
A Logic for Analysing Subterfuge in Delegation Chains

Hongbin Zhou and Simon N. Foley

Department of Computer Science,
University College Cork, Ireland.
{zhou,s.foley}@cs.ucc.ie

Abstract. Trust Management is an approach to construct and interpret the trust rela-
tionships among public-keys that are used to mediate security-critical actions. Cryp-
tographic credentials are used to specify delegation of authorisation among public
keys. Existing trust management schemes are operational in nature, defining security
in terms of specific controls such as delegation chains, threshold schemes, and so
forth. However, they tend not to consider whether a particular authorisation policy
is well designed in the sense that a principle cannot somehow bypass the intent of a
complex series of authorisation delegations via some unexpected circuitous route.
In this paper we consider the problem of authorisation subterfuge, whereby, in a
poorly designed system, delegation chains that are used by principals to prove autho-
risation may not actually reflect the original intention of all of the participants in the
chain. A logic is proposed that provides a systematic way of determining whether a
particular delegation scheme using particular authorisation is sufficiently robust to be
able to withstand attempts at subterfuge. This logic provides a new characterisation
of certificate reduction that, we argue, is more appropriate to open systems.

1 Introduction

Many commercial access control systems are closed and tend to rely on centralised authori-
sation policy/servers. An access control decision corresponds to determining whether some
authenticated user has been authorised for the requested operation. This strategy of first de-
termining who the user is and then whether that user is authorised has its critics, citing, for
instance, single point of failure, scalability issues and excessive administrative overhead.
A perhaps overlooked advantage of this approach is that administrators exercise tight con-
trol when granting access. The administrators are familiar with all of the resources that are
available and they make sure that the user gets the appropriate permissions; no more and
no less. The opportunity to subvert the intentions of a good administrator is usually small.

Cryptographic authorisation certificates bind authorisations to public keys and facilitate
a decentralised approach to access control in open systems. Trust Management [15, 5, 9, 16,
1, 6] is an approach to constructing and interpreting the trust relationships among public-
keys that are used to mediate access control. Authorisation certificates are used to specify
delegation of authorisation among public keys. Determining authorisation in these systems
typically involves determining whether the available certificates can prove that the key that
signed a request is authorised for the requested action.

However, these approaches do not consider how the authorisation was obtained. They
do not consider whether a principal can somehow bypass the intent of a complex series
of authorisation delegations via some unexpected circuitous but authorised route. In an
open system no individual has a complete picture of all the resources and services that are
available. Unlike the administrator of the closed system, the principals of an open system
are often ordinary users and are open to confusion and subterfuge when interacting with
resources and services. These users may inadvertently delegate un-intended authorisation
to recipients.

In this paper, we further explore the problem of authorisation subterfuge [14], whereby,
in a poorly designed system, delegation chains that are used by principals to prove autho-
risation may not actually reflect the original intention of all of the participants in the chain.

For example, the intermediate principals of a delegation chain may inadvertently issue in-
correct certificates, when the intended resource owner is unclear to intermediate partici-
pants in the chain. Existing Trust Management approaches such as [16] avoid this issue by
assuming that all certificates are correctly in place, well understood by principals, and may
not be improperly used.

However, we argue that subterfuge is a realistic problem that should addressed in a cer-
tificate scheme. For example, the payment systems [2, 3, 12] are vulnerable to authorisation
subterfuge (leading to a breakdown in authorisation accountability) if care is not taken to
properly identify the ‘permissions’ indicating the payment authorisations when multiple
banks and/or provisioning agents are possible. In open systems, a permission for a resource
should be uniquely related back to the resource owner, and this relationship should be un-
derstood by all related principals. If it is not well understood, then it may be subject to
authorisation subterfuge. Therefore, authorisation in open systems should involve deter-
mining whether the available certificates can prove that the key that signed a request was
intentionally authorised for the service.

In this paper we propose the Subterfuge Logic (SL) which can be used for analysing
authorisation subterfuge. The logic is used to determine whether an authorisation through
a delegation chain can be uniquely related to its intended resource and the resource owner.

