
A Bloom Filter based Model for Decentralised

Authorisation

Simon N. Foley

Dept. of Computer Science

University College Cork

s.foley@cs.ucc.ie

Guillermo Navarro-Arribas

Dept. of Information and Communications Engineering

Universitat Autønoma de Barcelona

gnavarro@deic.uab.cat

Abstract

A decentralised authorisation mechanism is proposed that uses Bloom

filters to implement authorization delegation. This lightweight mecha-

nism is unlike conventional approaches that typically rely on public key

certificates to implement distributed delegation. In taking an approach

based on one-way hash functions, the mechanism may be preferable for

use in computationally constrained environments where public-key cryp-

tography is not desirable.

1 Introduction

Access Control systems such as [2, 8, 24] are intended to provide a decentral-
ized approach to constructing and interpreting authorization relationships be-
tween principals (public keys). Unlike a centralized authorization server-based
approach, authorization rules are defined and signed locally by issuing princi-
pals and these cryptographic delegation credentials can be distributed in any
manner to suit the principals involved. In computational terms, and assuming
non-threshold delegation, a delegation action requires a public-key based signing
operation, while a verifier must carry out a public key based signature verifi-
cation operation. These, relatively computationally expensive, operations may
not be desirable in applications where performance and/or energy consumption
are constrained. Such applications include sensor networks, RFID systems, and
some smartcards..

One-way cryptographic hash-functions have been used previously to provide
alternatives to symmetric key cryptography in the implementation of authenti-
cation protocols, for example, [14, 35]. These lightweight implementations are

1

motivated by constraints on computation and power consumption [35], or other
concerns, such as the availability of cryptographic operations [14]. This paper
extends this idea by developing a distributed authorization delegation mecha-
nism that is constructed entirely using one-way cryptographic hash functions. It
is suggested in [10] that hash-chains, used for example in micropayment [32, 31]
and password systems [18], can be used to provide a rudimentary form of autho-
risation delegation. In [10] a hash-chain provides a total ordering of permissions
and delegation corresponds to exposing a hash-value to a recipient, while au-
thorization verification corresponds to a test for chain membership. However,
a hash-chain is not useful as a general authorization system since it can only
support sets of permissions that form total orderings. By implementing per-
missions as Bloom filters [3], the approach described in this paper supports the
more practical lattice and partial orderings of permissions.

The paper is structured as follows. Section 2 provides a review of Bloom
filters and some particular properties that are used in the development of Bloom
permissions, which are described in Section 3. Section 4 considers potential
attacks on the system and provides an analysis of the security of the proposed
mechanism. Finally, Section 5 discusses the proposal with regard to related
work, and Section 6 concludes the paper.

2 Bloom filters

The proposal relies on the use of Bloom filters introduced by B.H. Bloom in
1970 [3], as a space and time efficent method for testing membership of elements
in a given set.

A Bloom filter is a set of n elements implemented as a bit vector B =
B[1], . . . ,B[m] with initial value 0. It uses a family of one-way hash functions fi

(i : 1..k) with an image uniformly distributed over the interval [1..m]. To add
an element x to the filter (set), one computes the values xi = fi(x) for i : 1..k
and sets the bits B[xi] = 1 in B. To check if an element y is in the filter, one
verifies that, given the values yi = fi(y) for i : 1..k, then the bits B[yi] are equal
to 1.

Bloom filters are mostly used as probabilistic data structures to encode sets
of elements. Examples of their application include Google’s BigTable distributed
storage system [6], which uses them to check in-memory data to reduce disk
lookups, and the Squid Web Proxy [29], which implements its cache digest with
Bloom filters.

In addition to being an efficient data structure for encoding sets, Bloom
filters have some interesting security characteristics. Given a value it is fast and
easy to check whether the element is in the filter. However, given a suitably
configured filter, it is not feasible to calculate the list of elements contained in
the filter.

2

2.1 Encrypted Bloom filters

Bellovin and Cheswick [1], introduced encrypted Bloom filters. They use a
Bloom filter but changing the family of hash functions by the Pohlig-Hellman
encryption algorithm [28], which has the property that Ekj

(Eki
(x)) = Eki◦kj

(x),
where Eki

(x) denotes the encryption of x with key ki. To introduce a value x in
the filter, they compute EkA

(x) and divide the result in parts of size ⌈log2m⌉,
so the length of the output determines the value of k in the filter (number of
hash functions in the original model).

The scenario proposed by this work is that of privacy preserving searches.
That is, given a user B with a set of values, another user A can send an encrypted
value to B. Then B can check if the value is in its set without gaining knowledge
about the value sent by A. To that end a trusted third party (TTP) is used to
avoid key distribution problems. The user A computes EkA

(x) and sends it to
the TTP. The TTP has all values rij = kj ◦ki for all i, j, and can then compute
EkB

(x) = EkA◦B
(EkA

(x)). The value EkB
(x) is returned to A. Now A can send

this value to B, who can check if the respective value x is in the filter.
There are similar approaches for encrypted bloom filters such as [17], which

uses an encryption functions as simple hash functions, however the approach
requires the generation and distribution of keys, which indirectly can lead to the
use of a TTP if we consider a generic distributed scenario. In [27], the authors
attempt to remove the need for a TTP, however that comes at the expense of
using public key cryptography, either with blind signatures or using oblivious
pseudorandom functions, which require at least a modular exponentiation.

