
 1

Title: A Risk-Metric Framework for Enterprise Risk Management

Authors: S.N. Foley and H. Moss

Abstract: A risk-metric framework that supports Enterprise Risk Management is described. At
the heart of the framework is the notion of a risk profile that provides risk measurement for risk
elements. By providing a generic template in which metrics can be codified in terms of metric
space operators, risk profiles can be used to construct a variety of risk measures for different
business contexts. These measures can vary from conventional economic risk calculations to the
kinds of metrics that are used by decision support systems, such as those supporting inexact
reasoning and which are considered to closely match how humans combine information.

1 Introduction

Risk reflects the potential loss as a result of failure and/or uncertainty surrounding enterprise
activities [1]. Examples include financial risks due to uncertainty in interest rates and risks due to
operational failures in supply-chains. Enterprise Risk Management (ERM) is the process of
identifying and addressing these risks on an ongoing basis [1,2,3]. Examples of the process are
the use of separation of duties to ameliorate the risk of fraud, and the use of production planning
controls to ensure continuity of a supply-chain. This risk management process can be understood
in terms of Observe, Orient, Decide and Act—the classic OODA loop [4]—whereby the ability
to measure effectively the risks across the enterprise becomes central to an effective risk
management process.

One common measure for risk—probability of failure multiplied by resultant loss—is widely

used to provide an economic perspective on risk [1], for instance, Annualized Loss Expectancy
[5,6]. This, and other economic metrics, such as Return on Investment (ROI) [6], can provide
useful indicators that inform the risk management process. For example, an ROI calculation
might help justify the purchase of a new network server as a means of mitigating a quality of
service failure. However, risk measurement should not be regarded as isolated and once-off
calculation. The challenge is to closely integrate measurement with the ERM process so that they
provide real-time indicators of risk. In the case of the network server example, a challenge might
be to track, in real-time, how an operational failure in part of a supply-chain process running on
the server impacts the server’s current ROI calculation.

Not all risks are quantified in economic terms; for example, Balanced Scorecards [7] provide

non-economic performance metrics. However, Balanced Scorecards tend not to be integrated
across the ERM process. While the scorecards may provide useful high-level measures for senior
executives, it can be difficult for other individuals to reconcile these measures with actions for
low-level business operations. Other risk metrics such as those in [8] tend to be domain-specific
and/or do not necessarily consider their integration across the ERM process.

Enterprise Risk Management frameworks such as [2,3,9,10] provide approaches that support

the risk management process. These frameworks provide a structure in which to describe the
business activities systematically, their inherent risks and the controls that are in place to address

 2

those risks according to best practice. Using these frameworks can result in a large amount of
complex inter-related information and it can be difficult to trace the relevant threats across the
organization or the extent to which risk is mitigated. Typical measures in these frameworks, such
as reporting the controls with the highest number of audited failures, tend to be primitive and
coarse-grained and thus increase the difficulty of effective management of risk across the
enterprise.

In this paper we describe a risk model that allows risk measurement to be integrated closely

with the risk management process. The key components of this model are the risk hierarchy and
risk profiles. The risk hierarchy is used to define how risk propagates across a wide range of
enterprise risk elements. A risk profile is a container for risk calculations related to risk elements.
Unlike conventional risk-dashboards that typically build upon a static risk hierarchy limited to
fixed risk-calculations, risk-profiles are programmable using a variety of metric space and fuzzy-
style logic operators.

The paper is organized as follows. Section 2 presents the core risk model, which is illustrated

using a simple risk profile for calculating Annual Loss Expectancy across an organization’s
servers. We do not prescribe particular risk metrics for risk management, but provide a
programmable framework in which the user can build their own metrics. Section 3 describes how
these risk metrics can be constructed within the proposed model. Section 4 presents an example
to explore how the model can be used to provide metrics for an ERM framework supporting
operational risk. Section 5 outlines a prototype implementation of the model in terms of a
relational database management system.

2 A Model of Risk Measurement

Let Type denote the set of all risk element types, that is, the kinds of enterprise elements with
which we wish to associate some degree of risk. Risk types represent anything of interest within
an enterprise, including systems, people, processes, tasks, controls, assets, and so forth.

Let Element denote the set of all risk elements, that is, instances of risk types. For example,
webServer is a risk element of the Server risk type. A risk element e is an instance of a risk
type type(e); for example, type(webServer) = Server. For the sake of clarity, we use a
typewriter font when writing specific risk Types and elements and other concrete
instances of model variables used as examples.

