Using Trust Management to Support
Transferable Hash-Based Micropayments

Simon N. Foley

Department of Computer Science,
University College, Cork, Ireland
s.foley@cs.ucc.ie

Abstract. A hash-chain based micropayment scheme is cast within a
trust management framework. Cryptographic delegation credentials are
used to manage the transfer of micropayment contracts between pub-
lic keys. Micropayments can be efficiently generated and determining
whether a contract and/or micropayment should be trusted (accepted)
can be described in terms of a trust management compliance check. A
consequence is that it becomes possible to consider authorisation based,
in part, on monetary concerns. The KeyNote trust management system
is used to illustrate the approach.

KEYWORDS: Delegation; Digital Cash; One-way Hash Functions; Public Key
Certificates; Trust Management.

1 Introduction

Trust Management [3,4,9,21] is an approach to constructing and interpreting
the trust relationships between public keys that are used to mediate security
critical actions. Cryptographic credentials are used to specify delegation of au-
thorisation among public keys.

In this paper we consider how Trust Management can be used to manage trust
relationships that are based on monetary payment. A benefit to characterising
a payment scheme as a trust management problem is the potential to support,
within the trust management framework, sophisticated trust requirements that
can combine monetary and authorisation concerns. For example, authorisation
to access a valuable resource might be based on some suitable combination of
permission and monetary payment or deposit (possibly partially refundable if it
can be determined that the resource is not misused). In this case, perhaps a user
with ‘less’ permissions would be required to provide a larger deposit, while a
user with ‘more’ permissions provides a smaller deposit. The trust management
system is expected to help the application system manage what is meant by
trusted access to this resource.

In [7,14], the KeyNote trust management system is used to manage trust
for a micro-billing based payment scheme. Their scheme is similar to IBM’s
mini-pay scheme [13]: KeyNote is used by the payer (merchant) to determine

whether or not an off-line payment from a particular payee (customer) should
be trusted, or whether the payee should go online to validate the payment and
payee. The scheme is intended for small value payments (under $1.00). Since
the generation of each payment transaction requires a public key cryptographic
operation (signature) then it may not be practical for very low value payments
where the cost of processing is high relative to the value of the payment.

This paper extends earlier work [11] exploring how KeyNote can be used
to to support low-value micropayments in the provision of authorised access
to resources by the participants of a meta-computer The meta-computer [10,
18] is a network of heterogenous computers that work together to solve large
problems. It encourages the sharing of resources between different organisations,
departments and individuals. A consequence of this sharing is that the providers
of the resources expect payment for their computation processing and services,
on a per-use basis. For example, participants might be paid for contributing
processing power to weather model computation.

In [11], we describe a preliminary KeyNote implementation of micropayments
that is based on hash-chains [1,8, 20]. These schemes are limited in that it is not
possible for the participants to transfer (delegate) their micropayment contracts
to third parties. Some form of efficient transfer is desirable. For example, an
overloaded client workstation might like to transfer some of its workload and
the corresponding micropayment contract that it holds to another client.

The contribution in this paper is the development of a hash-chain based
micropayment scheme that is cast within a trust management framework and
supporting the efficient transfer of micropayment contracts. Codifying a mi-
cropayment scheme in terms of KeyNote also demonstrates the usefulness and
applicability of trust management systems in general.

The paper is organised as follows. Section 2 describes a simple model of
cryptographic credential based delegation that forms the basis of trust manage-
ment. Section 3 extends this model by considering how values (that represent
permissions) along a hash-chain can be delegated without having to sign new
credentials each time. This extension forms the basis of the transferable mi-
cropayment scheme that is proposed in Section 4. Section 5 considers how the
scheme can be codified and interpreted within the KeyNote trust management
systerm.

2 Delegating Authorisation

A simple model is used to represent delegation of authorisation between public
keys. A signed cryptographic credential, represented as {| Kp,p [}, indicates
that K4 delegates to Kp, the authorisation permission p. Permissions are struc-
tured in terms of lattice (PERM, <,M), whereby p < ¢ means that permission ¢
provides no less authorisation than p. A simple example is the power-set lattice
of {read,write}, with ordering defined by subset, and greatest lower bound (1)
defined by intersection.