In the approach proposed in this paper, the use of a TTP or a complex
key distribution scheme is avoided. Moreover, although the Pohlig-Hellman
algorithm is relatively efficient, it is still expensive when compared with the
original Bloom filter model. We therefore opt to use the Bloom filter in its
original formulation. We will argue that, assuming a suitable configuration of
the Bloom filter, we can obtain a tolerable degree of security without relying on
the use of more complex cryptographic operations.

2.2 False positives in Bloom filters

Bloom filters may present false positives. This section discusses several defini-
tions of the false positive rate of Bloom filters, which have been considered in
the literature

The first estimation of the false positive rate of Bloom filters appeared in [26].
Given a Bloom filter of size m, a family of k hash functions and n elements, this
first approach (denoted as fp1) is given by:

fp1(k, n, m) =

(

1 −

(

1 −
1

m

)kn
)k

(1)

That is, if p is the probability that a specific bit is still 0 after adding n elements

3

in the filter, then:

p =

(

1 −
1

m

)kn

≈ e−kn/m

fp1(k, n, m) = (1 − p)k ≈ (1 − e−kn/m)k

Departing from Equation (1), the false positive rate can be minimised in
terms of the parameter k. Thus, given m and n, an optimal configuration is
achieved for:

k =
m

n
ln 2 (2)

Moreover, in this case we have that fp1(k, n, m) = (1/2)k ≈ (0.6185)m/n [5].
Recently, in [4] the authors found Equation (1) to be slightly imprecise.

They determined the probability of a false positive in a Bloom filter as:

fp2(k, n, m) =
1

mk(n+1)

m
∑

i=1

iki!

(

m

i

){

kn

i

}

(3)

where
{

kn
i

}

is the Stirling number of second kind [15], defined as:

{

kn

i

}

=
1

i!

i
∑

j=0

(−1)i−j

(

i

j

)

jkn

In the same paper [4] the authors provide an upper and lower bound for
fp2(k, n, m).

pk < fp2(k, n, m) ≤ pk

(

1 + O

(

k

p

√

lnm − k ln p

m

))

(4)

where p = 1 −
(

1 − 1
m

)kn
. Note that pk = fp1(k, n, m) (Equation (1)), that is,

the original estimation of the false positive rate is actually a strict lower bound.
In [21] the authors arrive at an equivalent formulation of Equation (3), con-

firming the validity of this new estimation:

fp3(k, n, m) =
m!

mk(n+1)

m
∑

i=1

i
∑

j=1

(−1)i−j jknik

(m − i)!j!(i − j)!
(5)

Given the current state of the art, fp1 is considered as a first approximation
of the false positive ratio of Bloom filters, while fp2 and fp3 do provide the
exact estimation. The error in the original estimation of the false positive given
by fp1 from Equation (1) is that given the result of the hash functions y1, . . . , yk

for a given element, the events B(yi) and B(y1) = B(y2) = . . . = B(yk) = 1 were
assumed to be independent. This was found to be imprecise, that is,

Pr(Bi = 1 | B1 = . . . = Bi−1 = 1) > Pr(Bi = 1)

4

Despite this recent estimation, most authors still regard fp1 as the false
positive ratio, since it is easier to handle, and the error if compared to fp2
is relatively minimum [19]. Moreover, the relative error diminishes with large
values of m, where large is considered to be m ≥ 1024 bits [21]. For the sake of
simplicity in this paper we will consider the events B(yi) and B(y1) = B(y2) =
. . . = B(yk) = 1 to be independent. We also consider relatively large filters
reducing the error that this last assumption may introduce.

2.3 Further properties of Bloom filters

2.3.1 Filter intersection and union

Set operations such as union and intersection can be carried out on the filters,
which can be regarded as sets of elements. Consider two sets of elements A and
B encoded in the Bloom filters B(A), B(B) respectively, with the same size m
and k hash functions. Then:

• The union of B(A) and B(B) (denoted as ⊔) can be computed by a bitwise
OR operation on the bit vectors corresponding to each filter. That is,
B(A ∪ B) = B(A) ⊔ B(B).

• The intersection of B(A) and B(B) (denoted as ⊓) can be computed by
a bitwise AND operation on the bit vectors corresponding to each filter,
B(A ∩ B) = B(A) ⊓ B(B), with probability [16]:

Pr(⊓) =

(

1 −
1

m

)k2·|A\A∩B|·|B\A∩B|

(6)

Contrary to the union, the intersection of Bloom filters does not always
correspond to the intersection of their relative sets.