The paper is organised as follows. In Section 2 we describe a series of subterfuge attacks
that can be carried out on certificate chains. Section 3 explores similarities between these
attacks on certificates and replay attacks on authentication protocols. Analysing a collection
of certificates for potential subterfuge is not unlike checking whether it is possible for
an ‘intruder’ to interfere with a certificate chain. Section 4 proposes the Subterfuge logic
which can be used to determine whether performing a delegation operation might leave
the delegator open to subterfuge. Examples from Section 2 are analysed in Section 5 and
Section 6 illustrate how subterfuge can also arise in local naming. Finally, we conclude in
Section 7.

2 Authorisation Subterfuge

2.1 SPKI/SDSI Authorisation

SPKI/SDSI [9] relies on the cryptographic argument that a public key provides a globally
unique identifier that can be used to refer to its owner in some way. However, public keys
are not particularly meaningful to users and, therefore, SPKI/SDSI provides local names
which provide a consistent scheme for naming keys relative to another. For example, the
local name that Alice uses for Bob is (Alice’s Verisign’s Bob), which refers to Bob’s public
key as certified by the Versign that Alice knows. By binding local names to public keys
with name certificates, principals may delegate their authorisation to others beyond their
locality through a chain of local relationships.

A SPKI/SDSI name certificate is denoted as (K, A, S), where: K specifies the certificate
issuer’s signature key, and identifier A is defined as the local name for the subject S. For
example, (KB , Alice,KA) indicates that KB refers to KA using the local name Alice.
A SPKI/SDSI authorisation certificate is denoted as (K, S, d, T), where: K specifies the
certificate issuer’s signature key; tag T is the authorisation delegated to subject S (by K)
and d is the delegation bit (0/1). For example, KB delegates authorisation T to Alice by
signing (KB , Alice, 0, T), where 0 indicates no further delegation. Note that for the sake
of simplicity, in this paper, we do not include a validity period V in certificates.

Authorisation tags are specified as s-expressions and Example 2.6 in [10] specifies tag
T1= tag (purchase(*range le <amount>),(*set <<items>>)) sych that it

“[...] might indicate permission to issue a purchase order. The amount of the pur-
chase order is limited by the second element of the (purchase) S-expression and,
optionally, a list of purchasable items is given as the third element. The company

whose purchase orders are permitted to be signed here will appear in the certificate
permission chain leading to the final purchase order. Specifically, that company’s
key will be the issuer at the head of the (purchase). [...]” [10]

2.2 Authorisation Examples

CC1 : KComA

C1 //KEmily

C2 //KAlice

C3 //KBob

CC2 : KComB

C4 //KClark

C5 //KAlice

C6 //KDavid

(a) certificate chain CC1 and CC2

KComA
+3KEmily

+3KAlice
+3

®¶

KBob

KComB
+3KClark

5=
sssssssss

sssssssss
KDavid

(b) delegation graph for T1

Fig. 1. Certificates in a Scenario

A company ComA allows its manager Emily to issue purchase orders, and Emily

may also delegate this right to others. After Emily receives the certificate from ComA,
Emily delegates this right (issuing a purchase order) to an employee Bob via Alice. We
have the following certificates: C1=(KComA, KEmily, 1, T1); C2=(KEmily, KAlice, 1, T1),
and C3=(KAlice, KBob, 0, T1) (Alice delegates this right to employee Bob, But Bob may
not delegate this right to others).

Suppose that there is another company ComB which also uses the tag T1 to issue
purchase orders. Suppose that Alice also works for ComB. Clark, a senior manager in
ComB, holds the right to issue purchase orders, and delegate it to Alice. ComB em-
ployee David accepts authority from Alice to issue purchase orders. We have certificates:
C4=(KComB , KClark, 1, T1); C5=(KClark, KAlice, 1, T1), and C6=(KAlice, KDavid, 0, T1).
Figure 1 gives the certificate chain CC1 and CC2 that Bob and David respectively use to
prove authorisation to issue purchase orders.

2.3 Authorisation Subterfuge

The examples above are effective when separate chains CC1 and CC2 are used to prove
authorisation. However, their combination, depicted in Figure 1(b), result in further del-
egation chains CC3 and CC4 and these lead to some surprising interpretations of how
authorisation is acquired.

CC3 : KComA
C1 //KEmily

C2 //KAlice
C6 //KDavid

CC4 : KComB
C3 //KClark

C4 //KAlice
C5 //KBob

Subterfuge 1: passive attack. Alice’s intention, when she signed C6, was that David should
use chain CC2 as proof of authorisation when making purchases. However, unknown
to Alice, dishonest David collects all other certificates and uses the chain CC3 as his
proof of authorisation.