Given a credential {| Kp,q [} -, and p < g then there is an implicit delegation
of pto Kp by K4, written as (| Kp,p| g, . Two reduction rules follow.

{|KBap|}KA (IKBapDKA;plsp
(IKB7PDKA (IKBapIDKA

If delegation is regarded as transitive, and if K4 delegates p to Kp, and Kp
delegates p to K¢, then it follows that K4 implicitly delegates p to K¢.

(Ko,p)k, (KB, Dk,
(Kc,pNp' g,

[R1] [R2]

[R3]

This corresponds to SPKI certificate reduction [9] (greatest lower bound is equiv-
alent to SPKI tuple intersection). It is not unlike a partial evaluation over a col-
lection of KeyNote credentials, resulting in a single equivalent credential. Such
reduction can be efficiently implemented using a depth first search of a dele-
gation graph such as [2,6]. At this point, we do not consider permissions that
cannot be further delegated and nor do we consider threshold schemes.

These rules are used by a trust management system to determine whether a
request for an action (permission) is authorised. If the local policy specifies that
K 4 is authorised for p, and delegation (Kp,p|) g, can be deduced from some
collection of credentials, then it follows that Kp is authorised for p.

3 Delegating Hash Chain Values

Consider the set of permission values PERM that are drawn from the range
of a one-way cryptographic hash function h(). Section 4 provides one possible
interpretation for such permissions that are based on hash-chain micropayments
whereby each permission (a hash value micropayment) represents authorisation
for payment.

Example 1 Principal K4 securely generates a secret random seed s and gen-
erates credential {| Kg, h(s) [} ¢, , delegating the ‘permission’ value h(s) to Kp.
With this credential, Kg is authorised for permission h(s), but is not authorised
for the permission s.

Suppose that at some later point in time, K4 wishes to delegate the per-
mission s to K. Rather than having to sign a new credential {| K, s [} ,, Ka
sends the value s over an unsecured channel to K. Principal K can then prove
that it has been authorised by K 4 for the permission s by presenting the original
credential { Kg, h(s) [, and the value s: a third party simply checks that the
hash of the s presented compares with the permission for which it holds a cre-
dential. The one-way nature of the hash function ensures that it is not feasible
for Kp to forge the s permission before it is revealed. A

In general, a delegator K4 generates a secure random seed s and computes
and issues credential {| Kg, h"(s) [} ¢, - If the seed s is known only to K4 then

[A"=1(s),...h%(s)] forms a totally ordered chain of permissions that can be del-
egated to K g by revealing the corresponding hash-value, one at a time, in order.
Principal K g is authorised for the permission z if h?(z) matches the value h"(s)
in the original credential for some i known by the principal. We assume that the
delegator K4 maintains a suitable interpretation for the semantics of the per-
missions it issues. The advantage of taking this approach is that K 4 need sign
only one initial delegation credential; subsequent delegations (along the permis-
sion chain, starting at the credential) do not require further costly cryptographic
signatures. Since h() is a one-way cryptographically secure hash function then
it is not possible for the delegatee Kp to forge or to compute a permission that
is yet to be delegated from the permission hash chain.

We provide an interpretation for this hash-chain delegation in terms of our
simple model of delegation. This is done by defining an ordering relation over
hash-value permissions PERM as follows.

Definition 1 For z,y € PERM then x < y, with respect to a some principle,
if and only if the principal knowing y can feasibly determine some z and 4 such
that h'(z) = y. A

Note that z < y should not be taken to mean that a principal can reverse the
hash function, rather, it means that the value has been revealed by a principal
who knows the initial seed. In addition, note that the orderings in this relation
increase (monotonically) to reflect what a principal can feasibly compute based
on the hash permissions that it has received to date. For Example 1, delegatee
Kp is in possession of {| K,y [}, where y = h(s) and cannot feasibly find some
x such that hf(x) = y. However, once s has been revealed to Kp then it knows
to calculate h!(s) = y and thus s < y.

Applying this definition of permission ordering to the certificate reduction
rule R2 illustrates how revealing a hash permission generates an implicit dele-
gation.