2.3.2 Vector subset ordering

We define an ordering ⊑ on Bloom filters, based on set inclusion, that is, vector
subset. Given two sets of elements A and B and their respective Bloom filters,
B(A) and B(B), then the following holds:

B(A) ⊑ B(B) ⇐⇒ A ⊆ B

This filter ordering can be expressed in terms of filter intersection as:

B(A) ⊑ B(B) =⇒ B(A) ⊓ B(B) = B(A) (7)

In this case the probability of obtaining the intersection by the bitwise AND
operation will always be Pr(⊓) = 1, since |A\A∩B| = 0 (see Equation (6)). We
also note that the inverse is not true for the general case, that is: B(A)⊓B(B) =
B(A) ; B(A) ⊑ B(B). However the event of this inverse relation not being true
is unlikely. In order for this to happen the filter B(A) has to have at least an

5

element x not contained in A ∩B which overlaps with the other elements in A.
That is, a false positive. Thus, the following is considered to hold:

B(A) ⊓ B(B) = B(A) =⇒ B(A) ⊑ B(B) (8)

with probability fp(k, n, m).
It is important to note that the binary relation ⊑ is an order relation since

it is:

• Reflexive: Bi ⊑ Bi for any Bloom filter Bi as determined by Equation (8).

• Transitive: Bi ⊑ Bj ,Bj ⊑ Bk =⇒ Bi ⊑ Bk, which holds given the
transitivity of the bitwise AND operation and Equation (8).

• Anti-symmetric: Bi ⊑ Bj ,Bj ⊑ Bi =⇒ Bi = Bj, which can be directly
deduced from Equation (8).

These properties are ensured on the basis of the false positive probability
noted above. It will be demonstrated in later section that this relation can be
used to determine a partial ordering or lattice on a set of Boom filters.

3 Bloom Permissions

3.1 Hash chains as total orderings of permissions

Bloom Permissions are inspired by previous work on micropayment systems [10,
31, 32], which make use of a hash chain to represent coins, and where the knowl-
edge of a value from a hash chain entitles a user to use the coin. In [10] it is
observed that such hash-chains can also be used to provide a rudimentary form
of authorisation delegation. In this scheme, permissions are represented by hash
values and a principal generating a hash chain hn(s), defines a total ordering
between hash-permission values as hn(s) ⊑ hn−1(s) ⊑ . . . h(s) ⊑ s, where s
is secret and represents the highest permission and hn(s) is the lowest permis-
sion and is known by all. In the absence of knowledge of the secret s, a third
party delegated permission value hi(s)[i ≤ n], implicitly holds ‘lower’ permis-
sions hj(s)[i ≤ j] under ⊑. The hash values can be used as secret permission
credentials that confer access rights to the holder. However, [10] is not useful
as a general authorization system since it only support sets of permissions that
form total orderings.

3.2 Bloom filters as partial orderings of permissions

Let (P,≤) be a lattice of permissions P with a supremum denoted as ⊤ and
infimum denoted as ⊥. Given x, y ∈ P then, the ordering x ≤ y is interpreted
to mean that if a user holds permission y then the user also implicitly holds
permission x. Note that techniques such as [11, 12] can be used to transform
arbitrary partial orders of permissions to a lattice ordering.

6

The Bloom filter B forms a lattice under vector subset ⊑ that is isomorphic
to the permission lattice (P,≤) under the mapping B(a) for values a ∈ P . Thus,
we have that (with probability bounded by fp(k, n, m)), for a, b ∈ P then:

a ≤ b ⇔ B(a) ⊑ B(b)

The lattice ordering (P,≤) is also isomorphic to the powerset lattice with
subset ordering ⊆ under the mapping ⌈a⌉ = {x ∈ P | a ≤ x}, that is we have
for a, b ∈ P then [7]:

a ≤ b ⇔ ⌈a⌉ ⊇ ⌈b⌉

Therefore, we have (with probability bounded by fp(k, n, m)),

a ≤ b ⇔ B(⌈b⌉) ⊑ B(⌈a⌉)

We denote this isomorphic lattice as (B,⊑), where each element in B is a
Bloom filter that encodes the corresponding set from the powerset of (P,≤). A
Bloom filter belonging to B is called a Bloom permission.

As an example consider the lattice from Figure 1. The corresponding iso-

⊤

a b

c d

e

⊥

Figure 1: Example of permission lattice.

morphic powerset lattice is depicted in Figure 2, and the Bloom permission
lattice is built by replacing each subset by its corresponding Bloom filter.

{⊤}

{⊤, a} {⊤, b}

{⊤, a, c} {⊤, a, d}

{⊤, a, c, d, e}

{⊤, a, b, c, d, e,⊥}

Figure 2: Lattice isomorphic to the example in Figure 1.

7

3.3 Securing Bloom Permissions

The owner of the policy (P,≤) generates a set of Bloom permissions of the
form B(⌈a⌉) for each a ∈ P . These are the permission values that are used as
delegation tokens. Following the examples in Figures 1, and 2, Figure 3 depicts
the Bloom permission lattice generated by the authority.

A principal that knows the value for (holds) a Bloom permission B(⌈x⌉) is
considered to be authorized for an action requiring permission x ∈ P . The
delegation mechanism works on the basis that it is not feasible for a principal
to compute a Bloom permission B(⌈x⌉) unless the principal holds (has been
delegated) the value for some B(⌈y⌉), where x ≤ y. In the proposed scheme, the
supremum permission ⊤ ∈ P is treated as a seed value and is assumed to be
a secret that is known only to the owner/creator of the policy (P,≤); all other
permission values P \{⊤} are considered to be publicly available/known values.
Thus, Bloom permission B(⌈⊤⌉) = B({⊤}) is also secret as are all other Bloom
permissions B(⌈x⌉) unless otherwise revealed to a principal. Section 4 provides
a security analysis of this scheme.

