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Abstract: A risk-metric framework that supports Enterprise Risk Management is described. At 
the heart of the framework is the notion of a risk profile that provides risk measurement for risk 
elements. By providing a generic template in which metrics can be codified in terms of metric 
space operators, risk profiles can be used to construct a variety of risk measures for different 
business contexts.  These measures can vary from conventional economic risk calculations to the 
kinds of metrics that are used by decision support systems, such as those supporting inexact 
reasoning and which are considered to closely match how humans combine information. 
 
1 Introduction 
 
Risk reflects the potential loss as a result of failure and/or uncertainty surrounding enterprise 
activities [1]. Examples include financial risks due to uncertainty in interest rates and risks due to 
operational failures in supply-chains. Enterprise Risk Management (ERM) is the process of 
identifying and addressing these risks on an ongoing basis [1,2,3]. Examples of the process are 
the use of separation of duties to ameliorate the risk of fraud, and the use of production planning 
controls to ensure continuity of a supply-chain. This risk management process can be understood 
in terms of Observe, Orient, Decide and Act—the classic OODA loop [4]—whereby the ability 
to measure effectively the risks across the enterprise becomes central to an effective risk 
management process.  

 
One common measure for risk—probability of failure multiplied by resultant loss—is widely 

used to provide an economic perspective on risk [1], for instance, Annualized Loss Expectancy 
[5,6]. This, and other economic metrics, such as Return on Investment (ROI) [6], can provide 
useful indicators that inform the risk management process. For example, an ROI calculation 
might help justify the purchase of a new network server as a means of mitigating a quality of 
service failure. However, risk measurement should not be regarded as isolated and once-off 
calculation. The challenge is to closely integrate measurement with the ERM process so that they 
provide real-time indicators of risk. In the case of the network server example, a challenge might 
be to track, in real-time, how an operational failure in part of a supply-chain process running on 
the server impacts the server’s current ROI calculation.  

 
Not all risks are quantified in economic terms; for example, Balanced Scorecards [7] provide 

non-economic performance metrics. However, Balanced Scorecards tend not to be integrated 
across the ERM process. While the scorecards may provide useful high-level measures for senior 
executives, it can be difficult for other individuals to reconcile these measures with actions for 
low-level business operations. Other risk metrics such as those in [8] tend to be domain-specific 
and/or do not necessarily consider their integration across the ERM process. 

 
Enterprise Risk Management frameworks such as [2,3,9,10] provide approaches that support 

the risk management process. These frameworks provide a structure in which to describe the 
business activities systematically, their inherent risks and the controls that are in place to address 
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those risks according to best practice. Using these frameworks can result in a large amount of 
complex inter-related information and it can be difficult to trace the relevant threats across the 
organization or the extent to which risk is mitigated. Typical measures in these frameworks, such 
as reporting the controls with the highest number of audited failures, tend to be primitive and 
coarse-grained and thus increase the difficulty of effective management of risk across the 
enterprise.  

 
In this paper we describe a risk model that allows risk measurement to be integrated closely 

with the risk management process. The key components of this model are the risk hierarchy and 
risk profiles. The risk hierarchy is used to define how risk propagates across a wide range of 
enterprise risk elements. A risk profile is a container for risk calculations related to risk elements. 
Unlike conventional risk-dashboards that typically build upon a static risk hierarchy limited to 
fixed risk-calculations, risk-profiles are programmable using a variety of metric space and fuzzy-
style logic operators.  

 
The paper is organized as follows. Section 2 presents the core risk model, which is illustrated 

using a simple risk profile for calculating Annual Loss Expectancy across an organization’s 
servers. We do not prescribe particular risk metrics for risk management, but provide a 
programmable framework in which the user can build their own metrics. Section 3 describes how 
these risk metrics can be constructed within the proposed model. Section 4 presents an example 
to explore how the model can be used to provide metrics for an ERM framework supporting 
operational risk. Section 5 outlines a prototype implementation of the model in terms of a 
relational database management system.  

 
 

2 A Model of Risk Measurement 
 
Let Type denote the set of all risk element types, that is, the kinds of enterprise elements with 
which we wish to associate some degree of risk. Risk types represent anything of interest within 
an enterprise, including systems, people, processes, tasks, controls, assets, and so forth.  
 