2.1 Risk Hierarchy

Risk types are organized relative to each other according to a risk hierarchy reflecting how risk
elements may aggregate and influence other risk elements. The relationship depends(C,D)
defines risk type C depends on risk type D, that is, determining the risk associated with an
element of type C is based on the risk associated with element(s) of type D. For example,
depends(Department,Server) means that the risk of a department depends upon the risk of
its servers.

 3

In addition, a risk dependency relationship

€

← is defined between risk elements, where

€

c← d means that a determination of risk associated with c depends on risk associated with d.
For example,

€

sales← webServer means that sales department risk is dependent on risk
associated with a webServer operating in that department. For the purposes of this paper, we
do not consider cross-impact risks, that is, we assume that a dependency between risk elements
must be consistent with their type dependencies, that is,

€

c← d⇒ depends(class(c),class(d)) .
Furthermore, we assume that risk dependency is acyclic, that is, a risk type cannot depend on
itself under transitive closure (depends*()) of risk dependency.

2.2 Risk Profiles

A risk attribute identifies some risk-relevant characteristic of interest with respect to a risk type.
The attribute is intended to reflect a measure of something that is known about the elements of
the risk type. For example, a Server risk-type has risk attributes vuln, valu and svrALE,
where vuln defines the likelihood of compromise to a server with monetary loss (risk attribute)
valu as a Single Loss Event, with the overall risk, calculated as Annualized Loss Expectancy
[5,11] is defined as

€

svrALE = vuln × valu . A risk attribute a is declared as anchored to a
unique risk type denoted own(a), for example, own(valu) = Server.

While risk attributes define the kinds of risks to be measured, a risk profile is a binding from
the attributes of a risk type to values for a given risk element. Intuitively, risk profiles provide
containers for the calculations associated with a risk element. For example, the likelihood of
compromise (attribute vuln) of the purchasing server purServer has probability (attribute
value) 0.01. The set of all risk profile configurations is defined as

€

Profile ≡ Attribute→ℜ+ . Each
risk element may have an associated risk profile. The set of all profile configuration states is
defined as

€

State ≡ Element→ Profile . Given current state

€

σ ∈ State , then (σ e) is the risk profile
of element e and (σ e a) gives the current value of risk attribute a for element e in state σ.

2.3 Primitive and Evaluation Risk Attributes

A risk element e with own(a) = type(e) is considered as explicitly determining a value for this
attribute a in its profile. This value (σ e a) in state σ is determined, either externally (to the
model), via events and data that come from the enterprise, or are calculated in terms of the values
of other attributes in the profile of element e. In the latter case, the attribute a is referred to as an
evaluation attribute and isEval(a) is true, or in the former case, a primitive attribute and isEval(a)
is false. Continuing the server example above, an audit of webServer determines values for
primitive attributes (σ webServer valu) = 1000.0 and (σ webServer vuln) = 0.1 for
current state σ; the evaluation attribute

€

svrALE = vuln × valu is calculated to be 10.

The values of primitive attributes are assumed to be statistically independent of one another;
we do not consider how the value of a primitive attribute might indirectly influence the value of
another primitive attribute.

The function calc(C) defines calculation of evaluation attributes based on the profile of an

element of risk type C, where

€

calc :Class→ Profile→ Profile. Given type C and profile p, then
(eval(C p) a) calculates the risk attribute value for attribute a. We assume that this provides a

 4

fixed-point calculation, that is, calc(C p)=calc(C calc(C p)) for any profile p. For example, given
p:Profile and attribute a

€

calc(workstation p)a ≡
(p vuln) × (p valu) if a =svrALE

(p a) otherwise

A (non-identity) attribute calculation may be defined only for evaluation attributes that are
anchored to the defining type, that is, for any C:Class and a:Attribute then

€

(∃p : Profile | calc(C p)a ≠ (p a))⇒ isEval(a)∧own(a) = C

In this paper attribute calculation is defined as expression assignment, however, in principal any
calculation can be used, for example, a Bayesian Network applied to the risk attributes in a
profile.

2.4 Inherited Risk

Risk attribute values for risk elements (in some state) are determined either by reference to the
element itself (in the case of primitive and evaluation attributes), or are inherited from the risk
attribute values of elements in other risk types (inherited attribute). The type-dependency relation
determines how these values are inherited. An attribute a is inherited in the profile of a risk
element of type C, if C transitively depends on the type that anchors a, that is,
depends*(C,own(a)). For example, the Department type inherits the risk attribute valu from
(anchored to) Server; the value of the risk attribute for a specific department is based on an
aggregation of that attribute’s values for the servers in that department.