B(⌈⊤⌉)

B(⌈a⌉) B(⌈b⌉)

B(⌈c⌉) B(⌈d⌉)

B(⌈e⌉)

B(⌈⊥⌉)

Figure 3: Example of Bloom permission lattice.

3.4 Authorisation Delegation

Given a principal holding Bloom permission B(⌈y⌉), for y ∈ P , then in order
to (attempt to) delegate permission x ∈ P , the principal computes B(⌈y⌉) ⊔
B(⌈x⌉ \ {⊤}). Note that the principal may not know the secret ⊤ and so can
only compute ⌈y⌉\{⊤}. Since the set B of all Bloom permissions forms a lattice
then it follows that

x ≤ y =⇒ B(⌈x⌉) = B(⌈y⌉) ⊔ B(⌈x⌉ \ {⊤}) (9)

Thus, the computed Bloom permission for x will be valid only if the principal
carrying out the delegation does know B(⌈y⌉) and x ≤ y. Otherwise the gener-
ated Bloom permission will not correspond to any permission from the policy
(the Bloom permission lattice). This is consistent with the interpretation of
the permission ordering: given x, y ∈ P then x ≤ y means that if a user holds
permission y then the user also holds (and may delegate) the permission x.

8

As an example, consider the permission lattice from Figure 1 and a user
who holds permission a. This user has the Bloom permission B(⌈a⌉), and wants
to delegate permission e to another user. The user constructs the Bloom filter
B({c, d, e}) and then easily computes B(⌈e⌉) = B(⌈a⌉) ⊔ B({c, d, e}), or equiva-
lently, in the generic case B(⌈e⌉) = B(⌈a⌉)⊔B(⌈e⌉\⊤) = B(⌈a⌉)⊔B({a, c, d, e}).

3.5 Authorisation Verification

A principal presents Bloom permission (bit vector) X to a service owner (ver-
ifier) who requires permission x for authorization for some requested action.
This request is authorized if and only if the following is verified to be true.

B(⌈x⌉) = X (10)

One might be tempted to permit a requester to present a Bloom permission
Y corresponding to permission B(⌈y⌉), where x ≤ y and have the verifier test
B(⌈x⌉) ⊑ Y . However, this is not secure since any requester can present a
Bloom filter corresponding to the empty set ∅ and we have B(⌈x⌉) ⊑ ∅ under
the Bloom permission ordering.

Alternatively, suppose that the requesting principal holds permission y ∈ P
such that x ≤ y and requests an action requiring permission x. In this case
he/she can easily compute B(⌈x⌉) from B(⌈y⌉), as B(⌈x⌉) = B(⌈y⌉) ⊔ (B(⌈x⌉) \
B({⊤})). Note that while the requester could present B(⌈y⌉) and the verifier
could compute B(⌈x⌉), there is the risk that the requester implicitly delegates
a permission B(⌈y⌉) that the verifier previously did not hold.

3.6 Bloom permission authentication

In this paper we do not prescribe how the Bloom permissions might be securely
exchanged between principals. In the case of delegation, the delegator must
securely transfer value B(⌈x⌉) to a recipient. This could be done over a secure
network connection, if available, or via a physical exchange of the value; for
example, a transfer of the Bloom permission from a reader to a smart-card. In
[23] a wireless sensor network application is outlined where Bloom permissions
are installed at sensor deployment or via Handheld sensor-access devices.

In the case of verification, the requester must prove knowledge of the required
permission/secret to the verifier. In addition, in order to prevent an implicit
delegation, the requester needs to be sure that the verifier also holds the given
permission. This can be achieved by a mutual authentication protocol whereby
both parties prove that the know the secret (Bloom permission): Bloom per-
missions can be treated as secrets (keys) that are shared between principals.
The reader is referred to [14, 20, 35] for examples of lightweight authentication
protocols that are also implemented in terms of one-way cryptographic hash
functions.

9

4 Security of Bloom Permissions

The security of the previously described scheme is based on the difficulty of
forging a Bloom permission.

Proposition 1 It is not feasible for a principal to compute B(⌈x⌉) unless the
principal already knows the value of some B(⌈y⌉), where x ≤ y.

Assume a principal attempts to compute B(⌈x⌉) without knowledge of any
Bloom permission B(⌈y⌉) such that x ≤ y. There are three possible cases:

1. Compute B(⌈x⌉) from scratch.

2. Compute B(⌈x⌉) knowing the permission set P \ {⊤} but not their corre-
sponding Bloom permissions.

3. Compute B(⌈x⌉) knowing the permission set P \ {⊤} and some Bloom
permissions B(⌈z⌉) such that z ≤ x.

In order for the proposed scheme to be secure, all three cases must be difficult to
achieve. This difficulty can be ensured by the properties of a suitably configured
Bloom filter, as will be shown in this section. The first case, computing B(⌈x⌉)
without knowledge of any other information can be regarded as a brute-force
attack, which is clearly unfeasible in the general case. We will discuss the other
two cases.

Proposition 2 It is not feasible for a principal to compute B(⌈x⌉) when know-
ing only the permission set P \ {⊤}.