Let Element denote the set of all risk elements, that is, instances of risk types. For example, 
webServer is a risk element of the Server risk type. A risk element e is an instance of a risk 
type type(e); for example, type(webServer) = Server. For the sake of clarity, we use a 
typewriter font when writing specific risk Types and elements and other concrete 
instances of model variables used as examples.  
 
2.1 Risk Hierarchy 
 
Risk types are organized relative to each other according to a risk hierarchy reflecting how risk 
elements may aggregate and influence other risk elements. The relationship depends(C,D) 
defines risk type C depends on risk type D, that is, determining the risk associated with an 
element of type C is based on the risk associated with element(s) of type D. For example, 
depends(Department,Server) means that the risk of a department depends upon the risk of 
its servers.  
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In addition, a risk dependency relationship 

€ 

←  is defined between risk elements, where 

€ 

c← d  means that a determination of risk associated with c depends on risk associated with d. 
For example,   

€ 

sales← webServer means that sales department risk is dependent on risk 
associated with a webServer operating in that department. For the purposes of this paper, we 
do not consider cross-impact risks, that is, we assume that a dependency between risk elements 
must be consistent with their type dependencies, that is, 

€ 

c← d⇒ depends(class(c),class(d)) . 
Furthermore, we assume that risk dependency is acyclic, that is, a risk type cannot depend on 
itself under transitive closure (depends*()) of risk dependency. 

 
2.2 Risk Profiles 
 
A risk attribute identifies some risk-relevant characteristic of interest with respect to a risk type. 
The attribute is intended to reflect a measure of something that is known about the elements of 
the risk type. For example, a Server risk-type has risk attributes vuln, valu and svrALE, 
where vuln defines the likelihood of compromise to a server with monetary loss (risk attribute) 
valu as a Single Loss Event, with the overall risk, calculated as Annualized Loss Expectancy 
[5,11] is defined as   

€ 

svrALE = vuln × valu . A risk attribute a is declared as anchored to a 
unique risk type denoted own(a),  for example, own(valu) = Server.  
 

While risk attributes define the kinds of risks to be measured, a risk profile is a binding from 
the attributes of a risk type to values for a given risk element. Intuitively, risk profiles provide 
containers for the calculations associated with a risk element. For example, the likelihood of 
compromise (attribute vuln) of the purchasing server purServer has probability (attribute 
value) 0.01. The set of all risk profile configurations is defined as

€ 

Profile ≡ Attribute→ℜ+ . Each 
risk element may have an associated risk profile. The set of all profile configuration states is 
defined as

€ 

State ≡ Element→ Profile . Given current state 

€ 

σ ∈ State , then (σ e) is the risk profile 
of element e and (σ e a) gives the current value of risk attribute a for element e in state σ.  
 
2.3 Primitive and Evaluation Risk Attributes 
 
A risk element e with own(a) = type(e) is considered as explicitly determining a value for this 
attribute a in its profile. This value (σ e a) in state σ is determined, either externally (to the 
model), via events and data that come from the enterprise, or are calculated in terms of the values 
of other attributes in the profile of element e. In the latter case, the attribute a is referred to as an 
evaluation attribute and isEval(a) is true, or in the former case, a primitive attribute and isEval(a) 
is false. Continuing the server example above, an audit of webServer determines values for 
primitive attributes (σ webServer valu) = 1000.0 and (σ webServer vuln) = 0.1 for 
current state σ; the evaluation attribute   

€ 

svrALE = vuln × valu  is calculated to be 10.  
 

The values of primitive attributes are assumed to be statistically independent of one another; 
we do not consider how the value of a primitive attribute might indirectly influence the value of 
another primitive attribute.  

 
The function calc(C) defines calculation of evaluation attributes based on the profile of an 

element of risk type C, where 

€ 

calc :Class→ Profile→ Profile. Given type C and profile p, then 
(eval(C p) a) calculates the risk attribute value for attribute a. We assume that this provides a 
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fixed-point calculation, that is, calc(C p)=calc(C calc(C p)) for any profile p. For example, given 
p:Profile and attribute a 

  

€ 

calc(workstation p)a ≡
(p vuln) × (p valu) if a =svrALE

(p a) otherwise
 

 
A (non-identity) attribute calculation may be defined only for evaluation attributes that are 
anchored to the defining type, that is, for any C:Class and a:Attribute then  
 

€ 

(∃p : Profile | calc(C p)a ≠ (p a))⇒ isEval(a)∧own(a) = C  
 

In this paper attribute calculation is defined as expression assignment, however, in principal any 
calculation can be used, for example, a Bayesian Network applied to the risk attributes in a 
profile.  
 