Every risk attribute a has an associated aggregation operation

€

⊕a (identity

€

0a) that defines
how its values are aggregated. Given attribute a, then

€

x ⊕a y is the aggregate of (risk attribute a)
values x and y. For example, values of attribute valu are aggregated by numeric addition.
Attribute vuln values x,y : [0,1] are aggregated by

€

x ⊕vuln y , defined as probabilistic sum

€

x + y − x × y since attribute values are considered statistically independent. Let prefix operator

€

⊕aA denote aggregation over a set A of attribute a values.

2.5 Risk Events

A risk event is any internal or external enterprise event that may influence a primitive risk
attribute. Events may be automated or manual, ranging, for example, from real time results
deriving from sensors or analytics signaling suspect conditions such as intrusion attempts or
fraudulent transactions, to scheduled audit procedures designed to test the efficacy of controls.
Event behavior is defined by function

€

ε : Event→ Profile→ Profile, where

€

(ε e p) defines the
result of executing event e against profile p. For example, routine auditing checks server
configuration for compliance with company security policy, including checking for a strong
password, disk encryption and backup service. The audit result is defined by event
ckCompliance.pass or ckCompliance.fail and is applied against the profile of the
element under test. For example, a ckCompliance.fail updates attribute vuln to 0.5,
otherwise it is set to 0.1.

 5

Each event e is anchored to a risk type own(e), reflecting the kinds of element (profiles) that

the event may affect. Risk events may affect only the values of primitive attributes that are
anchored in the same type as the event, that is, for any event e and attribute a then

€

(∃p :Profile | (ε e p a) ≠ (p a))⇒ (own(e) = class(a)∧¬isEval(a))

2.6 Risk Rollup

The values of primitive risk attributes may change as a result of external events. Such events
include ongoing risk events that update attribute values, as well as discovery events that set the
initial baseline attribute values. Setting or changing an attribute value in a profile may result in a
cascade of changes to the values of other attributes. These cascaded changes result from either
evaluated attribute definitions or inherited attribute relationships.

The state (rollup σ) defines the rollup of state σ, that is, a normalized state σ with all
cascading relationships calculated. If a primitive attribute a is anchored to the type of element e,
then its value is unchanged in the rolled-up state, that is,

€

(class(e) = own(a)∧¬isEval(a))⇒ ((rollup σ) e a) = (σ e a)

In rolled-up state (rollup σ) the following invariant properties should hold.
• The value of an attribute a, that is anchored to type(e), in the profile of element e is

calculated using the definition of calc(own(a)), that is,

€

class(e) = own(a)⇒ ((rollup σ) e a) = calc(own(e) (rollup σ) e) a

• The value of an inherited attribute a, that is not anchored to type(e), in the profile of element
e, is calculated as the aggregate of the inherited values of a in the profiles of elements upon
which e depends, that is,

€

depends* (class(e),own(a))∧class(e) ≠ own(a)⇒
((rollup σ) e a) = ⊗a{((rollup σ) f a) | f ∈ Element∧e← f ∧depends* (class(f),own(a))}

Note that if type(e) does not inherit attribute a, then there is no constraint on the value of a in
the profile of e.

Operation (rollup σ) is defined as a solution to the equations above. In our current prototype it is
implemented as a relational join across database tables of risk types/profiles.

Example 1 For convenience, we use UML class style diagrams to construct risk hierarchies,
where risk types correspond to UML classes of risk attributes. Figure 1 defines a model of a
simple risk hierarchy involving servers in departments along with a rolled-up instantiation
involving two departments and three servers. An over-arching OrgRisk class (type) is included,
with a single all risk element representing overall organization risk to which all risk rolls-up.

Risk attributes are declared within their anchoring risk type (Server in this example).
Primitive attributes valu and vuln are declared by indicating their data-type (probability
and double, respectively). Evaluated attribute svrALE is defined as calculation

€

vuln × valu . Attribute data-type provides default aggregation operators for rollup: double
provides arithmetic addition as default aggregation; probability provides probabilistic sum

 6

as default aggregation operator. An attribute typing system with data-type ordering
probability ≤ double is used to infer that, based on the types in its defining expression,
evaluation attribute svrALE has data-type double and uses arithmetic addition for
aggregation and rollup. Pass/fail risk events are also included in their anchoring risk type, along
with a reference to the primitive attributes upon which they act.

Attributes are declared as private (prefix -) or public (prefix +) in their anchoring type. A
public attribute is considered to have an interpretation when rolled-up outside of its anchoring
type. For example, public attribute svrALE provides economic risk associated with each
department; risks are aggregated as the sum of individual risks [5]. Sample attribute values
(profiles) are provided for each of the servers, along with rolled-up svrALE values for the
departments.