To be able to compute B(⌈x⌉), the principal cannot use ⌈x⌉, since he does
not know ⊤. The principal, however, might try to guess B({⊤}) in order to
compute B(⌈x⌉) = B({⊤}) ⊔ B(⌈x⌉ \ {⊤}).

Consider an empty Bloom filter. In this case, the pricipal needs to guess the
position of the k bits corresponding to the element ⊤ in the filter vector. Assume
that the k bit positions are selected randomly. There are

(

m+k−1
k

)

possible
combinations (note that a bit can be selected more than once for the same
element), and thus the probability for the principal to forge B({⊤}) without

the knowledge of ⊤ is P0 =
(

m+k−1
k

)−1
. Figure 4 depicts this probability for a

filter with m = 1024 and k : 0..50. This attempt to forge B({⊤}) can be seen
as a brute force attack on B({⊤}), which becomes very difficult even with low
values of k. Thus, assuming that ⊤ is secret ensures that it is not feasible for
a principal to create arbitrary Bloom filters containing valid permissions that
have not been delegated to the principal.

Consider the more general case, whereby the principal might not only know
P \ {⊤}, but also may also know any Bloom permission B(⌈z⌉) such that z ≤ x.

Proposition 3 It is not feasible for a principal to compute B(⌈x⌉) from P \{⊤}
and any B(⌈z⌉) such that z ≤ x.

10

 1e-90

 1e-80

 1e-70

 1e-60

 1e-50

 1e-40

 1e-30

 1e-20

 1e-10

 1

 0 5 10 15 20 25 30 35 40 45 50

P
0

k

Figure 4: Probability of forging B({⊤}).

Note that permission x could also be the top permission ⊤, thus the propo-
sition can be paraphrased as: is not feasible for a principal to compute B({⊤})
even with the knowledge of P \ {⊤} and any Bloom permission other than
B({⊤}). There are several ways in which an attacker might attempt to use
Bloom permissions B(⌈z⌉) such that z ≤ x in order to obtain B(⌈x⌉).

• By removing elements from an existing filter. In this case the attacker has
the filter B(⌈z⌉) and attempts to remove all elements ⌈z⌉ \ ⌈x⌉ from the
filter by setting some given bits to 0 in the filter. This case is considered
in Section 4.1.

• By filter intersection. In this case the attacker attempts to intersect two
filters to obtain the required element. The success of the attack will be
determined by the probability of intersecting Bloom filters given by Equa-
tion (6). Section 4.2 discusses this case.

4.1 Removing elements from a Bloom filter

As previously stated, a property that makes Bloom filters particularly suited
to security applications, is the fact that removing an element from a filter is
difficult. It is interesting to note that this is normally considered a drawback
of Bloom filters, and there are versions of Bloom filters that allow the removal
of elements [9]. In the proposed scheme the difficulty of element removal is
important as it ensures the difficulty of forging Bloom permissions.

By removing one or more elements, a principal who holds a Bloom permission
can try to obtain B({⊤}) but also can attempt to scale privileges. For instance,
from the example in Figure 3, a user who holds permission d, has the Bloom
permission B(⌈d⌉) = B({⊤, a, d}). This user can try to remove the element d
from the filter, and end up with a filter equivalent to B({⊤, a}), thus gaining
the Bloom permission that implements a.

To remove a given element x from a Bloom filter one must set some specific
bits B[xi] = 0 while being aware that:

11

• Setting B[xi] = 0 may cause the deletion of other elements if they overlap
the same bit B[xi].

• Given that filter equality is going to be used to test the authorisation (see
Section 3.5), one has to remove all bits B[xi] corresponding to the element
x, if and only if they have not been overlapped by other elements. Note
that if instead, we only used element inclusion to test the resulting filter,
it will be enough to remove one bit belonging to element x that has not
been overlapped.

This last point is the primary reason to require filter equality as an authorisation
proof as opposed to filter inclusion.

For example, consider the case where we want to remove the element x from
the Bloom filter B(X), and assume we know that x ∈ X . We know the element
x, and thus B({x}): this means that we know the k values fi(x) = xi, which
are the bits B[xi] modified by inserting the element x in the filter.

• If there is no overlapping bit, removing the element x can be done simply
by setting B[xi] = 0 for i = 1, . . . , k.

• On the other hand, if there are overlapping bits, then not all B[xi] bits
can be set to 0, since by doing so we might be deleting other elements
from the filter.

We are interested in configurations of Bloom filters that have a high probability
of overlapping bits. That is, a bit set to 1 in the vector representing the Bloom
filter corresponds to more than one element.

Let E1 be the event that at least one bit is overlapped by more than one
element. That is, the same bit B[i] = 1 for more than one element. Then, let
E0 be the event that no element overlaps any bit. So Pr(E1) = 1 − Pr(E0).

Note that Pr(E0) = 0 if kn > m, and Pr(E0) = 1 if kn ≤ 1,

Pr(E0) =
m(m − 1) . . . (m − nk + 1)

mnk
=

mnk

mnk
(11)

Pr(E1) = 1 − Pr(E0) = 1 −
mnk

mnk
(12)

where xn denotes the falling factorial xn = x · (x−1) · . . . · (x− (n−1)). Figure 5
shows Pr(E1) for a filter with m = 1024, and n = 50. As it can be seen with
k = 2 the probability becomes significantly close to 1 (0.993).

