

A protocol synthesised using the BSW-ZF heuristic rules can be proven to uphold

its protocol goal using the BSW-ZF inference rules.

2

Proof

The validity of the heuristic rules is justified by their corresponding inference

rules, except for Heur1, 8, 9, 10. The heuristic rules Heur1, 8, 9, 10

require additional subgoals to ensure valid temporal ordering of the subgoals of

generated protocols, as discussed in Heur1.

These heuristic rules require that necessary subgoals are satisfied before a pro-

tocol goal is achieved. Any protocol synthesised using these heuristic rules guar-

antees that all of the subgoals for the protocol goals are satisfied. To verify a

protocol, its subgoals serve as the premises of the inference rules. It is sufficient

to deduce protocol goals from these subgoals using the corresponding inference

rules.

5.5.3 Manual Synthesis Example

To help readers to understand the use of the heuristic rules, a one-way authentication

protocol and a mutual authentication protocol are manually synthesised to demonstrate the

5.5 The Heuristic Rules for Protocol Synthesis 81

G1 : A |≡ (B ‖∼ A); G2 : B |≡ (A ‖∼ B).

Figure 5.7: Labeled Protocol goals used in Figure 5.14

A1 : A |≡♯(Na);
A3 : A 7→ Na;

A5 : A ∋ A;

A7 : A ∋ r(Cas);
A9 : B ∋ w(Cbs);

A11 : S ∋ r(Cbs);
A13 : S |≡ (σ(w(Cbs)) = {B,S});
A15 : A |≡ ((S |≡ (B |∼ φ2))→ (B |∼ φ2));

A2 : B |≡♯(Nb);
A4 : B 7→ Nb;

A6 : A ∋ w(Cp);

A8 : B ∋ r(Cp);
A10 : S ∋ w(Cas);

A12 : A |≡ (σ(w(Cas)) = {A,S});
A14 : A |≡ ((S ‖∼ φ1)→ (S |≡ φ1));

Figure 5.8: Labeled Assumptions used in Figure 5.14

IG1 : A |≡ (B |∼ (A,Na));

IG3 : A |≡ (S ‖∼ (B |∼ (A,Na)));

IG5 : A |≡ (S |∼ (B |∼ (A,Na)));

IG7 : B |≡ (σ(B |∼ Nb) = {A,B});
IG9 : A ⊳ (B |∼ Nb);
IG11 : S |≡ (B |∼ (A,Na,Nb));

IG13 : B ∋ (A,Na);

IG15 : B ⊳ (A,Na);

IG17 : A ∋ Na;
IG19 : S |≡ (B |∼ (A,Na,Nb));

IG2 : A |≡ (S |≡ (B |∼ (A,Na)));

IG4 : A |≡♯(B |∼ (A,Na));

IG6 : B |≡ (A |∼ (B |∼ Nb));
IG8 : A ∋ (B |∼ Nb);
IG10 : S ∋ (B |∼ (A,Na,Nb));

IG12 : B ∋ (A,Na,Nb);

IG14 : B ∋ Nb;
IG16 : A ∋ (A,Na);

IG18 : B |≡ (σ(Nb) = {A,B});
IG20 : S ∋ (B |∼ (A,Na));

Figure 5.9: Labeled Subgoals used in Figure 5.14

M1 : B ⊳ Cp(A,Na);

M3 : A ⊳ Cas(B |∼ (A,Na));

M5 : A ⊳ Cas(B |∼ (A,Na,Nb));

M2 : S ⊳ Cbs(A,Na);

M4 : S ⊳ Cbs(A,Na,Nb);

M6 : B ⊳ Cp(B |∼ Nb).

Figure 5.10: Labeled Protocol Steps used in Figure 5.14

5.5 The Heuristic Rules for Protocol Synthesis 82

G1

G6
1==

{{
{{

{{
{{

OO

A1 IG1

(a) (b)

G6
1<<

yy
yy

yy
yy

y OO

A1 IG11
1<<

xx
xx

xx
xx OO

IG2 A15

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO

M2<<

zz
zz

zz
zz

OO

A3 A4

(c) (d)

a protocol step a terminal subgoal an interim subgoal

Figure 5.11: Incomplete and Complete Formula Trees

synthesis approach using the BSW-ZF logic. Both protocols are based on Example 8. The

protocol goals for Example 8 are restated in Figure 5.7. While the one-way authentication

protocol upholds goal G1, the mutual authentication protocol upholds both G1 and G2.

Assumptions that are described in Example 8 and used in the current manual synthesis

examples are labeled and restated in Figure 5.8; further generated (required) subgoals, and

protocol steps are labeled and listed in Figure 5.9, and Figure 5.10.

We first consider the synthesis of a one-way authentication protocol that upholds G1.

Goal G1 which must be upheld by the synthesised protocol is considered as the single (root)

node of a rooted tree. This single-node rooted tree is regarded as a initial formula tree

for synthesis, such as Figure 5.11(a). Since the heuristic rules of the BSW-ZF logic are

also defined in the form of rooted trees, the synthesis of a one-way authentication protocol

can be illustrated by tree grafting, whereby instantiations of suitable heuristic rules are

grafted into incomplete formula trees that are extended from the initial formula tree until a

5.5 The Heuristic Rules for Protocol Synthesis 83

G6
1

A1

<<xxxxxxxxx

IG11
1

OO

A15

<<xxxxxxxxx

IG11
2

OO

A14

<<xxxxxxxxx

IG5
3

OO

IG12
4

<<xxxxxxxx

IG9
5

OO

A7
oo

A1

OO

A12

OO

M3

ccGGGGGGGG

A10
oo A11

||yy
yy

yy
yy

A14
// IG19

OO

IG9
20

oo A13
oo

IG3
13

// M2

OO

A9
oo

A8
// IG1

15

OO

M1

OO

IG2
16

oo A5
oo

A6

OO

IG4
17

OO

A3
oo

a protocol step a terminal subgoal an interim subgoal

Figure 5.12: One-way authentication Protocol Synthesis for Goal A |≡ (B ‖∼ A)

5.5 The Heuristic Rules for Protocol Synthesis 84

complete formula tree is held. An incomplete formula tree has one or more leaves that are

not assumptions from the requirement specification, such as (a), (b) and (c) in Figure 5.11.

All the leaves of a complete formula tree correspond to assumptions from the requirement

specification, such as Figure 5.11 (d) and Figure 5.12.

If a protocol goal is not an assumption from the requirement specification, then the

corresponding initial formula tree is an incomplete formula tree. If a protocol goal is an

assumption from the requirement specification, then the corresponding initial formula tree

is a complete formula tree. The fact that an initial formula tree can be a complete formula

tree, reflects the fact that complete formula trees may contain no protocol steps, since the

corresponding protocol goals do not require the cooperation of principals.

By distinguishing complete formula trees from incomplete complete formula trees, the

end-point of a synthesis process is determinable. More specifically, the synthesis for the

root of the complete formula tree is finished, when a complete formula tree is generated.

Figure 5.11(b) and (c) describe two grafting steps from initial formula trees. Figure 5.12

gives an entire example of a complete formula tree generated from the goal G1.

Initially, the variables (P , Q, X and Y) in the Heuristic rule Heur6 are substituted by

A, B, A and Na in turn. As a result, the goal of Heur6 is instantiated as the same as goal

G1 that is the root of initial formula tree. By grafting the whole instantiation of Heur6 into

the initial formula tree at the root node G1, the formula tree in Figure 5.11(b) is obtained.

The superscript of goal G1 indicates the current applied heuristic rule Heur6. According to

Figure 5.11(b), two new subgoals A |≡♯(Na) and A |≡ (B |∼ (A,Na)) are required to achieve

G1. Formula A |≡♯(Na) is an assumption A1 in the protocol requirement specification and

thus the search on this branch terminates. A |≡ (B |∼ (A,Na)) as an interim subgoal IG1

requires further synthesis. When Heur11 is applied to the formula tree in Figure 5.11(b)

at node IG1, the formula tree in Figure 5.11(c) is obtained. The heuristic rules for other

subgoals are similarly applied, resulting in the formula tree in Figure 5.12. In order to

provide an intuitive deduction process to readers, Figure 5.13 represents the same formula

tree with the original formulae (unlike Figure 5.12, we use the formula labels in Figure 5.7

– 5.10).

A one-way authentication protocol is constructed from the ’sees’ formulae of the form

P ⊳ C(X) of a complete formula tree as follows.

Step1(M1) : B ⊳ Cp(A,Na);

Step2(M2) : S ⊳ Cbs(A,Na);

Step3(M3) : A ⊳ Cas(B |∼ (A,Na));

The one-way authentication protocol, together with the assumptions from the tree, meets

5.5
T

h
e

H
eu

ristic
R

u
les

for
P

roto
col

S
y
n
th

esis
85

A |≡ (B ‖∼ A) [6]
OO

oo A |≡ (B |∼ (A,Na)) [11]
OO

oo A |≡ (S |≡ (B |∼ (A,Na))→ (B |∼ (A,Na)))

A |≡♯(Na) A |≡ (S |≡ (B |∼ (A,Na))) [11]
33

hhhhhhhhhhhhhhhhhhhhhhhh

oo A |≡ (S ‖∼ (B |∼ (A,Na))→ (S |≡ (B |∼ (A,Na))))

A |≡ (S ‖∼ (B |∼ (A,Na))) [5]
OO

oo A |≡ (S |∼ (B |∼ (A,Na))) [9]
OO

oo A ∋ r(Cas),
A |≡ (σ(w(Cas)) = {A,S})

A |≡♯(B |∼ (A,Na)) [12]
OO

A ⊳ Cas(B |∼ (A,Na)) oo
OO

S ∋ (B |∼ (A,Na))
OO

A|≡(S‖∼(B|∼(A,Na))→S|≡(B|∼(A,Na)))

A |≡♯(Na) S ∋ w(Cas) S |≡ (B |∼ (A,Na)) [9]11

ccc 22

fffffffffffffffffffffffffffffff

S ∋ r(Cbs),
S |≡ (σ(w(Cbs)) = {B,S}) S ⊳ Cbs(A,Na) oo

33

hhhhhhhhhhhhhhhhhhhhhhhh
B ∋ (A,Na) [3]

22

fffffffffffffffffffffffffffffff

B ∋ w(Cbs) B ⊳ (A,Na) [1]
33

ffffffffffffffffffffffff OO

B ∋ r(Cp) B ⊳ Cp(A,Na) oo
OO

A ∋ (A,Na) [2, 4]
OO

A ∋ w(Cp)
A ∋ A,
A 7→ Na

a protocol step a terminal subgoal an interim subgoal [heur i]

F
igu

re
5.13:

A
C

om
p
lete

form
u
la

tree
for

G
oal

G
1

:
A
|≡

(B
‖∼

A
)

5.5 The Heuristic Rules for Protocol Synthesis 86

the goal of the initial synthesis state within the BSW-ZF logic. Note that in using the

heuristic rules of the BSW-ZF logic, the order of protocol steps is automatically generated

in a backward order of protocol execution sequence. The temporal ordering of subgoals in

the heuristics is important. When Heur9 is applied to the subgoal S |≡ (B |∼ (A,Na))

in Figure 5.13, B must hold the message (A,Na) before it is seen by S, otherwise B

cannot write X to channel Cbs. This guarantees the “executability” [63] of generated

protocols, whereby, at any stage, each principal possesses enough information to construct

the messages that it is supposed to send according to the protocol.

The synthesis for multiple goals can be considered as a composition of a number of

formula trees. The roots of these formula trees are the goals from the protocol requirement.

Certain subtrees are shared by different trees in the composition. This means that the

composition is in the form of a directed acyclic graph (DAG). Therefore, the synthesis for

multiple goals can be illustrated in the form of a directed acyclic graph (DAG). A systematic

way to compose formula trees will be considered in the next chapter.

Figure 5.14 demonstrates an entire synthesis process for both G1 and G2. For example,

to achieve goal G1, assumption A1 and subgoal IG1 are required when Heur6 is applied

to G1. Consequently, heuristic rules Heur11, 11, 5, 12, and Heur9 are applied to cor-

responding subgoals until subgoal IG10 is required to achieve G1. Then, we consider goal

G2. Heuristic rules Heur6, 10, 3, and Heur1 are applied to corresponding goal and sub-

goals, then subgoal IG10 is also required to achieve goal G2. Note that subgoal IG18 about

message secrecy is not synthesised further. It is used to guard the entire further synthesis,

that is the related secrecy may not be leaked out before the current protocol step. From

Figure 5.14, we can see that only subgoal IG10 is required to achieve both G1 and G2 now.

By repeatedly applying suitable heuristic rules to subgoals, the mutual authentication pro-

tocol described in Example 9 is generated. Note that the order of protocol steps M1, M4,

M5 and M6 is automatically generated in a backward order of the execution sequence of

the protocol in Example 9.

5.5.4 Discussion

The BSW Logic [28] also provides a synthesis technique that can be used to guide the

(manual) systematic calculation of a protocol from its goals. The general form of the BSW

5.5 The Heuristic Rules for Protocol Synthesis 87

G6
1 G6

2

A1

<<xxxxxxxxx

IG11
1

OO

IG10
6

OO

A2

bbDDDDDDDDD

A15

<<xxxxxxxxx

IG11
2

OO

IG15
7

// M6

OO

A8

bbDDDDDDDD

A14

<<xxxxxxxxx

IG5
3

OO

IG18

OO

IG3
8

OO

A6

bbDDDDDDDDD

IG12
4

<<xxxxxxxx

IG9
5

OO

A7
//oo IG1

9

OO

A1

OO

A12

OO

M5

ccGGGGGGGG

;;wwwwwwww

A10
oo A11

||yy
yy

yy
yy

A14
// IG10

OO

IG9
11

oo A13
oo

IG3
13

// IG2
12

// M4

OO

A9
oo

A8
// IG1

15

OO

IG4
14

bbFFFFFFFF

A4
oo

M1

OO

IG2
16

oo A5
oo

A6

OO

IG4
17

OO

A3
oo

a protocol step a terminal subgoal an interim subgoal

Figure 5.14: Manual Protocol Synthesis for Goals in Example 8

5.5 The Heuristic Rules for Protocol Synthesis 88

synthesis rules can be re-interpreted in our notation as:

G oo
]]VV

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

G1

...

Gn

This means that in order to reach the goal G, all subgoals G1, . . . , Gn have to be

reached. Nine synthesis rules of this form are proposed in [28] by reversing the inference

rules of the original BSW logic. This limitation of the original BSW logic implies that only

certain classes of authentication protocols can be synthesised. For example, authentication

protocols based on message secrecy and key agreement protocols may not be synthesised

within the BSW logic. By extending the BSW logic to the richer BSW-ZF logic, the

proposed heuristic rules can synthesis a wider range of authentication and key-exchange

protocols.

The BSW synthesis rules do not consider the temporal order of subgoals. When two

subgoals in a synthesis rule correspond to messages exchanged between principals, then the

proper order of these messages is not specified within the BSW logic. The BSW synthesis

rules rely on the user to manually order the synthesised protocol steps to work effectively

and are therefore insufficient to automatically generate security protocols that require a

number of ordered messages.

The BSW-ZF heuristics rules have temporal order built-in so that the ordering of pro-

tocol messages can be done automatically. With the temporal order, the heuristic rules

Heur1–4 and Heur8–11 guarantee that if certain assumptions do not hold, then protocol

messages may not be generated. As noted above, this guarantees the ”executability” [63]

of generated protocols.

In this chapter, we proposed and discussed the BSW-ZF logic, and also proposed a

backward searching approach based on the heuristic rules of the BSW-ZF logic to manu-

ally generate protocols. In the next chapter, we will propose a novel automatic backward

searching approach based on the heuristic rules of the BSW-ZF logic, as used by the Au-

tomatic Security Protocol Builder (ASPB), to automatically generate security protocols.

Given a number of protocol goals and assumptions, the heuristic rules of the BSW-ZF logic

are adapted to guide an automatic backward search for sub-protocols (message sequences)

from each protocol goal, whereby, the desired messages are generated in a reversed order of

the protocol execution sequence.

Chapter 6

Automatic Security Protocol

Builder

In this chapter, we describe the Automatic Security Protocol Builder (ASPB), and discuss

the advantages of our approach by comparing it with other approaches. Figure 6.1 outlines

the architecture of the Automatic Security Protocol Builder. A protocol specification is

parsed and decomposed into a series of single goal protocol requirements using the Speci-

fication Parser (Section 6.1). From these single goal protocol requirements, a collection of

subprotocols are synthesised to satisfy the individual goals using the Single Goal Synthe-

siser (Section 6.2). The Protocol Composer (Section 6.3) merges these subprotocols to form

complete candidate protocols. The Protocol Selector (Section 6.4) selects what is considered

the most suitable protocols from the candidate protocols. Section 6.5 provides a series of

examples and Section 6.6 compares it with the existing approaches.

6.1 The Requirement Specification and the Parser

When designing a protocol, the designer should understand the security context of the prin-

cipals. It reflects the keys that principals know, the trust relationships between principals,

and any other assumptions that they may hold. Our protocol requirement specification

defines the terms that are used in the specification, initial known assumptions, and goals

for the protocol to be designed. These are represented using the BSW-ZF logic.

Example 10 Figure 6.2 gives a complete requirement specification for Example 8. Note

that unreachable assumptions may also be included in the requirement specification. These

do not affect the logic, but are used to direct the synthesis during pruning, and will be

explained in Section 6.2.1. △

89

6.2 The Single Goal Synthesiser 90

Requirement
Specification

// Specification
Parser

tt
ttt

tt
tt

t

JJ
JJJ

JJ
JJ

J

L[1]

zzttttttttt
L[i]

��

L[n]

$$IIIIIIIII

Single Goal
Synthesiser

RG[1]

LLLLLLLL

&&LLLLLLLL

. . . Single Goal
Synthesiser

RG[i]

��

. . . Single Goal
Synthesiser

RG[n]
rrrrrrrr

yyrrrrrrrr

Protocol
Composer

P

��
Protocol
Selector

// selected
protocols

initial state for goal i: L[i]
subprotocols for goal i: RG[i]
candidate protocols: P

Figure 6.1: Overview of Automatic Security Protocol Builder

The Requirement Specification Parser parses the specification and checks whether all

the formulae are valid based on the logic syntax and the types defined in the “declarations”

section of the specification. For each goal to be proven, the parser generates a single-

node formula tree (of that goal) as an initial synthesis state. The BSW-ZF heuristic rules

define how this tree may be expanded, and a snapshot of this tree (rooted by that goal),

represents a synthesis state. The single (root) node of an initial formula tree is the goal that

any synthesised protocol must uphold. ASPB uses two kinds of formula trees: incomplete

formula trees and complete formula trees, that have been defined in Section 5.5.3.

6.2 The Single Goal Synthesiser

The Single Goal Synthesiser accepts an initial synthesis state from the Requirement Speci-

fication Parser, automatically synthesises its goal using the heuristic rules of the BSW-ZF

logic, and builds complete formula trees from the goal. Algorithm 1 describes this process.

Operation choose(L) picks an arbitrary synthesis state s from the set of current states L.

6.2 The Single Goal Synthesiser 91

declarations {
Channel Cas, Cbs, Cp;
Principal A, B, S;
Nonce Na, Nb;
Message X;
Formula φ;

}
assumptions {

A |≡ (σ(w(Cas)) = {A,S});
S |≡ (σ(w(Cas)) = {A,S});
B |≡ (σ(w(Cbs)) = {B,S});
S |≡ (σ(w(Cbs)) = {B,S});
A |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(r(Cas)) = {A,S});
B |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(r(Cbs)) = {B,S});
A ∋ r(Cas); A ∋ w(Cas);
A ∋ r(Cp); A ∋ w(Cp);
B ∋ r(Cbs); B ∋ w(Cbs);
B ∋ r(Cp); B ∋ w(Cp);
S ∋ r(Cbs); S ∋ w(Cbs);
S ∋ r(Cas); S ∋ w(Cas);
S ∋ r(Cp); S ∋ w(Cp);
A |≡♯(Na); B |≡♯(Nb);
A 7→ Na; B 7→ Nb;
A ∋ A; B ∋ B;
A |≡ ((S ‖∼ φ)→ (S |≡ φ));
B |≡ ((S ‖∼ φ)→ (S |≡ φ));
A |≡ ((S |≡ (B |∼ X))→ (B |∼ X));
B |≡ ((S |≡ (A |∼ X))→ (A |∼ X));

}
unreachable assumptions{

A ∋ r(Cbs); A ∋ w(Cbs); B ∋ r(Cas); B ∋ r(Cas);
}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 6.2: The complete requirement specification for Example 8

6.2 The Single Goal Synthesiser 92

Algorithm 1 StateSet syn(State initState)

State s;
StateSet S′, R = φ;
StateSet L = {initState};
while ¬ empty(L) do
s = choose(L);
L = L \ s;
if hasGoal(s) then
S′ = subsyn(s);
L = add(L, S′);

else
R = add(R, s);

end if
end while
return R;

If the given state s is an incomplete formula tree, then operation subsyn(s) selects a

leaf node that is not an assumption, and applies the currently applicable heuristic rules to

this leaf node. A number of new formula trees are generated by appending the subgoals of

the applicable heuristic rules to the formula tree. Operation subsyn(s) returns these new

formula trees as a collection of synthesis states. For example, the different formula trees in

Figures 5.11(b) and (c) could be generated and returned by subsyn(s) for the formula tree

in Figure 5.11(a).

If no heuristic rule can be applied to a leaf node (terminal subgoal) then the Single

Goal Synthesiser tests whether this leaf matches an assumption. If so, then it is considered

reachable. If all leaves of a tree are reachable, then the tree is a complete formula tree, and

represents a candidate protocol for the goal. It is added to the set of complete formula trees

R for the given goal.

An automatic verification tool [92] for the original BSW Logic has been implemented

using Theory Generation [68]. This tool [92] also supports (manually guided) synthesis of

protocols using the synthesis rules described in [28]. The Single Goal Synthesiser described

in this section builds on and extends this manual tool in [92] by automatically carrying out

the synthesis process for the BSW-ZF logic.

6.2.1 Improving Performance

To improve the performance of the Single Goal Synthesiser, a number of ad-hoc strategies

are used as part of the operation subsyn(s), including early pruning, variable instantiation,

and tree pruning.

Early Pruning. Having applied a heuristic rule, consider generated formulae that are

6.2 The Single Goal Synthesiser 93

A ⊳ (A,Na)
OO

oo A ⊳ C(A,Na)
OO

oo B ∋ A,Na

A ∋ r(C) B ∋ w(C)

(a) Applied Heur1 on A ⊳ (A,Na), and instantiated variable Q by B

declarations{
Channel Cas, Cbs, Cp;

. . .

(b) Possible Instantiations for variable C in Figure 6.2

A ⊳ (A,Na)
OO

oo A ⊳ Cas(A,Na)
OO

oo B ∋ A,Na

A ∋ r(Cas) B ∋ w(Cas)

(c) Instantiated variable C by Cas

A ⊳ (A,Na)
OO

oo A ⊳ Cbs(A,Na)
OO

oo B ∋ A,Na

A ∋ r(Cbs) B ∋ w(Cbs)

(d) Instantiated variable C by Cbs

A ⊳ (A,Na)
OO

oo A ⊳ Cp(A,Na)
OO

oo B ∋ A,Na

A ∋ r(Cp) B ∋ w(Cp)

(e) Instantiated variable C by Cp

A |≡ φ1OO
oo A |≡ (φ2 → φ1)OO

oo A |≡ (φn → (. . .→ (φ2 → φ1)))

A |≡ φ2 A |≡ φn

(f) A Formula Tree for Recursively Applying Heur11 on A |≡ φ1

Figure 6.3: Examples for Early Pruning and Variable Instantiation

6.2 The Single Goal Synthesiser 94

of the form of P ∋ r(C), P ∋ w(C), or P |≡♯(Y). To speed up the judgement

process, the operation subsyn(s) checks whether leaves of this form in generated

formula trees match the initial assumptions or specify unreachable assumptions of the

requirement specification. If a leaf matches an assumption, then the leaf is reachable

and the search terminates at this point. For example, A ∋ r(Cp) and B ∋ w(Cp)in

Figure 6.3(e) match specified assumptions, then the search terminates at this point.

Only B ∋ (A,Na) remains for further synthesis. If any leaf matches a specified

unreachable assumption, then the corresponding formula tree is also unreachable, and

the formula tree is simply discarded. For example, if B ∋ w(Cas) in Figure 6.3(c)

or A ∋ r(Cbs) in Figure 6.3(d) match specified unreachable assumptions, then the

corresponding formula trees are simply discarded. Otherwise, the formula tree is kept

for further synthesis. The rationale for early pruning is that formulae of this form are

frequently generated using the heuristic rules, such as Heur1, 5 – 10, and 12 – 14,

and it is easy to immediately determine whether they are reachable by this approach.

Variable Instantiation. Some heuristic rules introduce new variables that do not appear

in the goal, but appear in the subgoals. For example, Heur1, and Heur6 - 10. If

the type of the variable is known (for example, variable Q is a principal, and variable

C is a channel in Heur1), then the heuristic rule is repeatedly applied for all possible

instantiations of the variable from the “declarations” section of the requirement spec-

ification. As a result of this, a number of independent states that have no variables

are generated. For example, Figure 6.3(a) introduces channel variable C. By apply-

ing all possible instantiations of variable C from Figure 6.3(b), independent states

Figure 6.3(c), (d), and (e) that have no variables are generated. Operation subsyn(s)

then applies the ‘early pruning’ strategy to these instantiated states.

Some heuristic rules introduce variables of unknown type. For example, in theory,

variable φ2 in Heur11 could be bound to any logical formula, resulting in an infinite

state space. In practice, we consider that in order to reach Heur11’s goal, both of

its two subgoals must be reached beforehand. In order to determine whether Heur11

is applicable to P |≡ φ1, where φ1 has no unbound variables, a search is made for a

pattern P |≡ (φ2 → φ1) for some arbitrary φ2 in the assumptions of the requirement

specification. If matched, the heuristic rule is applied. If no match occurs, then a

search is done to test if it is possible to synthesise a formula of the form P |≡ (φ2 → φ1),

from existing assumptions in the requirement specification. In practice, this search

is relatively straightforward as only Heur11 can be applied to P |≡ (φ2 → φ1),

whereupon it recursively searches for formulae of the form P |≡ (...(... → φ1)) in

assumptions, such as the formula tree in Figure 6.3(f).