In the above example, rolling up department svrALE risks in order to provide overall risk

for the organization in the profile of element all results in a double counting of the economic
risk of webServer. We argue that economic risk such as ALE in this case is not an appropriate
metric across risk hierarchies as it ‘flattens’ the hierarchy resulting in the loss of much of the
contextual information about the nature of the risk. In the next section we consider a more
general approach whereby risk is measured in terms a normalized severity of failure.

3 Measuring Risk

The previous section provided a computational model of risk whereby risk calculations are
effectively determined by the past (risk) events in the environment. This section considers the
kinds of risk metrics that can be used in performing these calculations.

3.1 Vulnerability Indicators and Subjective Risk

Risk profiles store measurement data that is used in the calculation of risk. One class of
measurement is a vulnerability indicator: an independent variable

€

υ i providing a measure of
some operational characteristic of the enterprise that is related to the vulnerability. For example,

€

υpatch gives the number of days elapsed since a patch was released for a software package, but
not applied;

€

υtrain is the percentage of staff lacking up-to-date training.

A vulnerability can be exploited (by an attacker), leading to a failure and is represented as
binary dependent variable

€

φ . For example, an intruder has access to system (via buffer overflow
attack), or data loss (due to untrained staff). If failure

€

φ is dependent on vulnerability indicators

€

υ 0,..,υ n , then

€

Pr[φ =1 |υ 0 = i0,..,υ n = in] is the probability of the failure occurring, given
indicator values

€

υ 0 = i0,..,υ n = in . In this paper, probabilistic primitive risk attributes implement
failure probabilities based on vulnerability indicators that are assumed to be statistically
independent. For example, a primitive risk attribute patch gives the probability of compromise
based on the current value of vulnerability indicator

€

υpatch .

Regression analysis on the historical vulnerability indicator values could be used to arrive at
the probability distribution. For the purposes of this paper, we assume that this function is

 7

monotonic-increasing with respect to vulnerability indicator values. Thus, as the value of a
vulnerability indicator increases, then the probability of failure (due to the associated
vulnerability) increases. For example, we assume that the vulnerability of a system can increase
only while it remains un-patched. Exploring non-monotonic risk within our model is a topic for
future research.

Linear regression tends not to be suitable for binary variables and therefore we chose logistic

regression [12] over a data-set of vulnerability indicator

€

υ i values, obtaining parameter values α,
β, and estimating probability of failure as

€

Pr[φi =1 |υ i = x] = logisticα,β (x) =
1

1+ e−(α+βx)

for indicator value

€

υ i . This provides a compact representation in terms of (α,β) for the
distribution that can be associated with the attribute when declared in its anchoring type and its
inverse is easily computed using the logit function [12].

3.2 Subjective Risk Attributes

Part of the motivation in using logistic-based regression analysis is that it provides an intuitive
approach for specifying distributions based on the subjective knowledge of a domain-expert
when historical vulnerability datasets are not available. For example, a security administrator
advises that there is a low likelihood of compromise to a system that has not been patched for up
to 10 days, however, there is a high likelihood of compromise if the system remains un-patched
after 30 days have passed.

A risk attribute representing vulnerability indicator

€

υ i can be declared as a subjective
probability by specifying a low (lo), high (hi) and residual probability value res, with constraints

€

0 ≤ Pr[φi =1 |υ i = lo] ≤ res
1− res ≤ Pr[φi =1 |υ i = hi] ≤1

and assuming that probability of failure increases as the value of the vulnerability indicator
increases, then we fit these two data-points to the curve

€

Pr[φi =1 |υ i = x] = logistic(x) , where

€

α =
lo + hi
lo − hi








 × ln

1− res
res











β =
−2α
lo + hi










For example, Figure 2 illustrates the distribution for vulnerability indicator

€

υpatch , with lo=10,
hi=30 and res=0.1.

3.3 Risk Events Revisited

A risk event serves to update the value of one or more vulnerability indicators, which may
increase or decrease the probability of failure. While the risk-framework supports any type of
risk event, in this paper we consider the passfail and timer events that support execution of
conventional audit test-procedures.

 8

• A passfail event returns a pass (success) or fail result. A fail results in the value of an
affected primitive attribute to be decremented by 1, while a pass results in an increment
by 1.

• A timer event returns a pass or fail and updates the affected attribute to the number of
days elapsed since the last time it passed.

For example, (daily executed) test procedure ckPatch fails when server software is not the
most recent version. Defining it as a timer event affecting vulnerability indicator patch
means that as the value (in days) of

€

υpatch changes, then the probability of failure changes
according to the function in Figure 2.