4.2 Aggregation attacks

The lowest upper bound operator in the permission lattice can be used to de-
fine permission aggregation: a principal holding permissions a, b ∈ P may be
considered to hold their aggregation a⊕ b ∈ P . In general, if a⊕ b is the lowest
upper bound of permissions a and b of lattice P then it follows that

⌈a ⊕ b⌉ = ⌈a⌉ ∩ ⌈b⌉

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5

P
r(

E
1

)

k

Figure 5: Probability of bit overlapping for a Bloom filter with m = 1024, and
n = 50.

B({⊤})

B({⊤, a}) B({⊤, b})

Figure 6: Worst case scenario for the aggregation attack.

Therefore, Bloom permission aggregation (lowest upper bound) can be imple-
mented in terms of set intersection and this preserves permission ordering under
the isomorphism.

Proposition 4 It is not generally safe to distinguish between knowledge of indi-
vidual permissions and their aggregation. That is, given a, b ∈ P where a⊕b ∈ P
is the lowest upper bound of a and b, then it is not safe to assume that it is not
feasible for a principal, who knows Bloom permissions B(⌈a⌉) and B(⌈b⌉), to
compute their lowest upper bound B(⌈a⊕ b⌉).

A simplistic worst case scenario of a successful attack can be demonstrated
using the ordering in Figure 6. In this case, a principal who knows B(⌈a⌉)
and B(⌈b⌉) can obtain B({⊤}) by attempting to compute the intersection as
B({⊤}) = B(⌈a⌉)⊓ B(⌈b⌉). That is, given the sets A = {⊤, a}, and B = {⊤, b},
compute A ∩ B = {⊤}, on the filters. Recall that the user does not know
the elements contained in the filters. The probability of success, given by the
probability of Bloom filter intersection from Equation (6), will be determined
firstly by the parameters m and k of the filters. If we consider m = 1024, the
probability of the success on the intersection in terms of k is shown in Figure 7.

Although it might seem a relatively high probability from a security point
of view, we have to consider the other parameter that affects this probability.
As shown in Equation (6), the success in the attack also depends on the value

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

b
.

k

Intersection Probability

Figure 7: Probability of filter intersection with m = 1024 for k : 0..10.

of |A\A∩B| ∗ |B \A∩B|. Let ρ denote the number of elements in A but not in
A∩B, that is ρ = |A \A∩B|, and assume that it is equal to |B \A∩B|. As ρ
increases, the probability of intersection is reduced as depicted in Figure 8. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
ro

b
.

k

ρ=1

ρ=2

ρ=5

ρ=10

ρ=15

Figure 8: Probability of intersection for ρ ∈ {1, 2, 5, 10, 15}. If n = 50 then
optimal configuration can be achieved with k = 14.

this case, if we take n = 50 the value of k, which minimises the false positive
probability following Equation (2) is k = m/n ln 2 ≃ 14.2, so with k = 14 we
have a false positive of approximately fp1(k, n, m) = 5.36 × 10−5, and with
ρ = 5 a probability of intersection Pr(⊓) = 8.3× 10−3, which we consider to be
quite acceptable. Moreover one can sacrifice the false positive rate by increasing,
to a small degree, the value of k which provides a lower Pr(⊓) if a lower ρ is
expected. For example, Figure 9 depicts the intersection probability in filters
with m = 1024, k = 14 (n = 50), for ρ : 0..10

It is necessary to select a trade-off between the probabilities of false positives
and intersection. Increasing k we can reduce the probability of success for this
attack, but it comes with the cost of increasing the probability of false positives.
Table 1 shows the false positive (fp1), and intersection probabilities Pr(⊓) for

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
.

ρ

Figure 9: Probability of intersection for filters with m = 1024, k = 14, for
ρ : 0..10.

some different values of k and ρ.

k ρ fp1 Pr(⊓)
14 5 5.36 × 10−5 8.3 × 10−3

20 3 7.90 × 10−5 1.96 × 10−2

25 3 1.61 × 10−4 4.10 × 10−3

30 3 3.79 × 10−4 3.66 × 10−4

30 2 3.79 × 10−4 2.97 × 10−2

35 2 9.26 × 10−4 8.33 × 10−3

40 2 2.22 × 10−3 1.92 × 10−3

Table 1: False positive and intersection probabilities for different values of k
and ρ in filters with m = 1024, and n = 50.

Many lattice-based permission models rely on an assumption that if a prin-
cipal holds a number of permissions then the principal also holds the lowest
upper bound on those permissions. For example, holding a read permission and
a write permission implies possession of a read-write permission. The proposed
Bloom permission model effectively requires this assumption since a principal
has the potential to determine B(⌈a ⊕ b⌉) from knowing B(⌈a⌉) and B(⌈b⌉). In
practice, this means that the potential for permission aggregation to escalate
authority must be considered during the design of the permission ordering. For
example, returning to the lattice in Figure 1, a principal that holds permissions
c and b, implicitly holds ⊤ = c⊕b, and therefore also holds permissions a and d.
If this escalation is considered undesirable, then one could modify the original
lattice to include a distinct permission to reflect the aggregation of c and b. In
general, a powerset lattice of individual permissions could be used to provide
distinct aggregate permissions.