(KB,y g,;can feasibly compute h(z) =y
(IKva I)KA

Example 2 Suppose that K4 generates a secret seed s and computes permis-
sions a = h*(s), b = h3(s), ¢ = h?(s) and d = h'(s). K4 first delegates permis-
sion a to Kp by writing {| Kp,a [}, and then reveals b and c (see Figure 1).

Kp can prove that it is authorised by K4 for permission c¢ since it is autho-
rised for a and it can feasibly compute h(c) = b and and h(b) = a and therefore,
¢ < b < a, and by reduction (| Kp,c|) g, -

Suppose that Kp delegates authorisation for ¢ to K¢ by writing credential
{Kc,cltk,- Kc can prove that it is authorised by K4 for c as follows. K¢
holds credential chain {| Kp,a [}, | Ko,c} g, Since it knows permission c it
can feasibly calculate permissions b = h(c) and a = h(b) and therefore ¢ <
b < a. Thus, reduction rule R2 applied to {| Kp,al} g, gives implicit delegation
(KB,c) g, and this, with credential {| K¢, c[} g, gives (K¢, c|) g, by reduction
rule R3, that is, K¢ is authorised for ¢ by K 4.

Ky Kp K¢
ﬂKB:a[}KA

{]KC’CI}KB
{IKBva|}KA

Fig. 1. Hash-Chain Delegation

Note that in this case it is not possible to use the reduction rules to prove
that K¢ is authorised for permissions a and b. To become authorised for these
permissions it is necessary for Kp (or K 4) to explicitly delegate the permission
by signing a suitable initial credential such as {| K¢, a [}y, -

K 4 delegates permission d by making the value public, whereupon it becomes
possible to deduce (K¢, d), and (Kp,d), - A

This scheme is not limited to a single secret seed s: principals may generate
and use as many seeds as they require. Assuming that seeds are generated in a
cryptographically secure manner then the properties of the one-way hash func-
tion will ensure that collisions between permission chains are unlikely and that
permission forgery is infeasible. When multiple seeds are used the permission
ordering is composed of a series of independent chains (total orderings that can
be feasibly generated) from each seed. In this case, the greatest lower bound
operation aMb is the lower of a and b when they are comparable (same chain). If
they are incomparable (different chain) then the result of the operation is lattice
‘bottom’.

If the manner of delegation is such that it can be structured according to
a collection of hash-chains, as above, then we have an efficient way of perform-
ing delegation. Once the initial delegation credential {| K,y [}, is signed and
issued then subsequent delegation of permissions along that chain do not re-
quire costly cryptographic signatures. The next section considers transferable
hash-chain micropayments as a practical application of this general approach.
Whether other applications of hash-chain delegation exist is a topic for future
research.

In [16,17] hash-chains are used to provide an efficient method for revocation
of public key certificates. It can be interpreted within our framework as follows.
With certificate {| K, [p,n, h"(s)] [} ¢, , K4 delegates potential authorisation for
permission p to Kg for n time-periods. Each hash value along the hash chain
represents an authorisation for a particular time-period (starting with h"(s) for
time period 0) In this case, K 4 is considered authorised for time period 7 if a hash
value v is presented such that h(v) = h"(s). At the start of a new time period,
the certificate issuer makes available the corresponding hash value. Deciding not

to issue a hash-value provides an efficient form of revocation (at the granularity
of the time-period). In [16,17] a hash-chain gives a authorisation time-line for a
single permission. This differs slightly to our interpretation, where a hash-chain
represents a particular total ordering over a set of permissions.

4 Transferable Hash Chain Micropayments

Hash-based micropayments schemes are intended to support very low-value pay-
ments and operate as follows.

A payer (the principal making the payment) securely generates a fresh ran-
dom seed s, and computes h™(s), where h() is a cryptographic one-way hash
function. If s is known only to the payer, then [A"~1(s),n—1,val] . ..[h'(s), 1, val]
provides an ordered chain of micropayments, each one worth val. Initially, the
payer provides a payee with [h™(s), n,val], which acts as a contract for (n — 1)
micropayments. It is required that the payer is unforgeably linked with the con-
tract; for example, the payer signs the contract.