2.4 Inherited Risk 
 
Risk attribute values for risk elements (in some state) are determined either by reference to the 
element itself (in the case of primitive and evaluation attributes), or are inherited from the risk 
attribute values of elements in other risk types (inherited attribute). The type-dependency relation 
determines how these values are inherited. An attribute a is inherited in the profile of a risk 
element of type C, if C transitively depends on the type that anchors a, that is, 
depends*(C,own(a)). For example, the Department type inherits the risk attribute valu from 
(anchored to) Server; the value of the risk attribute for a specific department is based on an 
aggregation of that attribute’s values for the servers in that department.  
 

Every risk attribute a has an associated aggregation operation 

€ 

⊕a  (identity 

€ 

0a ) that defines 
how its values are aggregated. Given attribute a, then 

€ 

x ⊕a y  is the aggregate of (risk attribute a) 
values x and y. For example, values of attribute valu are aggregated by numeric addition. 
Attribute vuln values x,y : [0,1] are aggregated by  

€ 

x ⊕vuln y , defined as probabilistic sum 

€ 

x + y − x × y  since attribute values are considered statistically independent. Let prefix operator 

€ 

⊕aA denote aggregation over a set A of attribute a values.  
 
2.5 Risk Events 
 
A risk event is any internal or external enterprise event that may influence a primitive risk 
attribute. Events may be automated or manual, ranging, for example, from real time results 
deriving from sensors or analytics signaling suspect conditions such as intrusion attempts or 
fraudulent transactions, to scheduled audit procedures designed to test the efficacy of controls. 
Event behavior is defined by function 

€ 

ε : Event→ Profile→ Profile, where 

€ 

(ε e p) defines the 
result of executing event e against profile p. For example, routine auditing checks server 
configuration for compliance with company security policy, including checking for a strong 
password, disk encryption and backup service. The audit result is defined by event 
ckCompliance.pass or ckCompliance.fail and is applied against the profile of the 
element under test. For example, a ckCompliance.fail updates attribute vuln to 0.5, 
otherwise it is set to 0.1.  
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Each event e is anchored to a risk type own(e), reflecting the kinds of element (profiles) that 

the event may affect. Risk events may affect only the values of primitive attributes that are 
anchored in the same type as the event, that is, for any event e and attribute a then  

€ 

(∃p :Profile | (ε e p a) ≠ (p a))⇒ (own(e) = class(a)∧¬isEval(a)) 
 

2.6 Risk Rollup 
 
The values of primitive risk attributes may change as a result of external events. Such events 
include ongoing risk events that update attribute values, as well as discovery events that set the 
initial baseline attribute values. Setting or changing an attribute value in a profile may result in a 
cascade of changes to the values of other attributes. These cascaded changes result from either 
evaluated attribute definitions or inherited attribute relationships.  
 

The state (rollup σ) defines the rollup of state σ, that is, a normalized state σ with all 
cascading relationships calculated. If a primitive attribute a is anchored to the type of element e, 
then its value is unchanged in the rolled-up state, that is,  

€ 

(class(e) = own(a)∧¬isEval(a))⇒ ((rollup σ ) e a) = (σ e a)      
 

In rolled-up state (rollup σ) the following invariant properties should hold.  
• The value of an attribute a, that is anchored to type(e), in the profile of element e is 

calculated using the definition of calc(own(a)), that is,  

€ 

class(e) = own(a)⇒ ((rollup σ ) e a ) =  calc(own(e) (rollup σ ) e) a     
 

• The value of an inherited attribute a, that is not anchored to type(e), in the profile of element 
e, is calculated as the aggregate of the inherited values of a in the profiles of elements upon 
which e depends, that is,  

€ 

depends* (class(e),own(a))∧class(e) ≠ own(a)⇒
((rollup σ ) e a) = ⊗a{((rollup σ ) f a) | f ∈ Element∧e← f ∧depends* (class( f ),own(a))}

 

Note that if type(e) does not inherit attribute a, then there is no constraint on the value of a in 
the profile of e. 