KComA
1 //
3 //KEmily

1 //
3 //KAlice

1 //
4 //

2

²²
3

²²

KBob

KComB 4 //2 //
KClark

4

99
2sssss

99sssss

KDavid

(a) Certificate Chains

KComA

C1 //KEmily

C2 //KAlice

C3 //

C6

²²

KBob

KComB

C4 //KClark

C5

99ssssssssss

KDavid

(b) Passive Attack

KComA

C1 //KEmily

C2 //KAlice

C3 //

C6

²²

KBob

KComB

C4 //KClark

C5

99sssssssss

KDavid

(c) Outer-Active Attack

KComA

C1 //

C7

%%KKKKKKKKK
KEmily

C2 //KAlice

C3 //

C6

²²

KBob

KComB

C4 //KClark

C5

99sssssssss

KDavid

(d) Inner-Active attack

KComA

C1 //KEmily

C2 //KAlice

C3 //

C6

²²

KBob

KComB

C4 //KClark

C5

99sssssssss

KDavid

(e) Outer-Intercept attack

KComA

C1 //KEmily
C2 //KAlice

C3 //

C6

²²

KBob

KComB

C4 //KClark

C5

::tttttttttt

KDavid

(f) Inner-Outer Active Attack

Fig. 2. Attack graphs

This confusion may introduce problems if the certificate chains that are used to prove
authorisation are also used to provide evidence of who should be billed for the transac-
tion. In delegating, Alice believes that chain CC2 (from ComB) provides the appro-
priate accountability for ClarK’s authorisation

Subterfuge 2: outer-active attack. The above passive attack can be transformed into a
more active attack. David sets up a shelf company ComB with fictitious employee
Clark. Using attractive benefits, David masquerading as Clark, lures Alice to join
ComB. Clark delegates authorisations (T1) to Alice that correspond to authorisation
already held by Alice. However, Alice does not realize this and, in the confusion, fur-
ther delegates the authorisation to David; an authorisation from ComA that normally
he would not be expected to hold.

In both of these cases we think of Alice as more confused in her delegation actions rather
than incompetent; the permission naming scheme influences her local beliefs and it was the
inadequacy of this scheme that led to her confusion. Perhaps Alice has too many certificates
to manage and in the confusion looses track of which permissions should be associated with
which keys.

ComA may attack ComB in the same way to get the money back by CC4. However, if
ComB updates its certificate, then Alice does not hold the right for ComB. ComA cannot
get its money back.

Subterfuge 3: inner-active attack. Clark is a manager in ComA and ComB and colludes
with David (ComB employee). Clark delegates authorisation T1 legitimately obtained
from ComB to Alice. However, suppose that unknown to Alice, Clark is coincidentally
authorised to do T1 by ComA (via C7) and Clark intercepts the issuing of credential
C1 and conceals it. Alice delegates what she believes to be T1 from ComB to David
via C6. However, David can present chain [C7;C5;C6] as proof that his authorisation
originated from ComA.

The above authorisation subterfuge may be avoided if Alice is very careful about how she
delegates. However the following attacks are a bit more difficult for Alice to avoid.

Subterfuge 4: (outer-intercept attack) Clark intercepts certificate C2 and conceals it. When
delegating authorisation to David, Alice believes that the chain is [C4;C5;C6] from
ComB, however David knowingly or unknowingly uses a different chain [C1;C2;C6].

Subterfuge 5: (inner-outer active attack). Alice has a legitimate expectation that so long
as she delegates competently then she should not be liable for any confusion that is a
result of poor system/permission design. Alice can use this view to act dishonestly.
In signing a certificate she can always deny knowledge of the existence of other cer-
tificates and the inadequacy of permission naming in order to avoid accountability.
While Alice secretly owns company ComB, she claims that he cannot be held ac-
countable for the ‘confusion’ when Bob (an employee of ComA) uses the delegation
chain [C4;C5;C3] to place an order for Alice.

2.4 Avoiding Subterfuge: Accounting for Authorisation

The underlying problem with the examples in the previous section is that the permission T1
is not sufficiently precise to permit Alice to distinguish the authorisations that are issued
by different principals. An ad-hoc strategy to avoid this problem would be to ensure that
each permission is sufficiently detailed to avoid any ambiguity in the sense that it is clear
from whom the authorisation originated. This provides a form of accountability for the
authorisation. For example, including a company name as part of the permission may help
avoid the vulnerabilities in the particular example above.