3.4 Severity Attributes

Risk attributes may be used to provide measures in addition to probabilities and monetary value.
For example, weightings for physical location, the value (non-monetary) of the data to the
organization, how critical the availability of a web-server is to the organization, or the
severity/impact of software vulnerability (e.g., [13]) may contribute to evaluating an overall risk
score for the data hosted by a server. Since risk attributes may be scored from different ranges of
values it can be difficult to relate the values of different attributes in a meaningful way. Severity
provides a way to interpret the meaning of a risk attribute value, and to normalize disparate
attribute values, to a common severity scale.

Severity is defined as a measure of the relative significance or impact of risk attribute. A risk
attribute a has a severity generator

€

Γa = Attribute→ℜ→ [0..1] and a (raw) value v of attribute a
is interpreted as severity value

€

Γa (v) . Values 0 and 1 represent the lowest and highest severity
values, respectively. It is assumed that severity is monotonic, that is, given raw values v1,v2 for
attribute a, then

€

v1 ≤υ 2 ⇔Γa (v1) ≤ Γa (v2) . The severity generator is a logistic regression of
subjective knowledge from a domain expert specified in terms of lo and hi value bounds.

As an example, an attribute valu with severity range [500,1500] indicates that a server

valued less than $500 is considered to have little value while a server valued over $1,500 has
high value. Severity can also be used to normalize an evaluation risk attribute in order to control
risk-tolerance, for example, mapping svrALE (Example 1) to the severity range [200..400]
means that an annual loss expectancy of less than 200 is tolerated.

3.5 Aggregation and Risk Metrics

Severity values may be interpreted in terms of fuzzy logic [14] whereby the logistic function
approximates the fuzzy set with two points. Triangular norms are operations that generalize the
fuzzy logic operators and a variety of t-norm/t-conorm operators [15, 16] can be defined. For
example, the product fuzzy logic has probabilistic product (t-norm) and sum (t-conorm). The
latter provides a useful default aggregation operator for rollup. We adopt a simple attribute data-
typing system based on ordering probability ≤ severity ≤ double; this is used to type
an evaluation attribute based on the data-types of the attributes in its defining calculation and
also to provide a default aggregation operator for rollup of the attribute.

 9

Example 2 The Server risk profile from Example 1 is redefined as:
valu:severity[lo=500,hi=1500];
patch:probability[lo=10,hi=30];

€

svRisk = patch × valu;
timer ckPatch[patch];

In this case the subjective range [lo=10,hi=30] is used when calculating the probability of
failure of a server risk element based on the value of vulnerability indicator patch that is
updated by the timer procedure test ckPatch. Attribute svRisk is calculated using the
normalized values of attributes valu and patch.

Attribute svRisk provides a metric indicating risk of server failure, the severity (impact) of
which can be measured at different points (risk elements) in the organization risk hierarchy. The
types probability and severity use the t-conorm probabilistic sum (disjunction) as
default aggregation operator with the result that svRisk is also rolled up using probabilistic
sum. Given the risk hierarchy instance from Figure 1, with the revised Server risk profile
above, and if svRisk(e) represents the (rolled-up) value of attribute svRisk in the profile of
risk element e, then the rollup of svRisk to risk element all is calculated as

€

svRisk(all)=svRisk(sales)⊕svRisk svRisk(purchasing)

=svRisk(crmServer)⊕svRisk svRisk(webServer)⊕svRisk

 svRisk(webServer)⊕svRisk svRisk(purServer)

Failure of webServer impacts two departments and therefore is considered to have a double
impact on the overall (all) organization risk measure.

A variety of t-norms provide useful severity aggregation operators and can also be used in
the calculation of evaluation attributes. For example, using t-conorm max(x,y) as the aggregation
(rollup) operator for svRisk in the previous example, provides a simple fuzzy risk metric
[15, 16]. The risk model provides a programmable framework in which a range of metrics can be
specified and calculated in a hierarchical context.

A goal in selecting the aggregation operators to be used in a risk profile is to match more

closely how humans aggregate information. Zimmerman and Zysno [17] discover that when
making decisions humans do not necessarily aggregate according to the linearity of a t-norm, that
is, there may be potential for non-linearity in the way that combinations are perceive. For
example, a human may place proportionally greater significance on the aggregation of low
severity items rather than on moderate severity items. Our prototype currently supports the
compensation aggregation operator for neutral element n : [0..1] [18, 19]. Intuitively, this uni-
norm operator may be thought of as a combination of probabilistic product when operand
severity values are less than n, and probabilistic sum when operand severity values are greater
than n. Using this operator, for example with n = 0.2, to aggregate svRisk causes the roll-up to
be less sensitive to aggregation of low risk values.