6.2 The Single Goal Synthesiser 95

To further minimise the search space, Heur11 disregards higher order belief formulae

[27] of the form P |≡ (Q ‖∼ (Q ‖∼ X)) and P |≡ (Q |≡ (Q |≡ X)), etc., on the

basis that they do not provide any additional information than the first order beliefs

P |≡ (Q ‖∼ X) and P |≡ (Q |≡ X), etc.. With these strategies, we restrict the state

search space, and generate a wide range of useful protocols.

Tree Pruning. The Single Goal Synthesiser does not allow any formula as its own direct

or indirect parent in a formula tree. The reason for this is that the Single Goal

Synthesiser terminates the extension for any branch of a formula tree as early as

possible. If a goal can be achieved, then the simplest subtree does not involve itself

as a subgoal. Otherwise, it involves an infinite search for this goal, since any branch

for this goal in a formula tree requires itself as a subgoal, such as the formula tree

in Figure 6.4(c). For a goal to have itself as its own direct or indirect parent in a

formula tree, the high level subtree for this goal can be safely replaced by the low

level subtree for the same goal. The replacing formula tree is already in the state set,

because the Single Goal Synthesiser extends a formula to all possible formula trees

without any formula as its own direct or indirect parent. For example, formula trees

in Figure 6.4(a), (b) can be simplified to the formula tree in Figure 6.4(d).

Example 11 Two subprotocols are automatically synthesised from Goal G1 in the require-

ment specification of Figure 6.2. Subprotocol 1.1 corresponds to the protocol messages from

the search tree in Figure 5.13. Further synthesis generates an additional search tree with

corresponding Subprotocol 1.2.

Subprotocol 1.1 Subprotocol 1.2

A, A,

B ⊳ Cp(A,Na), S ⊳ Cas(A,Na),

S ⊳ Cbs(A,Na), B ⊳ Cbs(A,Na),

A ⊳ Cas(B |∼ (A,Na)). A ⊳ Cp(A,Na).

Note that the first line of a subprotocol indicates the subprotocol initiating principal

(initiator) that generates the first message of the subprotocol. The synthesis of the symmet-

rically similar goal G2 generates two similar search trees from which symmetrically similar

subprotocols 2.1 and 2.2 are obtained.

Subprotocol 2.1 Subprotocol 2.2

B, B,

A ⊳ Cp(B,Nb), S ⊳ Cbs(B,Nb),

S ⊳ Cas(B,Nb), A ⊳ Cas(B,Nb),

B ⊳ Cbs(A |∼ (B,Nb)). B ⊳ Cp(B,Nb).

6.2 The Single Goal Synthesiser 96

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO<<

zz
zz

zz
zz

A3 IG3OO

IG2OO

M2<<

zz
zz

zz
zz

OO

A3 A4

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO

IG2OO

M2<<

zz
zz

zz
zz

OO

A3 A4

(a) Subgoal IG2 as Its Own Indirect Parent (b) Subgoal IG2 as Its Own Direct Parent

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO

IG2OO

IG2

G1<<

zz
zz

zz
zz

OO

IG1OO M1OO bb

DD
DD

DD
DD

A1 A2 IG2OO

M2<<

zz
zz

zz
zz

OO

A3 A4

(c) Infinite Search for Subgoal IG2 (d) No Subgoal as Its Own Parent

a protocol step a terminal subgoal an interim subgoal

Figure 6.4: Self-Parent Formula Trees and Infinite Search

6.3 The Protocol Composer 97

△

6.3 The Protocol Composer

The Single Goal Synthesiser is used to generate subprotocols from a single goal. While

not considered in the original paper [28], it is possible, in theory, to use the original BSW

synthesis rules to synthesise multiple goals. In the same way, the heuristic rules of the

BSW-ZF logic could be used to synthesis from multiple goals. For example, a mutual

authentication protocol is synthesised in Section 5.5.3. However, in practice, building a

search tree for multiple goals results in a potential state explosion as each step must consider

the application of all possible combinations of heuristic rules that could be applied in the

current state. ASPB avoids this problem by first synthesising only single goal protocols

and it then uses the Protocol Composer to, in turn, merge these single goal protocols into

a single candidate protocol that meets the composition of goals.

A feasible candidate protocol for a requirement specification must achieve all of the goals

described in the requirement specification, otherwise the candidate protocol does not satisfy

the requirement specification (within the logic). For this reason, the Protocol Composer

generates a feasible candidate protocol by composing a number of subprotocols. Each

of these subprotocols is selected from the generated subprotocol set for each goal in the

requirement specification, and the composition of these subprotocols satisfies all the goals.

There can be many possible ways to merge subprotocols. The easiest way to merge two

subprotocols is to append one to the end of the other. However, this may lead to lengthy

and inefficient protocols. In addition, such protocols are certainly not fail-stop [57], since

an attacker may run part of the protocol (achieving one goal) without completing the other

subprotocol.

6.3.1 Merging Principal sequences

A security protocol is a sequence of messages exchanged between principals in order to

achieve a number of security goals. At an abstract level, these message exchanges can

be described just in terms of a principal sequence. A principal sequence is a sequence of

principal identities based on the order of message exchanges between the principals in a

protocol. For example, Subprotocol 1.1 implementing goal G1 (Example 11) has principal

sequence A → B → S → A; Subprotocol 2.2 implementing goal G2 has principal sequence

B → S → A→ B.

Given principal sequences X and Y , then we say that sequence X covers sequence Y

if Y appears as a fragmented subsequence of X. For example, Figure 6.5(a) illustrates

6.3 The Protocol Composer 98

A

��

A

��

B

��
S

��

S

��
A

��

A

B

A

��

A

��
B

��

B

��

B

��
S

��

S

��

S

��
A A

��

A

��
B B

A

��

A

��
S

��

S

��
B B

��
A

��

A

��
B B

(a) (b) (c)

Figure 6.5: Sequence Covering Examples

that A → B → S → A → B covers A → S → A. The Protocol Composer uses principal

sequences to guide the construction of new protocols when merging subprotocol messages.

Given a collection of subprotocols P1 . . .Pn that meet goals G1 . . . Gn of a protocol

specification, respectively, the Protocol Composer tests whether a given principal sequence

covers the principal sequences of the subprotocols P1 . . .Pn. This is done using a variation of

the shortest subsequence algorithm [69]. If the given principal sequence covers the principal

sequences of the subprotocols P1 . . .Pn, then it is a possible principal sequence of a candidate

protocol. For example, in Figure 6.5(b), principal sequence A → B → S → A → B covers

both principal sequence A → B → S → A for Subprotocol 1.1 and principal sequence

B → S → A → B for Subprotocol 2.2, then principal sequence A → B → S → A → B is

a possible principal sequence of a candidate protocol that satisfies both G1 and G2. The

candidate protocol is generated by merging the messages of the individual subprotocols

according to the generated (covering) principal sequence. The behaviour of the Protocol

Composer is specified by Algorithm 2.

The Protocol Composer accepts two parameters: the protocol initiator prin and an array

RG. Each element RG[i] of RG is the state set for the ith goal of the given requirement

specification. The state sets are generated by the Single Goal Synthesiser and correspond

to the possible subprotocols for a given goal. The Protocol Composer generates candidate

protocols based on the rule of shorter first, so that principal sequences (protocol patterns)

are generated from the shortest to the longest.

Operation sPattern(RG) returns the shortest length of all the possible candidate pro-

tocols in RG. If a candidate protocol is composed of a number of subprotocols, then the

principal sequencing of the candidate protocol must cover all the principal sequences of these

6.3 The Protocol Composer 99

Algorithm 2 ProtocolSet compose(Principal prin, Array RG)

Array RS = φ;
ProtocolSet P ′, P = φ;
PatternSet T ; Pattern t;
for i = sPattern(RG) to lPattern(RG) do
T = genPatterns(prin, i);
while ¬ empty(T) do
t = choose(T);
T = T \ t;
RS = match(t, RG);
P ′ = subCompose(t, RS);
P = add(P , P ′);

end while
end for
return P ;

subprotocols. Thus, the candidate protocol is not shorter than the longest of these subpro-

tocols. Note that the shortest pattern only guarantees that possible candidate protocols are

not shorter than the shortest pattern. It does not means that a candidate protocol as the

length of given shortest pattern can be generated. The reason for this is that the principal

sequence of a candidate protocol is a common principal sequence that covers the principal

sequences of its composing subprotocols. If the principal sequence of any subprotocol may

not cover all other subprotocols, then a common principal sequence should be longer than

all of its composing subsequences. For example, the length of all subprotocol principal

sequences in Example 11 is 4, then the principal sequence length of a candidate protocol

may not be shorter than 4. Otherwise, the principal sequence of candidate protocols may

not cover any subprotocol. It follows that no protocol can be composed by given principal

sequence length and subprotocols. On the other hand, the length of the shortest principal

sequence that may cover subprotocols for all goals is 5. Figure 6.5(b) presents a possible

covering example. This principal sequence length is longer than the length returned by

operation sPattern(RG).

Operation lPattern(RG) returns the longest possible pattern length of all the possible

candidate protocols in RG. Given n goals, where li is the length of the longest subprotocol

for the ith goal, then the longest pattern length is
∑n

i=0(li − 1) + 1. The motivation here

is to generate a category of protocols such that the message receiver of a protocol step is

the message sender of the next protocol step. Since the first line of a subprotocol only

indicates the subprotocol initiator that generates the first message of the subprotocol, when

merging subprotocols into a candidate protocol, all of the subprotocol initiators should be a

receiver of the previous protocol step, except for one initiator that is the candidate protocol

initiator. The length of the longest pattern of a candidate protocol should be the sum

6.3 The Protocol Composer 100

of the number of steps of all the subprotocols plus the candidate protocol initiator. Note

that the number of steps in a subprotocol is the length of the associated principal sequence

minus one (which is used to indicate the subprotocol initiator). For example, principal

sequence of the given candidate protocol in Figure 6.5(c) is A → S → B → A → B. It

covers its subprotocol principal sequences A→ S → B and A→ B. If a candidate protocol

is composed as Figure 6.5(c) by the subprotocols corresponding to the given subprotocol

principal sequences. No message is sent at the step B → A of the generated candidate

protocol. Therefore the last step A→ B of the generated candidate protocol can be executed

without executing the previous protocol steps. In this case, an intruder can generate and

send a message to B in this protocol step without participating in previous protocol steps

of the same round.

Operation genPatterns(prin, i) generates all of the principal sequences, that are initi-

ated by principal prin and with length i, as possible protocol patterns.

Operation match(t, RG) returns an array RS such that each element RS[i] is a subset

of the corresponding state set RG[i] that is covered by the principal sequences of all RS[i]’s

states that are, in turn, covered by the given principal sequence t. This is done by using

the longest common subsequence algorithm [69].

Operation subCompose(t,RS) returns all possible candidate protocols that follow prin-

cipal sequence t, composed from the subprotocols of array RS. A candidate protocol is

generated by composing combinations of subprotocols from R[i] (i ∈ [0, . . . , n]).

If a goal G1 is a subgoal of another goal G2 in the same requirement specification then

G1 is considered relevant to G2. In this case, it is not necessary to further synthesise G1

as doing so will simply generate subprotocols that will also be generated as parts of the

subprotocols for G2.

6.3.2 Merging Subprotocols

The Protocol Composer merges subprotocols according to the following rules.

Merg1 (Early appearing rule) A message from a subprotocol Pi should appear in the can-

didate protocol P as early as possible, constrained only by the principal sequencings.

Merg2 By the inference rule S2 of the BSW-ZF logic

P ⊳ (X,Y)

P ⊳ X,P ⊳ Y

we get the following rule
P ⊳ X,P ⊳ Y

P ⊳ (X,Y)

6.3 The Protocol Composer 101

which means that the messages, that are received by P from the different subprotocols,

may be composed into one message in the final protocol.

Merg3 Messages on common channels in the subprotocols should be merged in the can-

didate protocol, subject to the constraints of the principal sequences. For example,

message C1(X1), C2(X2, Y1) and message C1(X3), C2(X2, Y2) from two subprotocols

merge into a resulting message C1(X1,X3), C2(X2,X2, Y1, Y2).

Merg4 (Reducing rule) Any redundant message components should be reduced. For ex-

ample, message C(X2,X2) should be reduced to C(X2).

Example 12 The synthesis of goals G1 and G2 generate subprotocols 1.1 and 1.2 and

subprotocols 2.1 and 2.2, respectively (Example 11). Thus there are 2×2 possible combi-

nations of the subprotocols to be considered for merging. Furthermore, for each pair of

subprotocols, we must find the shortest merge of the two subprotocols. ASPB generates

the following ‘best’ protocol that corresponds to the merge of subprotocols 1.1 and 2.2 from

Example 11 (in 3.1 seconds):

A ,

B ⊳ Cp(A,Na),

S ⊳ Cbs(A,B,Na,Nb),

A ⊳ Cas(B,Na,Nb,A),

B ⊳ Cp(Nb,B).

△

6.3.3 Realising Idealised protocols

The Single Goal Synthesiser generates messages expressed as formulae within the BSW-

ZF logic. The final implementation of these protocols is given in terms of conventional

protocol message steps. For example, both message Cas(A |∼ Na) and Cas(A ⊳ Na) are

expressed by the same notation Cas(A,Na). To minimise the potential for replay attacks

where ‘similar’ messages appear in different parts of a protocol, the messages are modified to

make them distinct from one another [12]. For example, Cas(A,Na, 0) and Cas(A,Na, 1)

or Cas(A,Na) and Cas(Na,A). In ASPB, we distinguish ’similar’ messages by the latter

approach, that is, exchanging message component order.

Since the message receiver of a protocol step is the message sender of the next protocol

6.3 The Protocol Composer 102

step, the above protocol in Example 12 can be rewritten in the following format:

A→ B : Cp(A,Na),

B → S : Cbs(A,B,Na,Nb),

S → A : Cas(B,Na,Nb,A),

A→ B : Cp(Nb,B)

Each protocol step means that a principal sends a message and another principal receives

this message. For example, the first step of the above protocol A → B : Cp(A,Na) means

that A |∼ Cp(A,Na) and B ⊳ Cp(A,Na).

6.3.4 Removing Redundant Components

The Protocol Composer may use a redundancy removing strategy to further remove re-

dundant components of protocol messages. This is inspired by Mao’s protocol idealisation

process [80], that is used to transform protocol messages into BAN-like formulae via a

context-sensitive syntactic analysis of the protocol syntax. Our redundancy removing pro-

cess is used to transform BSW-ZF formulae into protocol messages using a similar analysis

of the protocol syntax as follows.

Let the relevant principal set NP (N) represent a set of principals to which principal P

currently believes that the fresh nonce N is uttered as a reference. P should remember this

reference wherever P sees N . At the beginning of a protocol, the relevant principal sets for

all principals are initialised to empty.

The Protocol Composer uses the following relevancy rules to calculate the relevant

principal set for every principal at each protocol step.

RR1 If P believes that only P and Q may write in channel C, and P sees nonce N

together with principal R from C, then P believes that N is uttered as a reference to

the principals P , Q, and R.

P |≡ (s(w(C)) = {P,Q}), P ∋ r(C), P ⊳ C(N, . . . , R)

NP (N) = NP (N) ∪ {P,Q,R}

RR2 If P believes that only Q may write in channel C, and P sees nonce N with principal

R from C, then P believes that N is uttered as a reference to the principals Q and R.

P |≡ (s(w(C)) = {Q}), P ∋ r(C), P ⊳ C(N, . . . , R)

NP (N) = NP (N) ∪ {Q,R}

6.4 The Protocol Composer 103

RR3 If P believes that only P and Q may read from channel C, and P writes nonce N with

principal R in C, then P believes that N is uttered as a reference to the principals P ,

Q, and R.

P |≡ (s(r(C)) = {P,Q}), P ∋ w(C), P |∼ C(N, . . . , R)

NP (N) = NP (N) ∪ {P,Q,R}

RR4 If P believes that only Q may read from channel C, and P writes nonce N with

principal R in C, then P believes that N is uttered as a reference to the principals Q

and R.

P |≡ (s(r(C)) = {Q}), P ∋ w(C), P |∼ C(N, . . . , R)

NP (N) = NP (N) ∪ {Q,R}

Generally, if NP (N) ∩ NQ(N) = ψ1 before a protocol step P → Q : (N,ψ2), then the

protocol step is rewritten by P → Q : C(N,ψ2/ψ1) This is done in reverse order of protocol

execution. If a message may not be distinguished from other messages after applying a

relevancy rule, then further principal identifiers from ψ2 are kept in that message, until the

message can be distinguished from other messages. In addition, if ψ2/ψ1 = {} in the first

encrypted message of a protocol, then at least one principal identity of that message is kept

to stop principals misusing that message. If we remove all principal identities from the first

encrypted message, the protocol may be subject to reflection/oracle attacks. The reason

for this is that the message receiver may not judge who generates this message (another

principal in the current protocol run, or itself in a previous run). This is because it is

not practical for principals to keep messages from previous protocol runs. An example to

illustrate this problem will be given in Section 6.5.2.

Example 13 The messages in the generated protocol from Example 12 are reduced and

then simplified using above rules to give:

Message 1 A→ B : A,Na,

Message 2 B → S : {A,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas
,

Message 4 A→ B : Nb.

△

6.4 The Protocol Selector 104

6.4 The Protocol Selector

In general, given subprotocols P1 and P2 that uphold goals G1 and G2, respectively, then

the monotonicity of the BSW-ZF logic ensures that the resulting merged candidate protocol

as outlined above also upholds the goals G1 and G2 within the logic. Therefore, all the

protocols generated by the Protocol Composer are valid within our logic.

However, belief logics do have weaknesses. Regardless of whether we deal with type flaw

attacks by assuming that component types can be recognised by principals, the logic is still

vulnerable to other classes of attacks. For example, the Protocol Composer generates the

following simple mutual authentication protocol.

Message 1 A→ B : A,Na,

Message 2 B → A : B,Nb, {A,Na}Kab

Message 3 A→ B : {B,Nb}Kab

While secure within the BSW-ZF and many other belief logics, this protocol is subject to a

reflection/oracle attack:

Message 1 A→ B : A,Na,

Message 2 B → I(A) : B,Nb, {A,Na}Kab,

Message 2′ I(B)→ A : B,Nb′, {A,Na}Kab,

Message 3 A→ B : {B,Nb′}Kab.

Here, Nb′ is generated by the intruder. There are many examples of secure protocols,

which when composed are vulnerable to attack [118]. Such unsuitable protocols that are

easy to identify are discarded following verification by the Protocol Selector. For example,

when a subprotocol P1 does not merge any message with any other subprotocols in the

merging process, we consider that the resulting candidate protocol is an unsuitable protocol

and discarded by the Protocol Selector. The reason for this is that the subprotocol P1

could be executed independently. An intruder can participate in the subprotocol without

participating in the rest protocol of the same round.

It is useful to also consider verification of additional ad-hoc properties. For example, the

non-injective agreement property [78]: “For certain data items ds, if each time a principal

B completes a run of the protocol as responder using ds, apparently with A, then there is

a unique run of the protocol with the principal A as initiator using ds, apparently with B.”

The generated protocols could be re-analysed using more sophisticated protocol analysis

6.5 Protocol Examples 105

tools, such as the NRL Analyzer [82], the Interrogator model [86], FDR [76], Murϕ [88],

Athena [107]. In this case, the Protocol Selector of ASPB would be used to narrow down the

set of candidate protocols to be verified. However, we point out that many existing protocol

checkers are also limited and also include ad-hoc strategies, and they do not guarantee the

correctness of verified protocols.

We also suggest that practical techniques such as [12] may prove useful in making

candidate protocols robust against such attacks. For example, by ensuring that the initiator

challenge looks different to the respondent challenge.

6.5 Protocol Examples

ASPB generates a large number of protocols for different requirements. For the sake of

illustration, only a small number of generated protocols are explored in this section. Note

that we do not consider type-flaw attacks [34] in our prototype. However, this could be done

by using other protocol checkers, such as the NRL Analyzer [82], the Interrogator model

[86], FDR [76], Murϕ [88], Athena [107], during protocol selection.

6.5.1 Mutual Authentication with TTP

Figure 6.2 illustrates a protocol requirement specification of a simple mutual authentication

protocol that uses a trusted third party. ASPB generates Protocol 1.1 that was described

in Example 13.

Protocol 1.1. (Perrig and Song’s real optimal protocol [100])

Message 1 A→ B : A,Na,

Message 2 B → S : {A,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas
,

Message 4 A→ B : Nb.

Protocol 1(a). (Perrig and Song’s optimal protocol 1 [100])

Message 1 A→ B : A,Na,

Message 2 B → S : {Na,Nb,A}Kbs
,

Message 3 S → A : {Na,Nb,A,B}Kas
,

Message 4 A→ B : Nb.

6.5 Protocol Examples 106

Protocol 1(b). (Perrig and Song’s optimal protocol 2 [100])

Message 1 A→ B : A,Na,

Message 2 B → S : {A,B,Na,Nb}Kbs
,

Message 3 S → A : {Na,Nb,B}Kas
,

Message 4 A→ B : Nb.

Protocol 1(a) and Protocol 1(b) were generated by Perrig and Song’s APG [100]. ASPB

also generates these two protocols, but considers them as interim protocols with redundant

components. For example, the redundant components in Protocol 1(a) is A in Message 3.

Before S sends out Message 3, NA(Na) = NS(Na) = {A,S} is obtained by using RR1 and

RR3. Therefore, NA(Na) ∩ NS(Na) = {A,S}. Since {A,B}/{A,S} = {B}, A is safely

removed from Message 3. The protocol properties do not change after the redundant

components are removed. The redundant components in Protocol 1(b) is B in Message 2.

Similar redundant removing process can be applied on Protocol 1(b).

6.5.2 Mutual Authentication without TTP

Figure 6.2 illustrates a requirement specification of a simple mutual authentication protocol

that uses a trusted third party. If the assumptions are changed to reflect the absence of

this third party (all of the assumptions using S, Cas, and Cab are replaced by proper

assumptions) then the synthesised protocols include the following.

Using symmetric keys

In this case, principals A and B share a symmetric key Kab. The following assumptions

about channel Cab are used in the modified requirement specification that is illustrated in

Figure 6.6. For this modified requirement specification, ASPB generates the following six

correct protocols, Protocol 2.1–2.6.

Protocol 2.1. (Perrig and Song’s Optimal Minimum Cost Protocol [99])

Message 1 A→ B : {A,Na}Kab
,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : Nb.

6.5 Protocol Examples 107

declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(w(Cab)) = {A,B});
B |≡ (σ(w(Cab)) = {A,B});
A |≡ (σ(r(Cab)) = {A,B});
B |≡ (σ(r(Cab)) = {A,B});
A ∋ r(Cab); A ∋ w(Cab);
A ∋ r(Cp); A ∋ w(Cp);
B ∋ r(Cab); B ∋ w(Cab);
B ∋ r(Cp); B ∋ w(Cp);
A |≡♯(Na); B |≡♯(Nb);
A 7→ Na; B 7→ Nb;
A ∋ A; B ∋ B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 6.6: A Requirement Specification for Mutual Authentication without TTP using
Symmetric Keys

Protocol 2.2. (Perrig and Song’s Minimum Cost Protocol 2 [99])

Message 1 A→ B : A,Na,

Message 2 B → A : {B,Na,Nb}Kab
,

Message 3 A→ B : Nb.

Protocol 2.3. (Perrig and Song’s Minimum Cost Protocol 1 [99])

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}Kab
,

Message 3 A→ B : Nb.

The above three protocols were first generated by APG [99]. Compare with Protocol 2.2

and Protocol 2.3, Protocol 2.1 has an encrypted first message, and a shorter second message.

Perrig and Song consider that Protocol 2.1 can be used in environments that perform fast

encryption and decryption operations, but using slow links for data transitions. Protocol 2.2

6.5 Protocol Examples 108

and Protocol 2.3 may be used in regular environments, that the cost of data transitions is

lower than encryption and decryption operations.

Note that Protocol 2.1 also satisfies the secrecy requirement that is described as goal

Ga1 : A |≡ (σ(Na) = {A,B}) and goal Ga2 : B |≡ (σ(Na) = {A,B}). By satisfying Ga1

and Ga2 after a round of these protocols, it is possible for A and B to use Na as a secret

shared only between them for further communication. Protocol 2.2 and Protocol 2.3 do not

satisfy goal Ga1 and Ga2.

Before obtaining Protocol 2.2 and Protocol 2.3, ASPB generates the following interim

Protocol 2(a) that has a redundant component in the second message.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,B,Na,Nb}Kab
,

Message 3 A→ B : Nb.

In the redundancy removing process, either protocol initiator’s identifier A or protocol re-

sponder’s identifier B can be removed from Message 2. This does not change the properties

of Protocol 2(a). After removing one of the message components A and B, Protocol 2.2 and

Protocol 2.3 are obtained individually. On the other hand, according to the redundancy

removing rules, message components A and B may not be removed at the same time to

obtain Protocol 2(b).

Protocol 2(b).

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : Nb.

The reason for this is that Protocol 2(b) is subject to the following reflection/oracle

attack. When EB intercepts message 1, EB may start another round of Protocol 2(b) by

forwarding all of A’s messages to A. After message 3, A believes that A finished two rounds

6.5 Protocol Examples 109

of the protocol with B, but B does not participate in any round of the protocol.

Message 1 A→ EB : A,Na,

Message 1′ EB → A : B,Na,

Message 2′ A→ EB : {Na,Na′}Kab
,

Message 2 EB → A : {Na,Na′}Kab
,

Message 3 A→ EB : Na′.

Message 3′ EB → A : Na′.

Protocol 2.4.

Message 1 A→ B : {A,Na}Kab
,

Message 2 B → A : {Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.

Protocol 2.5.

Message 1 A→ B : A,Na,

Message 2 B → A : {B,Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.

Protocol 2.6.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}Kab
,

Message 3 A→ B : {Nb}Kab
.