 
Operation (rollup σ) is defined as a solution to the equations above. In our current prototype it is 
implemented as a relational join across database tables of risk types/profiles.  
 
Example 1 For convenience, we use UML class style diagrams to construct risk hierarchies, 
where risk types correspond to UML classes of risk attributes. Figure 1 defines a model of a 
simple risk hierarchy involving servers in departments along with a rolled-up instantiation 
involving two departments and three servers. An over-arching OrgRisk class (type) is included, 
with a single all risk element representing overall organization risk to which all risk rolls-up.  
 

Risk attributes are declared within their anchoring risk type (Server in this example). 
Primitive attributes valu and vuln are declared by indicating their data-type (probability 
and double, respectively). Evaluated attribute svrALE is defined as calculation 
  

€ 

vuln × valu . Attribute data-type provides default aggregation operators for rollup: double 
provides arithmetic addition as default aggregation; probability provides probabilistic sum 
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as default aggregation operator. An attribute typing system with data-type ordering 
probability ≤ double is used to infer that, based on the types in its defining expression, 
evaluation attribute svrALE has data-type double and uses arithmetic addition for 
aggregation and rollup. Pass/fail risk events are also included in their anchoring risk type, along 
with a reference to the primitive attributes upon which they act.  
 

Attributes are declared as private (prefix -) or public (prefix +) in their anchoring type. A 
public attribute is considered to have an interpretation when rolled-up outside of its anchoring 
type. For example, public attribute svrALE provides economic risk associated with each 
department; risks are aggregated as the sum of individual risks [5]. Sample attribute values 
(profiles) are provided for each of the servers, along with rolled-up svrALE values for the 
departments. 

 
In the above example, rolling up department svrALE risks in order to provide overall risk 

for the organization in the profile of element all results in a double counting of the economic 
risk of webServer. We argue that economic risk such as ALE in this case is not an appropriate 
metric across risk hierarchies as it ‘flattens’ the hierarchy resulting in the loss of much of the 
contextual information about the nature of the risk. In the next section we consider a more 
general approach whereby risk is measured in terms a normalized severity of failure.  

 
3 Measuring Risk 
 
The previous section provided a computational model of risk whereby risk calculations are 
effectively determined by the past (risk) events in the environment. This section considers the 
kinds of risk metrics that can be used in performing these calculations.  
 
3.1 Vulnerability Indicators and Subjective Risk 
 
Risk profiles store measurement data that is used in the calculation of risk. One class of 
measurement is a vulnerability indicator: an independent variable 

€ 

υ i  providing a measure of 
some operational characteristic of the enterprise that is related to the vulnerability. For example, 

  

€ 

υpatch  gives the number of days elapsed since a patch was released for a software package, but 
not applied;   

€ 

υtrain  is the percentage of staff lacking up-to-date training.  
 

A vulnerability can be exploited (by an attacker), leading to a failure and is represented as 
binary dependent variable 

€ 

φ . For example, an intruder has access to system (via buffer overflow 
attack), or data loss (due to untrained staff). If failure 

€ 

φ  is dependent on vulnerability indicators 

€ 

υ 0,..,υ n , then 

€ 

Pr[φ =1 |υ 0 = i0,..,υ n = in ]  is the probability of the failure occurring, given 
indicator values 

€ 

υ 0 = i0,..,υ n = in . In this paper, probabilistic primitive risk attributes implement 
failure probabilities based on vulnerability indicators that are assumed to be statistically 
independent. For example, a primitive risk attribute patch gives the probability of compromise 
based on the current value of vulnerability indicator   

€ 

υpatch .  
 

Regression analysis on the historical vulnerability indicator values could be used to arrive at 
the probability distribution. For the purposes of this paper, we assume that this function is 
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monotonic-increasing with respect to vulnerability indicator values. Thus, as the value of a 
vulnerability indicator increases, then the probability of failure (due to the associated 
vulnerability) increases. For example, we assume that the vulnerability of a system can increase 
only while it remains un-patched. Exploring non-monotonic risk within our model is a topic for 
future research.  