A payee (the principal receiving the payment) who has securely received
i micropayments, [h""1(s),n — 1,val]...[h""%(s),n — i,val], can use the hash
function h() to check their validity against the initial contract. Since h() is a
one-way hash function then it is not feasible for the payee to forge or compute
the next (i + 1)** payment (before it is issued). Micropayments may be cashed
in/reimbursed by the payee at any time: the payment plus contract provides
irrefutable evidence to a third party of the payer’s obligation to honour the pay-
ment. To guard against double spending, the payer must keep track of irrefutable
evidence of the reimbursements made to a payee against a contract.

This approach to micropayments has been proposed and used in payment
schemes proposed by [1,8,20]. For example, in [1], the payer threads digital
coins (issued by a bank) through the hash chain such that each micropayment
reveals an authentic digital coin that can be reimbursed by the original bank.

In this paper we show how these schemes can, in general, be supported within
a trust management system. Taking such an approach allows us to extend exist-
ing micropayment schemes by providing a framework that supports the trans-
fer /delegation of micropayment contracts between principals.

Micropayments are interpreted in terms of trust management as follows. A
payer sets up a contract by writing a suitable delegation certificate that contains
the initial contract hash value. Hash-value micropayments correspond to (hash-
value) permissions. A payee can cash in a micropayment if the payee has been
(hash-chain) delegated its corresponding permission; this test can be done as a
trust management compliance check.

Example 3 Consider Example 2. The payer K 4 issues a new contract credential
{ KB, alt g, - For the sake of simplicity, we assume that micropayment value (val)
and the length of the hash chain (n) are universally agreed and fixed beforehand.

Two micropayments are made by K4 to Kp as b and c¢. Payee Kp can
confirm that they are valid payments by carrying out a certificate reduction to

test (Kp,b| g ,, and so forth. Payer K 4 can validate a claim for reimbursement
of a micropayment b from Kp by testing that Kp can prove (Kp,b|) g, . We
assume that K4 also checks for double spending. A

The proposed scheme allows a principal to transfer part of a micropayment
contract to a third party. Suppose that a principal K holds a contract creden-
tial {| K,z [} -, and has been paid up to micropayment y, where z = hi(y) and,
therefore, implicitly holds (Kp,y) g, - Principal Kp can transfer the remainder
of this contract to a third party K¢ by signing {| K¢,y [} ¢, - In signing this cre-
dential, K¢ is declaring that it gives up any claim that it originally held to seek
reimbursement from K 4 for micropayments subsequent to y, based on its origi-
nal contract. The recipient K¢ uses credential chain [{| Kp, [} ¢, ,{ Ko,y [}k,]
as a contract for any claims for reimbursement from K4 for micropayments
subsequent to y.

Example 4 Continuing Example 3 (Figure 1), Kp transfers the remainder of
its micropayment contract with K4 to K¢ by writing {| K¢, c[} Ky Kc later
claims for reimbursement of micropayment d from K4 by providing certificate
chain [{| Kp,a [}, ,{ Kc,cltg,] as evidence of a valid contract along with d.
As before, the validity of this claim is tested as a trust management compliance
check for (Ko, d |, - A

Note that the proposed scheme can be used to provide information to assist in
the resolution of double payment on transferred contracts. Consider Example 4:

— If no claim for reimbursement for d has yet been made to K 4 then that claim
can be met.

— If K 4 has already reimbursed K¢ up to d and subsequently receives a claim
for d from Kp then it will reject the claim. In this case it can provide the
credential chain [{| Kp,a}x, ,{| Kc,cltg,] on the original claim to prove
that Kp has given up the right to make such a claim.

— If K4 has already reimbursed Kp and it receives a claim from K¢ then it
will reject the claim. However it can provide {| K¢, d [} g, to prove, in effect,
that Kp had agreed not to make such a claim. In this case K4 or Kp may
use this credential to seek restitution from Kpg.

This scheme may be used to manage simple deposits, whereby a deposit is
returned by transferring its original (unused) contract to the issuer. For ex-
ample, K4 transfers an ¢ micropayment deposit to Kp by signing contract
{| KB, h"(s) [} ., and revealing h"~*(s) (from which the chain of micropayments
h"=1(s)...h""%(s) may be calculated). The deposit recipient may return the
deposit by signing {| Ka,h"(s) [} ¢, and returning it to K. As above, this cre-
dential provides evidence that Kp does not expect reimbursement for the i
micropayments.