Protocol 2.4–2.6 are similar to Protocol 2.1–2.3, but each of them has an encrypted

third message. Comparing with Protocol 2.1–2.3, we consider that Protocol 2.4–2.6 also

satisfy the secrecy requirement, that are described as additional protocol goals, Ga3 : B |≡
(σ(Nb) = {A,B}) and Ga4 : A |≡ (σ(Nb) = {A,B}). By satisfying Ga3 and Ga4 after a

round of these protocols, A and B can use Nb as a secret shared only between them for

further communication.

6.5 Protocol Examples 110

ISO/IEC 9798-2 [3] proposes the ISO/IEC Symmetric-Key Three-Pass Mutual Authen-

tication Protocol, as follows:

Message 1 A→ B : A,Na,

Message 2 B → A : {Na,Nb,A}Kab
,

Message 3 A→ B : {Na,Nb}Kab
.

Clearly, Protocols 2.1–2.6, generated by ASPB, are simpler than the ISO standard protocol,

yet achieve the same mutual authentication goals. Therefore, it is reasonable to consider

that component Na in Message 3 of the standard ISO protocol is a redundant component

for the purposes of mutual authentication.

Using signature keys

In this case, both principals can verify each other’s signature key SKa and SKb. Assump-

tions are adapted to represent the corresponding authenticated channel Ca and Cb. The

modified requirement specification is represented in Figure 6.7. For this modified require-

ment specification, ASPB generated two correct protocols.

Protocol 2.7.

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Nb,B}SKa
.

Protocol 2.8.

Message 1 A→ B : {A,Na}SKa
,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Nb,B}SKa
.

The only difference between Protocol 2.7 and Protocol 2.8 is whether the first mes-

sage is signed by A’s signature key. ASPB generates these two different protocols because

ASPB’s Single Goal Synthesiser instantiates typed variables with all possible instantiations

that are defined in requirement specification. Since both Protocol 2.7 and Protocol 2.8

satisfy given mutual authentication goals, the above difference does not influence the au-

thentication properties of these protocols. Therefore, it is reasonable to consider that the

signature in Message 1 of Protocol 2.8 is a redundant component for the purposes of mutual

authentication.

6.5 Protocol Examples 111

declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(w(Ca)) = {A});
B |≡ (σ(w(Ca)) = {A});
A |≡ (σ(w(Cb)) = {B});
B |≡ (σ(w(Cb)) = {B});
A ∋ r(Ca); A ∋ w(Ca); A ∋ r(Cb);
A ∋ r(Cp); A ∋ w(Cp);
B ∋ r(Cb); B ∋ w(Cb); B ∋ r(Ca);
B ∋ r(Cp); B ∋ w(Cp);
A |≡♯(Na); B |≡♯(Nb);
A 7→ Na; B 7→ Nb;
A ∋ A; B ∋ B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 6.7: A requirement specification for Mutual Authentication without TTP using
signature keys

ISO/IEC 9798-3 [4] proposes the ISO/IEC Signature-Key Three-Pass Mutual Authen-

tication Protocol, as follows:

Message 1 A→ B : A,Na,

Message 2 B → A : {A,Na,Nb}SKb
,

Message 3 A→ B : {Na,Nb,B}SKa
.

Clearly, Protocol 2.7, a protocol generated by ASPB, is simpler than the ISO standard

protocol, yet achieves the same mutual authentication goals. Therefore, it is reasonable to

consider that component Na in Message 3 of the standard ISO protocol is a redundant

component for the purposes of mutual authentication.

Using Public Keys

In this case, both principals know each other’s public keys. The following assumptions

about channel Ca and Cb are used in the modified requirement specification. The modi-

fied requirement specification is represented in Figure 6.8. For this modified requirement

6.5 Protocol Examples 112

specification, the following two protocols were generated by ASPB.

declarations {
Channel Cab, Cp;
Principal A, B;
Nonce Na, Nb;

}
assumptions {

A |≡ (σ(r(Ca)) = {A});
B |≡ (σ(r(Ca)) = {A});
A |≡ (σ(r(Cb)) = {B});
B |≡ (σ(r(Cb)) = {B});
A ∋ r(Ca); A ∋ w(Ca); A ∋ w(Cb);
A ∋ r(Cp); A ∋ w(Cp);
B ∋ r(Cb); B ∋ w(Cb); B ∋ w(Ca);
B ∋ r(Cp); B ∋ w(Cp);
A |≡♯(Na); B |≡♯(Nb);
A 7→ Na; B 7→ Nb;
A ∋ A; B ∋ B;

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */

}

Figure 6.8: A requirement specification for Mutual Authentication without TTP using
Public Keys

Protocol 2.9. (Corresponds to Needham-Schroeder-Lowe protocol [76])

Message 1 A→ B : {A,Na}Kb
,

Message 2 B → A : {Na,Nb,B}Ka
,

Message 3 A→ B : {Nb}Kb
.

Protocol 2.10. (Perrig and Song’s Minimum Cost Protocol 3 [99])

Message 1 A→ B : {A,Na}Kb
,

Message 2 B → A : {Na,Nb,B}Ka
,

Message 3 A→ B : Nb.

The difference between Protocol 2.9 and Protocol 2.10 is whether the last message is

encrypted. Consequently, Protocol 2.9 achieves the secrecy requirement, that is described

as additional protocol goals Ga3 : B |≡ (σ(Nb) = {A,B}) and Ga4 : A |≡ (σ(Nb) = {A,B}),

6.5 Protocol Examples 113

while Protocol 2.10 does not satisfy these secrecy requirements.

6.5.3 Mutual Authentication and Key Agreement Protocol

Figure 6.9 gives a complete requirement specification for a mutual authentication and key

agreement protocol that involves a Trusted Third Party.

Four Message Protocols

ASPB synthesises a number of four-message mutual authentication protocols. For the pur-

pose of illustration, we describe and discuss the following generated protocols, Protocols 3.1–

3.7, that satisfy the requirement specification in Figure 6.9.

Protocol 3.1. (Perrig and Song’s protocol 1 in Protocol-Set S1 [100])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

Protocol 3.2. (Perrig and Song’s protocol in Protocol-Set S3 [100])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : Nb, {Nb,Kab}Kbs
.

In Protocol 3.1 B believes that A receives Kab from S. However, this is not the case in

Protocol 3.2 since A does not use the key Kab (to encrypt the nonce). Protocols 3.1 and 3.2

also appear in Protocol-Sets S1 and S3 from [100]. In addition, Protocol 3(a) was generated

by APG in Protocol-Set S1 [100], as follows:

Protocol 3(a). (Perrig and Song’s protocol 2 in Protocol-Set S1 [100])

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {{Nb,Kab}Kbs
}Kab

, {Nb,Kab}Kbs
.

ASPB does not generate Protocol 3(a). The reason for this is that ASPB does not allow a

6.5 Protocol Examples 114

declarations {
Channel Cas, Cbs, Cab, Cp;
Principal A, B, S;
Nonce Na, Nb;
Message X;
Formula φ;

}
assumptions {

A |≡ (σ(w(Cas)) = {A,S}); A |≡ (σ(r(Cas)) = {A,S});
S |≡ (σ(w(Cas)) = {A,S}); S |≡ (σ(r(Cas)) = {A,S});
B |≡ (σ(w(Cbs)) = {B,S}); B |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(w(Cbs)) = {B,S}); S |≡ (σ(r(Cbs)) = {B,S});
S |≡ (σ(w(Cab)) = {A,B}); S |≡ (σ(r(Cab)) = {A,B});
A ∋ r(Cas); A ∋ w(Cas); A ∋ r(Cp); A ∋ w(Cp);
B ∋ r(Cbs); B ∋ w(Cbs); B ∋ r(Cp); B ∋ w(Cp);
S ∋ r(Cas); S ∋ w(Cas); S ∋ r(Cp); S ∋ w(Cp);
S ∋ r(Cbs); S ∋ w(Cbs);
A |≡♯(Na); B |≡♯(Nb); S |≡♯(w(Cab));
A 7→ Na; B 7→ Nb; S 7→ r(Cab); S 7→ w(Cab);
A ∋ A; B ∋ B; S ∋ S;
A |≡ ((S ‖∼ φ)→ (S |≡ φ));
B |≡ ((S ‖∼ φ)→ (S |≡ φ));
A |≡ ((S |≡ (B |∼ X))→ (B |∼ X));
B |≡ ((S |≡ (A |∼ X))→ (A |∼ X));
A |≡ ((S |≡ (σ(w(Cab)) = {A,B})→ (σ(w(Cab)) = {A,B})));
B |≡ ((S |≡ (σ(w(Cab)) = {A,B})→ (σ(w(Cab)) = {A,B})));
A |≡ (S ‖∼ w(Cab)→♯(w(Cab)));
B |≡ (S ‖∼ w(Cab)→♯(w(Cab)));

}
goals {

A |≡ (B ‖∼ A); /* G1 */
B |≡ (A ‖∼ B); /* G2 */
A |≡ (σ(w(Cab)) = {A,B}); /* G3 */
B |≡ (σ(w(Cab)) = {A,B}); /* G4 */

}

Figure 6.9: The requirement specification for the mutual authentication and key agreement
protocol using Trusted Third Party.

6.5 Protocol Examples 115

message to be sent into multiple channels at the same protocol step (as {{Nb,Kab}Kbs
}Kab

in

Message 4). Instead, ASPB generates Protocol 3.3 that is similar to Protocol 3(a). Compare

to Protocol 3(a), Protocol 3.3 has a simpler message component {B}Kab
in Message 4. Since

both message components {{Nb,Kab}Kbs
}Kab

and {B}Kab
are used to prove that principal A

holds session key Kab, and the use of session key Kab may prove the freshness of the current

message component, the content encrypted by Kab is only required to be recognisable by

B, but is not required to be fresh.

Protocol 3.3.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {B}Kab
, {Nb,Kab}Kbs

.

However, for the requirement specification in Figure 6.8, ASPB does not generate pro-

tocols in the Protocol-Set S2 for authentication and key agreement from [100] (this includes

the original Yahalom protocol). The reason is that the protocols in Protocol-Set S2 have an

assumption that B believes that A is honest. If B believes A accepts a session key then B

will accept it. Otherwise, A can make B to accept an old session key in the current round

of the protocol. For example, Protocol 3(b) is Protocol 1 in Protocol-Set S2 [100].

Protocol 3(b).

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Kab}Kbs

.

When assumption, that B believes that A is honest, is not made, A is able to generate and

send message

Message 4′ A→ B : {Nb}K ′

ab
, {K ′

ab}Kbs

where K ′
ab is an old (expired) session key between A and B.

For the sake of illustration, this assumption was not made in the requirement specifica-

tion in Figure 6.9 which was used to conduct our experiments.

6.5 Protocol Examples 116

Protocol 3.4.

Message 1 A→ B : A,Na, {B,Na}Kas
,

Message 2 B → S : B, {B,Na}Kas
, {A,Na,Nb}Kbs

,

Message 3 S → A : {Nb,Kab}Kbs
, {Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

In the new Protocol 3.4, when the TTP S receives Message 2, S may check whether two

principals know who the other party is in the current round. If S finds that one principal

attempts to cheat the other by generating a differentMessage 2, then it can stop the current

round as early as possible. While Protocol 3.4 has a higher cost (in terms of message size)

than the other protocols, it provides a more powerful TTP. Two new protocols, that are

similar to Protocol 3.4, are generated by ASPB as Protocol 3.5 and 3.6.

Protocol 3.5.

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : {A,Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {A,Nb,Kab}Kbs

.

Protocol 3.6.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : Nb, {Nb,Kab}Kbs
, {B,Na,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

.

Protocol 3.7.(BAN optimized Yahalom protocol [27])

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : Nb, {A,Nb,Kab}Kbs
, {Na,Kab, B}Kas

Message 4 A→ B : {Nb}Kab
, {A,Nb,Kab}Kbs

.

Syverson [111] describes a flaw in Protocol 3.7 (when B is not able to distinguish the

6.5 Protocol Examples 117

format of different components) as follows.

Message 1(α) A→ B : A,Na,

Message 2(α) B → S : B,Nb, {A,Na}Kbs
,

Message 1(β) I(A)→ B : A, (Na,Nb)

Message 2(β) B → I(S) : B,Nb′, {A,Na,Nb}Kbs
,

Message 3(α) omitted,

Message 4(α) I(A)→ B : {Nb}Kab
, {A,Na(= Kab),Nb}Kbs

.

However, ASPB uses the following assumptions.

• A principal can recognise his own nonces of the running rounds, and refuse to use

them as other principal’s nonces.

• If a principal may understand a message context, the principal may distinguish the

format of different components, such as principal name, nonce, key, etc.

By these assumptions, Protocol 3.7 is also a correct protocol.

ASPB generates Paulson amended Yahalom Protocol [96], but considers it as an interim

protocol. After removing the redundant message components, Protocol 3.7 is obtained.

Protocol 3(c).(Paulson amended Yahalom Protocol [96])

Message 1 A→ B : A,Na,

Message 2 B → S : B,Nb, {A,Na}Kbs
,

Message 3 S → A : Nb, {A,B,Nb,Kab}Kbs
, {B,Na,Kab}Kas

Message 4 A→ B : {Nb}Kab
, {A,B,Nb,Kab}Kbs

.

Five Message Protocols

The ISO/IEC Symmetric-Key Five-Pass Mutual Authentication Protocol proposed in ISO/IEC

9798-2 [3].

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {Na,Kab, B}Kas
, {Nb,Kab, A}Kbs

,

Message 4 B → A : {Na,Kab, B}Kas
, {Na,Nb′}Kab

,

Message 5 A→ B : {Nb′,Na}Kab
.

6.5 Protocol Examples 118

Carlsen also describes a five message protocol, the Secret Key Initiator Protocol [29], as

follows:

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {Na,B,Kab}Kas
, {A,Nb,Kab}Kbs

,

Message 4 B → A : {Na,B,Kab}Kas
, {Na}Kab

,Nb′,

Message 5 A→ B : {Nb′}Kab
.

In these protocols, principal B uses two nonces. The protocol requirement specification

in Figure 6.9 that formed the basis of our experiments specified that principal B uses one

nonce. A consequence of this is that the exact ISO/IEC Symmetric-Key Five-Pass Mutual

Authentication Protocol and Carlsen protocol are not generated for our given requirement

specification in Figure 6.9. However, ASPB generates the Carlson protocol when the pro-

tocol specification is extended to include B’s use of two nonces.

The remainder of this section discusses a number of five-message mutual authentica-

tion protocols generated by ASPB, that satisfy the requirement specification in Figure 6.9.

For the purpose of illustration, we describe and discuss the following generated protocols,

Protocol 4.1–4.8.

Protocol 4.1.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
, {Na,Nb,Kab, B}Kas

,

Message 4 B → A : {Na,Nb,Kab, B}Kas
, {Na}Kab

,

Message 5 A→ B : {Nb}Kab
.

Protocol 4.1 is similar to Carlsen’s Secret Key Initiator Protocol. While B generates

only one nonce Nb in Protocol 4.1, it achieves the same result as Carlsen’s protocol. Once

B receives Message 3, he can check whether S believes that B needs a session key with A,

and S believes Nb is B’s nonce. When A receives Message 4, she may believe that Nb is

generated by B (otherwise, B may not generate {Na}Kab
).

6.5 Protocol Examples 119

Protocol 4.2.

Message 1 A→ B : A,Na,

Message 2 B → S : B, {A,Na,Nb}Kbs
,

Message 3 S → A : {Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

,

Message 4 A→ B : {Nb}Kab
, {Nb,Kab}Kbs

,

Message 5 B → A : {Na}Kab
.

The first four messages of Protocol 4.2 are the same as Protocol 3.1. From the additional

message Message 5, Protocol 4.2 meets an additional goal that A believes B has received

the session key Kab.

Protocol 4.3.

Message 1 A→ B : A,Na,

Message 2 B → A : B,Nb, {A,Na}Kbs
,

Message 3 A→ S : A, {Nb,B}Kas
, {A,Na}Kbs

,

Message 4 S → A : {Na,Nb,Kab}Kas
, {A,Nb,Kab}Kbs

,

Message 5 A→ B : {A,Nb,Kab}Kbs
, {Nb}Kab

.

Protocol 4.3 is a novel protocol. When S receives Message 3, he may check whether the

components have been generated by A and B. If this is the case then S sends Message 4.

Further five-message protocols that were generated by ASPB include the following.

Protocol 4.4.

Message 1 A→ B : A,Na, {A,Na}Kas
,

Message 2 B → S : B, {A,Na,Nb}Kbs
, {A,Na}Kas

,

Message 3 S → A : {Na,Nb,Kab}Kbs
, {B,Na,Nb,Kab}Kas

,

Message 4 A→ B : {Nb}Kab
, {Na,Nb,Kab}Kbs

,

Message 5 B → A : {Na}Kab
.

6.5 Protocol Examples 120

Protocol 4.5.

Message 1 A→ B : A, {B,Na}Kas
,

Message 2 B → S : B, {B,Na}Kas
, {Nb,A}Kbs

,

Message 3 S → B : {Na,Nb,Kab}Kas
, {Na,Nb,Kab}Kbs

,

Message 4 B → A : Na, {Na,Nb,Kab}Kas
,

Message 5 A→ B : Nb.

Protocol 4.6.

Message 1 A→ B : A, {B,Na}Kas
,

Message 2 B → S : B, {B,Na}Kas
, {Nb,A}Kbs

,

Message 3 S → A : {Na,Nb,Kab}Kas
, {Na,Nb,Kab}Kbs

,

Message 4 A→ B : {Nb}Kab
, {Na,Nb,Kab}Kas

,

Message 5 B → A : {Na}Kab
.

Protocol 4.7.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na, {A,Nb}Kbs
,

Message 3 S → A : {B,Na,Nb,Kab}Kas
, {Nb,Kab}Kbs

,

Message 4 A→ B : {Nb,Kab}Kbs
, {Nb}Kab

,

Message 5 B → A : {A}Kab
.

Protocol 4.8.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → A : {A,Na,Nb,Kab}Kbs
, {B,Na,Kab}Kas

,

Message 4 A→ B : {Nb,Na}Kab
, {A,Na,Nb,Kab}Kbs

Message 5 B → A : {Nb}Kab
.

Six Message Protocols

ASPB synthesises a number of six-message mutual authentication protocols. For the pur-

pose of illustration, we only describe the following protocol, Protocol 5.1, that satisfies the

6.5 Protocol Examples 121

requirement specification in Figure 6.9.

Protocol 5.1.

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
, {Na,Nb,Kab, B}Kas

,

Message 4 B → A : {Na,Nb,Kab, B}Kas
,

Message 5 A→ B : {A,Na,Nb}Kab
,

Message 6 B → A : {B,Na}Kab
.

ASPB does not generate the six-message protocols in [32] that are listed as Protocol 5(a)

and 5(b). The reason for this is that ASPB generates protocols according to corresponding

principal sequences, whereby the receiver of a message is the sender of the next message.

Protocol 5(a) and 5(b) can not be described in terms of principal sequences. For example,

in Protocol 5(a), after A receives message 2, B (not A) sends Message 3. We observe

that without the participation of previous protocol steps, B is unable to determine when

Message 3 should be sent. Therefore, we argue that if a protocol is not described in terms

of a principal sequence, then it is difficult to properly execute the protocol in practice.

Protocol 5(a).

Message 1 A→ S : A,B,Na,

Message 2 S → A : {B,Na,Kab}Kas
,

Message 3 B → S : B,A,Nb,

Message 4 S → B : {A,Na,Nb,Kab}Kbs
,

Message 5 A→ B : {B,Nb,Na}Kab
,

Message 6 B → A : {Nb,A}Kab
.

Protocol 5(b).

Message 1 A→ B : A,Na,

Message 2 B → S : A,B,Na,Nb,

Message 3 S → B : {A,Nb,Kab}Kbs
,

Message 4 S → A : {Na,Nb,Kab, B}Kas
,

Message 5 A→ B : {A,Na,Nb}Kab
,

Message 6 B → A : {B,Na}Kab
.

6.6 Discussion and Evaluation 122

Protocol 5(a) can be refined as Protocol 4.8 by reordering the message to satisfy the

ASPB principal sequence and by refining messages by using the ASPB redundancy removing

rules. Clearly, our 5-message protocols can be considered to be more compact and efficient

than the 6-message versions in [32]. Similarly, Protocol 5(b) can be refined as Protocol 5.1,

that is generated by ASPB.

6.6 Discussion and Evaluation

In this section, we evaluate ASPB and compare it with existing approaches, including, the

Automatic Protocol Generator (APG) [100], and the Evolutionary approach [32].

Table 6.1: The time performance comparison between ASPB and APG
protocol purpose ASPB APGa

Stage 1b Stage 2c

mutual authentication signature keys 1.2 sec. 1.3 sec. N/A
without TTP public keys 1.2 sec. 1.3 sec. 23 sec.

symmetric keys 1.2 sec. 1.3 sec. 10 sec.

mutual authentication symmetric keys 3 sec. 4 sec. 10 min.
with TTP

mutual authentication (4 messages) 15 sec. 20 sec. 2 hr.
and key agreement (5 messages) 25 sec. 80 sec. N/A

aAPG timing is based on generating the best protocol result running on a 400MHz
Intel Pentium III [100].

bTime to synthesise, compose, and generate all candidate protocols running on a
1.8GHz Intel Pentium IV.

cEstimated time that the Athena [107] checker would take to further validate the
ASPB generated candidate protocols.

Table 6.1 provides a time performance comparison between ASPB and APG [100]. The

first three rows give the performance results for generating the mutual authentication pro-

tocol without TTP described in Sec 6.5 (and specified in Figures 6.6, 6.7, and 6.8). The

fourth row gives the performance results for generating the mutual authentication protocol

with TTP described in Figure 6.2. The other experiment was for mutual authentication

and key agreement with TTP described in Figure 6.9. The fifth row gives the result for four

message protocols. The last row gives the result for five message protocols. The results of

similar experiments were reported in [100]. While ASPB was tested on a faster computer

than APG, given the marked difference in speed, it is nevertheless reasonable to conclude

that ASPB runs significantly faster than APG.

ASPB generates approximately 500 valid five-message candidate protocols in 25 seconds.

However, on manual inspection, many of these protocols are similar, containing minor

6.6 Discussion and Evaluation 123

textual and redundant variations. On manual inspection, we estimate that in this set there

are 24 reasonably distinct four-message candidate protocols and 76 reasonably distinct five-

message protocols. We selected several protocols from each category to demonstrate our

results in Section 6.5.

APG has not been tested for five message protocols; in this case we conjecture that

direct application of the forward search approach of APG would result in a very large and

potentially infeasible search space. Perrig and Song’s estimate [100] is based on the average

number of messages that a principal can generate in a given round of the protocol and is

explained as follows. In a given principal sequence four-message three-party authentication

and key agreement protocol (as the requirement described in Figure 6.9 and, for example,

the given principal sequence is A → B → S → B → A), A generates over 100 different

messages to B, then B in turn generates about 500 different messages and sends them to

S. S can generate 30,000 messages and sends to B. B can generate around 500 messages

in the final round. The combination of this number of messages is on the order of 1012. If

these four-message protocols extend to five-message versions by one message that is sent

from A to B, there are around 500 different messages generated by A when using Perrig

and Song’s estimation approach in [100]. We conjecture that the search space for a given

principal sequence five-message three-party authentication and key agreement protocol is

over 500 × 1012 The search space for all possible principal sequences is 500 × 1012 × 25

(based on the limitation that one does not send messages to itself, and therefore there are

2 possible message receivers at each protocol step).

APG [100] generates the “best” protocol for each protocol requirement in the entire

protocol search space with respect to its metric functions. The metric function of APG

[100] gives each message operation a cost value. For example, the cost value of a message

decryption/encryption is 3; the cost value of generating a nonce is 1. The cost value of a

protocol is the total cost of all the protocol operations. The minimal cost protocol that meets

all of the protocol goals is APG’s “best” protocol. Compared with APG, the evolutionary

approach [32] only searches a part of the entire protocol space. Its goal is to find a “good”

solution for each protocol requirement in a given protocol search space with respect to its

fitness function. Unlike APG, the evolutionary approach does not guarantee that the “best”

protocol in the entire search space can be found in the selected part of the search space.

On the other hand, because the evolutionary approach searches a smaller protocol search

space than APG, it may find a “good” protocol in a shorter time than APG. For example,

APG generates the “best” protocol for mutual authentication and key exchange protocol in

two hours; Chen, Clark, and Jacob generate a ”good” protocol for the same set of protocol

goals only in 3 minutes using an evolutionary approach [32] based on the SVO logic.

Since variable instantiation in ASPB’s single goal synthesiser disregards higher order

6.6 Discussion and Evaluation 124

belief formulae, and it is possible to use these higher order belief formulae to generate some

protocols that are different to protocols generated using the first order beliefs, then ASPB

does not search the entire protocol space to generate all possible protocols that satisfy

requirement specifications. When compared to the above approaches, ASPB generates a

number of “good” protocols, including the “best” protocol, in a shorter period. For exam-

ple, ASPB generates a number of four message mutual authentication and key exchange

protocols for the same set of protocol goals and assumptions within 20 seconds. The reason

for this is that the Single Goal Synthesiser uses the heuristics to direct its backwards search

for valid protocols from a protocol goal. Unlike [35] and [100] which compose random mes-

sages, our strategy ensures that all candidate protocols obtained from the search tree are

valid in that they uphold the goal within the logic. This contrasts with the forward search-

ing approaches that may process many invalid candidate protocols before encountering a

valid protocol.

Athena [107] is used to guarantee that APG generates correct protocols. However, fine

grained distinctions between honesty and dishonesty cannot be made, since the underlying

analysis model of APG, the strand space model, does not consider the concepts of honesty

and dishonesty. Sometimes, an improper trust relationship may lead to some principals

being cheated by others. With the BSW-ZF Logic, it is possible to distinguish honest

(and competent) from dishonest (and incompetent) principals. This fine-grain distinction

is useful for a protocol designer.

Since the Single Goal Synthesiser is completely independent of the Protocol Composer,

our approach does not depend on the BSW-ZF logic. In future research, we could extend

the logic (or change the basic logic to another) to suit more complex requirements.

Furthermore, before using Single Goal Synthesiser, the BSW-ZF inference rules could

be applied on known assumptions to enrich the set of known assumptions. This strategy

is a common strategy in prolog searching engines. It may reduce the searching space for

generating formula trees.