However, at what point can a principal be absolutely sure that an ad-hoc reference to
a permission is sufficiently complete? Achieving this requires an ability to be able to fix a
permission within a global context, that is, to have some form of global identifier and/or
reference for the permission.

Public keys provide globally unique identifiers that are tied to the owner of the key.
These can also be used to avoid permission ambiguity within delegation chains. For ex-
ample, given SPKI authorisation certificate (KComA, KE , 1, [T1.KComA]), there can be no
possibility of subterfuge when Emily delegates to Alice with (KE , KA, 1, [T1.KComA]).
In this case the authorisation [T1.KComA] is globally unique and the certificate makes the
intention of the delegation and where it came from (authorisation accountability) very clear.

SPKI [9] characterises the checking of authorisation as ”is principal X authorised to
do Y?”. However, the examples above illustrate that this is not sufficient; checking ”is
principal X authorised to do Y by Y’s owner Z?” would be more appropriate.

Needless to say that this strategy does assume a high degree of competence on Alice’s
part to be able to properly distinguish between permissions [T1.KComA] and [T1.KComB],
where, for example, each public key could be 342 characters long (using a common ASCII
encoding for a 2048 bit RSA key). One might be tempted to use SDSI-like local names to
make this task more manageable for Alice. However, in order to prevent subterfuge, permis-
sions require a name that is unique across all name spaces where it will be used, not just the
local name space of Alice. In Alice’s local name space the permission [T1.(Emily’s ComA)]
may refer to a different ComA to the ComA that Alice knows.

Another possible source of suitable identifiers is a global X500-style naming service
(if it could be built) that would tie global identities to real world entities, which would in
turn be used within permissions. However, X500-style naming approaches suffer from a
variety of practical problems [7] when used to keep track of the identities of principals. In
the context of subterfuge, a principal might easily be confused between the (non-unique)
common name and the global distinguished name contained within a permission that used
such identifiers.

Certificate chains have been used in the literature to support degrees of accountabil-
ity of authorisation, for example, [3, 12, 2]. The micro-billing scheme [3] uses KeyNote
to help determine whether a micro-check (a KeyNote credential, signed by a customer)
should be trusted and accepted as payment by a merchant. The originator of the chain is
the provisioning agent, who is effectively responsible for ensuring that the transaction is

paid for. In [12], delegation credentials are used to manage the transfer of micropayment
contracts between public keys; delegation chains provide evidence of contract transfer and
ensure accountability for double-spending. These systems are vulnerable to authorisation
subterfuge (leading to a breakdown in authorisation accountability) if care is not taken to
properly identify the ‘permissions’ indicating the payment authorisations when multiple
banks and/or provisioning agents are possible.

3 Subterfuge in Satan’s Computer

Authorisation subterfuge is possible when one cannot precisely account for how an autho-
risation is held. In signing a certificate, we assume that the signer is in some way willing
to account for the authorisation that they are delegating. The authorisation provided by a
certificate chain that is not vulnerable to subterfuge can be accounted for by each signer
in the chain. A principal who is concerned about subterfuge will want to check that the
permission that is about to be delegated can also be accounted for by others earlier in the
chain: the accountability ‘buck’ should preferably stop at the head of the chain!

We are interested in determining whether, given a collection of known certificates, it
is safe for a principal to delegate some held authorisation to another principal. By safe we
mean that subterfuge is not possible. In simple terms, this requires determining if it is pos-
sible for a malicious outsider to interfere with a certificate chain with a view to influencing
the authorisation accountability. In order to help understand this we draw comparisons be-
tween subterfuge attacks and attacks on authentication protocols. Our hypothesis is that
techniques for analysing one can be used to analyse the other (as we shall see in the next
section when we use a BAN-like logic to analyse subterfuge in delegation chains).

A certificate is a signed message that is exchanged between principals; an authentica-
tion protocol step can be an encrypted message that is exchanged between principals. A
certificate chain is an ordering of certificates exchanged between principals. An authenti-
cation protocol is an ordering of encrypted messages exchanged between principals. For
example, the chain CC1 could be represented by the following protocol.

msg1 ComA → E : {KComA,KE , 1, T1}KComA

msg2 E → A : {KE ,KA, 1, T1}KE

msg3 A → B : {KA,KB , 0, T1}KA

There are differences between authentication protocols and certificate chains. A round of
a typical authentication protocol has a fixed and small number of pre-defined messages,
while the number of participants and messages in a certificate chain are unlimited and,
sometimes, it may not be predetermined.