 10

4 Enterprise Risk Management

The previous sections illustrate the risk model by considering risk in terms of simple
organizational elements. In practice, the risk model can be used to define risk in terms of any
elements that can be organized as a risk hierarchy. In this section we outline how the risk model
can be closely integrated with the elements of an ERM framework.

Figure 3 depicts a simplified ERM framework as a hierarchy of risk types. A Process
represents the business activities within an enterprise and can be associated with one or more
risks. Risk is the uncertainty in a process that could have adverse impacts on the business
policy. A Control is a framework for management of an activity or set of activities meant to
prevent a business process risk from occurring. A Procedure is a set of test activities,
executed at a pre-determined frequency to ensure that a control is effectively working as design.
The figure provides a partial instantiation of this hierarchy for the purchasing process.

Two risks are identified that impact the objectives of the purchasing process, and

controls are introduced in order to mitigate those risks. The risk that revenue loss can occur as a
result of illegal access is mitigated in part by the following controls.
• Users on the system must be authenticated. Passwords are used to authenticate authorized

users, and periodic checks (ckPasswd) for weak passwords are carried out in order to
prevent password-guessing attacks. An intruder might obtain un-authenticated access to the
system by exploiting software vulnerability and ensuring that software is patched and up to
date helps mitigate this risk. Frequent audits of installed software versions (procedure test
ckPatch) validate the effectiveness of this control.

• Only users who require access as part of their job function should be authorized to use the
purchasing system. Frequent audits (ckACL) of the system access-control policy validate the
effectiveness of this control.

The risk of making payments to non-existent and/or un-approved suppliers is mitigated, in part,
by the following controls.
• Only authorized users should have access to the payment system.
• Staff should be given ongoing training with monthly audits (ckTrain) on staff completion.
• Every purchase order must be approved by at least two individuals, with random checks

(ckPOLogs) for compliance of the logs.

Figure 4 provides a UML class -style diagram of the simplified ERM risk hierarchy that

incorporates risk profile and attribute declarations. Risk attributes are anchored in the Control
type and provide measures on the effectiveness of the control at mitigating a risk. These control
risk profiles can, in turn, be “rolled-up” the risk hierarchy, providing measures of the
effectiveness of risk management in the context of the identified Risk, the parent Process,
and so forth.

Recall that a risk element may have a number of associated risk-profiles and that in this

example an individual control can have different profiles that are used to manage measurements
of its effectiveness with respect to servers, purchase orders and users. This is represented using a
UML-class generalization in order to define subclasses (types ServerProfile,

 11

OrderProfile and UserProfile) of the Control profile superclass. The following risk
attributes are defined, providing information about the assets or vulnerability indicators.
• valu defines a severity measure of the value of the asset. It is defined as abstract, as it has

different severity interpretations depending on whether it is the value of a server, order or
user. For illustration, server and order value is based on monetary value while a user valu
is some measure of the importance of their role in the organization.

• acl is the likelihood of failure as a consequence of an invalid access control policy. It is
updated via passfail procedure test ckACL: two or fewer failures is considered low risk.
When acl has a higher value then the (stateful) semantics of passfail require a series
of successful procedure tests before it can be considered to have a low chance of failure.

• aclRisk defines risk of access-control policy non-compliance and can be calculated for
servers (server policy non-compliance), users (risk of user having non-compliant access) and
orders (risk of non-compliant access to order).

• allRisk defines the overall risk and, for a given profile, is the (default, probabilistic) sum
of the aclRisk and any other profile-specific risks profRisk of the sub-class.

• svrRisk gives the server-specific risk based on patch and the likelihood of failure as a
consequence of a user having a weak password (attribute paswd).

• ordRisk gives the order-specific risk based on the likelihood of an illegal order as a
consequence of a violation of the two-person order rule (attribute illegalSep).

• usrRisk defines user-specific risk based on likelihood of compromise as a consequence of
staff not taking/maintaining training (attribute train).

Risk profiles provide measures on the effectiveness of a control, whereby effectiveness is

determined by the outcome of the procedure test. For example, the risk profiles for the control
“authenticated access only” provide scores on the outcome of procedure tests for
each server (for example, webServer and purServer), for users and orders. The
aggregation of profiles associated with the control provides measures on its effectiveness,
including an overall measure allRisk. When rolled up to the risk “compromised
systems lead to revenue loss” it provides a measure of the effectiveness at
mitigating the risk. This provides a multi-level approach to presenting and investigating risk. The
higher the risk attribute in the risk hierarchy, the more abstract the measurement. For example, a
high allRisk score on the purchasing gives a general indication of the health of that
business process. This might prompt a drill-down the hierarchy to identify the poorly mitigated
risk(s), with a further drill-down to discover the non-compliant user(s) with a high usrRisk
score.