A LCF-style foreward check can be applied on generated candidate protocols. It checks

whether the protocol goals can be generated from a candidate protocol and all related

assumptions. This may disgard protocols that may not meet all protocol goals after sub-

protocol merging.

Finally, increased performance could be achieved by parallelising the single goal synthesis

and composition steps across separate processors.

Chapter 7

Authorisation Subterfuge

Many commercial access control systems are closed and rely on centralised authorisation

policy/servers. An access control decision corresponds to determining whether some au-

thenticated user has been authorised for the requested operation. This strategy of first

determining who the user is and then whether that user is authorised has its critics, citing,

for instance, single point of failure, scalability issues and excessive administrative overhead.

An, perhaps overlooked, advantage of this approach is that administrators exercise tight

control when granting access. The administrators are familiar with all of the resources that

are available and they make sure that the user gets the appropriate permissions – no more

and no less. The opportunity to subvert the intentions of a good administrator is usually

small.

Cryptographic authorisation certificates bind authorisations to public keys and facilitate

a decentralised approach to access control in open systems. Trust Management [62, 36, 43,

73, 19, 38] is an approach to constructing and interpreting the trust relationships among

public-keys that are used to mediate access control. Authorisation certificates are used to

specify delegation of authorisation among public keys. Determining authorisation in these

systems typically involves determining whether the available certificates can prove that the

key that signed a request is authorised for the requested action.

However, these approaches do not consider how the authorisation was obtained. They

do not consider whether a principal can somehow bypass the intent of a complex series

of authorisation delegations via some unexpected circuitous but authorised route. In an

open system no individual has a complete picture of all the resources and services that are

available. Unlike the administrator of the closed system, the principals of an open system

are often ordinary users and are open to confusion and subterfuge when interacting with

resources and services. These users may inadvertently delegate un-intended authorisation

to recipients.

125

7.1 Authorisation Subterfuge in SPKI/SDSI 126

In this chapter, we explore the problem of authorisation subterfuge, whereby, in a poorly

designed authorisation system, delegation chains that are used by principals to prove au-

thorisation may not actually reflect the original intention of all of the participants in the

chain. For example, the intermediate principals of a delegation chain may inadvertently

issue incorrect certificates, when the intended resource owner is unclear to intermediate

participants in the chain. We argue that subterfuge is a realistic problem that should be

addressed in a certificate scheme for payment systems. For example, the Trust Manage-

ment payment systems [22, 23, 52] are also vulnerable to authorisation subterfuge (leading

to a breakdown in authorisation accountability) if care is not taken to properly identify

the ‘permissions’ indicating the payment authorisations when multiple banks and/or provi-

sioning agents are possible. The micro-billing scheme [23] uses KeyNote to help determine

whether a micro-check (a KeyNote credential, signed by a customer) should be trusted and

accepted as payment by a merchant. The originator of the chain is the provisioning agent,

who is effectively responsible for ensuring that the transaction is paid for. In [52], delega-

tion credentials are used to manage the transfer of micropayment contracts between public

keys; delegation chains provide evidence of contract transfer and ensure accountability for

double-spending.

The chapter is organised as follows. In Section 7.1 we describe a series of subterfuge

attacks that can be carried out on certificate chains. Section 7.2 discusses the underlying

problem of authorisation subterfuge. Section 7.3 illustrates how subterfuge can also arise

in local naming. Section 7.4 explores similarities between these attacks on certificates and

replay attacks on authentication protocols. Analysing a collection of certificates for potential

subterfuge is not unlike checking whether it is possible for an ‘intruder’ to interfere with a

certificate chain. Section 7.5 proposes the Subterfuge logic which can be used to determine

whether performing a delegation operation might leave the delegator open to subterfuge.

Examples from Section 7.1 are analysed in Section 7.6. Finally, we conclude in Section 7.7.

7.1 Authorisation Subterfuge in SPKI/SDSI

SPKI/SDSI [43] relies on the cryptographic argument that a public key provides a globally

unique identifier that can be used to refer to its owner in some way. However, public keys

are not particularly meaningful to users and, therefore, SPKI/SDSI provides local names

which provide a consistent scheme for naming keys relative to one another. For example, the

local name that Alice uses for Bob is (Alice’s Verisign’s Bob), which refers to Bob’s public

key as certified by the Versign that Alice knows. By binding local names to public keys

with name certificates, principals may delegate their authorisation to others beyond their

locality through a chain of local relationships.

7.1 Authorisation Subterfuge in SPKI/SDSI 127

A SPKI/SDSI name certificate is denoted as (K,A, S), where: K specifies the certificate

issuer’s signature key, and identifier A is defined as the local name for the subject S.

For example, (KB , Alice,KA) indicates that KB refers to KA using the local name Alice.

A SPKI/SDSI authorisation certificate is denoted as (K, S, d, T), where: K specifies the

certificate issuer’s signature key; tag T is the authorisation delegated to subject S (by K)

and d is the delegation bit (0/1). If the delegation bit is 1, the subject of this certificate

is allowed to re-delegate tag T to others. If it is 0, the subject can not re-delegate T to

others. For example, KB delegates authorisation T to Alice by signing (KB , Alice, 0, T),

where 0 indicates no further delegation. Note that for the sake of simplicity we do not

consider the SPKI/SDSI validity period. We assume that all credentials are within their

validity periods.

Authorisation tags are specified as s-expressions and Example 2.6 in [44] specifies tag

T1= tag (purchase(*range le <amount>),(*set <<items>>)) to mean that it

“[...] might indicate permission to issue a purchase order. The amount of the

purchase order is limited by the second element of the (purchase) S-expression

and, optionally, a list of purchasable items is given as the third element. The

company whose purchase orders are permitted to be signed here will appear in

the certificate permission chain leading to the final purchase order. Specifically,

that company’s key will be the issuer at the head of the (purchase). [...]” [44]

Given two authorisation certificates (K1, S1, 1, T1) and (S1, S2, d, T2), if the subject of

the first certificate is the issuer of the second certificate, and the delegation bit of the first

certificate is 1, then SPKI/SDSI reduction rules conclude (K1, S2, d, (T1 ∩ T2)), whereby

T1 ∩ T2 means that if T1 ⊆ T2 (or T2 ⊆ T1), then T1 (or T2) is the result of this operation.

7.1.1 Authorisation Examples

A company ComA allows its manager Emily to issue purchase orders, and Emily may

also delegate this right to others. After Emily receives the certificate from ComA, Emily

delegates this right (issuing a purchase order) to an employee Bob via Alice. We have the

following certificates:

C1=(KComA, KEmily, 1, T1);

C2=(KEmily, KAlice, 1, T1); and

C3=(KAlice, KBob, 0, T1)

(Alice delegates this right to employee Bob, But Bob may not delegate this right to others).

Suppose that there is another company ComB which also uses the tag T1 to issue

purchase orders. Suppose that Alice also works for ComB. Clark, a senior manager in

7.1 Authorisation Subterfuge in SPKI/SDSI 128

CC1 : KComA C1
//

T1c c b b b a a a ` ` ` _

--
_ ^ ^ ^]]] \ \ \ [[[Z

KEmily C2
// KAlice C3

// KBob

CC2 : KComB C4
//

T1c c b b b a a a ` ` ` _

--
_ ^ ^ ^]]] \ \ \ [[[

KClark C5
// KAlice C6

// KDavid

(a) Expected Certificate Chain CC1 and CC2

CC3 : KComA C1
//

T1c c b b b a a a ` ` ` _

--
_ ^ ^ ^]]] \ \ \ [[[

KEmily C2
// KAlice C6

// KDavid

CC4 : KComB C3
//

T1c c b b b a a a ` ` ` _

--
_ ^ ^ ^]]] \ \ \ [[[Z

KClark C4
// KAlice C5

// KBob

(b) Unexpected Certificate Chain CC3 and CC4

K1 T___ //___ K2 means that K1 delegates T to K2, and

K1 C // K2 means that K1 sends certificate C to K2.

Figure 7.1: Certificate Chains in SPKI/SDSI Example

ComB, holds the right to issue purchase orders, and delegates it to Alice. ComB employee

David accepts authority from Alice to issue purchase orders. We have certificates:

C4=(KComB , KClark, 1, T1);

C5=(KClark, KAlice, 1, T1); and

C6=(KAlice, KDavid, 0, T1).

Figure 7.1(a) gives the certificate chain CC1 and CC2 that Bob and David respectively

use to prove authorisation to issue purchase orders.

7.1.2 Authorisation Subterfuge Examples

The examples above are effective when separate chains CC1 and CC2 are used to prove

authorisation. However, their combination, depicted in Figure 7.2(a), result in further

delegation chains CC3 and CC4 depicted in Figure 7.1(b) and these lead to some surprising

interpretations of how authorisation is acquired [122].

Subterfuge 1: passive attack. In Figure 7.3, Alice’s intention, when she signed C6, was

that David should use chain CC2 as proof of authorisation when making purchases.

However, unknown to Alice, dishonest David collects all other certificates and uses

the chain CC3 as his proof of authorisation.

This confusion may introduce problems if the certificate chains that are used to prove

7.1 Authorisation Subterfuge in SPKI/SDSI 129

KComA T1___ //___ KEmily T1___ //___ KAlice T1___ //___

T1
���
�

�
KBob

KComB T1___ //___ KClark

T1m
m

m

66m
m

m

KDavid

(a) Delegation Graph for T1

KComA
1 //
3 // KEmily

1 //
3 // KAlice

1 //
4 //

2
��

3
��

KBob

KComB 4 //2 //
KClark

4

66
2mmmmmm

66mmmmmm

KDavid

(b) Delegation Paths for T1

Figure 7.2: Delegations in SPKI/SDSI Example

KComA C1
// KEmily C2

// KAlice C3
//

C6

��

KBob

KComB C4
// KClark

C5mmmmmm

66mmmmmm

KDavid

Figure 7.3: Attack Graphs: Passive Attack

authorisation are also used to provide evidence of who should be billed for the trans-

action. In delegating, Alice believes that chain CC2 (from ComB) provides the ap-

propriate accountability for Clark’s authorisation.

Subterfuge 2: outer-active attack. The above passive attack can be transformed into a

more active attack. In Figure 7.4, David sets up a shelf company ComB with fictitious

employee Clark. Using attractive benefits, David masquerading as Clark, lures Alice

to join ComB. Clark delegates authorisations (T1) to Alice that correspond to

authorisation already held by Alice. However, Alice does not realise this and, in the

confusion, further delegates the authorisation to David; an authorisation from ComA

that normally he would not be expected to hold.

KComA C1
// KEmily C2

// KAlice C3
//

C6

��

KBob

KComB C4
// KClark

C5mmmmm

66mmmmmm

KDavid

Figure 7.4: Attack Graphs: Outer-Active Attack

7.1 Authorisation Subterfuge in SPKI/SDSI 130

In both of these cases we think of Alice as more confused in her delegation actions rather

than incompetent; the permission naming scheme influences her local beliefs and it was the

inadequacy of this scheme that led to her confusion. Perhaps Alice has too many certificates

to manage and in the confusion loses track of which permissions should be associated with

which keys.

ComA may attack ComB in the same way to get the money back by CC4. However, if

ComB updates its certificate, then Alice does not hold the right for ComB. ComA cannot

get its money back.

Subterfuge 3: inner-active attack. In Figure 7.5, Clark is a manager in ComA and

ComB and colludes with David (ComB employee). Clark delegates authorisation T1

legitimately obtained from ComB to Alice. However, suppose that unknown to Alice,

Clark is coincidentally authorised to do T1 by ComA (via C7) and Clark intercepts

the issuing of credential C1 and conceals it. Alice delegates what she believes to be

T1 from ComB to David via C6. However, David can present chain [C7;C5;C6] as

proof that his authorisation originated from ComA.

KComA C1
//

C7

QQQQQQ

((QQQ
QQQ

KEmily C2
// KAlice C3

//

C6

��

KBob

KComB C4
// KClark

C5mmmmm

66mmmmmm

KDavid

Figure 7.5: Attack Graphs: Inner-Active attack

The above authorisation subterfuge may be avoided if Alice is very careful about how she

delegates. However the following attacks are a bit more difficult for Alice to avoid.

Subterfuge 4: (outer-intercept attack) In Figure 7.6, Clark intercepts certificate C2

and conceals it. When delegating authorisation to David, Alice believes that the

chain is [C4;C5;C6] from ComB, however David knowingly or unknowingly uses a

different chain [C1;C2;C6].

KComA C1
// KEmily C2

// KAlice C3
//

C6

��

KBob

KComB C4
// KClark

C5mmmmm

66mmmmmm

KDavid

Figure 7.6: Attack Graphs: Outer-Intercept attack

Subterfuge 5: (inner-outer active attack). In Figure 7.7, Alice has a legitimate ex-

pectation that so long as she delegates competently then she should not be liable for

7.2 Avoiding Subterfuge: Accountability for Authorisation 131

any confusion that is a result of poor system/permission design. Alice can use this

view to act dishonestly. In signing a certificate she can always deny knowledge of the

existence of other certificates and the inadequacy of permission naming in order to

avoid accountability. While Alice secretly owns company ComB, she claims that he

cannot be held accountable for the ‘confusion’ when Bob (an employee of ComA) uses

the delegation chain [C4;C5;C3] to place an order for Alice.

KComA C1
// KEmily C2

// KAlice C3
//

C6

��

KBob

KComB C4
// KClark

C5mmmmm

66mmmmmm

KDavid

Figure 7.7: Attack Graphs: Inner-Outer Active Attack

The above subterfuge examples demonstrate that it is impossible to distinguish malicious

principals from regular principals in some scenarios. For example, ComA may consider

Alice as a malicious principal, since Alice improperly delegates T1 to an outsider David.

However, Alice is an innocent principal in all of the above subterfuge examples. ComB

and Clark are malicious principals in Subterfuge 2 – 5, but they may claim that they are

innocent principals as in Subterfuge 1. Emily can be a malicious principal as in Subterfuge

5, but she may claim that she is innocent as in Subterfuge 1 – 4. One may consider that

David, the principal who improperly uses certificates from ComA, is implicitly a malicious

principal.

7.2 Avoiding Subterfuge: Accountability for Authorisation

The underlying problem with the examples in the previous section is that the permission T1

is not sufficiently precise to permit Alice to distinguish the authorisations that are issued

by different principals. This is not a problem in closed systems. The reason for this is that

the security administrator of a closed system defines every permission within the system

and delegates them based on a complete view of the system. Table 7.1 gives the comparison

between closed and open systems.

An ad-hoc strategy to avoid this problem would be to ensure that each permission is

sufficiently detailed to avoid any ambiguity in the sense that it is clear from whom the

authorisation originated. This provides a form of accountability for the authorisation.

For example, including a company name as part of the permission may help avoid the

vulnerabilities in the particular example above.

7.2 Avoiding Subterfuge: Accountability for Authorisation 132

Closed System Open System

User origin same domain different domains

Does a name have
a unique and useful Yes No
meaning?

Someone knows all Security Administrator No one
the names?

Delegation decisions complete information incomplete view
based on within the domain of the world

Table 7.1: A Comparison between Open System and Closed System

However, at what point can a principal be absolutely sure that an ad-hoc reference to

a permission is sufficiently complete? Achieving this requires an ability to be able to fix a

permission within a global context, that is, to have some form of global identifier and/or

reference for the permission.

A possible source of suitable identifiers is a global X500-style naming service (if it could

be built) that would tie global identities to real world entities, which would in turn be

used within permissions. However, X500-style naming approaches suffer from a variety of

practical problems [45] when used to keep track of the identities of principals. On the other

hand, in the context of subterfuge, a principal might easily be confused between the (non-

unique) common name and the global distinguished name contained within a permission

that used such identifiers. For example, permission T2 [44] might use some form of global

reference, which may result in a subterfuge problem, as outlined in the above scenarios.

Example 2.5 in [44] specifies tag T2 = tag (spend 〈bank〉〈account〉 (* range le 〈amount〉)) to

indicate that

“[...] the subject has authority to authorise spending up to 〈amount〉 per elec-

tronic check from 〈account〉 at 〈bank〉. [...]” [44]

Permission T2 gives only a bank name and a sequence number as the original author-

ity’s account number. Suppose that T2 specifies ComA’s bank account in the scenario in

the previous section. When Alice receives permission T2, she may not be able to recog-

nise whether ComB is a legitimate authority to delegate the T2. If Alice makes further

delegation decisions based on its visible permission delegator ComB and delegates T2 to

principals that are members of ComB, Alice is misled and unintentionally delegates T2 out

of ComA.

When a subject cannot associate given web addresses with their authorities, the following

permissions T3 – T5 have the same problem as T2. Tag Example 2.1 in [44] specifies tag

T3 = tag (ftp cybercash.com cme) to indicate that

7.2 Avoiding Subterfuge: Accountability for Authorisation 133

“[...] This tag indicates that the subject has permission to do FTP into host

cybercash.com as user cme. [...]” [44]

Example 2.2 in [44] uses tag T4 = tag (http http://acme.com/company-private/personnel)

to indicate that

“[...]This tag gives the Subject permission to access the web page at the given

URI. To give permission for an entire tree under a given URI, one might use:”

T5 = tag (http (* prefix http://acme.com/company-private/personnel/)) [44]

From above discussion, we can see that schemes with unregulated names cannot guaran-

tee global uniqueness of a permission, and schemes that regulate global names (e.g., X509)

cannot guarantee proper use of a globally unique permission.

Authorisation subterfuge is possible when one cannot precisely account for how an au-

thorisation is held. In signing a certificate, we assume that the signer is in some way willing

to account for the authorisation that they are delegating. The authorisation provided by

a certificate chain that is not vulnerable to subterfuge can be accounted for by each signer

in the chain. A principal who is concerned about subterfuge will want to check that the

permission that is about to be delegated can also be accounted for by others earlier in the

chain: the accountability ‘buck’ should preferably stop at the head of the chain!

SPKI [43] characterises the checking of authorisation as ”is principal X authorised to

do Y?”. However, the examples above illustrate that this is not sufficient; checking ”is

principal X authorised to do Y by Y’s owner Z?” would be more appropriate.

Public keys provide globally unique identifiers that are tied to the owner of the key.

These can also be used to avoid permission ambiguity within delegation chains. For example,

given SPKI authorisation certificate (KComA,KE, 1, [T1.KComA]), there can be no possibility

of subterfuge when Emily delegates to Alice with (KE,KA, 1, [T1.KComA]). In this case the

authorisation [T1.KComA] is globally unique and the certificate makes the intention of the

delegation and where it came from (authorisation accountability) very clear.

Needless to say that this strategy does assume a high degree of competence on Alice’s

part to be able to properly distinguish between permissions [T1.KComA] and [T1.KComB],

where, for example, each public key could be 342 characters long (using a common ASCII en-

coding for a 2048 bit RSA key). One might be tempted to use SDSI-like local names to make

this task more manageable for Alice. However, in order to prevent subterfuge, permissions

require a name that is unique across all name spaces where it will be used, not just the local

name space of Alice. In Alice’s local name space the permission [T1.(Emily’s ComA)] may

refer to a different ComA to the ComA that Alice knows. Subterfuge in name certificates

will be discussed in next section.

7.3 Subterfuge in Name Certificates 134

Existing Trust Management approaches such as [73] avoid subterfuge by assuming that

all certificates are correctly in place, well understood by principals, and may not be im-

properly used. However, we argue that subterfuge is a realistic problem that should be

addressed in a certificate scheme. For example, the Trust Management payment systems

[22, 23, 52] are also vulnerable to authorisation subterfuge (leading to a breakdown in autho-

risation accountability) if care is not taken to properly identify the ‘permissions’ indicating

the payment authorisations when multiple banks and/or provisioning agents are possible.

The micro-billing scheme [23] uses KeyNote to help determine whether a micro-check (a

KeyNote credential, signed by a customer) should be trusted and accepted as payment by

a merchant. The originator of the chain is the provisioning agent, who is effectively respon-

sible for ensuring that the transaction is paid for. In [52], delegation credentials are used

to manage the transfer of micropayment contracts between public keys; delegation chains

provide evidence of contract transfer and ensure accountability for double-spending.

7.3 Subterfuge in Name Certificates

Authorisation subterfuge is also possible when using SPKI/SDSI local name certificates.

For example, Ellison and Dohrmann [42] describe a model based on SPKI/SDSI name

certificates for access control in mobile computing platforms. A group leader controls all

rights of a group. A group leader may delegate the right of “admitting members” to other

principals. For example, KG is a group leader; KG admits KA as its group member by

certificate C1. KG defines a large random number n, which will be used as KA’s local

name for KG’s membership. Then, KG issues certificate C2 to KA which means that if KA

accepts a principal as (KA’s n), then the principal also becomes KG’s group G’s member.

KA admits KB as KA’s n by C3. Together with C2, KB also becomes a member of KG’s G

as presented in C4. The certificates are as follows.

C1 = (KG, G, KA);

C2 = (KG, G, (KA’s n)); and

C3 = (KA, n, KB)

From these we can deduce (KG, G, KB), that is, KB is now a member of group G.

The scheme works in a decentralised manner and thus no single member will hold the

entire membership list. This means that there is no easy way to prove non-membership. The

strategy described in the paper is sufficiently robust as it relies on face-to-face verification

of certificate C2 when a member joins.

However, the nonce is large and there may be potential for confusion during the face-

to-face verification and this can lead to subterfuge. Consider the following certificates.

7.4 Subterfuge in Satan’s Computer 135

C ′
1 = (KI , GI , KA);

C ′
2 = (KI , GI , (KA’s n));

C ′
3 = (KA, n, KI)

Suppose that the intruder KI wants to join KG’s group G. KI intercepts C2 and issues C ′
2

by using the number in C2. In the confusion, KA issues C ′
3 which corresponds to admitting

KC (which the intruder controls) as a member of KI ’s GI for KA. In this case, KC may

use C2 and C ′
3 to prove its membership in KG’s group G.

7.4 Subterfuge in Satan’s Computer

We are interested in determining whether, given a collection of known certificates, it is safe

for a principal to delegate some held authorisation to another principal. By safe we mean

that subterfuge is not possible. In simple terms, this requires determining if it is possible

for a malicious outsider to interfere with a certificate chain with a view to influencing

the authorisation accountability. In order to help understand this we draw comparisons

between subterfuge attacks and attacks on authentication protocols. Our hypothesis is that

techniques for analysing one can be used to analyse the other (as we shall see in the next

section when we use a BAN-like logic to analyse subterfuge in delegation chains).

A certificate is a signed message that is exchanged between principals; an authentication

protocol step can be an encrypted message that is exchanged between principals. A certifi-

cate chain is an ordering of certificates exchanged between principals. An authentication

protocol is an ordering of encrypted messages exchanged between principals. For example,

the chain CC1 could be represented by the following protocol.

msg1 ComA→ E : {KComA,KE , 1, T1}KComA

msg2 E → A : {KE ,KA, 1, T1}KE

msg3 A→ B : {KA,KB , 0, T1}KA

There are differences between authentication protocols and certificate chains. A round of

a typical authentication protocol has a fixed and small number of pre-defined messages,

while the number of participants and messages in a certificate chain are unlimited and,

sometimes, it may not be predetermined.

An attack from Section 7.1.2 is represented as follows.

msg2′. I(CA)→ A : {KI ,KA, 1, T1}KI

msg3′. A→ D : {KA,KD, 0, T1}KA

7.4 Subterfuge in Satan’s Computer 136

Subterfuge attacks involve a malicious user (the intruder I) removing/hiding and replaying

certificates between different certificate chains. These actions are comparable to a combi-

nation of the replay attacks [34]:

Freshness attack “When a message (or message component) from a previous run of a

protocol is recorded by an intruder and replayed as a message component in the

current run of the protocol.”

Parallel session attack “When two or more protocol runs are executed concurrently and

messages from one are used to form messages in another.”

The analysis of an authentication protocol typically centres around an analysis of nonce

properties: if one correctly responds to the nonce challenge in a round of an authentication

protocol, it is the regular responder.

Freshness A nonce is a number used once in a message. Message freshness fixes a message

as unique and ties it to a particular protocol run.

Relevancy to originator A nonce is related to its originator. The nonce verifier is also

the nonce provider (originator). The nonce originator generates the nonce and this

means that it can recognise and understand its relationship with the nonce.

Relevance of message In a two-party mutual authentication protocol, each principal gen-

erates its own nonce. A principal uses its own nonce and the other principal’s nonce

to relate its own message to the other’s message.

There are some similarities between these nonce properties and the permission properties

that rely on unique permissions.

Uniqueness is required in a permission string to account for its originator within a par-

ticular certificate chain.

Relevancy to originator A permission should be related to its originator and it should

be possible for others along the chain to recognise this relationship.

Relevance of certificates Certificates can be used to delegate combinations of permis-

sions that originated from different sources. These new certificates should account for

the authorisation of the originators.

From the above, we may see that a certificate chain is similar to a security protocol

using signature keys. An authorisation certificate chain is a sequence of ordered certificates

that are exchanged between principals for delegating rights.

7.5 A Logic for Analysing Certificate Chains 137

Similar to the definition of the correctness of authentication [78]: A protocol guarantees

agreement with a participant B (say, as the responder) for certain data items x if: each time

a principal B completes a run of the protocol as responder using x, which to B appears to

be a run with A, then there is a unique run of the protocol with the principal A as initiator

using x, which to A appears to be a run with B.

We define the accountability of authorisation as follows.

Definition 7.4.1 A certificate chain guarantees agreement to a participant B (say, as the

delegatee) for certain right R if: each time a principal B is delegated a right R, which to

B appears to be a certificate chain with A, then there is a unique certificate chain with the

principal A as initial delegator authorising R.

We use a BAN-style logic to reason about this notion of accountability of authorisation.

7.5 A Logic for Analysing Certificate Chains

The previous section demonstrated similarities between (freshness) vulnerabilities in au-

thentication protocols and (subterfuge) vulnerabilities in delegation chains. In this section

we develop the Subterfuge Logic (SL) which draws on some of the techniques from BAN-like

logics to analyse subterfuge in certificate chains.

7.5.1 The language

The logic uses the following basic formulae. P , Q,R and S range over principals; X repre-

sents a message, which can be data or formulae or both; φ will be used to denote a formula.

The basic formulae are the following:

• ♯(X): Formula X is a globally unique identifier. For example, this is typically taken

as true for X.500 distinguished names and for public keys.