An attack from Section 2 is represented as follows.

msg2′. I(CA) → A : {KI ,KA, 1, T1}KI

msg3′. A → D : {KA,KD, 0, T1}KA

Subterfuge attacks involve a malicious user (the intruder I) removing/hiding and replaying
certificates between different certificate chains. These actions are comparable to a combi-
nation of the replay attacks [4]:

Freshness attack “When a message (or message component) from a previous run of a
protocol is recorded by an intruder and replayed as a message component in the current
run of the protocol.”

Parallel session attack “When two or more protocol runs are executed concurrently and
messages from one are used to form messages in another.”

The analysis of an authentication protocol typically centres around an analysis of nonce
properties: if one may correctly respond to the nonce challenge in a round of an authenti-
cation protocol, it is the regular responder.

Freshness A nonce is a number used once in a message. Message freshness fixes a mes-
sage as unique and ties it to a particular protocol run.

Relevancy to originator A nonce is related to its originator. The nonce verifier is also the
nonce provider (originator). The nonce originator generates the nonce and this means
that it can recognise and understand its relationship with the nonce.

Relevance of message In a two-party mutual authentication protocol, each principal gen-
erates its own nonce. A principal uses its own nonce and the other principal’s nonce to
relate its own message to the other’s message.

There are some similarities between these nonce properties and the permission proper-
ties that rely on unique permissions.

Uniqueness is required in a permission string to account for its originator within a partic-
ular certificate chain.

Relevancy to originator A permission should be related to its originator and it should be
possible for others along the chain to recognise this relationship.

Relevance of certificates Certificates can be used to delegate combinations of permissions
that originated from different sources. These new certificates should be account for the
authorisation of the originators.

Lowe [17] defines the correctness of authentication as:

“A protocol guarantees agreement to a participant B (say, as the responder)
for certain data items x if: each time a principal B completes a run of the protocol
as responder using x, which to B appears to be a run with A, then there is a unique
run of the protocol with the principal A as initiator using x, which to A appears to
be a run with B.”

We characterise accountability of authorisation within a certificate chain as follows.

A certificate chain guarantees the principal A’s accountability of authorisation
to a participant B (say, as the delegatee) for certain permission R if: each time a
principal B is delegated a right R, which to B appears to be a certificate chain with
A, then there is a unique certificate chain with the principal A as initial delegator
authorising R.

We use a BAN-style logic to reason about this notion of accountability of authorization.

4 A Logic for Analysing Certificate Chains

In the last thirty years, a variety of techniques for analysing authentication protocols have
been proposed. The previous section demonstrated similarities between (freshness) vulner-
abilities in authentication protocols and (subterfuge) vulnerabilities in delegation chains. In
this section we develop the Subterfuge Logic (SL) which draws on some of the techniques
from BAN-like logics to analyse subterfuge in certificate chains.

4.1 The language

The logic uses the following basic formulae. P , Q,R and S range over principals; X repre-
sents a message, which can be data or formulae or both; φ will be used to denote a formula.
The basic formulae are the following:

–](X): Formula X is a globally unique identifier. For example, this is typically taken as
true for X.500 distinguished names and for public keys.

– X | P : represents the message X , as guaranteed/accounted for by principal P ; this
means that P is willing to be held accountable for the consequences of action X . For
example, it is in Alice’s interest to delegate T1 |KComA to Bob, as opposed to just T1.

– X ; P : Principal P is an originator of formula X . In the examples above, we write
T1|KComA to mean that permission T1 was first uttered by KComA in some chain.
Note that we assume that the same global unique formula (permission) cannot originate
from two different principals, that is, if X ; P , X ; Q and](X) then P = Q.

– P 3 X: P is authorised for the action X .
– P Â X: P is authorised to delegate X to others.
– P ‖∼ X: P directly says X . This represents a credential that is directly exchanged

between principals.
– P |∼ X: P says X . P directly says X or others say X (who have been delegated to

speak on X by P).