 
Linear regression tends not to be suitable for binary variables and therefore we chose logistic 

regression [12] over a data-set of vulnerability indicator 

€ 

υ i  values, obtaining parameter values α, 
β, and estimating probability of failure as  

€ 

Pr[φi =1 |υ i = x] = logisticα,β (x) =
1

1+ e−(α+βx )  

 
for indicator value 

€ 

υ i . This provides a compact representation in terms of (α,β) for the 
distribution that can be associated with the attribute when declared in its anchoring type and its 
inverse is easily computed using the logit function [12].  
 
3.2 Subjective Risk Attributes 
 
Part of the motivation in using logistic-based regression analysis is that it provides an intuitive 
approach for specifying distributions based on the subjective knowledge of a domain-expert 
when historical vulnerability datasets are not available. For example, a security administrator 
advises that there is a low likelihood of compromise to a system that has not been patched for up 
to 10 days, however, there is a high likelihood of compromise if the system remains un-patched 
after 30 days have passed.  
 

A risk attribute representing vulnerability indicator 

€ 

υ i  can be declared as a subjective 
probability by specifying a low (lo), high (hi) and residual probability value res, with constraints  

€ 

0 ≤ Pr[φi =1 |υ i = lo] ≤ res
1− res ≤ Pr[φi =1 |υ i = hi] ≤1

 

and assuming that probability of failure increases as the value of the vulnerability indicator 
increases, then we fit these two data-points to the curve 

€ 

Pr[φi =1 |υ i = x] = logistic(x) , where  

€ 

α =
lo + hi
lo − hi
 

 
 

 

 
 × ln

1− res
res

 

 
 

 

 
 

β =
−2α
lo + hi
 

 
 

 

 
 

 

For example, Figure 2 illustrates the distribution for vulnerability indicator   

€ 

υpatch , with lo=10, 
hi=30 and res=0.1. 

 
3.3 Risk Events Revisited 
 
A risk event serves to update the value of one or more vulnerability indicators, which may 
increase or decrease the probability of failure. While the risk-framework supports any type of 
risk event, in this paper we consider the passfail and timer events that support execution of 
conventional audit test-procedures.  
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• A passfail event returns a pass (success) or fail result. A fail results in the value of an 
affected primitive attribute to be decremented by 1, while a pass results in an increment 
by 1.  

• A timer event returns a pass or fail and updates the affected attribute to the number of 
days elapsed since the last time it passed. 

 
For example, (daily executed) test procedure ckPatch fails when server software is not the 
most recent version. Defining it as a timer event affecting vulnerability indicator patch 
means that as the value (in days) of   

€ 

υpatch  changes, then the probability of failure changes 
according to the function in Figure 2. 
 
3.4 Severity Attributes 
 
Risk attributes may be used to provide measures in addition to probabilities and monetary value. 
For example, weightings for physical location, the value (non-monetary) of the data to the 
organization, how critical the availability of a web-server is to the organization, or the 
severity/impact of software vulnerability (e.g., [13]) may contribute to evaluating an overall risk 
score for the data hosted by a server. Since risk attributes may be scored from different ranges of 
values it can be difficult to relate the values of different attributes in a meaningful way. Severity 
provides a way to interpret the meaning of a risk attribute value, and to normalize disparate 
attribute values, to a common severity scale.  
 

Severity is defined as a measure of the relative significance or impact of risk attribute. A risk 
attribute a has a severity generator 

€ 

Γa = Attribute→ℜ→ [0..1]  and a (raw) value v of attribute a 
is interpreted as severity value 

€ 

Γa (v) . Values 0 and 1 represent the lowest and highest severity 
values, respectively. It is assumed that severity is monotonic, that is, given raw values v1,v2 for 
attribute a, then 

€ 

v1 ≤υ 2 ⇔Γa (v1) ≤ Γa (v2) . The severity generator is a logistic regression of 
subjective knowledge from a domain expert specified in terms of lo and hi value bounds.  

 
As an example, an attribute valu with severity range [500,1500] indicates that a server 

valued less than $500 is considered to have little value while a server valued over $1,500 has 
high value. Severity can also be used to normalize an evaluation risk attribute in order to control 
risk-tolerance, for example, mapping svrALE (Example 1) to the severity range [200..400] 
means that an annual loss expectancy of less than 200 is tolerated.  