• X | P : represents the message X, as guaranteed/accounted for by principal P ; this

means that P is willing to be held accountable for the consequences of action X. For

example, it is in Alice’s interest to delegate T1 | KComA to Bob, as opposed to just

T1.

• X ; P : Principal P is an originator of formula X. In the examples above, we

write T1|KComA to mean that permission T1 was first uttered by KComA in some

chain. Note that we assume that the same global unique formula (permission) cannot

originate from two different principals, that is, if X ; P , X ; Q and ♯(X) then

P = Q.

7.5 A Logic for Analysing Certificate Chains 138

• P ∋ X: P is authorised for the action X.

• P ≻ X: P is authorised to delegate X to others.

• P ‖≈X: P directly says X. This represents a credential that is directly exchanged

between principals.

• P ‖∼ X: P says X. P directly says X or others say X (who have been delegated to

speak on X by P).

Further formulae can be derived by using propositional logic. If φ1 and φ2 are formulae,

then φ1 ∧ φ2 (φ1 and φ2), φ1 ∨ φ2 (φ1 or φ2), and φ1 → φ2 are formulae.

SPKI/SDSI credentials can be encoded within the logic as follows. An authorisation

credential (K,S, 0,T) is represented as K ‖≈(S ∋ T), and credential (K,S, 1,T) represented

as K ‖≈(S ∋ T ∧ S ≻ T). The purpose of the logic is to permit a principal decide whether

it would be safe for it to delegate an authorisation based on the collection of credentials

that it currently holds. For the examples above, Alice would like to be able to test whether

it is safe for her to write a credential corresponding to KAlice ‖≈(KDavid ∋ T1). That is,

she wishes that someone further back on the chain will accept accountability for the action,

that is, KAlice ≻ T1|KComA can be deduced (which is not possible for the examples in

Section 7.1.1). Note that in signing the credential, Alice is also accepting accountability for

the authorisation.

7.5.2 Inference rules

Gaining Rules

G1 If P holds authorisation for X, for which Q can be held accountable, and Q may

delegate X then P is also authorised for X.

P ∋ X | Q,Q ≻ X
P ∋ X

G2 We have a similar rule for authorisation to delegate.

P ≻ X | Q,Q ≻ X
P ≻ X

Direct delegation

D1 Direct delegation of authority assumes that the delegator accepts accountability for the

action.
P ‖≈(Q ∋ X)

P ‖∼ (Q ∋ X | P), Q ∋ X | P

7.5 A Logic for Analysing Certificate Chains 139

D2 We have a similar rule for authorisation to delegate.

P ‖≈(Q ≻ X)

P ‖∼ (Q ≻ X | P), Q ≻ X | P

D3 The usual conjunction rules apply.

P ‖≈(φ1 ∧ φ2)

P ‖≈φ1, P ‖≈φ2

Indirect delegation

I1 If principal P says that Q is authorised to perform an action X (with R accountable),

and P is authorised to delegate X (with R accountable), then Q is authorised to

perform X (with R accountable).

P ‖∼ (Q ∋ X | R), P ≻ X | R
Q ∋ X | R

I2 We have a similar rule for authorisation to delegate.

P ‖∼ (Q ≻ X | R), P ≻ X | R
Q ≻ X | R

I3 If principal P says that Q is authorised to perform action X by P , then P says that Q

is authorised to perform X.
P ‖∼ (Q ∋ X | P)

P ‖∼ (Q ∋ X)

I4 Accountability can be stripped from an authorisation. Note, however, that stripping

accountability does not refute the existence of the accountability.

P ‖∼ (Q ≻ X | P)

P ‖∼ (Q ≻ X)

I5 Accountability is transitive along certificate chains.

R ‖∼ (P ≻ X | S), P ‖∼ (Q ≻ X | R)

R ‖∼ (Q ≻ X | S)

I6 We have a similar rule for authorisation.

P ‖∼ (Q ∋ X | R), R ‖∼ (P ≻ X | S)

R ‖∼ (Q ∋ X | S)

7.6 Analysing Authorisation Subterfuge 140

Unique Origin Rules

U1 If Q is authorised for unique X that originated from P then P can be held accountable

for X.
♯(X),X ; P,Q ∋ X

Q ∋ X | P

U2 We have a similar rule for authorisation to delegate.

♯(X),X ; P,Q ≻ X
Q ≻ X | P

7.6 Analysing Authorisation Subterfuge

The examples from Section 7.1 and Section 7.3 are analysed using the Subterfuge Logic as

follows.

Example 14 Certificates C1 and C2 in the example from Section 7.1 are encoded by the

following formulae. Note that principal names are abbreviated to their first initial if no

ambiguity can arise.

KComA ‖≈ ((KE ∋ T1) ∧ (KE ≻ T1))

KE ‖≈ ((KA ∋ T1) ∧ (KA ≻ T1))

Assumptions regarding uniqueness include the following.

♯(KComA), ♯(KComB), ♯(KA), ♯(KB), ♯(KC), ♯(KE)

Principal ComA is assumed authorised to delegate and accept accountability for the autho-

risation T1 that it originates.

KComA ≻ (T1 | KComA)

Before delegating authority for T1 to Bob, Alice wishes to test whether it is safe to do

so. Alice tests whether ComA accepts accountability for this action, that is she attempts

to deduce KA ≻ T1 | KComA using the above assumptions within the logic. This is not

possible since no assumption is made regarding uniqueness of T1, and, therefore, we cannot

deduce KE ‖∼ (KA ≻ T1 | KComA); thus Alice refrains from the delegation. △

In Trust Management public keys provide globally unique identifiers that are tied to

the owner of the key. These can also be used to avoid authorisation ambiguity within

delegation chains. For example, given SPKI certificate (KComA,KE, 1, [T1.KComA]), there

7.6 Analysing Authorisation Subterfuge 141

can be no possibility of subterfuge when Emily delegates to Alice by signing the certificate

(KE ,KA, 1, [T1.KComA]). In this case the authorisation [T1.KComA] is globally unique, that

is ♯(T1|KComA) and the certificate makes the intention of the delegation and accountability

very clear.

The revised certificates are represented in the logic as follows.

KComA ‖≈ ((KE ∋ T1 | KComA) ∧ (KE ≻ T1 | KComA))

KE ‖≈ ((KA ∋ T1 | KComA) ∧ (KA ≻ T1 | KComA))

Given these certificates then Alice can deduce

KA ≻ T1 | KComA

and can safely delegate to Bob as

KA ‖≈(KB ∋ T1 | KComA)

and we can deduce that KB ∋ T1 | KComA. Considering other certificates, including

KComB ‖≈ ((KC ∋ T1 | KComB) ∧ (KC ≻ T1 | KComB))

KC ‖≈ ((KA ∋ T1 | KComB) ∧ (KA ≻ T1 | KComB))

KA ‖≈ (KD ∋ T1 | KComB)

we can deduce KD ∋ T1 | KComB , the expected authorisation.

Suppose that ComB issues confusing certificates to Clark, who in turn delegates the

incorrect authorisation to Alice.

KComB ‖≈ ((KC ∋ T1 | KComA) ∧ (KC ≻ T1 | KComA))

KC ‖≈ ((KA ∋ T1 | KComA) ∧ (KA ≻ T1 | KComA))

In this case we can deduce KComB ‖∼ (KA ≻ T1 | KComA) and thus and KA ≻ T1 | KComB .

However, before A delegates this right for KComA, she needs (but cannot hold) the following

formulae KComB ≻ T1 | KComA, or KC ≻ T1 | KComA. Thus, she should not delegate and

therefore resists the subterfuge attack.

The conventional SPKI/SDSI authorisation certificate reduction rule can be described

as

P ‖≈(Q ≻ X) ∧Q ‖∼ (R ≻ X) =⇒ P ‖∼ (R ≻ X)

7.7 Analysing Authorisation Subterfuge 142

in the SL logic (with a similar relationship for delegation of authorisation). Such a rela-

tionship does not facilitate the tracking of accountability during certificate reduction.

Example 15 Consider the SPKI/SDSI name certificate example in Section 7.3. The group

leader KG issues certificate C2:(KG, G, (KA’s n)) that allows KA to admit group members.

If we consider that a local name is a permission without parameter, certificate C2 can be

encoded by the following formulae.

KG ‖≈ (KA ≻ G | KG)

KG ‖≈ (KA ≻ n | KA)

Ellison and Dohrmann assume that n is a large random number that is generated by

KG. When n is large enough, it can be assumed to be unique within KA’s local name space.

As a result, KA’s n is a global unique permission (name). On the other hand, KG is the

originator of n | KA, because n is generated by KG. When KA’s n is encoded by the SL

formula n | KA, the following assumptions are assumed by Ellison and Dohrmann.

♯(n | KA), n | KA ; KG

However, n | KA ; KG is not held. The reason for this is that n is only a random

number that may not provide any meaningful content that KG is relevant. On the other

hand, it is safe to assume that KA (not KG) is explicitly accountable for n | KA, since

n | KA is a local permission of principal KA. In order to effectively delegate n | KA to any

other principal, such as KA, KG must be able to prove that he is accountable for n | KA. It

requires that KG is authorised to delegate n | KA. This can be encoded by KG ≻ n | KA.

However, KG ≻ G | KA cannot be deduced using the above assumptions within the logic.

It means that KG cannot prove that it is accountable for n | KA. Consequently, KG is

not tracked when KA delegates n | KA to other principals. KG cannot effectively delegate

n | KA to other principals.

This problem can be solved by issuing certificate C4:(KA, n, (KG’s G) that is generated

by KA. The certificate makes the delegation and accountability from KA to KG very clear.

Certificate C4 is represented in the logic as KA ‖≈(KG ≻ n | KA). Based on this formula,

KG ≻ n | KA is held. Then, KG can effectively delegate n | KA to other principals (including

KA). △

7.7 Conclusions 143

7.7 Conclusions

In this chapter we described how poorly characterised permissions within cryptographic cre-

dentials can lead to authorisation subterfuge during delegation operations. This subterfuge

results in a vulnerability concerning the accountability of the authorisation provided by a

delegation chain: does the delegation operations in the chain reflect the true intent of the

participants?

The challenge here is to ensure that permissions can be referred to in a manner that

properly reflects their context. Since permissions are intended to be shared across local

name spaces then their references must be global. In the chapter we discuss some ad-hoc

strategies to ensure globalisation of permissions. In particular, we consider the use of global

name services and public keys as the sources of global identifiers.

The Subterfuge Logic provides a systematic way of determining whether a particular

delegation scheme using particular ad-hoc permissions is sufficiently robust to be able to

withstand attempts at subterfuge. This logic provides a new characterisation of certificate

reduction that, we argue, is more appropriate to open systems. We believe that it will be

straightforward to extend the Subterfuge Logic to consider subterfuge in SDSI-like local

names (as considered in Section 7.3).

The Subterfuge Logic is used to determine the source of an authority that constrains

how the certificate may be used/delegated by others. The interim principals of a delegation

chain may freely make its delegation decisions based on the knowledge of the permission

source. It provides a flexible way to the interim principals to make delegation decisions. An

alternative strategy to avoiding subterfuge is Constrained Delegation [15]. In Constrained

Delegation, the source of an authority uses constraint structures to control the shape of a

delegation chain. Only members of the last group of a constraint structure may be allowed

to access a given resource. Members of other groups of the constraint structure may only

be allowed to delegate permissions. In this way, the source of an authority may separate

resource management from resource access, and decide only principals in a specified group

may access its resource.

Trust Management, like many other protection techniques, provide operations that are

used to control access. As with any protection mechanism the challenge is to make sure that

the mechanisms are configured in such a way that they ensure some useful and consistent no-

tion of security. Subterfuge logic helps to provide assurance that a principal cannot bypass

security via some unexpected but authorised route. This general goal of analysing unex-

pected but authorised access is not limited to just certificate schemes. Formal techniques

that analyse whether a particular configuration of access controls is effective is considered

in [48, 49]; strategies such as well formed transactions, separation of duties and protection

7.7 Conclusions 144

domains help to ensure that a system is sufficiently robust to withstand a malicious princi-

ple. We are currently exploring how the subterfuge logic can be extended to include such

robustness building strategies.

Chapter 8

DAL: Distributed Authorisation

Language

This chapter describes a simple yet expressive logic-based language, Distributed Authorisa-

tion Language (DAL). In designing DAL, our motivation has been to provide a safe language

that is specialised for open delegation in coalitions. DAL is subterfuge-safe in the sense that

properly encoded credentials are not vulnerable to subterfuge. While other languages such

as [75, 43, 38, 74] offer comparable levels of expressiveness to DAL, credentials written in

these languages require formal analysis [124] and/or pre-agreed global naming services to

ensure subterfuge-safe delegation. Like type-safe languages, DAL is intended to provide

flexibility while preventing classes of unsafe formulae from being encoded. DAL supports

coalition regulation and contract in large scale distributed systems without requiring pre-

agreed global naming services. Authorisation decisions are based on DAL logic axioms and

on statements made by principals.

This chapter is organised as follows. Section 8.1 introduces the notation of the DAL

language. Section 8.2 gives a number of examples that demonstrate how DAL is used to

express common security policies. The DAL proof system is given in Section 8.3. Section 8.4

discusses how authorisation subterfuge is avoid in DAL. Section 8.5 discusses DAL features

for open delegation, and support different kinds of delegation. How DAL is used to support

coalition frameworks is described in Chapter 9.

8.1 Notation

This chapter introduces the notations that are used in DAL, such as principals and state-

ments.

145

8.1 Notation 146

8.1.1 Principals

In DAL, only principals can obtain, use, and issue permissions. A DAL principal is an

entity that can be identified and verified via Authentication. A DAL principal can be an

identifier, a role, or their combination.

Identifiers

In the ‘real’ world, various entities, such as computers, people, and organisations, should

be identified as globally unique. Identifiers represent these global unique entities and are

denoted by a triple (K, N , T), where K specifies the entity’s signature key; text string N is

the entity’s user-friendly self-description; and T is a type flag for the entity (value I or C).
We assume that no two identifiers share the same public key and thus are globally unique

and verifiable by others.

DAL defines two types of identifiers: individual (denoted as I) and coalition (denoted

as C). An individual is a single entity who may make decisions by itself and use its own

signature key to sign credentials. Examples include computers, people, and so forth. A

coalition is a virtual space which may not make any decisions by itself: all of its decisions

are made by its participants. Examples include departments, organisations, and so forth.

If no ambiguity can arise, we refer to a globally unique entity as an identifier.

For the sake of simplicity, the shorthand IDT is used to replace the triple (K, N , T),

where ID is the global unique identifier replacing K and N .

Roles

Roles are principals and are useful for managing the delegation of different permissions to

groups of principals. A role is denoted as IDT .n, where IDT is an identifier, and n is an

auxiliary local name defined by the identifier IDT . For example, UnivAC .student represents

the role student of coalition UnivAC . An identifier controls, and may discretionarily define,

all of its own roles, but may only define roles of other identifiers when explicitly authorised.

Firozabadi has a similar role definition in his PhD dissertation [46].

Threshold Principals

Some situations may require cooperation of several entities to provide a high degree of

confidence. These compound entities are called threshold principals.

Threshold principals are used in DAL to provide threshold-based delegation. For exam-

ple, professor AI has three teaching assistants BI , CI , and DI for the course CS101. To

give any student an experimental score in CS101, two of the three teaching assistants are

required to agree with the score.

8.1 Notation 147

Like the SPKI/SDSI ‘k-of-n’ threshold [43], we use a static threshold structure to express

this kind of compound principal, denoted as threshold(k, [p1, p2, . . . , pn]), which means that

at least k principals from the list of n principals are required. The threshold of the above

example is represented as threshold(2, [BI , CI ,DI]).

As a further example, in order to combat fraud, a company (coalition) ComAC has a

policy that two managers are required to sign purchase orders for goods with a value over

$5,000. We may not a-priori know the number of managers in the company (this number

may change with time), and thus, a dynamic threshold structure1 is required to express

such compound principals. This is denoted as threshold(k, r) which means that at least k

principals in the role r are required. The threshold of the above example is represented as

threshold(2, ComAC .manager).

Threshold principals also represent a shorthand and their encoding in terms of the basic

logic operators is described as follows. The static threshold principal threshold(k, [p1, . . . , pn])

can be simply encoded in the usual way in terms of the logic operators ∧ and ¬. For ex-

ample, given principals p1 and p2, then threshold(2, [p1, p2]) and threshold(1, [p1, p2]) may

be represented by p1 ∧ p2 and p1 ∨ p2, respectively.

Principals

Let G and R represent the set of all identifiers and roles respectively. The symbols g, g0,

g1, . . . , range over G, and the symbols r, r0, r1, . . . , range over R. The set of principals P

is the set of all identifiers, roles, and their combinations using the logic operators ∧ (and)

and ¬ (negation). The symbols p, p0, p1, . . . , range over P .

8.1.2 Statements

DAL statements represent facts that are held by principals (identifiers, roles, and threshold

principals). DAL statements are made using basic logic operators, functions and the says

and directly says operators. We assume that statements may contain temporal information

to indicate their validity periods. For the sake of simplicity, we do not consider the time

related issues in this thesis. Therefore, all statements are understood with respect to an

arbitrary but fixed current time.

Says and Directly-says Statement

We write g ‖≈ s to indicate a ‘directly-says’ statement; this means that a statement s is

directly signed by the signing key of identifier g. The ‘says’ statement, denoted p ‖∼ s, is

1This contrasts with SDSI which requires the members of a role in a threshold scheme to be a-priori
defined.

8.1 Notation 148

used to reflect deductive results from a chain of credentials. This means that statement s is

directly signed by principal p, or that principal p indirectly makes statement s via a chain

of related statements.

Since both identifiers and roles are principals in DAL, the statement CC .manager ‖∼ s

is valid. However, CC .manager ‖≈ s is not a valid statement as ‘directly-says’ statements

reflect credentials directly signed by a key.

We write (p1 ∧ p2) ‖∼ s as a shorthand of p1 ‖∼ s and p2 ‖∼ s in the remainder of the

dissertation, and similarly for ‘directly-says’ statements.

A dynamic threshold principal threshold(n, g.r) means that at least n principals in the

role g.r are required. A threshold may appear only as a principal in a statement, that is, in

a statement of the form threshold(n, g.r) ‖∼ s for some arbitrary statement s. A statement

threshold(n, g.r) ‖∼ s is encoded by the logic statement

(?X1 ‖∼ g.r ‖∼ s) ∧ . . . ∧ (?Xn ‖∼ g.r ‖∼ s)

where each of the ?Xi (1 ≤ i ≤ n) are distinct principals. A function that is similar to

neq(s1, s2) defined in Section 8.1 can be defined to distinguish principals and this function

can be used to encode neq(?Xi, ?Xj) for the above formula with 0 ≤ i, j ≤ n and i 6= j.

Functions

We use functions to idealise atomic statements in the language, such as facts, regulations,

and permissions. A function name may have different meanings for different principals, and,

therefore, function names are meaningful only when bound to a specific identifier. A function

n(a1, . . . , an)@g, has name n, arguments a1, . . . , an, and g is the identifier that defines this

function and controls the operation described by the function. A function argument may

be a constant or a variable. To distinguish a variable, its name is decorated by a “?”. For

example, function invocation Read(fileB, ?X)@AI specifies that any (authorised) principal

may read fileB. Evaluating statement Read(fileB, CI)@AI to true means that individual

CI may read fileB by AI ’s local function Read. This statement is true only when the

permission provider AI makes the statement as AI ‖∼ Read(fileB, CI)@AI , and CI makes

the request CI ‖∼ Read(fileB, CI)@AI .

A small number of widely used global functions are defined by the provider identified

as DALI . These are similar in intent to the standard classes for programming languages,

such as Java. When no ambiguity can rise, the identifier DALI is omitted from ‘global’

functions, and a global function may be denoted as n(a1, . . . , an). The reader should note

that identifier DALI provides only schema explanations for global functions: actual role

relationships are constructed by participants’ statements in the logic and can, therefore, be

8.1 Notation 149

fully decentralised.

• Given two valid statements s1 and s2, then global function neq(s1, s2) represents a

fact within the logic as to whether s1 is not equal to s2
2.

• Global function actAs(p0, [p1, . . . , pj]) relates principals (identifiers and roles): each

principal pi, (i ∈ [1, . . . , j]) acts as principal p0 (a role or an identifier). If j = 1, the

bracket is omitted in the expression. The function expression actAs(p0, [p1, . . . , pi])

is a shorthand for the conjunction actAs(p0, p1) ∧ . . . ∧ actAs(p0, pj).

Example 16 Coalitions UKC , IEC , FRC , and IT C represent virtual countries, each sup-

porting its necessary operational structure and regulations for running a virtual govern-

ment. These coalitions form a further coalition EUC , of which each is a member, that is,

actAs(EUC .member, [IEC , UKC , FRC , IT C]). △

The global uniqueness of signature keys ensure that identifiers and roles are distinguish-

able from each other. Roles are distinguishable from each other in statements because DAL

does not have a SPKI-like rule of the form actAs(p2, p1) ⊃ (p1 ‖∼ s ⊃ p2 ‖∼ s). Instead,

DAL uses axiom R8 in Figure 8.1 to force a principal to provide an unambiguous role name

in the statements clarifying the current role that it is acting as. For any two different roles

g1.r1 and g2.r2, the statement g1.r1 ‖∼ s may not be deduced from g2.r2 ‖∼ s. For exam-

ple, given actAs(BC .student, AI), then statements AI ‖∼ s and AI ‖∼ BC .student ‖∼ s are

different, since from the latter we may deduce BC .student ‖∼ s, which cannot be deduced

from the former AI ‖∼ s in DAL.

Statements

Following [5], given principal p, identifier g, statements s, s1 and s2, then DAL statements

are defined inductively as follows.

• a function is a statement;

• ¬s1 and s1 ∧ s2 are statements; we write the implication s1 ⊃ s2 as an abbreviation

for ¬(s1 ∧¬s2); we also write s2 ⇐= s1 as an equivalence for s1 ⊃ s2, and s1 ∨ s2 as

an equivalence for ¬(¬s1 ∧ ¬s2);

• g ‖≈ s and p ‖∼ s are statements.

Operators ‖≈ (directly says) and ‖∼ (says) have the same precedence in a statement and

have higher precedence than ∧. Operator ‖∼ is right-associative. Statements involving

2In the absence of a formal sematics for DAL, the equivalence of two statements is based on syntactic
comparision.

8.2 DAL Examples 150

principal conjunction, such as (p1 ∧ p2) ‖∼ s, are treated as a shorthand for p1 ‖∼ s and

p2 ‖∼ s.

8.2 DAL Examples

This section demonstrates how DAL is used to express common security policies.

• Decentralised authority. Authorisation is delegated by the issuing of certificates. For

example, Alice signs a certificate stating that Bob is a student at University A:

AliceI ‖∼ actAs(UnivAC .student, BobI)

• Role-based Authority. A principal may take on different roles within the same or

different coalitions. These roles can have different authority. In order to prevent

accidental misuse of authority, a principal should indicate which role it is acting as

when issuing a credential. For example, AliceI (a UnivAC staff member) asserts that

BobI is a student at UnivAC . Notes that operator ‖∼ is right-associative.

AliceI ‖∼ UnivAC .staff ‖∼ actAs(UnivAC .student, BobI)

• Identity-based delegation. A principal can delegate rights to other specific principals.

For example, UnivBC trusts UnivAC to identify students.

UnivBC ‖∼ (actAs(UnivBC .student, ?X)

⇐= UnivAC ‖∼ actAs(UnivBC .student, ?X))

• Role-based delegation. A principal can delegate rights to certain roles. This kind of

delegation can be done across coalitions. For example, UnivBC trusts UnivAC .staff

to identify students.

UnivBC ‖∼ (actAs(UnivBC .student, ?X)

⇐= UnivAC .staff ‖∼ actAs(UnivBC .student, ?X))

Another example, UnivAC trusts any coalition that is a university to identify a stu-

dent.

UnivAC ‖∼ (actAs(UnivAC .student, ?X)

⇐= actAs(UnivAC .univ, ?Y) ∧ ?Y ‖∼ actAs(UnivAC .student, ?X))

8.3 Proof System 151

• Conjunction inference. A principal may require another principal to satisfy several

separate conditions to be authorised for some action. For example, UnivAC allows

anyone who is both a lecturer and a manager to access a document.

UnivAC ‖∼ (access(fileB, ?X)@UnivAC

⇐= actAs(UnivAC .lecturer, ?X) ∧ actAs(UnivAC .manager, ?X))

• Assert Inference. A principal authorises anyone who satisfies some condition to do a

particular action. For example, AliceI allows anyone who is a student to access a file

fileA.

AliceI ‖∼ (Access(fileA, ?X)@AliceI ⇐= actAs(student, ?X))

• Static threshold structures. For example, professor HarryI requires two out of three

students BobI , CarlI , and DavidI to cooperate in order to to give student AliceI a

score for course CS101 of University UnivA.

HarryI ‖∼ (Score(AliceI ,CS101, ?score)@UnivAC

⇐= threshold(2, [CarlI ,DavidI , BobI]) ‖∼
Score(AliceI ,CS101, ?score)@UnivAC)

• Dynamic threshold structures. Professor HarryI requires two students from secC

cooperate to approve AliceI ’s score for course CS101 of University UnivA.

HarryI ‖∼ (Score(AliceI ,CS101, ?score)@UnivAC

⇐= threshold(2, secC .student) ‖∼
Score(AliceI ,CS101, ?score)@UnivAC)

• Limited role-based delegation. A principal may require a role from a specified coalition

to do a job. See the example for dynamic threshold structures.