5 Towards a KeyNote Based Implementation

In this section we illustrate how the above scheme can be implemented within
the KeyNote trust management system [3]. Note that we assume a version of

KeyNote with a minor modification, whereby we assume the ability to invoke
an MD5 hash function within the KeyNote credential. Adding such functional-
ity to the KeyNote Standard [3] would be trivial and would not impact on its
architecture in any way.

We use the following general strategy. Suppose that K4 holds the top hi(s)
of the hash chain

[hi(s), hiL(s), ... hSB=inTad () RO(s)]

K 4 may have generated this hash chain (knows the seed s). Alternatively, k¥(s)
may be the most recent payment under some contract with another principle
(public key) (who knows s) that K4 trusts. In this second case, ‘trust’ means
that K 4 trusts the contract issuer for the purposes of the particular contract.

If K4 issues hi(s) as a contract to Kp then it, in effect, authorises Kp for
any hash value HashVal (that Kp can feasibly produce) in position ChainInd
in the above chain such that

hz‘7ChainInd(HaShVal) = h’(s) (1)

holds. This authorisation is achieved in KeyNote by K 4 writing a credential that
conditionally delegates any value of HashVal such that the above holds, to Kp.
Given particular values for the chain’s length i and the chain’s top h‘(s), then
K 4 (delegating to Kp) signs a credential that includes a condition

hi—ChainIﬂd(HashVal) = hz(s) (2)

defined over attribute variables ChainInd and HashVal. In this case, Kp must
know how to produce suitable values for ChainInd and HashVal such that the
above holds (for a compliance check that K g is authorised for the given ChainInd
and HashVal to hold). Thus, the compliance check proves the validity of a pay-
ment [ChainInd,HashVal]. Kp cannot forge a payment since to do so would
require reversing the one-way hash function.

Suppose that Kp has received j payments and wishes to delegate its remain-
ing contract h'*~9)(s) to K¢. Given particular values for h(*~9)(s) and i and j
then Kp (delegating to K¢) signs a credential that includes a condition

pli=9)—ChainInd(Hashyal) = h-9)(s) (3)

defined over attribute variables ChainInd and HashVal. In this case, Kp must
know how to produce suitable values for ChainInd and HashVal such that (3)
above holds. If such values are known (by K¢), then K¢ is authorised for
[ChainInd,HashVal] by Kg. From (3), it follows that

B (h(i—j)—ChainInd(Hashval)) — R (h(i—j) (s))
= hifchainInd(HaShval) — hz (S)

and, therefore, if equation (2) above holds in the credential issued by K 4 to Kpg,
then K¢ is also authorised for [ChainInd,HashVal] by K 4: a valid delegation

chain exists from K4 to K¢). This argument extends to any length delegation
chain that is constructed in this manner. This general strategy is illustrated in
the following examples.

We first consider how principals use KeyNote to determine whether they
should trust (accept) contracts and subsequent micropayments from third par-
ties.

Example 5 Consider Example 3. Principal "Kb" (Bob) trusts that "Ka" (Alice)
will honour individual contracts that are worth up $5.00. This is expressed in
terms of the following KeyNote credential.

Authorizer: "POLICY"
Licensees: "Ka"
Conditions: Q@PayVal * @ChainLen <= 500;

This policy credential defines the conditions under which micropayment con-
tracts from the licensee key "Ka" are trusted by Bob. The conditions are defined
using a C-like expression syntax in terms of the action attributes of the contract,
that is, PayVal and ChainLen. Attribute PayVal gives the value of a single mi-
cropayment (in cents) and Chainlen is the length of the contract hash-chain.
Note that the prefix ‘@’ on a KeyNote attribute converts the string attribute
variable to the integer value it represents. For the purposes of illustration we use
names to represent public keys (and do not provide signatures).

Alice sends a request to Bob to accept a contract for up to four micropay-
ments worth one cent each. The details of the contract are described in terms of
attributes PayVal and ChainLen, as described above, and the attribute HashVal
which gives the contact hash-value in position ChainInd = ChainLen (top of
chain). In this case, Alice’s contract is described by the following attribute bind-
ings.