 
3.5 Aggregation and Risk Metrics 
 
Severity values may be interpreted in terms of fuzzy logic [14] whereby the logistic function 
approximates the fuzzy set with two points. Triangular norms are operations that generalize the 
fuzzy logic operators and a variety of t-norm/t-conorm operators [15, 16] can be defined. For 
example, the product fuzzy logic has probabilistic product (t-norm) and sum (t-conorm). The 
latter provides a useful default aggregation operator for rollup. We adopt a simple attribute data-
typing system based on ordering probability ≤ severity ≤ double; this is used to type 
an evaluation attribute based on the data-types of the attributes in its defining calculation and 
also to provide a default aggregation operator for rollup of the attribute.  
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Example 2 The Server risk profile from Example 1 is redefined as:  
valu:severity[lo=500,hi=1500]; 
patch:probability[lo=10,hi=30];  
  

€ 

svRisk = patch × valu;  
timer ckPatch[patch]; 
 

In this case the subjective range [lo=10,hi=30] is used when calculating the probability of 
failure of a server risk element based on the value of vulnerability indicator patch that is 
updated by the timer procedure test ckPatch. Attribute svRisk is calculated using the 
normalized values of attributes valu and patch.  
 

Attribute svRisk provides a metric indicating risk of server failure, the severity (impact) of 
which can be measured at different points (risk elements) in the organization risk hierarchy. The 
types probability and severity use the t-conorm probabilistic sum (disjunction) as 
default aggregation operator with the result that svRisk is also rolled up using probabilistic 
sum. Given the risk hierarchy instance from Figure 1, with the revised Server risk profile 
above, and if svRisk(e) represents the (rolled-up) value of attribute svRisk in the profile of 
risk element e, then the rollup of svRisk to risk element all is calculated as  

 

  

€ 

svRisk(all)=svRisk(sales)⊕svRisk svRisk(purchasing)

=svRisk(crmServer)⊕svRisk svRisk(webServer)⊕svRisk

 svRisk(webServer)⊕svRisk svRisk(purServer)

 

 
Failure of webServer impacts two departments and therefore is considered to have a double 
impact on the overall (all) organization risk measure.  
 

A variety of t-norms provide useful severity aggregation operators and can also be used in 
the calculation of evaluation attributes. For example, using t-conorm max(x,y) as the aggregation 
(rollup) operator for svRisk in the previous example, provides a simple fuzzy risk metric 
[15, 16]. The risk model provides a programmable framework in which a range of metrics can be 
specified and calculated in a hierarchical context.  

 
A goal in selecting the aggregation operators to be used in a risk profile is to match more 

closely how humans aggregate information. Zimmerman and Zysno [17] discover that when 
making decisions humans do not necessarily aggregate according to the linearity of a t-norm, that 
is, there may be potential for non-linearity in the way that combinations are perceive. For 
example, a human may place proportionally greater significance on the aggregation of low 
severity items rather than on moderate severity items. Our prototype currently supports the 
compensation aggregation operator for neutral element n : [0..1] [18, 19]. Intuitively, this uni-
norm operator may be thought of as a combination of probabilistic product when operand 
severity values are less than n, and probabilistic sum when operand severity values are greater 
than n. Using this operator, for example with n = 0.2, to aggregate svRisk causes the roll-up to 
be less sensitive to aggregation of low risk values.  
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4 Enterprise Risk Management 
 
The previous sections illustrate the risk model by considering risk in terms of simple 
organizational elements. In practice, the risk model can be used to define risk in terms of any 
elements that can be organized as a risk hierarchy. In this section we outline how the risk model 
can be closely integrated with the elements of an ERM framework.  
 

Figure 3 depicts a simplified ERM framework as a hierarchy of risk types.  A Process 
represents the business activities within an enterprise and can be associated with one or more 
risks. Risk is the uncertainty in a process that could have adverse impacts on the business 
policy. A Control is a framework for management of an activity or set of activities meant to 
prevent a business process risk from occurring. A Procedure is a set of test activities, 
executed at a pre-determined frequency to ensure that a control is effectively working as design. 
The figure provides a partial instantiation of this hierarchy for the purchasing process.   