8.3 Proof System

The proof system has three kinds of axioms:

1. The standard axioms and rules of propositional logic, such as the axiom (s1∧s2) ⊃ s1,
the rules (s2 ⇐= s1) ≡ (s1 ⊃ s2), and

s1, s1 ⊃ s2
s2

8.3 Proof System 152

R1 : (g ‖≈ s) ⊃ (g ‖∼ s)
R2 : (g1 ‖∼ actAs(g1, g2)) ⊃ ((g2 ‖∼ actAs(g1, g2)) ⊃ (actAs(g1, g2)))

R3 : (g1 ‖∼ actAs(g1.n1, g2)) ⊃ ((g2 ‖∼ actAs(g1.n1, g2)) ⊃ (actAs(g1.n1, g2)))

R4 : (g1 ‖∼ actAs(g1, g2.n2)) ⊃ ((g2 ‖∼ actAs(g1, g2.n2)) ⊃ (actAs(g1, g2.n2)))

R5 : (g1 ‖∼ actAs(g1.n1, g2.n2)) ⊃ ((g2 ‖∼ actAs(g1.n1, g2.n2)) ⊃ (actAs(g1.n1, g2.n2)))

R6 : (actAs(p2, p1)) ⊃ (actAs(p3, p2) ⊃ actAs(p3, p1))

R7 : actAs(p1, p1)

R8 : (actAs(p2, p1)) ⊃ ((p1 ‖∼ p2 ‖∼ s) ⊃ (p2 ‖∼ s))

Figure 8.1: New DAL axioms

2. The standard axioms and rules of modal logic:

(p ‖≈(s1 ⊃ s2)) ⊃ ((p ‖≈ s1) ⊃ (p ‖≈ s2))
(p ‖∼ (s1 ⊃ s2)) ⊃ ((p ‖∼ s1) ⊃ (p ‖∼ s2))

s

p ‖∼ s
These are useful for manipulating ‘directly-says’ and ‘says’ statements. The axioms

define that the statements that a principal says are closed under consequence; the rule

expresses that every principal says all provable statements.

3. A small number of additional intuitive axioms, R1 - R8, are listed in Figure 1.

R1 reflects the fact that a ‘says’ statement may be deduced from a single credential.

R2 – R5 define that only when both the role appointor g1 and role acceptor g2 explicitly

confirm the role binding that g2 (or g2’s role g2.n2) is bound to g1 (or g1’s role g1.n1),

then the role binding becomes a fact. R6 and R7 define that the role binding relation is

transitive and reflexive. R8 defines that, if p1 is bound to p2, then a statement by p1 is

taken as a statement by p2 only when p1 is explicitly representing p2 in the statement. We

informally consider the soundness of this proof system.

Proposition 8.3.1 (Statement Validity)

If statement s is provable (that is, deducible by the axioms) in the logic, then s

is valid (in the sense that the authorisation request is granted).

2

Proof sketch (following the approach in [5]). The propositional axioms and rules are

valid, since the propositional connectives are interpreted in the usual manner. So too are the

8.4 Discussion: DAL and Authorisation Subterfuge 153

standard axioms and rules of modal logic. R1, R6 and R7 are straightforwardly valid. We

argue that the remaining axioms are valid using the following comparison with SPKI/SDSI

[43], a well-known sound [5] naming schema to link roles(names) between principals.

SPKI/SDSI principal expression p1
′s . . . ′s pn means that pn is a local name in pn−1’s

... in p1’s local name space, where each of pi is an identifier or an auxiliary local name.

A DAL principal may be regarded as SPKI/SDSI principal with the restrictions: p1 must

be an identifier; p2 must be an auxiliary local name; and the linking name length n ≤ 2.

Intuitively, when n = 1, the principal is an identifier; when n = 2, the principal is a role.

Thus the set of DAL principal expression is a subset of SPKI/SDSI principal expression.

Given this restriction and the fact that an identifier can be recognised by all principals,

the SPKI/SDSI name linking rule may be represented in DAL as

(g1 ‖∼ actAs(g1.n1, g2)) ⊃ actAs(g1.n1, g2)

(g1 ‖∼ actAs(g1.n1, g2.n2)) ⊃ actAs(g1.n2, g2.n2)

R2 – R5 are constructed from these SPKI/SDSI axioms together with the restriction

that not only is the role appointor required to make the name linking statement, but also

the role acceptor. Similarly, R8 and R9 are constructed from SPKI/SDSI’s ‘speaks-for’

axiom actAs(p2, p1) ⊃ ((p1 ‖∼ s) ⊃ (p2 ‖∼ s)) with the restriction that, to represent

another principal, a principal must explicitly represent that principal in the statement.

Therefore, DAL’s provable statements form a subset of SPKI/SDSI provable statements.

The soundness of SPKI/SDSI— that all provable statements are valid— has been proven

[5]. Therefore, all provable statements in DAL are also valid.

Soundness implies consistency: if s is provable in the logic, then ¬s is not provable.

8.4 Discussion: DAL and Authorisation Subterfuge

The previous chapter explored the problem of authorisation subterfuge, whereby a princi-

pal receiving a permission in one domain, can somehow misuse the permission in another

domain via some unexpected circuitous but apparently authorised route. Existing Trust

Management languages, such as Keynote, SPKI/SDSI may be subject to this problem if

care is not taken. In this section we consider the subterfuge problem in the context of DAL.

Proposition 8.4.1 (Safe Delegation)

Permission delegation in DAL is subterfuge-free.

2

8.4 Discussion: DAL and Authorisation Subterfuge 154

Proof Sketch. A general DAL function can be represented in the following form.

act(obj, ?X)@g0

It means that principal ?X may take principal g0’s local action act on object obj. If we

consider action act on obj as permission T , the above DAL function can be rewritten as

Subterfuge Logic statement ?X ∋ T | g0.
The following DAL statement represents a fact that a principal gn allows another prin-

cipal gn+1 to delegate permission act(obj, ?X)@g0.

gn ‖≈(act(obj, ?X)@g0 ⇐= gn+1 ‖∼ act(obj, ?X)@g0)

This DAL statement can be safely translated into the following Subterfuge Logic statement.

sn : gn ‖≈(gn+1 ≻ T | g0)

The above statement explicitly indicates that permission T is a local permission of principal

g0. When principal gn+1 receives the above statement gn ‖∼ (gn+1 ≻ t | g0), he considers the

originator of this delegation is g0. Therefore, before delegating T | g0 to other principals,

gn+1 wishes to test whether it is safe to do so. gn+1 tests whether g0 accepts accountability

for this action, that is, she attempts to deduce gn+1 ≻ T | g0 using the above assumptions

within the Delegation Logic [75]. It requires a delegation chain that delegates permission t

from principal g0 to gn.

Since T | g0 specifies a local permission T of principal g0, it is assumed that statement

sa0 : g0 ≻ T | g0 is held.

We consider the following two possible scenarios.

• A delegation chain for T from g0 to gn exists. It means that gn is a legitimate principal

for the delegation.

The delegation chain can be constituted by a sequence of statements s0, . . . , sn−1 as

follows.

s0 : g0 ‖≈(g1 ≻ T | g0);
s1 : g1 ‖≈(g2 ≻ T | g0);

. . .

sn−1 : gn−1 ‖≈(gn ≻ T | g0);

8.5 DAL Features 155

Using SL rules D2 and I3, sd0 : g0 ‖∼ g1 ≻ T | g0 is deducible from s0. Then, using SL

rule I2, sd1 : g1 ≻ T | g0 is deducible from statements sa0 and sd0. Apply similar SL

deduction, sdn−1 : gn ≻ T | g0 can be deduced consequently. Therefore, gn+1 believes

that gn is authorised to delegate permission T | g0, and g0 accepts accountability for

this action.

Using D2, I3, and I2, statement gn+1 ≻ T | g0 is deduced from sn and sdn−1. Then,

gn+1 believes that he is authorised to delegate permission T | g0, and g0 accepts

accountability for this action.

• A delegation chain for T from g0 to gn does not exist. It means that gn is a malicious

principal for delegating permission T | g0.

Since no delegation chain delegates T | g0 to gn, statement gn ≻ T | g0 is not held.

It means that gn cannot prove that gn is authorised to delegate permission T | g0.
Therefore, gn+1 will not accept the delegation for T | g0 from gn.

Since principal gn+1 may distinguish legitimate principals and malicious principals in

delegation chains, she should not delegate permissions from malicious principals and there-

fore she resists the subterfuge attack. It means that authorisation subterfuge may not occur

in DAL permission delegation.

On the other hand, if a certificate is generated without obeying the rules for generating

DAL statements, the certificate can not be translated into DAL. Therefore, such a certificate

can not be used in a DAL deduction. Consequently, it dose not effect DAL’s subterfuge-free

property.

8.5 DAL Features

DAL provides a framework for specifying and reasoning about delegation and authorisa-

tion in a manner that avoids subterfuge and has a number of novel features that make it

particularly applicable to open systems. This is explored in this section.

8.5.1 Global Unique Permissions

Feature 1: Atomic DAL permissions are globally unique.

Existing Trust Management languages, such as SPKI/SDSI and Keynote are designed

to express arbitrary permissions. Writing a subterfuge-safe permission is dependent on the

user’s experience. Even though designed by experts, the KeyNote based payment systems

[22, 23, 52] are vulnerable to authorisation subterfuge if care is not taken to properly

identify the ‘permissions’ indicating the payment authorisations when multiple banks and/or

provisioning agents are possible.

8.5 DAL Features 156

Atomic DAL permissions are expressed by globally unique functions, whereby the iden-

tifier is the permission’s originator (or the permission authority). The originator has the

full authority to explain and manage its own permissions. Together with its own defined

local function name, the identifier ensures that the permission is globally unique and the

relationship between the permission and its originator is globally verifiable. For example, in

statement access(fileB,BI)@AI , AI is the permission authority, and when this permission

is delegated to other principals, all delegatees can verify that the permission is from AI .

8.5.2 Global Naming Services

Feature 2: DAL does not require global name services.

A number of existing coalition frameworks rely on some form of global name provider

to ensure that different parties get the right name for resources, and so forth. For example,

Keynote [19] relies on IANA; RT [74] relies on ADSD; and X509 relies on the X500 name

service. However, global name providers are not coalition security administrators; they only

provide each name with a unique meaning and have no control over how names are used.

Entities from different coalitions may still use arbitrary names to represent their own and

the resources of others.

While SPKI/SDSI does not rely on any global name provider, its name schema is subject

to authorisation subterfuge. This can be explained as follows. When identifier g1 binds its

local name n1 to g2’s local name n2, the SPKI/SDSI ‘linking’ axiom does not require g2 to

be notified. Therefore, g2 might not know that its n2 is bound to g1’s local name, and may

accidentally use n2 for other purposes.

DAL axioms R2 – R5 are used to relate principals. With these axioms, g2 in the above

example is required to accept a given name(role) binding. Therefore, g2 may not use n2 for

other purposes. Thus, in DAL, binding roles(names) between different name spaces does

not require global name providers, and can avoid authorisation subterfuge. For example,

AI ‖∼ (Read(fileB, ?X)@AI

⇐= C1
C ‖∼ actAs(C1

C .manager, ?X) ∧ C2
C ‖∼ actAs(C2

C .manager, ?X))

does not require that C1 and C2 agree on the meaning of the role manager. The meanings of

“manager” in these separate coalitions C1 and C2 are decided within their own coalitions.

AI only needs to know the respective meanings of “manager” in these two separate coalitions

C1 and C2.

8.5.3 Role in Statements

Feature 3: DAL requires a principal to explicitly indicate its current role within

8.5 DAL Features 157

the statement.

Existing authorisation languages, such as SPKI/SDSI and Keynote use the ‘speak-for’

axiom, whereby if p2 is bound to p1, then any statement by p1 is taken as a statement

by p2. However, a principal may represent different principals. For example, consider the

following statements,

s1 : actAs(CC .manager, AI),

s2 : actAs(BI , AI),

s3 : CC ‖∼ (Read(fileB, ?X)@CC ⇐= CC.manager ‖∼ Read(fileB, ?X)@CC),

s4 : AI ‖∼ Read(fileB, BI)@CC

Using the SPKI/SDSI ‘speak-for’ axiom only, we can deduce: CC ‖∼ Read(fileB, BI)@CC,

and BI ‖∼ Read(fileB, BI)@CC. The former statement specifies the policy that CC autho-

rises BI to read fileB by CC ’s local function. The latter statement defines the request made

by BI to read fileB by CC ’s local function. In this scenario, it is not clear what AI intends

to do.

In order to provide more precise permissions, we use the axiom R8 instead of the

SPKI/SDSI ‘speak-for’ axiom. When a permission is delegated to a certain role, in order

to validate the permission, DAL requires that principals must explicitly indicate that role

in the statement. Otherwise, even though the permission is signed by the principal who

obtains that role, the certificate is useless. It also means that an entity may only speak in

roles it knows. This requirement prevents principals from issuing ambiguous permissions.

For example, in a coalition all permissions for use only in the coalition should be del-

egated to coalition roles. If a principal wants to write a valid ‘inner’ coalition permission

statement, it should know which role it is representing. Since this ‘inner’ coalition statement

is invalid in other coalitions, the principal obtains other roles from other coalitions, and this

statement is useless for use in other coalitions. Therefore, cross-coalition subterfuge may

be prevented in DAL.

Applying the DAL axioms to this example, it is not possible to derive statements CC ‖∼
Read(fileB, BI)@CC and BI ‖∼ Read(fileB, BI)@CC. Presenting AI ’s extended statement

AI ‖≈(CC .manager ‖∼ Read(fileB, BI)@CC), results in a policy that coalition CC authorises

BI to read fileB by CC ’s local function. Presenting AI ‖≈(BI ‖∼ Read(fileB, BI)@CC)

results in a request by BI to read fileB by CC ’s local function.

8.5 DAL Features 158

8.5.4 Coalition Delegation

Feature 4: DAL supports coalition delegation in addition to individual delega-

tion.

We give several statements that describe different categories of inner- and outer- coalition

delegation.

Closed delegation

Closed delegation means that only coalition participants may work within the coalition.

Entities are required to obtain local roles in a closed coalition before they may use that

coalition’s resources. All ‘inner’ coalition permissions are delegated only to local roles of

that coalition. For example, a closed delegation of coalition CC may be defined by the

statement

CC ‖∼ (read(fB, ?X)@CC

⇐= actAs(CC .member, ?X) ∧ ?X ‖≈CC .member ‖∼ read(fB, ?X)@CC)

This means that if a principal wants to operate file fB by coalition CC ’s local function

read, it must be in the role member of CC, and must explicitly indicate the role that it is

representing in its request (a ‘directly-says’ statement). Otherwise, the principal may not

use that coalition’s resource.

Semi-open Delegation

Semi-open delegation means that the resource of coalition C1
C may be used by a group

of principals from another coalition C2
C . These principals are not required to obtain any

local role of coalition C1
C . However, they must obtain a specified role from coalition C2

C .

In addition, these principals may not delegate their authority to others. In this case, all

delegation decisions are still made by the resource owner coalition C1
C . The coalition C2

C

decides who may obtain its specified local role to grant the permission.

An example of a semi-open delegation is given by the following statement.

C1
C ‖∼ (read(f, ?X)@C1

C

⇐= actAs(C2
C .member, ?X) ∧ ?X ‖≈C2

C .member ‖∼ read(f, ?X)@C1
C)

This means that C2
C ’s members are authorised to use C1

C ’s local resource when representing

its membership of C2
C , but may not delegate it to others. Note that the directly-says sub-

statement is made by ?X. This restricts ?X to identifiers because only identifiers (with their

associated public key), may sign permissions.

8.5 DAL Features 159

Cross Coalition Delegation

Cross coalition delegation means that permissions are delegated from coalition C1
C to a

group of principals from another coalition C2
C . Unlike semi-open delegation, these principals

may delegate their authority to others. For example, statement

C1
C ‖∼ (read(f, ?X)@C1

C

⇐= actAs(C2
C .member, ?X) ∧ ?X ‖∼ C2

C .member ‖∼ read(f, ?X)@C1
C)

means that C1
C allows C2

C ’s members to access file f by C1
C ’s local function read, and

C2
C ’s members may also delegate the permission to others. For example, assuming that

actAs(C2
C .member, AI) is true, then issuing the statement

AI ‖∼ (C2
C .member ‖∼ read(f, ?X)@C1

C ⇐= BI ‖≈ read(f, ?X)@C1
C)

means that C2
C .member AI delegates the above statement to another principal BI . How-

ever, AI still holds accountability for BI ’s behavior regarding this delegated permission.

This is because, given the request made by BI , we may deduce that AI makes the request

in the role C2
C .member. Note that C1

C ’s policy statement has a ‘says’ sub-statement, which

is unlike the ‘directly-says’ used in semi-open delegation.

Open Delegation

Open delegation means that permissions may be delegated from one coalition C1
C to another

coalition C2
C which, in turn, may independently decide who may use the permission. For

example,

C1
C ‖∼ (read(f, ?X)@C1

C ⇐= C2
C ‖∼ read(f, ?X)@C1

C)

Constrained Delegation

Constrained delegation means that permissions may be delegated from one coalition C1
C to

another coalition C2
C , however, only principals from coalition C1

C may use the permission.

The original concept of constrained delegation is defined in [15] that is similar to our defi-

nition. This can be implemented in DAL using a combinition of closed delegation and cross

coalition delegation. For example,

C1
C ‖∼ (read(f, ?X)@C1

C

⇐= (C2
C ‖∼ ?X ‖≈C1

C .member ‖∼ read(f, ?X)@C1
C

∧?X ‖≈C1
C .member ‖∼ read(f, ?X)@C1

C)

8.5 DAL Features 160

8.5.5 Complex Principal Expressions

Feature 5: DAL does not support complex principal expressions, such as SP-

KI/SDSI compound names.

The compound name UnivA’s professor’s student represents the local name student

in all the local name spaces of UnivA’s professor. This kind of local name requires that

all UnivA’s professors must have the same meaning for their local role student based on

UnivA’s understanding.

We argue that this is unreasonable in many scenarios. For example, before joining UnivA

as a professor, Alice may already define her local name student with its own meaning.

According to the conflicting local name meanings, Alice may not join UnivA, or may have

to adapt the meaning of student according to UnivA’s local name space and withdraw all

certificates related to the meaning of her own student. On the other hand, when Alice joins

UnivA, she may not be aware of the name conflict, which may lead to further unexpected

authorisations/delegations subterfuge. If UnivA wishes to delegate its permission to UnivA’s

professor’s student, it should ensure that the name student has the same meaning for

all related principals’ local name space. In practice, these are unreasonable solutions.

DAL, in avoiding the use of complex role principals, permits a local name to resolve

only to an identifier.

Chapter 9

Secure Coalition Framework

Many coalition-supporting frameworks provide not only operational mechanisms to ensure

correct operation, but also provide security mechanisms to ensure that only authorised

entities may participate in a coalition. However, with regard to authorisation, we argue

that existing coalition security mechanisms are limited in many respects.

In existing frameworks [13, 53, 55, 87, 98], coalitions may or may not have an associated

signing key. If a coalition does not have its own signature key, then the coalition may not

be uniquely identified over the network. In this case an outsider cannot verify whether a

statement is from the coalition and cross-coalition operations may not be possible. When

a coalition has a signature key, its “super” security administrator controls that key. Other

coalition participants cannot prevent the administrator from arbitrarily signing any state-

ment using that key. Furthermore, if the coalition signing key is compromised then the

coalition has to be reformed, whereby, the coalition revoke all certificates signed by the

compromised key, all coalition members should accept the new coalition key.

Existing frameworks, such as [13, 53, 55, 87, 98], rely on a “super” administrator who

has unlimited authority within the coalition. However, in many cases such flexibility is not

desirable. For example, when several mutually suspicious entities establish a coalition to

share resources only within the coalition, the concern may be that such an administrator

can arbitrarily authorise entities outside of the coalition. In this case no one is willing to

authorise any other entity as the coalition security administrator. Another example is that

such an omnipotent administrator controls all of the company resources over the network,

while those company resources should be controlled by the CEO (or other senior executives)

of the company. It is preferable that coalition security mechanisms do not rely on the notion

of a “super” administrator.

In addition, existing coalition frameworks rely on the appointment of the “super” se-

curity administrator outside of the mechanics of the coalition framework, and he must be

161

9.1 Coalition Characteristics 162

accepted by all coalition participants before a coalition can be established. Regulations con-

cerning the resources under the control of this administrator should be carefully issued by

the administrator, and well understood by all participants in advance. Different coalitions

may require different establishment and regulations, and thus a high degree of expertise is

required for an administrator to properly form and manage a coalition. We believe that

coalition establishment should not be done in this ad-hoc manner, rather, it should be

formalised as an integral part of the coalition framework.

This chapter is organised as follows. Section 9.1 introduces the desirable characteristics

in any coalition supporting frameworks. How DAL is used to support coalition frameworks

is described in Section 9.2. Section 9.3 gives core coalition regulations in any valid DAL

coalition. A coalition establishment process is proposed in Section 9.4. Section 9.5 provides a

informal security analysis of coalition establishment. Section 9.6 gives a number of examples

of coalition establishment, coalition merging, and coalition spawning. Section 9.7 discusses

the features of our coalition forming framework.

9.1 Coalition Characteristics

A coalition may be formed by one or more principals (individuals and/or further coalitions).

We argue that the following characteristics are desirable in any framework that is to support

coalitions.

• Unique identity . Every coalition has a permanent and unique coalition identity to

identify itself over network environments.

• Regulation of authorisation. Principal authorisation is regulated according to the

controls of the coalitions that it participates in.

• Decentralised authorisation. The regulation of authorisation can be decentralised.

For example, a coalition supporting framework should not have to rely on a “super”

security administrator or a centralised authorisation server.

• Autonomy . The establishment and operation of a coalition can be achieved entirely

by its participants.

• Dynamic establishment . Coalitions may spawn further coalitions. Coalitions may also

come together to dynamically form further coalitions.

• Self-determination. A resource owner may regulate resource authorisation in different

(possibly conflicting) ways according to the coalitions set up to share it.

9.2 DAL Support for Coalitions 163

• Maintainability . Under agreed circumstances it must be possible to change the regu-

lations that govern the participants of a coalition.

We are not aware of any existing research that provides an infrastructure that has all

of the above characteristics. Using DAL, a framework for establishing secure coalitions is

proposed whereby coalitions can be dynamically formed in a fully distributed manner with-

out relying on a “super” security administrator or any particular threshold cryptography

algorithms, and the framework can be used to merge and spawn coalitions.

9.2 DAL Support for Coalitions

DAL is used to make statements regarding relationships between principals including coali-

tion membership. In this chapter we consider the process by which new coalitions are

negotiated and formed.

To establish a purpose-independent coalition, intended participants should understand

and obey a small number of basic coalition regulations. To interact with such coalitions,

principals should know how the coalition works in order to correctly negotiate with the

coalition. The regulations that are used to characterise the nature of a coalition and its

normal operation are specified in terms of DAL.

In designing DAL, our motivation has been to provide a safe language that has been

tailored for open delegation in coalitions. While other languages such as [75, 43, 38, 74] offer

comparable levels of expressiveness to DAL, credentials written in these languages require

formal analysis [124] and/or pre-agreed global naming services to ensure subterfuge-safe

delegation. Like type-safe languages, DAL is intended to provide flexibility while preventing

classes of unsafe formulae from being encoded.

In our coalition framework, a coalition has a unique identifier that includes its signature

key as defined in DAL. The purpose of the coalition key is to sign the initial coalition regu-

lations during the establishment of the coalition and is not intended for any other purpose.

The coalition key is generated and initially held by a trusted principal (the constructor) of

the proposed coalition. The constructor is selected by the coalition founders and may be a

trusted external third party or intended member of the coalition.

Once the initial coalition regulations that identify the coalition constructor, founders

and oversights have been signed and the coalition established, the coalition key should

not be used for further signing. Further specified coalition regulations will be signed by

coalition founders. In establishing a coalition, the constructor signs a penalty contract

accepting responsibility for the proper use of the signing key. If the key is misused then

the constructor becomes liable under the terms of the contract. The coalition regulations

9.3 Core Coalition Regulations 164

are such that it is not possible to establish a coalition without signing this contract. In

practice, it is expected that having established the coalition, the constructor will destroy

the (ephemeral private) coalition key in order to avoid accidental compromise.

This coalition establishing framework does not depend on any particular threshold cryp-

tography scheme and, therefore, the users of this framework are free to use the cryptographic

algorithms of their choice.

9.3 Core Coalition Regulations

The reader is reminded that it is only the function schemata that are global; their (decen-

tralised) definitions are provided by DAL statements made by participating principals. The

coalition establishing process relies on this small number of global functions to bootstrap

subterfuge-safe coalitions. DAL ensures that all other names and permissions that are used

within the coalitions are managed in a subterfuge-safe way and do not require a global name

service such as X.500. The following predefined global functions are used in establishing

coalitions.

• Function Pay(amount, unit, payer, payee) means that the principal payer is will-

ing to pay a certain amount of money to another principal payee. For example,

Pay(500, USD,AI , BI) means that AI is willing to pay $500 to BI . When the payee

is a coalition role then the mechanism does not specify how the payment should be

divided among coalition partners.

• Given two valid statements s1 and s2, then function neq(s1, s2) represents a fact within

the logic as to whether s1 is not equal to s2.

Every valid coalition must include two core statements which act as the basic regulation

for the coalition. These core statements have the following Coalition Formation (CF)

patterns.

CF1 A coalition id1
C is formed by an individual id2

I in the role id1
C .constructor with

the agreement of all founding principals. The responsibility of id2
I extends to the

formation of the coalition, but no further.

id1
C ‖≈(actAs(id1

C .constructor, id2
I)

∧ actAs(id1
C .r1, [p1, . . . , pn])

∧ (?X ⇐= threshold(n, id1
C .r1) ‖∼ ?X))

This statement from id1
C , is interpreted as follows,

9.3 Core Coalition Regulations 165

1. id1
C ‖∼ actAs(id1

C .constructor, id2
I). This statement indicates that the coali-

tion id1
C claims the individual id2

I is its constructor and holds its coalition key.

After obtaining this information, the principal who wants to join id1
C , or collab-

orate with the coalition, may require further insurance information (CF2) from

id2
I .

2. id1
C ‖∼ actAs(id1

C .r1, [p1, . . . , pn]). Here, id1
C defines the role id1

C .r1 in id1
C

when id1
C established, and pi, i ∈ [1, n] are the only initial principals for this

role. The role id1
C .r1 represents the most important role in the coalition, for

example, a role to which founders belong.

3. id1
C ‖∼ (?X ⇐= threshold(n, id1

C .r1) ‖∼ ?X). When a principal accepts the

role id1
C .r1, it needs to be sure that it does not delegate any unintended rights,

that no one can force it to accept conditions it does not want to accept, such as

sharing its own resources without its permission and so forth, as a consequence

of joining a coalition.