15

5 Discussion and related work

Bloom permissions are a form of software capability whereby possession of the
capability entitles the principal to engage in specified actions. Many existing
applications, ranging from web authorization cookies [13] to embedded systems
[35] implement forms of software capabilities based on a keyed one-way hash
of the permissions. For example, on receipt of capability hk(y) for a request
requiring permission x, the verifier checks x ≤ y and validates the capability
using a secret k known only to the verifier. The holder of a capability hk(y)
can delegate it to a third party by revealing the value hk(y). However, without
knowing the secret k, the holder cannot delegate a lesser capability hk(x) where
x < y. This issue could be solved if in being delegated authority for y, the
recipient was given a copy of every capability hk(x), where x ≤ y. However, this
is undesirably complex and is not practical for low-power/computation systems.
The recipient of a Bloom permission B(⌈y⌉) can compute, and therefore further
delegate, any permission B(⌈x⌉), where x ≤ y; this computation does not require
knowledge of the underlying secret ⊤. Thus, Bloom permission delegation and
verification does not require coordination with a central authority (the owner
of ⊤) and can be decentralized across the network.

Trust Management systems [2, 8, 24] also provide a decentralized approach
to delegation of permissions between public keys. Authorization is defined in
terms of whether trust management capabilities (credentials) provide a delega-
tion chain, for the given permission, from the verifier to the requester. This is
unlike Bloom permissions, whereby possession of a permission is sufficient to
determine authorization. Additionally, it is not possible to delegate a Bloom
permission prior to holding the permission. Typical Trust Management systems
allow a principal to issue a delegation certificate independent of the permissions
it may hold at that time, with an assumption that other necessary credentials
to make up the delegate chain will be obtained prior to verification.

Lattice-based permission orderings are found in a variety of both Mandatory
and Discretionary Access Control models. In addition to providing sensitivity
orderings for Multilevel security and Chinese Walls [12], role hierarchies in Role
Based Access Control [34], they are used in application-level security, for exam-
ple, the implies ordering across Java permissions. Bloom permissions can be
used in the implementation of these models. In [23] a prototype of a Wireless
Sensor Network is outlined whereby, among other security requirements, Bloom
permissions are used to determine access to sensors by readers. The permission
lattice is defined as a cartesian product of sensor categories and actions. For
example, a medic’s reader has permission ({fire, EMT}, {rd}) reflecting authority
to read fire-service and EMT-service sensors.

It has been demonstrated [22] that public key operations can be carried out
by devices with limited computational power. Thus, in principle, the access
control model described in this paper could be implemented by a conventional
Trust Management system. However, this is not considered, as the objective
of this paper is the design of an authorization model that does not rely on
relatively expensive public key operations.

16

Verification of authorization requires evidence that the requester knows the
(secret) Bloom permission. This corresponds to a mutual authentication be-
tween requester and verifier. While Section 3.6 suggests that existing authenti-
cation mechanisms could be used, investigating mechanisms that support Bloom
permission authorization and delegation for specific applications such as [23] is
a topic of ongoing research.

Rivest [33] notes that conventional revocation mechanisms such as Certifi-
cate Revocation Lists and the Online Certificate Revocation Protocol can put
a burden on the authorization verifier. He argues that short-lived credentials
move this (computational and network) burden from the verifier to the requester.
This view is particularly true for the kinds of applications that are intended for
Bloom permissions. A date value, defining the validity period, could be incor-
porated into each Bloom permission. However, this date value would have to
be immutable. That is, the holder of a Bloom permission y valid until date d
can only delegate a permission x (x ≤ y) that is also valid until the same date
d. With the existing mechanism it would not be possible to delegate x with
an earlier expiry date d′ as it would presume the existence of a date ordering
d′ ≤ d implemented in the Bloom filter. Investigating whether this could be
effectively addressed using a date-(hash) chaining mechanism such as [25] is a
topic for future research.

6 Conclusions

A model for decentralized authorization implemented in terms of Bloom filters
is proposed. Bloom filters provide a permission structure that is isomorphic
to the required permission ordering with the property that it is not feasible
for a principal to compute the Bloom permission for some permission x unless
the principal already knows the value of a Bloom permission for some y, where
x ≤ y in the original permission ordering. This provides a basis for a lightweight
authorization mechanism whereby knowledge of the Bloom permission value
indicates authorization, and delegation and verification is implemented in terms
of one-way hash function calculations.

Acknowledgements

Partial support by the Spanish projects TIN2011-27076-C03-03 (CO-PRIVACY),
TIN2010-15764 (N-KHRONOUS), ARES – CONSOLIDER INGENIO 2010 CSD2007-
00004, is acknowledged. The research leading to these results has received fund-
ing from Science Foundation Ireland grant 08/SRC/11403 and the European
Union’s Seventh Framework Programme (FP7/2007-2013) under grant agree-
ment n. 262608.

17

References

[1] S.M. Bellovin, W.R. Cheswick. Privacy-Enhanced Searches Using Encrypted
Bloom Filters. Cryptology ePrint Archive, 2004/022.

[2] M. Blaze, J. Feigenbaum, J. Lacy. Decentralized trust management. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, pages 164–173.

[3] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM, vol. 13, no. 7, 1970.