 
Two risks are identified that impact the objectives of the purchasing process, and 

controls are introduced in order to mitigate those risks. The risk that revenue loss can occur as a 
result of illegal access is mitigated in part by the following controls.  
• Users on the system must be authenticated. Passwords are used to authenticate authorized 

users, and periodic checks (ckPasswd) for weak passwords are carried out in order to 
prevent password-guessing attacks. An intruder might obtain un-authenticated access to the 
system by exploiting software vulnerability and ensuring that software is patched and up to 
date helps mitigate this risk. Frequent audits of installed software versions (procedure test 
ckPatch) validate the effectiveness of this control.  

• Only users who require access as part of their job function should be authorized to use the 
purchasing system. Frequent audits (ckACL) of the system access-control policy validate the 
effectiveness of this control. 
 

The risk of making payments to non-existent and/or un-approved suppliers is mitigated, in part, 
by the following controls.  
• Only authorized users should have access to the payment system.  
• Staff should be given ongoing training with monthly audits (ckTrain) on staff completion.  
• Every purchase order must be approved by at least two individuals, with random checks 

(ckPOLogs) for compliance of the logs. 
 
Figure 4 provides a UML class -style diagram of the simplified ERM risk hierarchy that 

incorporates risk profile and attribute declarations. Risk attributes are anchored in the Control 
type and provide measures on the effectiveness of the control at mitigating a risk. These control 
risk profiles can, in turn, be “rolled-up” the risk hierarchy, providing measures of the 
effectiveness of risk management in the context of the identified Risk, the parent Process, 
and so forth.  

 
Recall that a risk element may have a number of associated risk-profiles and that in this 

example an individual control can have different profiles that are used to manage measurements 
of its effectiveness with respect to servers, purchase orders and users. This is represented using a 
UML-class generalization in order to define subclasses (types ServerProfile, 
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OrderProfile and UserProfile) of the Control profile superclass. The following risk 
attributes are defined, providing information about the assets or vulnerability indicators.  
• valu defines a severity measure of the value of the asset. It is defined as abstract, as it has 

different severity interpretations depending on whether it is the value of a server, order or 
user. For illustration, server and order value is based on monetary value while a user valu 
is some measure of the importance of their role in the organization.  

• acl is the likelihood of failure as a consequence of an invalid access control policy. It is 
updated via passfail procedure test ckACL: two or fewer failures is considered low risk. 
When acl has a higher value then the (stateful) semantics of passfail require a series 
of successful procedure tests before it can be considered to have a low chance of failure.  

• aclRisk defines risk of access-control policy non-compliance and can be calculated for 
servers (server policy non-compliance), users (risk of user having non-compliant access) and 
orders (risk of non-compliant access to order).  

• allRisk defines the overall risk and, for a given profile, is the (default, probabilistic) sum 
of the aclRisk and any other profile-specific risks profRisk of the sub-class.  

• svrRisk gives the server-specific risk based on patch and the likelihood of failure as a 
consequence of a user having a weak password (attribute paswd).  

• ordRisk gives the order-specific risk based on the likelihood of an illegal order as a 
consequence of a violation of the two-person order rule (attribute illegalSep).  

• usrRisk defines user-specific risk based on likelihood of compromise as a consequence of 
staff not taking/maintaining training (attribute train).  
 
Risk profiles provide measures on the effectiveness of a control, whereby effectiveness is 

determined by the outcome of the procedure test. For example, the risk profiles for the control 
“authenticated access only” provide scores on the outcome of procedure tests for 
each server (for example, webServer and purServer), for users and orders. The 
aggregation of profiles associated with the control provides measures on its effectiveness, 
including an overall measure allRisk. When rolled up to the risk “compromised 
systems lead to revenue loss” it provides a measure of the effectiveness at 
mitigating the risk. This provides a multi-level approach to presenting and investigating risk. The 
higher the risk attribute in the risk hierarchy, the more abstract the measurement.  For example, a 
high allRisk score on the purchasing gives a general indication of the health of that 
business process. This might prompt a drill-down the hierarchy to identify the poorly mitigated 
risk(s), with a further drill-down to discover the non-compliant user(s) with a high usrRisk 
score.  
 