Only when n initial principals of this coalition agree on a decision, may the

coalition make this decision. In other-words, if any one playing the role id1
C .r1

does not agree on a decision, then the coalition may not be established. If the

coalition key does not sign any other credentials, then this statement guarantees

that the id1
C authority is distributed to all initial principals who are playing the

role id1
C .r1.

CF2 Coalition constructor id2
I agrees to a penalty contract regarding proper use of the

coalition key.

id2
I ‖∼ (Pay(AMT,U, id2

I , id1
C .r2)

⇐= neq(id1
C ‖≈ ?Y, CF1))

This is a necessary part of a properly formed coalition and provides evidence that,

if id1
C signs any statement other than founding regulation CF1 above, then id2

I is

willing to pay a penalty amount AMT in the currency U to the principals in the

oversight role id1
C .r2.

Note that the oversight role id1
C .r2 may be different to the founding role id1

C .r1. The

presence of some penalty regulation clause is sufficient in a valid coalition; whether it

is acceptable is part of the coalition establishment process with the founders and is

considered in Section 9.4.

The signature keys for id1
C and id2

I are known only by id2
I . Therefore, id2

I is the

only principal who can generate the necessary regulation credentials above. The signature

9.4 Coalition Establishment Process 166

key for id1
C should only be used for establishing the coalition; to use it for any other action

results in a penalty on id2
I according to CF2.

Example 17 AI , BI , CI wish to form a coalition MC . They will be the MC ’s founders.

They all trust a third party TTP I to generate the basic coalition regulations so long as

TTP I is willing to promise that if TTP I misuses the coalition key, then it will pay $50

collective penalty to principals in the role MC.oversight. The regulations generated are as

follows.
CF1 =̂ MC ‖≈(actAs(MC .constructor, TTP I)

∧ actAs(MC .founder, [AI , BI , CI]))

∧ (?X ⇐= threshold(3, MC .founder) ‖∼ ?X))

CF2 =̂ TTP I ‖∼ (Pay(50, USD, TTP I ,MC .oversight)

⇐= neq(MC ‖≈ ?Y,CF1))

△

9.4 Coalition Establishment Process

Establishing a new coalition requires cooperation and agreement between the coalition con-

structor and all of the coalition founders. This Coalition Establishment (CE) process

involves three steps. Given i, j ∈ [1, n]:

CE1 id2
I → pi : CF1 ∧CF2;

Each principal pi invited to join the coalition’s founding role id1
C .r1 receives and

checks the two regulations generated from id2
I . After signing CF1 it will not be in

the interest of id1
C to sign further credentials, due to the penalty signed by id2

I (in

CF2).

CE2 pi → id2
I : pi ‖∼ (actAs(id1

C .r1, pi) ∧CF1 ∧CF2);

Each founder pi that accepts the coalition regulations signs an agreement on the

regulations and its role membership. Before engaging this step, coalition founders

may communicate to consider and informally agree the regulations.

CE3 pi → pj: pi ‖∼ id1
C .r1 ‖∼ actAs(id1

C .r2, id1
C .r1).

The final step in the process requires the founders to agree the enforcement role, that

is, the oversight role to which payment will be made if the coalition constructor breaks

the regulations of the coalition.

9.5 Security Analysis 167

After establishing a coalition, anyone can trust id1
C or ask its constructor id2

I to provide

all above credentials as evidence for the coalition establishment.

9.5 Security Analysis

The coalition establishment process is secure, in the sense that no principal can cheat or

mis-represent the coalition. We provide a security analysis of coalition establishment; the

analysis is informal.

This coalition establishment process relies on three roles: constructor, founder, and

oversight. Role constructor is a predefined role name for all coalitions, making it clear

who creates the coalition. The founders and oversight are user-definable role names. We

analyse the accountability of each role as follows.

Regulation CF1 is a prearranged agreement by all founders regarding coalition structure

and initial participants. CF2 is a prearranged penalty contract agreed by the coalition

constructor and all of the coalition founders. All founders knows the constructor’s public

key and agree that the constructor generates the basic coalition regulations.

Only the constructor knows the coalition and constructor signature (private) keys. He

is therefore the only principal that can generate and accept accountability for CF1 and

CF2. If a valid constructor generates just one version of CF1 ∧ CF2 then it is not

possible to deduce neq(id1
C ‖≈?X,CF1) and consequently it is not possible to deduce

id2
I ‖∼ pay(AMT,U, id2

I , id1
C .r2), that is, a valid constructor cannot be penalised using

CF2.

Founders are willing to accept some pre-agreed CF1 and CF2 when establishing the

coalition. If a constructor (or any principal masquerading as constructor) generates regula-

tions CF1 and CF2 that are not acceptable to the founders, then the coalition establishment

process stops at Step CE2.

If the coalition constructor attempts to mislead principals by generating different ver-

sions of CF1 for founders and other participants, then upon detection the penalty regulation

can be applied. Similarly, once a coalition has been established, if the constructor attempts

to speak for the coalition (using the coalition key), then upon detection the penalty reg-

ulation may be applied. Thus, a constructor cannot misrepresent a coalition without the

application of the penalty regulation. On the other hand, a valid constructor cannot be

penalised.

Having completed Step CE2, the founders can collectively speak for the coalition. How-

ever, each founder is not willing to participate until it has received acceptable declaration

concerning the oversight role (Step CE3). This agreement is also necessary before the

penalty regulation can be properly applied and effectively protects the constructor if a

9.6 Examples 168

coalition is not properly established.

Before accepting the role founder, coalition founders may informally negotiate with each

other to determine whether they received the same message. Any founder may stop the

establishment process, if it received an unexpected CF1 or CF2.

The threshold structure in CF1 ensures that agreement is required between all founders

before Step CE2 can be successfully completed: it is not possible to establish a coalition

without the agreement of all founders. Once established all the founders share authority of

the coalition.

The oversight role does not have any inherent authority other than authority over the

penalty. However, when a principal accepts this role, it may protect itself by keeping

necessary evidence to carry out the penalty contract.

9.6 Examples

The following examples provide examples of coalition establishment, coalition merging, and

coalition spawning.

Example 18 (Security Group) This is a centralised coalition, in which the constructor

AliceI is also the founder and controls all authority of the coalition secC . AliceI follows

the three protocol steps defined above.

First, AliceI acting as coalition constructor sends the founding regulations to herself

(in role secC .head).

CFsec1=̂ secC ‖≈(actAs(secC .constructor, AliceI)

∧ actAs(secC .head, AliceI)

∧ (?X ⇐= threshold(1, secC .head) ‖∼ ?X))

CFsec2=̂AliceI ‖≈(Pay(500, USD, AliceI , secC .oversight)

⇐= neq(secC ‖≈ ?Y, CFsec1))(2)

Using DAL axiom R1, statement 9.1 is derived from CFsec1.

secC ‖∼ (actAs(secC .constructor, AliceI)

∧ actAs(secC .head, AliceI)

∧ (?X ⇐= threshold(1, secC .head) ‖∼ ?X)) (9.1)

9.6 Examples 169

Consequently, statement 9.2 is obtained from statement 9.1.

secC ‖∼ actAs(secC .head, AliceI) (9.2)

Given her financial commitment, it is in AliceI ’s own interest to avoid accidental com-

promise and and improper use of the coalition key KsecC . Therefore, principal AliceI de-

stroys the (ephemeral private) coalition key.

Then, AliceI accepts founding role secC .head defined by herself using statement 9.3.

AliceI ‖≈(actAs(secC .head, AliceI) ∧CFsec1 ∧CFsec2) (9.3)

Using DAL axiom R1, statement 9.4 is derived from statement 9.3.

AliceI ‖∼ actAs(secC .head, AliceI) (9.4)

Using DAL axiom R3, statement 9.5 is derived from statement 9.2 and 9.4.

actAs(secC .head, AliceI) (9.5)

That is, AliceI is the founder of the coalition. Similar deductions can be made on the coali-

tion regulations to deduce actAs(secC .constructor, AliceI) and actAs(secC .oversight, AliceI)

(AliceI is the coalition constructor and has oversight).

AliceI specifies that role secC .oversight is the oversight role:

AliceI ‖≈ secC .head ‖∼ actAs(secC .oversight, secC .head) (9.6)

At this point AliceI is the constructor, founder and sole member of the coalition secC .

She introduces a new role secC .member for members and assigns BobI to that role:

AliceI ‖∼ secC .head ‖∼ actAs(secC .member, BobI) (9.7)

AliceI assigns all group members to the oversight role:

AliceI ‖∼ secC .head ‖∼ actAs(secC .oversight, secC .member) (9.8)

If BobI is satisfied with the regulation on oversight then he is willing to participate within

the coalition and signs

BobI ‖∼ actAs(secC .member, BobI) (9.9)

and BobI can now speak as a member of the coalition.

9.6 Examples 170

△

Example 19 (GRID Group) This is a decentralised coalition, in which the constructor

JohnI , together with other two individuals EllenI and AliceI , are the founders of the

coalition gridC . These three individuals control all gridC ’s authority. We have:

JohnI → EllenI , AliceI : CFgrid1 ∧CFgrid2, where,

CFgrid1=̂ gridC ‖≈(actAs(gridC .constructor, JohnI)

∧ actAs(gridC .committee, [EllenI , JohnI , AliceI])

∧ (?X ⇐= threshold(3, gridC .committee) ‖∼ ?X))

CFgrid2=̂ JohnI ‖≈(Pay(500, USD, JohnI , gridC .oversight)

⇐= neq(gridC ‖≈ ?Y,CFgrid1))

AliceI , EllenI , and JohnI accept the founding role gridC .committee of coalition gridC :

EllenI → JohnI : EllenI ‖≈(actAs(gridC .committee, EllenI)

∧CFgrid1 ∧CFgrid2)

JohnI → JohnI : JohnI ‖≈(actAs(gridC .committee, JohnI)

∧CFgrid1 ∧CFgrid2)

AliceI → JohnI : AliceI ‖≈(actAs(gridC .committee, AliceI)

∧CFgrid1 ∧CFgrid2)

AliceI , EllenI , and JohnI specify that role gridC .oversight is the oversight role:

EllenI → JohnI , AliceI : EllenI ‖≈ gridC .committee ‖∼
actAs(gridC .oversight, gridC .committee)

JohnI → AliceI , EllenI : JohnI ‖≈ gridC , committee ‖∼
actAs(gridC .oversight, gridC .committee)

AliceI → EllenI , JohnI : AliceI ‖≈ gridC .committee ‖∼
actAs(gridC .oversight, gridC .committee)

Everyone can verify that gridC has been established properly. The committee member role

gridC .committee share all gridC ’s authority. All new regulations must be certificated by all

9.6 Examples 171

of them. gridC needs a director to deal with routine works.

After the coalition gridC is established, coalition committees may build their own coali-

tion structure. The following statement shows that a director role gridC .director is defined

and authorised to accept new members for gridC . From

EllenI ‖∼gridC .committee ‖∼
(IsRole(gridC ,member, ?X) ⇐= gridC .director ‖∼ IsRole(gridC .member, ?X))

AliceI ‖∼gridC .committee ‖∼
(IsRole(gridC .member, ?X) ⇐= gridC .director ‖∼ IsRole(gridC .member, ?X))

JohnI ‖∼gridC .committee ‖∼
(IsRole(gridC .member, ?X) ⇐= gridC , director ‖∼ IsRole(gridC .member, ?X))

We get the following statement

gridC ‖∼ (IsRole(gridC .member, ?X) ⇐= gridC .director ‖∼ IsRole(gridC .member, ?X))

Then, gridC appoints John as the director of gridC by gridC ‖∼ IsRole(gridC .director, JohnI),

and JohnI ‖∼ IsRole(gridC .director, JohnI).

After accepting the director role in gridC , JohnI is able to admit PhilipI as a member

of gridC .

JohnI ‖∼ gridC .director ‖∼ IsRole(gridC .member, PhilipI)

△

Example 20 (Spawning a New Web-Grid Group) gridC wants to spawn a further group

webC to manage the Web GRID project. gridC director holds all authority of webC .

Firstly, JohnI acting as the constructor sends the founding regulations to himself (in role

webC .founder):

CFweb1=̂web
C ‖≈(actAs(webC .constructor, JohnI)

∧ actAs(webC .founder, gridC .director)

∧ (?X ⇐= threshold(1, webC .founder) ‖∼ ?X))

CFweb2=̂John
I ‖≈(Pay(500, USD, JohnI , webC .oversight)

⇐= neq(webC ‖≈ ?Y, CFweb1))

Then, JohnI accepts the founding role webC .founder defined by himself:

JohnI ‖≈ gridC .director ‖∼ (actAs(webC .founder, gridC .director) ∧CFweb1 ∧CFweb2)

9.6 Examples 172

Finally, JohnI specifies that role webC .oversight is the oversight role:

JohnI ‖≈ gridC .director ‖∼ webC .founder ‖∼ actAs(webC .oversight, webC .founder)

△

Example 21 (Web Security Group) Coalitions secC and webC merge to a new coalition,

which is called websecC . Coalitions merging to a further coalition is similar to coalitions

formed by individuals. We have:

AliceI → BobI , PhilipI : CFwebsec1 ∧CFwebsec2;

CFwebsec1=̂websec
C ‖≈(actAs(websecC .constructor, AliceI)

∧ actAs(websecC .cmtte, [secC , gridC])

∧ (?X ⇐= threshold(2, [websecC .cmtte]) ‖∼ ?X))

CFwebsec2=̂Alice
I ‖≈(Pay(500, USD, AliceI , websecC .oversight)

⇐= neq(websecC ‖≈ ?Y, CFwebsec1))

Before the next step, following statements are required.

secC ‖∼ actAs(secC ,ws.committee, BobI)

secC ‖∼ (websecC .committee ‖∼ ?X ⇐= secC .ws.committee ‖∼ ?X)

webC ‖∼ actAs(webC .ws.committee, PhilipI)

webC ‖∼ (websecC .committee ‖∼ ?X ⇐= webC .ws.committee ‖∼ ?X)

Then, BobI and PhilipI accept the founding role websecC .cmtte defined by Alice:

BobI → AliceI : BobI ‖≈ secC .wscmtte ‖∼
(GFactAswebsecC .cmtte, secC ∧ CFwebsec1 ∧ CFwebsec2)

PhilipI → AliceI : PhilipI ‖≈webC .wscmtte ‖∼
(actAs(websecC .cmtte, webC) ∧ CFwebsec1 ∧ CFwebsec2)

Finally, BobI (speaking for secC) and PhilipI (speaking for webC) specify that websecC .oversight

9.7 Discussion 173

is the oversight role.

PhilipI → BobI : PhilipI ‖≈webC .wscmtte ‖∼ websecC .cmtte ‖∼
actAs(websecC .oversight, websecC .cmtte)

BobI → PhilipI : BobI ‖≈ secC .wscmtte ‖∼ websecC .cmtte ‖∼
actAs(websecC .oversight, websecC .cmtte)

△

9.7 Discussion

Using DAL, a formal framework for regulating the establishment of dynamic coalitions is

proposed in this chapter. Coalitions are formed with the involvement of founders, construc-

tors and oversight and do not rely on the traditional notion of a “super” administrator.

Constructors are responsible for properly creating a coalition; this service can be provided

by a third party. If the service is improperly provided then the constructor is subject to

a penalty, which may be collected by another third party providing oversight. With this

framework, a coalition can be dynamically formed in a fully distributed manner without

relying on a “super” security administrator or any particular threshold cryptography algo-

rithms. The coalition forming framework has a number of characteristics.

• Authentication. Each individual and coalition has a unique signature key. Every

coalition and individual can be uniquely authenticated.

• Delegation. DAL can express a wide range of delegation actions, including, identity-

based, role-based, conjunction, cross-coalition and static and dynamic threshold-based

delegation.

• Decentralisation. Our framework does not need a centralized or ‘super’ coalition

administrator. Once a coalition is established, then all the authority of the coalition

lies with the founders who can create and regulate their own coalition structure.

If some of the coalition founders’ signature keys are compromised, then the other

coalition founders may choose to no longer issue further regulations in order to protect

the coalition. However, revocation of compromised keys and revocation of regulations

that have been issued with the participation of compromised keys remain an issue.

The focus in this paper is on providing a logic and framework for establishing coalitions

and we do not consider revocation in this paper.

• Accountability . Principals wishing to negotiate with a coalition check the coalition’s

two regulations. Following delegation of coalition authority, principals determine

9.7 Discussion 174

whether they are engaging with the right role/principal in that coalition. If incorrect

regulations are received then they can be kept as evidence. The constructor has ac-

countability for incorrect regulations. This provides autonomy and self-determination.

• Maintainability. Once the coalition is created the coalition (signing) key should be

destroyed by the constructor; the coalition key provides a unique identity and is used

to validate the basic regulations. Founders can introduce further regulations (speaking

for the coalition) that control existing and new participants. Principals, including the

founders, may also leave a coalition under regulations that were agreed upon by the

other founders.

• Fairness. No principal has advantages over any other during or after the coalition

establishment process. This fair coalition establishing process does not require any

trusted third party who has total power over issuance of certificates.

• Non-repudiation. We consider only the simple meaning of non-repudiation, that is,

once a statement is signed by a principal then it may not subsequently deny that

statement. We do not consider non-repudiation of recipient.

• Dynamic establishment. Since coalitions are principals then the establishment process

can be used by coalitions to form further coalitions.

• Revocation. We do not consider key revocation or certificate revocation. The reason

for this is that the analysis of subterfuge problem in our research is based on a delega-

tion chain that is composed of a number of current effective certificates. Revocation

provides a separate scenario. When a certificate is revoked, it is not a current effective

certificate.

Part IV

Conclusions and Future Work

175

Chapter 10

Conclusions and Future Work

In this chapter, we draw conclusions, summarise our contributions made in this dissertation,

and indicate some future research directions.

10.1 Overview

Designing well behaved security mechanisms is a challenging task, since security mecha-

nisms often fail to fulfil their goals for various reasons. One possible explanation for this is

that many existing security mechanisms are designed in an ad-hoc manner. Their design

follows best practice based on the experiences of their designers, and prevent only classes

of known malicious behaviour. However, effective subterfuge is often based on other un-

expected behaviour. Another possible explanation for this is that many existing security

mechanisms are designed to work properly only for coalitions that satisfy a number of spec-

ified assumptions, but they are used for coalitions that do not satisfy all of these specified

assumptions.

Understanding subterfuge provides a new approach to the analysis and development

of protection mechanisms for coalitions. In this dissertation, we considered the design of

three types of security mechanisms: authentication protocols, authorisation languages, and

coalition frameworks. Both analysis and synthesis approaches are proposed and used for

evaluating the design of these types of security mechanisms.

Security mechanism analysis approaches attempt to analyse existing security mecha-

nisms under specified assumptions. Such an analysis approach specifies a number of possi-

ble subterfuge vulnerabilities, and verifies whether a given security mechanism may prevent

those subterfuge scenarios under specified assumptions.

Security mechanism synthesis approaches attempt to generate well behaved security

mechanisms in a systematic manner. These well behaved security mechanisms should

be able to defeat subterfuge. Thus, these well behaved security mechanisms should be

176

10.2 Subterfuge Revisited 177

subterfuge-free security mechanisms. When a synthesis approach is provided, anyone may

generate security mechanisms by following the steps that are specified in such an approach.

A security mechanism generated in a systematic manner is sufficient to prevent a number of

known subterfuge automatically. It does not rely on the experiences of its designers. This

is unlike security mechanisms that are designed by experience.

10.2 Subterfuge Revisited

The statement at the heart of our thesis is

The design of a security mechanism can be evaluated by answering the ques-

tion “Is the security mechanism sufficient to prevent subterfuge from malicious

principals?”

Understanding the question provides the groundwork for answering the question. A

security mechanism is composed of a sequence of legitimate actions that are performed

by a number of specified (well-behaved) principals. The intended controls of a security

mechanism are based on the deduction of these legitimate actions. They provide a way to

ensure that only these specified (well-behaved) principals may achieve their purposes.

When designing a security mechanism we would like assurance that a malicious princi-

pal cannot bypass security in some unexpected, but permitted (according to the design),

manner. This malicious principal corresponds to: the Trojan Horse exploiting a covert

channel; the Spy engaging in a replay attack on a security protocol; the principal engaging

in authorisation subterfuge in a trust management scheme, etc.

In this dissertation, the unexpected, but permitted (according to the design) deceptive

actions that are performed by malicious principals with the goal of evading the intended

controls of a security mechanism are interpreted in terms of subterfuge.

• Authentication subterfuge may occur when a principal obtaining a message from

a round of a security protocol, can somehow misuse the message in another round of

a security protocol via some unexpected circuitous but apparently permitted route.

For example, the flawed security protocol in Section 2.2.1 that is used by a bank for

customer authentication is subject to authentication subterfuge, and, in particular,

freshness attack, whereby, a malicious principal uses messages from a previous protocol

round to subvert the bank in the current protocol round.

• Authorisation subterfuge may occur when a principal receiving a permission in

one domain, can somehow misuse the permission in another domain via some un-

expected circuitous but apparently authorised route. For example, the delegation

10.3 Summary of Contributions 178

chain in Section 7.1 that is used by a company for purchase order permission delega-

tion is subject to authorisation subterfuge, whereby, a malicious principal obtains the

company’s permission by issuing a specious certificate for delegating a permission for

another company.

Authentication subterfuge has been investigated and attacks analysed in terms of pro-

tocol attacks in the security protocol analysis literature. However, comparable malicious

behavior—authorization subterfuge— has not attracted attention in the literature of autho-

risation mechanism analysis. The notion of subterfuge that is introduced and explored in

this dissertation provides a new and unifying perspective for understanding security mech-

anisms for authentication and authorisation, and, in particular, in coalition frameworks.

This dissertation investigated the design of authentication protocols and decentralised

authorisation mechanisms based on the analysis of authentication subterfuge and authorisa-

tion subterfuge. Based on this investigation, a decentralised framework has been developed

to support the establishment and the management of secure coalitions.

10.3 Summary of Contributions

The contributions contained within this dissertation are as follows.

A BAN-like logic, the BSW-ZF logic, is proposed in Chapter 5 that extends the BSW

logic to support reasoning about message secrecy, fresh channels, and ‘holding’ statements.

Given a number of protocol goals and assumptions, the heuristic rules of the BSW-ZF

logic are adapted to guide a backward search for sub-protocols (message sequences) from

each protocol goal, whereby, the desired messages are generated in a reversed order of the

protocol execution sequence.

Chapter 6 describes an automatic security protocol generator that uses the heuristic

rules of the BSW-ZF logic to guide it in a backward search for suitable protocols from

protocol goals. The approach taken is unlike existing automatic protocol generators which

typically carry out a forward search for candidate protocols from the protocol assumptions.

A prototype generator ASPB has been built that performs well in the automatic generation

of authentication and key exchange protocols. ASPB is faster and more efficient than other

existing protocol generators.

In Chapter 7, we described how poorly characterised permissions within cryptographic

credentials can lead to the problem of authorisation subterfuge during delegation operations.

This subterfuge results in a vulnerability concerning the accountability of the authorisation

provided by a delegation chain: does the delegation operations in the chain reflect the true

intent of the participants? The challenge here is to ensure that permissions can be referred

to in a manner that properly reflects their context.

10.4 Future Work 179

The Subterfuge Logic proposed in this chapter provides a systematic way of determining

whether a particular delegation scheme using particular ad-hoc permissions is sufficiently

robust to be able to withstand attempts at authorisation subterfuge. This logic is the

first approach for analyzing authorisation subterfuge. It provides a new characterisation of

certificate reduction. We argue that this logic is more appropriate to analyse delegation

mechanisms in open systems than existing analysis approaches.

In Chapter 8, a simple yet expressive logic-based language Distributed Authorization

Language (DAL) is proposed that supports open delegation in large scale distributed sys-

tems. From the outset, DAL has been designed with open systems in mind; flexible cross-

domain delegation can be achieved without subterfuge and without having to rely on the

proper use of a global name service.

Using DAL, a formal framework for regulating the establishment of dynamic coalitions is

proposed in Chapter 9. Coalitions are formed with the involvement of founders, constructors

and oversight and do not rely on the traditional notion of a super administrator. Construc-

tors are responsible for properly creating a coalition; this service can be provided by a third

party. If the service is improperly provided then the constructor is subject to a penalty,

which may be collected by another third party providing oversight. With this framework,

a coalition can be dynamically formed in a fully distributed manner without relying on a

“super” security administrator or any particular threshold cryptography algorithms. The

framework can be used to merge and spawn collaborations.

10.4 Future Work

While significant progress has been made, there is much work to be done. In this section, we

discuss some future work related to security protocol generation, authorisation subterfuge,

and coalition frameworks.

Protocol Generation

Automated security protocol synthesis techniques can be explored in many interesting re-

search directions.

As a topic of ongoing research, we are investigating the use of protocol synthesis tech-

niques to allow principals negotiate and on-the-fly generate security protocols [123]. When

principals wish to interact then, rather than offering each other a fixed menu of ‘known’

protocols, the protocol negotiation process generates a new “session” protocol that is tai-

lored specifically to their current security environment and requirements. A change in the

security environment of a principal may result in the re-negotiation of a new security pro-

tocol. This provides a basis for survivable security protocols that have the potential to, in

10.4 Future Work 180

effect, self-heal and adapt to recover from changes in the security environment.

Another research direction is to explore how automated protocol synthesis techniques

can be used to manage more sophisticated protocols such as nonrepudiation and delegation.

A further research direction can explore how techniques such as [84] can be used to translate

(generated) protocol specifications into executable code. It will be a significant foundation

for future self-adaptive security mechanisms.

Authorisation Subterfuge

Trust Management, like many other protection techniques, provides operations that are used

to control access. As with any protection mechanism the challenge is to make sure that

the mechanisms are configured in such a way that they ensure some useful and consistent

notion of security.

Subterfuge logic helps to provide assurance that a principal cannot bypass security via

some unexpected but authorised route. This general goal of analysing unexpected but

authorised access is not limited to just certificate schemes. Formal techniques that analyse

whether a particular configuration of access controls is effective is considered in [48, 49];

strategies such as well formed transactions, separation of duties and protection domains

help to ensure that a system is sufficiently robust to a malicious principle.