Further formulae can be derived by using propositional logic. If φ1 and φ2 are formulae,
then φ1 ∧ φ2 (φ1 and φ2), φ1 ∨ φ2 (φ1 or φ2), and φ1 → φ2 are formulae.

SPKI/SDSI credentials can be encoded within the logic as follows. An authorisation
credential (K, S, 0, T) is represented as K ‖∼ (S 3 T), and credential (K, S, 1, T) repre-
sented as K ‖∼ (S 3 T ∧ S Â T). The purpose of the logic is to permit a principal decide
whether it would be safe for it to delegate an authorisation based on the collection of cre-
dentials that it currently holds. For the examples above, Alice would like to be able to test
whether it is safe for her to write a credential corresponding to KAlice ‖∼ (KDavid 3 T1).
That is, she wishes that someone further back on the chain will accept accountability for the
action, that is, KAlice Â T1|KComA can be deduced (which is not possible for the exam-
ples in Section 2). Note that in signing the credential, Alice is also accepting accountability
for the authorization.

4.2 Inference rules

Gaining Rules

G1 If P holds authorisation for X , for which Q can be held accountable, and Q may
delegate X then P is also authorised for X .

P 3 X |Q,Q Â X

P 3 X

G2 We have a similar rule for authorisation to delegate.

P Â X |Q,Q Â X

P Â X

Direct delegation

D1 Direct delegation of authority assumes that the delegator accepts responsibility for the
action.

P ‖∼ (Q 3 X)

P |∼ (Q 3 X |P), Q 3 X |P

D2 We have a similar rule for authorisation to delegate.

P ‖∼ (Q Â X)

P |∼ (Q Â X |P), Q Â X |P

D3 The usual conjunction rules apply.

P ‖∼ (φ1 ∧ φ2)

P ‖∼ φ1, P ‖∼ φ2

Indirect delegation

I1 If principal P says that Q is authorised to perform an action X (with R accountable),
and P is authorised to delegate X (with R accountable), then Q is authorised to per-
form X (with R accountable).

P |∼ (Q 3 X |R), P Â X |R

Q 3 X |R

I2 We have a similar rule for authorisation to delegate.

P |∼ (Q Â X |R), P Â X |R

Q Â X |R

I3 If principal P says that Q is authorised to perform action X by P , then P says that Q

is authorised to perform X .
P |∼ (Q 3 X |P)

P |∼ (Q 3 X)

I4 Accountability can be stripped from an authorisation. Note, however, that stripping ac-
countability does not refute the existence of the accountability.

P |∼ (Q Â X |P)

P |∼ (Q Â X)

I5 Accountability is transitive along certificate chains.

P |∼ (Q Â X |R), R |∼ (P Â X |S)

R |∼ (Q Â X |S)

I6 We have a similar rule for authorisation.

P |∼ (Q 3 X |R), R |∼ (P Â X |S)

R |∼ (Q 3 X |S)

Unique Origin Rules

U1 If Q is authorised for unique X that originated from P then P can be held accountable
for X .

](X), X ; P,Q 3 X

Q 3 X |P

U2 We have a similar rule for authorisation to delegate.

](X), X ; P,Q Â X

Q Â X |P

5 Analysing Authorisation Subterfuge

The example from Section 2 is analysed using the Subterfuge Logic as follows. Certifi-
cates C1 and C2 are encoded by the following formulae. Note that principal names are
abbreviated to their first initial if no ambiguity can arise.

KComA ‖∼ ((KE 3 T1) ∧ (KE Â T1))

KE ‖∼ ((KA 3 T1) ∧ (KA Â T1))

Assumptions regarding uniqueness include the following.

](KComA),](KComB),](KA),](KB),](KC),](KE)

Principal ComA is assumed authorised to delegate and accept accountability for the autho-
risations T1 that it originates.

KComA Â (T1 |KComA)

Before delegating authority for T1 to Bob, Alice wishes to test whether it is safe to do
so. Alice tests whether ComA accepts accountability for this action, that is she attempts
to deduce KA Â T1 | KComA using the above assumptions within the logic. This is not
possible since no assumption is made regarding uniqueness of T1, and, therefore, we cannot
deduce KE |∼ (KA Â T1 |KComA); thus Alice refrains from the delegation.