For the sake of clear exposition, the examples in this paper are intentionally simple. In practice,
internal controls catalogues can have a large number of, and complex, controls and it is beyond
the scope of this paper to consider how these catalogues might be encoded in terms of the
proposed risk model. In one experiment using an existing catalogue, we built a first-cut risk
profile whereby each risk in the catalogue corresponded to a unique risk attribute, updated by the
procedure-tests of the risk’s controls. For example, a risk attribute corresponding to
“compromised systems lead to revenue loss” (from Figure 3) is updated
(passfail) by ckPatch, ckPasswd and ckACL. This is preliminary work and further
research is needed to evaluate how the risk model might be used in practical environment.

 12

5 Prototype

A relational database management system provides a practical approach to managing the risk-
profiles. Risk types map to database schema with schema attributes implementing risk attributes
and the risk hierarchy is implemented via schema (key) dependencies. Risk events (test
procedures) are implemented as database triggers, that, when executed, update the related
primitive attributes and also perform any calculations associated with evaluation attributes.
In performing a rollup, the model computes a join over tables corresponding to an instance of the
risk hierarchy with attributes as defined by the risk attributes. However, SQL does not provide
arbitrary aggregation operators over attributes; only primitive arithmetic aggregation operators
are directly available, for example, SUM, AVG and MAX. The current risk model prototype
restricts the permitted aggregation operators to Archimedian t-norm/co-norms [20] which means
that attribute aggregation is simply implemented by SUM over its column in the database table.

A high-level risk-specification language has been implemented that is comparable to the

UML diagrams used to illustrate the examples in this paper. This language is used to specify
arbitrary risk hierarchies, risk attributes and their types (including types probability,
severity and double) and risk events (including passfail and timer). A compiler
translates a specification in this risk language to a DB2 database implementation with associated
triggers and stored procedure queries for roll-up. The generated implementation model can be
integrated with an existing ERM framework and thus provides risk profile support.

6 Discussion and Conclusion

The risk model presented in Section 2 provides a user-programmable framework in which to
monitor and measure the effectiveness of controls at mitigating risk. While measurements are
made at the level of individual controls, they can be aggregated, and then used to calculate more
general risk measures from the perspective of different contexts/levels in the organization. The
examples in Sections 2 and 3 illustrate organizational-centric measurements, whereby
organizational structures provide the risk hierarchy and the contexts from which to present the
risk. Organizational-centric structuring is typical for security risk management dashboards such
as [10, 21]. The ERM-centric measurement used in the example in Section 4 provides multi-level
and contextual risk measurements that are closely integrated with ERM framework elements and
therefore provide a basis for informed decision-making.

Section 3 considered risk metric construction within the risk model. Rather than limiting
measurement to common metrics such as number of control failures or top-failing controls, risk
profiles are programmable using a variety of metric space and fuzzy-style logic operators.
Encoding the security metrics described in [8] within the risk model is an interesting topic for
future research. While [21] supports fuzzy (security) risk metrics, it does not consider other
forms of aggregation, nor their use in an ERM context. Risk calculations in the risk model can
be based on historical behavior or subjective information based on knowledge of domain experts.
For example, scores from the Common Vulnerabilities and Exposures database [13] can be used
as subjective weightings when calculating risk of system/software failure.

 13

A risk profile is a user-programmable container for risk calculations related to risk elements.
While the examples in this paper have focused on operational (security) risk, the risk profiles can
also be used to manage calculations related to other risk scenarios. For example: an organization
manufactures five key products and continuity requires that no single part is secured from a
single vendor, that no part is utilized across more than three products and that no single part
inventory is less than 60% of the sales pipeline. A product risk profile can be used to coordinate
this calculation whereby should the part become unavailable then the organization would either
source an additional vendor or initiate a greater inventory. Using the risk model to manage
calculations for other risk classes is a topic for future research.

Acknowledgements Thanks to the anonymous reviewers for their helpful feedback. This
research was carried out while Simon Foley was a member of Corporate Security Strategy at
IBM, on leave of absence from University College Cork. He would like to thank IBM and Stuart
McIrvine for making this possible.