We argue that non-interference provides the basis for a formal understanding of this

attack. A further research topic can explore how the subterfuge logic can be extended to

include such robustness building strategies.

Coalition Framework

As with any protection framework the challenge is to make sure that it provides some

useful and consistent notion of security. Assurance is required that a principal cannot

bypass security via some unexpected but authorised route.

In the case of DAL, we seek formal proof that it is a subterfuge-safe language. It

is argued in [48] that verifying whether a particular configuration of access controls is

effective can be achieved by analysing its consistency, that is, whether it is possible for a

malicious principle to interfere with the the normal operation of the system. This type of

analysis [48, 49] is not unlike the analysis carried out on authentication protocols. In the

case of mechanisms based on trust management schemes, such as DAL, it is a question of

ensuring consistency between potential delegation chains. Further research on this topic

could explore how a non-interference analysis such as [48, 49] might be done on DAL in

order to prove subterfuge-safety.

Finally, current security mechanisms in GRID and web services are generally centralised

Future Work 181

mechanisms. This kind of practical mechanism conflicts with their purpose of supporting

collaboration among principals. It would be interesting to explore how DAL might be

used to provide subterfuge-safe authorization and coalition establishment within Virtual

Organisations in GRIDs and web services.

Bibliography

[1] Data Encryption Standard (DES), Federal Information Processing Standard 46 – the

Data Encryption Standard. National Institute of Standards and Technology, Wash-

ington, D.C., 1976.

[2] Advanced Encryption Standard (AES), Federal Information Processing Standard 197

– the Data Encryption Standard. National Institute of Standards and Technology,

Washington, D.C., November 2001.

[3] ISO/IEC 9798-2. Information technology - security techniques – entity authentica-

tion part 2: Mechanisms using symmetric encipherment algorithems (second edition),

1999.

[4] ISO/IEC 9798-3. Information technology - security techniques – entity authentication

part 3: Mechanisms entity authentication using digital signature techniques (second

edition), 1998.

[5] M. Abadi. On SDSI’s linked local name spaces. In Proceedings of the 10th Computer

Security Foundations Workshop (CSFW ’97), pages 98–108, Washington, DC, USA,

1997. IEEE Computer Society.

[6] M. Abadi. Logic in access control. In Proceedings of the Eighteenth Annual IEEE

Symposium on Logic in Computer Science, pages 228–233, Ottawa, Canada, June

2003. IEEE Computer Society Press.

[7] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi cal-

culus. In Proceedings of Fourth ACM Conference on Computer and Communications

Security, pages 36–47, Zurich, 1997. ACM Press.

[8] M. Abadi and R. Needham. Prudent engineering practice for cryptographic protocols.

In Proceedings of 1994 IEEE Computer Society Symposium on Research in Security

and Privacy, pages 122–136, Los Alamitos, CA, 1994. IEEE Computer Society Press.

182

BIBLIOGRAPHY 183

[9] R. Alfieri, R. Cecchini, V. Ciaschini, L. dellÁgnello, A. Frohner, A. Gianoli,

K. Lörentey, and F. Spataro. VOMS: an authorization system for virtual organi-

zations. In the proceedings of the 1st European Across Grids Conference, pages 33–40,

Santiago de Compostela, February 2003.

[10] J. Alves-Foss and T. Soule. A weakest precondition calculus for analysis of crypto-

graphic protocols. In Proceedings of the DIMACS Workshop on Design and Formal

Verification of Security Protocols, 1997.

[11] N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc networks. Computer Com-

munications, 23(17):1627–1637, 2000.

[12] T. Aura. Strategies against replay attacks. In Proceedings of the 10th IEEE Computer

Security Foundations Workshop (CSFW’97), pages 59–68, Washington, DC, USA,

1997. IEEE Computer Society Press.

[13] T. Aura and S. Mäki. Towards a survivable security architecture for ad-hoc networks.

In the 9th International Workshop on Security Protocols, volume 2467 of LNCS, pages

63–79, Cambridge, UK, April 2001. Springer-Verlag.

[14] D. Balfanz, D. Smetters, P. Stewart, and H. Wong. Talking to strangers: Authen-

tication in adhoc wireless networks. In Proceedings of the 9th Annual Network and

Distributed Systems Security Symposium (NDSS’02), San Diego, California, February

2002.

[15] O. Bandmann, M. Dam, and B. Firozabadi. Constrained delegations. In Proceedings of

the 23th Annual IEEE Symposium on Security and Privacy, pages 131–140, Oakland,

CA, May 2002. IEEE Computer Society Press.

[16] D. E. Bell and L. J. La Padula. Secure computer system: unified exposition and

multics interpretation. Technical Report ESD-TR-75-306, The MITRE Corporation,

Bedford, MA, March 1976.

[17] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning

about access control models. ACM Transactions on Information and System Security

(TISSEC), 6(1):71–127, 2003.

[18] K. J. Biba. Integrity considerations for secure computer systems. Technical Report

MTR-3153 Rev 1 (ESD-TR-76-372), The MITRE Corporation, Bedford, MA, April

1977.

BIBLIOGRAPHY 184

[19] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The keynote trust-

management system, version 2, IETF RFC 2704, September 1999.

[20] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The role of trust man-

agement in distributed systems security. Secure Internet Programming: Issues in

Distributed and Mobile Object Systems, 1603:185–210, 1999.

[21] M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Proceed-

ings of the 19th Annual IEEE Symposium on Research in Security and Privacy, pages

164–173, Oakland, CA, 1996. IEEE Computer Society Press.

[22] M. Blaze, J. Ioannidis, S. Ioannidis, A. Keromytis, P. Nikander, and V. Prevelakis.

TAPI: Transactions for accessing public infrastructure. In Proceedings of the 8th IFIP

Personal Wireless Communications (PWC) Conference, pages 90–100, 2003.

[23] M. Blaze, J. Ioannidis, and A. D. Keromytis. Offline micropayments without trusted

hardware. In Proceedings of the 5th International Conference on Financial Cryptog-

raphy (FC’01), pages 21–40, London, UK, 2002. Springer-Verlag.

[24] C. Boyd and W. Mao. On a limitation of BAN logic. In Proceedings of Workshop

on the theory and application of cryptographic techniques on Advances in cryptology

(EUROCRYPT’93), pages 240–247, Secaucus, NJ, USA, 1994. Springer-Verlag New

York, Inc.

[25] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In Proceedings of

the 1989 IEEE Symposium on Security and Privacy, pages 206–214. IEEE Computer

Society Press, May 1989.

[26] M. Burnside, D. Clarke, T. Mills, A. Maywah, S. Devadas, and R. Rivest. Proxy-

based security protocols in networked mobile devices. In Proceedings of the 2002

ACM symposium on Applied computing (SAC’02), pages 265–272, New York, NY,

USA, 2002. ACM Press.

[27] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transac-

tions on Computer Systems, 8(1):18–36, February 1990.

[28] L. Buttyán, S. Staamann, and U. Wilhelm. A simple logic for authentication protocol

design. In Proceedings of the 11th IEEE Computer Security Foundations Workshop,

pages 153–162. IEEE Computer Society Press, 1998.

[29] U. Carlsen. Optimal privacy and authentication on a portable communications system.

SIGOPS Operating Systems Review, 28(3):16–23, 1994.

BIBLIOGRAPHY 185

[30] D. W. Chadwick and A. Otenko. The PERMIS X.509 role based privilege management

infrastructure. Future Generation Computer Systems, 19(2):277–289, 2003.

[31] A. Chander, D. Dean, and J.C. Mitchell. Reconstructing trust management. Journal

of Computer Security, 12(1):131–164, 2004.

[32] H. Chen, J. A. Clark, and J. L. Jacob. Synthesising efficient and effective security

protocols. Electronic Notes in Theoretical Computer Science, 125(1):25–41, 2005.

[33] D. D. Clark and D. R. Wilson. A comparison of commercial and military computer

security models. In Proceedings of the 1987 IEEE Symposium on Security and Privacy,

pages 184–194. IEEE Computer Society Press, April 1987.

[34] J. A Clark and J. L Jacob. A survey of authentication protocol literature, version 1.0.

In http://www.cs.york.ac.uk/jac/, 1997.

[35] J. A Clark and J. L Jacob. Searching for a solution: Engineering tradeoffs and the

evolution of provable secure protocols. In Proceedings of the 2000 IEEE Symposium

on Security and Privacy. IEEE Computer Society Press, May 2000.

[36] D. Clarke, J. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate

chain discovery in SPKI/SDSI. Journal of Computer Security, 9(4):285–322, 2001.

[37] S. Creese, M. H. Goldsmith, B. Roscoe, and I. Zakiuddin. The attacker in ubiqui-

tous computing environments: Formalising the threat model. In T. Dimitrakos and

F. Martinelli, editors, Workshop on Formal Aspects in Security and Trust, Pisa, Italy,

September 2003.

[38] J. DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE

Symposium on Research in Security and Privacy, pages 105–113. IEEE Computer

Society Press, 2002.

[39] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on

Information Theory, 22(6):644–654, November 1976.

[40] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1:269–271, 1959.

[41] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions

on Information Theory, 29(2):198–208, 1983.

[42] C. Ellison and S. Dohrmann. Public-key support for group collaboration. ACM

Transactions on Information and System Security (TISSEC), 6(4):547–565, 2003.

BIBLIOGRAPHY 186

[43] C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas, and T. Ylonen. SPKI

certificate theory, IETF RFC 2693, September 1999.

[44] C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen.

SPKI examples, Draft-ietf-spki-cert-examples-01, September 1998.

[45] C.M. Ellison. The nature of a usable PKI. Computer Networks, 31:823–830, 1999.

[46] B. S. Firozabadi. Decentralized privilege management for access control. PhD thesis,

Imperial University, London, UK, September 2005.

[47] B. S. Firozabadi, M. J. Sergot, and O. Bandemann. Using authority certificates to

create management structures. In Security Protocols. 9th International Workshop,

volume 2467 of LNCS, pages 134–145, Cambridge, April 2001.

[48] S. N. Foley. A non-functional approach to system integrity. IEEE Journal on Selected

Areas in Communications, 21(1):36–43, January 2003.

[49] S. N. Foley. Believing in the integrity of a system. In IJCAR Workshop on Auto-

mated Reasoning for Security Protocol Analysis. Springer Verlag Electronic Notes in

Computer Science, 2004.

[50] S. N. Foley, B. Mulcahy, and T. B. Quillinan. Dynamic administrative coalitions

with WebCom DAC. In Proceedings of Web 2004: Third Workshop on e-Business,

Washington DC, December 2004.

[51] S. N. Foley and H. Zhou. Authorisation subterfuge by delegation in decentralised

networks. In the 13th International Security Protocols Workshop, LNCS, pages 127–

141, Cambridge, UK, April 2005. Springer-Verlag.

[52] S.N. Foley. Using trust management to support transferable hash-based micropay-

ments. In Proceedings of the 7th International Financial Cryptography Conference,

pages 1–14, Gosier, Guadeloupe, FWI, January 2003.

[53] I. Foster, C. Kesselman, and G. Tsudik. A security architecture for computational

grids. In Proceedings of ACM Conference on Computers And Security, pages 83–91.

ACM Press, October 1998.

[54] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis. A framework for IP

based virtual private networks, IETF RFC 2764, February 2000.

[55] L. Gong. Enclaves: Enabling secure collaboration over the internet. IEEE Journal

on Selected Areas in Communications, 15(3):567–575, 1997.

BIBLIOGRAPHY 187

[56] L. Gong, R. Needham, and R. Yahalom. Reasoning about belief in cryptographic

protocols. In Proceedings of the IEEE 1990 Symposium on Security and Privacy,

pages 234–248, Oakland, California, May 1990. IEEE Computer Society Press.

[57] L. Gong and P. Syverson. Fail-stop protocols: An approach to designing secure

protocols. In Proceedings of the 5th International Working Conference on Dependable

Computing for Critical Applications (DCCA-5), pages 44–55, 1995.

[58] The Object Management Group. Common object request broker architecture (COR-

BA/IIOP), http://www.omg.org/technology/documents/formal/corba iiop.htm, De-

cember 2002.

[59] J. D. Guttman. Security protocol design via authentication tests. In Proceedings of

15th IEEE Computer Security Foundations Workshop, pages 92–103. IEEE Computer

Society Press, April 2002.

[60] J. D. Guttman and F. J. Thayer. Authentication tests. In Proceedings of the 2000

IEEE Symposium on Security and Privacy, pages 96–109. IEEE Computer Society

Press, 2000.

[61] J. Heather, G. Lowe, and S. Schneider. How to prevent type flaw attacks on security

protocols. Journal of Computer Security, 11(2):217–244, 2003.

[62] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X.509 public key infrastructure

certificate and certificate revocation list (CRL) profile, IETF RFC 3280, April 2002.

[63] F. Jacquemard, M. Rusinowitch, and L. Vigneron. Compiling and verifying security

protocols. In Proceedings of Logic for Programming and Automated Reasoning, pages

131–160, Reunion Island, November 2000.

[64] S. L. Keoh, E. Lupu, and M. Sloman. PEACE : A policy-based establishment of ad-

hoc communities. In Proceedings of the 20th Annual Computer Security Applications

Conference (ACSAC’04), pages 386–395, Tucson, Arizona, December 2004. IEEE

Computer Society.

[65] A. Kerckhoffs. La Cryptographie militare. 1883.

[66] A. Keromytis and J. Smith. Creating efficient fail-stop cryptographic protocols. Tech-

nical Report MS-CIS-96-32, University of Pennsylvania, December 1996.

[67] H. Khurana, V. Gligor, and J. Linn. Reasoning about joint administration of access

policies for coalition resources. In Proceedings of IEEE International Conference On

Distributed Computing (ICDCS), Vienna, Austria, 2002.

BIBLIOGRAPHY 188

[68] D. Kindred. Theory Generation for Security Protocols. PhD thesis, Carnegie Mellon

University, 1999. Also available as Carnegie Mellon University, Computer Science

Report No. CMU-CS-99-130.

[69] D. E. Knuth. The art of computer programming, volume 3. Addison-Wesley, Reading,

2nd edition, 1998. sorting and searching.

[70] S. A. Kripke. A completeness theorem in modal logic. The Journal of Symbolic Logic,

31(2):276–277, June 1966.

[71] B. Lampson. Protection. In Proceedings of 5th Princeton Conference on Information

Sciences and Systems, Princeton, 1971.

[72] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed

systems: Theory and pratice. ACM Transactions on Computer Systems, 10(4):265–

310, 1992.

[73] N. Li, , W. Winsborough, and J. Mitchell. Beyond proof-of-compliance: Safety and

availability analysis in trust management. In Proceedings of the 2003 IEEE Sympo-

sium on Security and Privacy, pages 123–139, Berkeley, California, May 2003. IEEE

Computer Society.

[74] N. Li and J. C. Mitchell. RT: A role-based trust-management framework. In The

Third DARPA Information Survivability Conference and Exposition (DISCEX III),

pages 201–212, Washington, D.C., April 2003. IEEE Computer Society Press, Los

Alamitos, California.

[75] N. Li, W. H. Winsborough, and J. C. Mitchell. Delegation logic: A logic-based

approach to distributed authorization. ACM Transactions on Information and System

Security (TISSEC), 6(1):128–171, February 2003.

[76] G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR.

In Proceedings of the Second International Workshop on Tools and Algorithms for

Construction and Analysis of Systems (TACAS), volume 1055 of Lecture Notes In

Computer Science, pages 147–166. Springer-Verlag, Berlin Germany, 1996.

[77] G. Lowe. Some new attacks upon security protocols. In Proceedings of The 9th

Computer Security Foundations Workshop (CSFW’96), pages 162–169, Washington,

DC, USA, 1996. IEEE Computer Society Press.

[78] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the 10th

Computer Security Foundations Workshop (CSFW’97), pages 31–43, Los Alamitos,

1997. IEEE Computer Society Press.

BIBLIOGRAPHY 189

[79] S. Mäki, T. Aura, and M. Hietalahti. Robust membership management for ad-hoc

groups. In Proceedings of the 5th Nordic Workshop on Secure IT Systems (NORDSEC

2000), Reykjavik, Iceland, October 2000.

[80] W. Mao. An augmentation of BAN-like logics. In Proceedings of the Eighth IEEE

Computer Security Foundations Workshop (CSFW’95), pages 44–57. IEEE Computer

Society Press, 1995.

[81] C. Meadows. Formal verification of cryptographic protocols: A survey. In Proceedings

of the 4th International Conference on the Theory and Applications of Cryptology

(ASIACRYPT’94), volume 917 of Lecture Notes In Computer Science, pages 135–

150, London, UK, 1994. Springer-Verlag.

[82] C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Program-

ming, 26(2):113–131, 1996.

[83] Sun Microsystems. Enterprise JavaBeans(EJB tm) specification, version 2.1.

http://java.sun.com/products/ejb/docs.html, June 2003.

[84] J. Millen and F. Muller. Cryptographic protocol generation from CAPSL. Technical

Report SRI-CSL-01-07, SRI International, December 2001.

[85] J. K. Millen. The interrogator: A tool for cryptographic protocol security. In Pro-

ceedings of the 1984 IEEE Symposium on Security and Privacy, pages 134–141. IEEE

Computer Society, 1984.

[86] J. K. Millen. The interrogator model. In Proceedings of the 1995 IEEE Symposium

on Security and Privacy (SP’95), pages 251–260, Washington, DC, USA, 1995. IEEE

Computer Society.

[87] N. H. Minsky and V. Ungureanu. Law-governed interaction: a coordination and

control mechanism for heterogeneous distributed systems. ACM Transactions on

Software Engineering and Methodology, 9(3):273–305, 2000.

[88] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic

protocols using murφ. In Proceedings of the 1997 IEEE Symposium on Security and

Privacy, pages 141–151. IEEE Computer Society Press, May 1997.

[89] R. Needham and M. Schroeder. Using encryption for authentication in large networks

of computers. Communications of the ACM, 21(12), December 1978.

[90] R. Needham and M. Schroeder. Authentication revisited. Operating Systems Review,

21(7):7–7, January 1987.

BIBLIOGRAPHY 190

[91] D. M. Nessett. A critique of the Burrows, Abadi and Needham logic. ACM SIGOPS

Operating Systems Review, 24(2):35–38, 1990.

[92] D. O’Crualaoich. Theory generation for the simple logic, Bachelor Thesis, University

College Cork, 2002.

[93] D. Otway and O. Rees. Efficient and timely mutual authentication. Operating Systems

Review, 21(1):8–10, January 1987.

[94] S. Pancho. Paradigm shifts in protocol analysis. In Proceedings of the 1999 Workshop

on New Security Paradigms, pages 70–79, Caledon Hills, Ontario, Canada, 1999.

[95] L. Paulson. Designing a theorem prover. In Abramsky, Gabbay, and Maibaum, edi-

tors, Handbook of Logic in Computer Science, Volumes 1 (Background: Mathematical

Structures) and 2 (Background: Computational Structures), volume 2. Clarendon,

1992.

[96] L. Paulson. Relations between secrets: Two formal analyses of the Yahalom protocol.

Journal of Computer Security, 9(3):197–216, 2001.

[97] L.C. Paulson. The inductive approach to verifying cryptographic protocols. Journal

of Computer Security, 6(1, 2):85–128, 1998.

[98] L. Pearlman, C. Kesselman, V. Welch, I. Foster, and S. Tuecke. The Community

Authorization Service: Status and future. In Proceedings of the Conference for Com-

puting in High Energy Physics 03 (CHEP03), La Jolla, California, March 2003.

[99] A. Perrig and D.X. Song. A first step towards the automatic generation of security

protocols. In Proceedings of Network and Distributed System Security Symposium,

February 2000.

[100] A. Perrig and D.X. Song. Looking for diamonds in the desert: Extending automatic

protocol generation to three-party authentication and key agreement protocols. In

Proceedings of 13th IEEE Computer Security Foundations Workshop, pages 64–76.

IEEE Computer Society Press, July 2000.

[101] T.B. Quillinan. Secure Naming for Distributing Computing using the Condensed

Graph Model. PhD thesis, University College Cork, Cork, Ireland, July 2006.

[102] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and

public key cryptosystems. Communications of the ACM, 21(2):120–126, February

1978.

BIBLIOGRAPHY 191

[103] A.W. Roscoe. Using intensional specifications of security protocols. In Proceedings of

the Computer Security Foundations Workshop, pages 28–38. IEEE Press, 1996.

[104] H. Saidi. Towards automatic synthesis of security protocols. In Proceedings of the

Logic-Based Program Synthesis Workshop, AAAI 2002 Spring Symposium, Stanford

University, California, March 2002.

[105] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access

control models. IEEE Computer, 29(2):38–47, 1996.

[106] A. Shamir. Identity-based cryptosystems and signature schemes. In Proceedings of

CRYPTO 84 on Advances in cryptology, pages 47–53, New York, NY, USA, 1985.

Springer-Verlag New York, Inc.

[107] D. X. Song. Athena: a new efficient automated checker for security protocol analysis.

In Proceedings of the 12th IEEE Computer Security Foundations Workshop, pages

192–202. IEEE Computer Society Press, June 1999.

[108] F. Stajano. The resurrecting duckling – what next? In the 8th International Security

Protocols Workshop, volume 2133 of Lecture Notes in Computer Science, pages 204–

214. Springer-Verlag, 2000.

[109] F. Stajano and R. Anderson. The resurrecting duckling: Security issues for ad-hoc

wireless networks. In the 7th International Security Protocols Workshop, Lecture

Notes in Computer Science, pages 172–194. Springer-Verlag, 1999.

[110] P. Syverson. On key distribution for repeated authentication. Operating Systems

Review, pages 24–30, 1994.

[111] P. Syverson. A taxonomy of replay attacks. In Proceedings of the IEEE Computer

Security Foundations Workshop, pages 187–191. IEEE Press, 1994.

[112] P. Syverson. Limitations on design principles for public key protocols. In Proceedings

of the IEEE Symposium on Security and Privacy 1996, pages 62–72. IEEE Computer

Society Press, April 1996.

[113] P. Syverson. Towards a strand semantics for authentication logics. Electronic Notes

in Theoretical Computer Science, 20, 1999. 31, 1999.

[114] P. Syverson and I. Cervesato. The logic of authentication protocols. In the IFIP

WG 1.7 International School on Foundations of Security Analysis and Design on

Foundations of Security Analysis and Design (FOSAD’00), volume 2171 of Lecture

Notes in Computer Science, pages 63–136, London, UK, 2001. Springer-Verlag.

BIBLIOGRAPHY 192

[115] P. Syverson and P.C. van Oorschot. On unifying some cryptographic protocol logics.

In Proceedings of IEEE Computer Security Foudations Workshop, pages 14–28. IEEE

Computer Society Press, 1994.

[116] F. J. Thayer, J. C. Herzog, and J. D. Guttman. Strand spaces: Why is a security pro-

tocol correct? In Proceedings of the 20th IEEE Symposium on Security and Privacy,

pages 160–171. IEEE Computer Society Press, 1998.

[117] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.

Certificate-based access control for widely distributed resources. In Proceedings of

the Eighth USENIX Security Symposium (Security ‘99), pages 215–228, Washington,

D.C., August 1999.

[118] W. Tzeng and C. Hu. Inter-protocol interleaving attacks on some authentication and

key distribution protocols. Information Processing Letters, 69(6):297–302, 1999.

[119] T. Y. C. Woo and S. S. Lam. A lesson on authentication protocol design. Operating

System Review, pages 24–37, 1994.

[120] R. Wright, A. Getchell, T. Howes, S. Sataluri, P. Yee, and W. Yeong. Recommenda-

tions for an X.500 production directory service, Request for Comments (RFC) 1803,

Internet Engineering Task Force, June 1995.

[121] H. Zhou. Email communication with N. Li on bypassing delegation depth. 2005.

[122] H. Zhou. Email communication with R. Rivest on subterfuge in example 2.6 of SPKI

examples. 2005.

[123] H. Zhou and S. N. Foley. A collaborative approach to autonomic security protocols.

In Proceedings of the ACSA New Security Paradigms Workshop, pages 13–21, Nova

Scotia, Canada, September 2004.

[124] H. Zhou and S. N. Foley. A logic for analysing subterfuge in delegation chains. In

Proceedings of the Workshop on Formal Aspects in Security and Trust (FAST2005),

LNCS, pages 127–141, Newcastle upon Tyne, UK, July 2005. Springer-Verlag.

Index

authentication, 15

authentication goals, 64

authentication subterfuge, 9

authorisation subterfuge, 36, 126

backward construction, 74

bundle, 24

centralised coalition, 45

ciphertext, 16

closed delegation, 36, 158

coalition, 2, 42, 146

coalition framework, 48

complete formula tree, 84

conditional delegation, 35

constrained delegation, 159

cross coalition delegation, 159

DAL function, 148

DAL global function, 148

DAL principal, 146

decryption, 16

delegatee, 34

delegation, 34

delegator, 34

direct delegation, 34

directed acyclic graph (DAG), 75

discretionary access control, 33

dynamic threshold structure, 35, 147

early pruning, 92

encryption, 16

entity authentication, 64

executability, 86

globally unique function, 156

group, 42

identifier, 146

identity-based delegation, 35

incomplete formula tree, 84

indirect delegation, 34

individual, 146

initial formula tree, 82

intelligible message, 16

Key confirmation, 66

Key freshness, 66

key-agreement goals, 65

mandatory access control, 32

message secrecy, 72

Mutual understanding of shared keys, 66

object, 31

open delegation, 36, 159

optional conditional subgoal, 75

permission name conflict, 35

ping authentication, 64

principal sequence, 97

proof-of-compliance, 39

protocol step, 69

Provable Synthesis, 80

relevant, 100

relevant principal set, 102

193

INDEX 194

required precondition, 76

reverse, 74

role, 146

Role-based Access Control, 33

role-based delegation, 35

rooted tree, 75

secure key establishment, 66

semi-open delegation, 158

sequence covering, 97

static threshold structure, 35, 147

strands, 24

subject, 31

subterfuge, 2, 4

subterfuge-free, 3

the BSW-ZF logic, 61

threshold principals, 146

threshold structure, 35

tree grafting, 82

tree pruning, 95

unreachable assumption, 89

variable instantiation, 94

Virtual Organization, 42