In Trust Management public keys provide globally unique identifiers that are tied to the
owner of the key. These can also be used to avoid authorisation ambiguity within delega-
tion chains. For example, given SPKI certificate (KComA, KE , 1, [T1.KComA]), there can
be no possibility of subterfuge when Emily delegates to Alice by signing the certificate
(KE , KA, 1, [T1.KComA]). In this case the authorisation [T1.KComA] is globally unique,
that is](T1|KComA) and the certificate makes the intention of the delegation and account-
ability very clear.

The revised certificates are represented in the logic as follows.

KComA ‖∼ ((KE 3 T1 |KComA) ∧ (KE Â T1 |KComA))

KE ‖∼ ((KA 3 T1 |KComA) ∧ (KA Â T1 |KComA))

Given these certificates then Alice can deduce

KA Â T1 |KComA

and can safely delegate to Bob as

KA ‖∼ (KB 3 T1 |KComA)

and we can deduce that KB 3 T1 |KComA. Considering other certificates, including

KComB ‖∼ ((KC 3 T1 |KComB) ∧ (KC Â T1 |KComB))

KC ‖∼ ((KA 3 T1 |KComB) ∧ (KA Â T1 |KComB))

KA ‖∼ (KD 3 T1 |KComB)

we can deduce KD 3 T1 |KComB , the expected authorisation.
Suppose that ComB issues confusing certificates to Clark, who in turn delegates the

incorrect authorisation to Alice.

KComB ‖∼ ((KC 3 T1 |KComA) ∧ (KC Â T1 |KComA))

KC ‖∼ ((KA 3 T1 |KComA) ∧ (KA Â T1 |KComA))

In this case we can deduce KComB |∼ (KA Â T1 | KComA) and thus and KA Â T1 |
KComB . However, before A delegates this right for KComA, she needs (but cannot hold)
the following formulae KComB Â T1 |KComA, or KC Â T1 |KComAs. Thus, she should
not delegate and therefore resists the subterfuge attack.

The conventional SPKI/SDSI authorisation certificate reduction rule can be described
as

P ‖∼ (Q Â X) ∧ Q |∼ (R Â X) → P |∼ (R Â X)

in the SL logic (with a similar relationship for delegation of authorisation). Such relation-
ship does not facilitate the tracking of accountability during certificate reduction.

6 Subterfuge in Local Names

Subterfuge is also possible when using local name certificates. Ellison and Dohrmann [8]
describe a model based on SPKI/SDSI name certificates for access control in mobile com-
puting platforms. A group leader controls all rights of a group. A group leader may delegate
the right “admitting members” to other principals. For example, KG is a group leader; KG

admits KA as its group member by certificate C1. KG defines a large random number n,
which will be used as KA’s local name for KG’s member. Then, KG issues certificate C2

to KA which means that if KA accepts a principal as (KA’s n), then the principal also
becomes KG’s group G’s member. KA admits KB as KA’s n by C3. Together with C2,
KB also becomes a member of KG’s G as presented in C4. The certificates are as follows.

C1 = (KG,G,KA); C2 = (KG,G, (K′

As n)); C3 = (KA, n,KB)

From these we can deduce (KG,G,KB), that is, KB is now a member of group G.
The scheme works in a decentralised manner and thus no single member will hold the

entire membership list. This means that there is no easy way to prove non-membership. The
strategy described in the paper is sufficiently robust as it relies on face-to-face verification
of certificate C2 when a member joins.

However, the nonce is large and there may be potential for confusion during the face-
to-face verification and this can lead to subterfuge. Consider the following certificates.

C ′

1
= (KI,GI,KA); C ′

2
= (KI,GI, (K

′

As n)); C ′

3
= (KA, n,KI)

Suppose that the intruder KI wants to join KG’s group G. KI intercepts C2 and issues C ′

2

by using the number in C2. In the confusion, KA issues C ′

3
which corresponds to admitting

KC (which the intruder controls) as a member of KI ’s GI for KA. In this case, KC may
use C2 and C ′

3
to prove its membership in KG’s group G.

7 Conclusions

In this paper we described how poorly characterised permissions within cryptographic cre-
dentials can lead to authorisation subterfuge during delegation operations. This subterfuge
results in a vulnerability concerning the accountability of the authorisation provided by a
delegation chain: does the delegation operations in the chain reflect the true intent of the
participants?

The challenge here is to ensure that permissions can be referred to in a manner that
properly reflects their context. Since permissions are intended to be shared across local
name spaces then their references must be global. In the paper we discuss some ad-hoc
strategies to ensure globalisation of permissions. In particular, we consider the use of global
name services and public keys as the sources of global identifiers.