PayVal + 1,

ChainLen « 4;

ChainInd « 4;

HashVal < "PwhHLtyFHO9yPUXEx4StCLA"

Alice signs the following KeyNote credential for this contract.

Authorizer: "Ka"
Licensees: "Kb"
Condition: @PayVal==1 && @ChainLen==4 &&
md5 (@Chainlen-@ChainInd,HashVal)== "PwhHLtyFH9yPUXEx4StCLA";
Signature:

Operation md5(i, s) is the it" iteration of the MD5 hash of s, that is, hi(s). In
this credential Ka authorises Kb for any hash value payment HashVal in position
ChainInd such that the condition holds. This condition is based on Equation (1)
given at the start of Section 5. In the credential above, the contract hash-value
is md5(4, s) and is taken to correspond to the value a in Example 3.

10

Bob uses KeyNote to check whether he should trust this particular contract
from Alice: he wishes to determine whether, under his own credential policy
above, his key Kb has been suitably authorised by Ka for the attribute bindings
defined above for the contract. Evaluating a KeyNote query for this request given
the above credentials returns true, indicating a trusted delegation (of contract)
from Ka to Kb.

Suppose that Alice sends the first payment "uyMmZsOK7qgAKcJ+PAFYLw".
Bob wishes check that this is an authorised payment, that is, it is a payment for
which he can expect to be reimbursed. He verifies that Kb is authorised for this
proposed payment (HashVal) by making a KeyNote query with the following
attribute bindings.

PayVal « 1; (per contract)

ChainLen « 4; (per contract)

ChainInd < 3; (this first payment is in position 3)

HashVal < "uyMmZsOK7qgAKcJ+PAFYLw"; (value b from Example 3)

This query returns true: Bob now knows another hash value for which Kb is
authorised by Ka.

Alice makes a second payment "0CJkY1EEisC60X0S36+jBA" (corresponding
to ¢ in Example 3), which Bob checks by querying KeyNote with action attributes

PayVal < 1; ChainLen < 4. ChainInd ¢ 2;
HashVal < "OCJkY1EEisC60X0S36+jBA".

and this also evaluates to true. A

Bob now has two hash value micropayments that have been revealed by Alice
and are, therefore, implicitly delegated by Alice via the initial contract creden-
tial. Bob presents these micropayments and the original contract credential and
requests reimbursement from Alice. To determine whether the reimbursement
request is valid, Alice must check that the micropayments are authorised based
on the original contract credential. This check of validity by Alice is similar
to the check carried out by Bob in the example above: given that Alice trusts
her own key Ka then, a KeyNote query determines whether, given the contract
credential, the key Kb authorised for the the given micropayments.

Note that KeyNote is used to verify that the micropayment is authorised in
principle; it does not consider the potential for double spending, that is, multiple
reimbursement requests for the same micropayment. Whether trust management
would be useful in managing this is a topic for future research.

The next example illustrates how KeyNote is used to manage the general
transfer of partially spent micropayment contracts.

Example 6 Continuing the previous example, suppose that Bob decides to
transfer the remainder of his contract with Alice to Clare (Kc). As described
in Example 4, this is done by Bob signing a credential that delegates authoriza-
tion for the remaining hash chain of the contract to Clare.

11

The hash value h(s) (hash value designated as ¢ in the example) that Bob
currently holds acts as a contract for the remainder of the hash chain that is
controlled by Alice. Thus, applying Equation (1) of the general credential writing
strategy, Bob signs the following contract credential.

Authorizer: "Kb"
Licensees: "Kc"
Condition:
0<= @ChainInd && @ChainInd <=2 &&
md5 (2-@ChainInd,HashVal)== "OCJkY1EEisC60X0S36+jBA";
Signature:

This authorises Kc for any HashVal (that she can feasibly produce) from the
remaining hash chain (2 > ChainInd > 0).

As was similarly done by Bob, Clare can use KeyNote to check whether she
should trust this contract. Assuming that Clare uses the same policy creden-
tial as Bob (trusting that Ka will honour contracts worth, at most, $5.00) then
she queries KeyNote to ensure that her key Kc is authorised for this contract
described by attribute bindings:

PayVal < 1; ChainLen - 4. ChainInd ¢ 2;
HashVal < "OCJkY1EEisC60X0S36+jBA".