 14

References
1. Risk management--Vocabulary--Guidelines for use in Standards, ISO/IEC Guide 73:2002.
2. Enterprise Risk Management-Integrated Framework, Committee of Sponsoring Organizations
of the Treadway Commission (COSO). Jersey City, NJ, 2004.
3. C Abrams, J. von Känel, S. Müller, B. Pfitzmann, and S. Ruschka-Taylor, “Optimized
Enterprise Risk Management”, IBM Systems Journal, Vol 46, No. 2, 219–234, 2007.
4. J Boyd. Patterns of conflict. Available as presentation,
www.d-n-i.net/fcs/ppt/boyds_ooda_loop.ptt
5. Special Publication Risk management guide for information technology systems (800-30).
Washington, DC: U.S. Government Printing Office, 2002.
6. A.A. Groppelli and E. Nikbakht. Barron’s Finance. Barron’s Educational Series, Inc, 4
Edition, 2000.
7. R.S. Kaplan and D.P. Norton. The Strategy-Focused Organization: How Balanced Scorecard
Companies Thrive in the New Business Environment. Harvard Business School Press, 2001.
8. A. Jaquith. Security Metrics: Replacing Fear Uncertainty and Doubt. Addison-Wesley, 2007.
9. S.J. Root. Beyond COSO: Internal Control to Enhance Corporate Governance. Wiley 1998.
10. G. Evans and S. Benton. “The BT Risk Cockpit—a Visual Approach to ORM”. BT
Technology Journal, Vol. 25, No., 1–13, Feb 2007.
11. L.A Gordon and M.P. Loeb. “The economics of information security investment”, ACM
Transactions on Information and System Security, Vol. 5, No. 4, 438-457, 2002.
12. D. W. Hosmer and S. Lemeshow. Applied Logistic Regression. J. Wiley and sons, 2000.
13. CVE International. Common Vulnerabilities and Exposures. Website, cve.mitre.org/
14. L.A. Zadeh. “Fuzzy Logic, Neural Networks, and Soft Computing”. Commun. ACM, Vol. 37,
No. 3, 77–84, 1994.
15. B. Schweizer and A. Sklar Probabilistic metric spaces. North Holland, New York, 1983.
16. D. Dubois and H. Prade. “A review of fuzzy sets aggregation connectives”. Information
Sciences, Vol. 36, No. 1-2, 85–121, 1985.
17 H.-J. Zimmermann and P. Zysno. “Latent connectives in human decision making”, Fuzzy Sets
and Systems, No. 4, 37–51, 1980.
18. B. Buchanan and E. Shortliffe. Ruled Based Expert Systems, The MYCIN Experiment of the
Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA, 1984.
19. E. P. Klement, R. Mesiar, and E. Pap. “On the Relationship of Associative Compensatory
Operators to Triangular Norms and Conorms”, International Journal of Uncertainty, Fuzziness
and Knowledge based Systems, Vol. 4, No. 2, 129–144, 1996.
20. H.T. Nguyen, V. Kreinovich, and P. Wojciechowski. “Strict archimedean t-norms and t-
conorms as universal approximators”, International Journal of Approximate Reasoning, Vol. 18,
No. 3-4, pp. 239-249 , 1997.
21. M. Dondo. A fuzzy risk calculations approach for a network vulnerability ranking system.
Technical Report Memorandum 2007-090, Defense R&D Canada, 2007.

 15

Biographical sketches

Simon N. Foley, University College Cork, Cork, Ireland (s.foley@cs.ucc.ie). Dr. Foley is a
Statutory Lecturer in Computer Science at UCC where he teaches and carries out research on
computer security. He serves on the editorial board of the Journal of Computer Security and the
Journal of Privacy, Security, and Integrity and has served as Program chair of the IEEE
Computer Security Foundations Workshop and the ACM/ACSAC New Security Paradigms
Workshop. He has over seventy international peer-reviewed publications on security and his
research interests include security modeling, distributed access controls, risk management and
security psychology

Harold Moss, IBM, Cambride MA. (hmoss@us.ibm.com). Harold Moss is an Emerging
Technologies Architect in the IBM Corporate Security Strategy Team. In that role he is
responsible for providing technical insights into emerging security technology directions, as well
as existing ones. Mr. Moss also had responsibility for verifying and validating architectural
direction in a number of cloud and web 2.0 based solutions, to ensure alignment with customer
needs and other IBM assets. Currently Mr Moss, sits on several IBM architecture boards and
champions the delivery of assets for cloud computing and web 2.0 technologies.

 16

Figure 1 Risk configuration model and rolled-up instance.

 17

Figure 2 Logistic function with lo=10, hi=30 and res=0.1

 18

Figure 3: Abbreviated Risk Hierarchy (a); controls Fragment (b)

 19

Figure 4: Risk Profiles for ERM