For the sake of clear exposition, the examples in this paper are intentionally simple. In practice, 
internal controls catalogues can have a large number of, and complex, controls and it is beyond 
the scope of this paper to consider how these catalogues might be encoded in terms of the 
proposed risk model.  In one experiment using an existing catalogue, we built a first-cut risk 
profile whereby each risk in the catalogue corresponded to a unique risk attribute, updated by the 
procedure-tests of the risk’s controls. For example, a risk attribute corresponding to 
“compromised systems lead to revenue loss” (from Figure 3) is updated 
(passfail) by ckPatch, ckPasswd and ckACL. This is preliminary work and further 
research is needed to evaluate how the risk model might be used in practical environment.   
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5 Prototype 
 
A relational database management system provides a practical approach to managing the risk-
profiles. Risk types map to database schema with schema attributes implementing risk attributes 
and the risk hierarchy is implemented via schema (key) dependencies. Risk events (test 
procedures) are implemented as database triggers, that, when executed, update the related 
primitive attributes and also perform any calculations associated with evaluation attributes.  
In performing a rollup, the model computes a join over tables corresponding to an instance of the 
risk hierarchy with attributes as defined by the risk attributes. However, SQL does not provide 
arbitrary aggregation operators over attributes; only primitive arithmetic aggregation operators 
are directly available, for example, SUM, AVG and MAX. The current risk model prototype 
restricts the permitted aggregation operators to Archimedian t-norm/co-norms [20] which means 
that attribute aggregation is simply implemented by SUM over its column in the database table.  

 
A high-level risk-specification language has been implemented that is comparable to the 

UML diagrams used to illustrate the examples in this paper. This language is used to specify 
arbitrary risk hierarchies, risk attributes and their types (including types probability, 
severity and double) and risk events (including passfail and timer). A compiler 
translates a specification in this risk language to a DB2 database implementation with associated 
triggers and stored procedure queries for roll-up. The generated implementation model can be 
integrated with an existing ERM framework and thus provides risk profile support. 
 
6 Discussion and Conclusion 
 
The risk model presented in Section 2 provides a user-programmable framework in which to 
monitor and measure the effectiveness of controls at mitigating risk. While measurements are 
made at the level of individual controls, they can be aggregated, and then used to calculate more 
general risk measures from the perspective of different contexts/levels in the organization. The 
examples in Sections 2 and 3 illustrate organizational-centric measurements, whereby 
organizational structures provide the risk hierarchy and the contexts from which to present the 
risk. Organizational-centric structuring is typical for security risk management dashboards such 
as [10, 21]. The ERM-centric measurement used in the example in Section 4 provides multi-level 
and contextual risk measurements that are closely integrated with ERM framework elements and 
therefore provide a basis for informed decision-making.  
 
Section 3 considered risk metric construction within the risk model. Rather than limiting 
measurement to common metrics such as number of control failures or top-failing controls, risk 
profiles are programmable using a variety of metric space and fuzzy-style logic operators. 
Encoding the security metrics described in [8] within the risk model is an interesting topic for 
future research. While [21] supports fuzzy (security) risk metrics, it does not consider other 
forms of aggregation, nor their use in an ERM context.  Risk calculations in the risk model can 
be based on historical behavior or subjective information based on knowledge of domain experts. 
For example, scores from the Common Vulnerabilities and Exposures database [13] can be used 
as subjective weightings when calculating risk of system/software failure.  
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A risk profile is a user-programmable container for risk calculations related to risk elements. 
While the examples in this paper have focused on operational (security) risk, the risk profiles can 
also be used to manage calculations related to other risk scenarios. For example: an organization 
manufactures five key products and continuity requires that no single part is secured from a 
single vendor, that no part is utilized across more than three products and that no single part 
inventory is less than 60% of the sales pipeline. A product risk profile can be used to coordinate 
this calculation whereby should the part become unavailable then the organization would either 
source an additional vendor or initiate a greater inventory. Using the risk model to manage 
calculations for other risk classes is a topic for future research. 
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Figure 1 Risk configuration model and rolled-up instance. 
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Figure 2 Logistic function with lo=10, hi=30 and res=0.1 
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Figure 3: Abbreviated Risk Hierarchy (a); controls Fragment (b) 
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Figure 4: Risk Profiles for ERM 
 
 