The credentials of Bob and Clare form a delegation chain from Ka to Kc autho-
rising the contract hash value and thus the KeyNote query evaluates to true.
When Alice makes her third payment "ICy5YqxZB1uWSwcVLSNLcA" (corre-
sponding to d in Example 4) uses KeyNote, as done by Bob, to check the validity
of this HashVal in position ChainInd=1. Alice similarly processes a request for
reimbursement from Clare by checking that a delegation chain exists from Ka to
Kc for the particular payment. Recall from Section 4, that having made a con-
tract transfer, then it is assumed that Bob is trusted not to claim for reimburse-
ments of subsequent payments. If Alice decides that Bob is not trusted then it
is straightforward in KeyNote for Alice to use a credential that authorizes Bob’s
contract such that the authorization cannot be further delegated /transferred. A

One difficulty with the above KeyNote based scheme is that it generally
requires repeated hash calculations when determining the validity of a micro-
payment. Consequently, the performance advantage of using a payment scheme
based on one-way hash functions (instead of a public key based scheme such as
[7]) diminishes as payments further down the hash chain are spent.

This performance penalty is avoided if the payment recipient compares,
instead, the current hash payment (HashVal) against the previous payment
(PrevHash) by checking that

LastHash == md5(1, HashVal)

The following example illustrates how this check can be managed by the trust
management system.

12

Example 7 Consider Example 5. Bob trusts that Ka will honour contracts
worth up to 500 one cent micropayments. Bob offers service actions X and Y,
charging 1 cent and 2 cents each time they are used, respectively. Bob’s revised
policy credential is specified as follows.

Authorizer: "POLICY"

Licensees: "Ka"

Conditions:
Action=="NewContract" && Q@PayVal== 1 && @ChainLen<=500;
Action=="X" -> {PrevHash==md5(1,HashVal) && @ChainInd>=0};
Action=="Y" -> {PrevHash==md5(2,HashVal) && @ChainInd>=0};

Attribute Action defines the action requested: "NewContract" corresponds to
a request to accept a new payment contract, and "X" and "Y" are the service
actions offered.

When Bob receives a "NewContract" request from Alice he, as before, uses
KeyNote to check that his own key Kb is suitably authorised under this pol-
icy. If the contract is accepted, then Bob stores the contract hash value as
attribute PrevHash. When Alice requests service action X, Bob uses KeyNote
to check that Ka is authorised for payment HashVal, given Action « X, etc.
The compliance check succeeds when the payment upholds policy condition
PrevHash==md5(1,HashVal) and Bob sets PrevHash to HashVal.

To use service Y, a hash-value that permits calculation of two payments must
be presented by the payer. For example, if PrevHash is b (Example 2), then the
HashVal presented is d, corresponding to payments d and ¢ = h(d), and policy
condition PrevHash==md5 (2,HashVal) is satisfied. A

6 Discussion and Conclusion

This paper describes a hash-chain based micropayment scheme that is cast within
a trust management framework and supports the efficient transfer of micropay-
ment contracts. Cryptographic credentials are used to specify the transfer (dele-
gation) of contracts between public keys. Determining whether a micropayment
contract or payment should be trusted (accepted) corresponds to a trust manage-
ment compliance check. A benefit to characterising the payment scheme in this
way is that sophisticated trust requirements can be constructed both in terms
of monetary and more conventional authorization concerns: access control can
be based, in part, on the ability to pay. Codifying a micropayment scheme using
KeyNote also demonstrates the usefulness and applicability of trust management
systems in general.

The micro-billing scheme [7] uses KeyNote to help determine whether a
micro-check (a KeyNote credential, signed by a customer) should be trusted
and accepted as payment by a merchant. In [5] these microchecks provide a con-
venient way to manage the purchase of the hash-chain based coin stacks that are
used in [19] to pay for wireless LAN/IEEE 802.11 access to public infrastructure.
We believe that it would be straightforward to apply the technique described in

13

our paper to extend [5] to help (trust) manage the transfer of unspent portions
of coin stacks between principals.