The Subterfuge Logic proposed in this paper provides a systematic way of determining
whether a particular delegation scheme using particular ad-hoc permissions is sufficiently
robust to be able to withstand attempts at subterfuge. This logic provides a new charac-
terisation of certificate reduction that, we argue, is more appropriate to open systems. We
believe that it will be straightforward to extend the Subterfuge Logic to consider subterfuge
in SDSI-like local names (as considered in Section 6).

Trust Management, like many other protection techniques, provide operations that are
used to control access. As with any protection mechanism the challenge is to make sure that
the mechanisms are configured in such a way that they ensure some useful and consistent
notion of security. Subterfuge logic helps to provide assurance that a principal cannot by-
pass security via some unexpected but authorised route. This general goal of analysing un-
expected but authorised access is not limited to just certificate schemes. Formal techniques
that analyse whether a particular configuration of access controls is effective is considered

in [11, 13]; strategies such as well formed transactions, separation of duties and protection
domains help to ensure that a system is sufficiently robust to a malicous principle. We are
currently exploring how the subterfuge logic can be extended to include such robustness
building strategies.

8 Acknowledgements

This work is supported by the UCC Centre for Unified Computing under the Science Foun-
dation Ireland WebComG project and by Enterprise Ireland Basic Research Grant Scheme
(SC/2003/007).

References

1. M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis. The keynote trust-management
system, version 2, September 1999. IETF RFC 2704.

2. M. Blaze, J. Ioannidis, S. Ioannidis, A. Keromytis, P. Nikander, and V. Prevelakis. Tapi: Trans-
actions for accessing public infrastructure. In Proceedings of the 8th IFIP Personal Wireless
Communications (PWC) Conference, 2003.

3. M. Blaze, J. Ioannidis, and A. D. Keromytis. Offline micropayments without trusted hardware.
In Financial Cryptography, Grand Cayman, February 2001.

4. J. A. Clark and J. L. Jacob. A survey of authentication protocol literature, version 1.0. In
http://www.cs.york.ac.uk/jac/, 1997.

5. D. Clarke, J.-E. Elien, C. Ellison, M. Fredette, A. Morcos, and R. L. Rivest. Certificate chain
discovery in spki/sdsi. Journal of Computer Security, 9(4):285–322, 2001.

6. J. DeTreville. Binder, a logic-based security language. In Proceedings of the 2002 IEEE Sym-
posium on Research in Security and Privacy, pages 105–113. IEEE Computer Society Press,
2002.

7. C. Ellison. The nature of a usable PKI. Computer Networks, 31:823–830, 1999.
8. C. Ellison and S. Dohrmann. Public-key support for group collaboration. ACM Transactions on

Information and System Security (TISSEC), 6(4):547–565, 2003.
9. C. Ellison, B. Frantz, B. Lampson, R. L. Rivest, B. Thomas, and T. Ylonen. Spki certificate

theory, September 1999. IETF RFC 2693.
10. C. M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen. Spki examples,

September 1998.
11. S. Foley. A non-functional approach to system integrity. IEEE Journal on Selected Areas in

Communications, 21(1), Jan 2003.
12. S. Foley. Using trust management to support transferable hash-based micropayments. In Pro-

ceedings of the 7th International Financial Cryptography Conference, Gosier, Guadeloupe, FWI,
January 2003.

13. S. Foley. Believing in the integrity of a system. In IJCAR Workshop on Automated Reasoning
for Security Protocol Analysis. Springer Verlag Electronic Notes in Computer Science, 2004.

14. S. N. Foley and H. Zhou. Authorisation subterfuge by delegation in decentralised networks. In
International Security Protocols Workshop, Cambridge, UK, April 2005.

15. R. Housley, W. Polk, W. Ford, and D. Solo. Internet x.509 public key infrastructure certificate
and certificate revocation list (crl) profile, April 2002.

16. N. Li et al. Beyond proof-of-compliance: Safety and availability analysis in trust management.
In Proceedings of 2003 IEEE Symposium on Security and Privacy. IEEE, 2003.

17. G. Lowe. A hierarchy of authentication specifications. In PCSFW: Proceedings of The 10th
Computer Security Foundations Workshop. IEEE Computer Society Press, 1997.