[4] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison,
M. Smid, and Y. Tang. On the false-positive rate of bloom filters. Infor-
mation Processing Letters, vol. 108, no. 4, pp. 210–213, 2008

[5] A. Broder, M. Mitzenmacher. Network Applications of Bloom Filters: A
Survey, Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2003.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, R. E. Gruber. Bigtable: a distributed storage sys-
tem for structured data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation, Volume 7 OSDI 2006.

[7] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order. Cam-
bridge University Press, 2nd edition, 2002.

[8] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylo-
nen. SPKI Certificate Theory. Request For Comments 2693 (Experimental),
IETF, September 1999.

[9] L. Fan, P. Cao, J. Almeida, A. Z. Broder. Summary cache: a scalable wide-
area Web cache sharing protocol. IEEE/ACM Trans. on Networking, vol.8
no.3, pp.281-293, 2000.

[10] S.N. Foley. Using trust management to support transferable hash-based
micropayments. In Financial Cryptography, pp. 1–14, 2003.

[11] S.N. Foley, A taxonomy for information flow policies and models, In Pro-
ceedings of Research in Security and Privacy, IEEE Press, 1991.

[12] S.N. Foley. The specification and implementation of ”commercial” security
requirements including dynamic segregation of duties. In Proceedings of
the 4th ACM conference on Computer and communications security. ACM
Press, 1997.

[13] K. Fu, E. Sit, K. Smith, N. Feamster, Dos and Don’ts of Client Authenti-
cation on the Web, In Proceedings of Usenix Security, pp251–268, 2001.

[14] L. Gong, Using one-way hash functions for authentication, ACM Computer
Communications Review, Jan 1990.

18

[15] R. Graham, D. Knuth, and O. Patashnik Concrete Mathematics. A foun-
dation for Computer Science. Addison-Wesley, 1989.

[16] D. Guo, J. Wu, H. Chen, Y. Yuan, X. Luo. The Dynamic Bloom Filters.
IEEE Trans. on Knowl. and Data Eng. vol. 22, no. 1 (January 2010), pp.
120–133.

[17] E. Goh. Secure indexes, Cryptology ePrint Archive, Report 2003/216.

[18] N. Haller et. al. A One-Time Password System, Request for Comments
2289, IETF 1998.

[19] M.C. Jeffrey, J.G. Steffan Understanding Bloom Filter Intersection for Lazy
Address-Set Disambiguation. In Proceedings of the 23rd ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA 2011). pp. 345-354.

[20] A. Juels, Minimalist Cryptography for Low-Cost RFID Tags (Extended
Abstract), In Security in Communication Networks, Springer LNCS 3352,
2005.

[21] K. Christensen, A. Roginsky, M. Jimeno. A New Analysis of the False-
Positive Rate of a Bloom Filter, Information Processing Letters, vol. 110,
no. 21, pp. 944–949, 2010.

[22] J. Lopez Unleashing public-key cryptography in wireless sensor networks,
Journal of Computer Security, pp. 469-482, vol. 14, n. 5, 2006.

[23] E. Mercadal, G. Navarro-Arribas, S.N. Foley and J. Borrell. Towards ef-
ficient access control in a mobile agent based wireless sensor network, In
Proceedings of the International Conference on Risks and Security of Inter-
net and Systems, IEEE Press, 2012.

[24] N. Li and J. C. Mitchell. RT: A role-based trust-management framework.
In The Third DARPA Information Survivability Conference and Exposition
(DISCEX III), pages 201–212, Washington, D.C., April 2003. IEEE Com-
puter Society Press, Los Alamitos, California.

[25] S. Micali. Efficient certificate revocation. In Proceedings of the 1997 RSA
Data Security Conference, 1997.

[26] J. Mullin. A second look at Bloom filters, Communications of the ACM,
vol. 26 no. 8, pp. 570–571, 1983.

[27] R. Nojima, Y. Kadobayashi. Cryptographically Secure Bloom-Filters,
Transactions on Data Privacy, vol. 2 no. 2, pp. 131–139, 2009.

[28] S.C. Pohlig, M. Hellman. An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Infor-
mation Theory, vol. IT-24, pp. 106–110, 1978.

19

[29] Squid-cache.org Squid FAQ, Cache Digests. In squid-cache wiki. http://
wiki.squid-cache.org/SquidFaq/CacheDigests. Accessed Dec, 2012.

[30] T. Page. The application of hash chains and hash structures to cryptog-
raphy. Technical Report RHUL-MA-2009-18, Department of Mathematics,
Royal Holloway, University of London, 2009.

[31] T. P. Pedersen. Electronic payments of small amounts. In Proc. 4th Inter-
national Security Protocols Conference, pages 59–68, 1996.

[32] R. L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micro-
payment schemes. In Proc. 4th International Security Protocols Conference,
pages 69–87, 1996.

[33] R.L. Rivest Can we eliminate revocation lists?, In Proceedings of Financial
Cryptography 1998. Springer Lecture Notes in Computer Science No. 1465.

[34] R. Sandhu, et. al. Role-Based Access Control Models, In IEEE Computer,
29(2):38-47, Feb. 1996.

[35] B. Song and C. Mitchell, RFID Authentication Protocol for Low-cost Tags,
in Proceedings of the first ACM conference on Wireless network security,
2008, pages 140–147.

20