Hash-chains are used in [16,17] to provide an authorization time-line for per-
mission and provides an efficient method for revocation of public key certificates.
It would be interesting to explore how our proposed strategy for coding hash-
chains within KeyNote credentials could be applied to technique in [16,17] to
provide support for revocation of KeyNote credentials.

In [12,15], hash functions are used to provide an efficient implementation of
authentication. In this paper, hash functions are used to support an efficient form
of delegation of authorization. Our proposed hash-chain delegation is restricted
to orderings that can be characterised as disjoint collections of total orders (hash-
chains) over permissions. Hash-chain micropayments are one example of this type
of ordering. We are investigating how other techniques might be used to support
a similar form of delegation of more general permissions.

Acknowledgements

Thanks to the anonymous reviewers for their useful comments on this paper and
for drawing my attention to [16,17]. Thanks also to Angelos Keromytis for his
comments and for providing access to [5] prior to publication.

References

1. Ross Anderson, Harry Manifavas, and Chris Sutherland. Netcard - a practical
electronic cash system. In Cambridge Workshop on Security Protocols, 1995.

2. Tuomas Aura. Comparison of graph-search algorithms for authorization verifica-
tion in delegation networks. In Proceedings of NORDSEC’97, 1997.

3. M Blaze et al. The keynote trust-management system version 2. September 1999.
Internet Request For Comments 2704.

4. M Blaze, J Feigenbaum, and J Lacy. Decentralized trust management. In Proceed-
ings of the Symposium on Security and Privacy. IEEE Computer Society Press,
1996.

5. M. Blaze, J. Ioannidis, S. Ionnidis, A. Keromytis P. Nikander, and V. Prevelakis.
Tapi: Transactions for accessing public infrastructure. submitted for publication,
2002.

6. Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. The role of trust man-
agement in distributed systems security. In Secure Internet Programming, pages
185-210, 1999.

7. Matt Blaze, John Ioannidis, and Angelos D. Keromytis. Offline micropayments
without trusted hardware. In Financial Cryptography, Grand Cayman, February
2001.

8. Jean-Paul Boly et al. The ESPRIT project CAFE - high security digital payment
systems. In ESORICS, pages 217-230, 1994.

9. C Ellison et al. SPKI certificate theory. September 1999. Internet Request for
Comments: 2693.

10. Simon N. Foley, Thomas B. Quillinan, and John P. Morrison. Secure component
distribution using WebCom. In Proceeding of the 17th International Conference
on Information Security (IFIP/SEC 2002), Cairo, Egypt, May 2002.

14

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

S.N. Foley and T.B Quillinan. Using trust management to support micropay-
ments. In In proceedings of the Annual Conference on Information Technology and
Telecommunications, Waterford, Ireland, October 2002.

Li Gong. Using One-way Functions for Authentication. Computer Communication
Review, 19(5):8-11, 1989.

A. Herzherg and H. Yochai. Mini-pay: Charging per click on the web. In Sizth
International World Wide Web Conference, 1997.

John Ioannidis et al. Fileteller: Paying and getting paid for file storage. In Pro-
ceedings of Financial Cryptography, March 2002.

Philippe A. Janson, Gene Tsudik, and Moti Yung. Scalability and flexibility in
authentication services: The kryptoknight approach. In INFOCOM (2), pages
725-736, 1997.

S. Micali. Efficient certificate revocation. In Proceedings of the 1997 RSA Data
Security Conference, 1997.

S. Micali. Novomodo: Scalable certificate validation and simplified management.
In Proceedings of the First Annual PKI Research Workshop, April 2002.

J.P. Morrison, D.A. Power, and J.J. Kennedy. A Condensed Graphs Engine to
Drive Metacomputing. Proceedings of the international conference on parallel
and distributed processing techniques and applications (PDPTA ’99), Las Vagas,
Nevada, June 28 - Julyl, 1999.

P. Nikander. Authorization and charging in public WLANSs using FreeBSD and
802.1. In Proceedings of the Annual USENIX Technical Conference, Freeniz Track,
2002.

Torben P. Pedersen. Electronic payments of small amounts. In Security Protocols
Workshop, pages 59-68, 1996.

R Rivest and B Lampson. SDSI - a simple distributed security infrastructure. In
DIMACS Workshop on Trust Management in Networks, 1996.

