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Abstract—Physical Access Controls, such as supervised doors,
surveillance cameras and alarms, act as important points of
demarcation between physical zones (areas/rooms) of different
levels of trust. They do so by controlling personnel flow to and
from areas in accordance with the enterprise security policy. A
significant challenge in providing physical access control for (re-
stricted) areas is attaining a degree of confidence that a Physical
Access Control security configuration adequately addresses the
threats. A misconfiguration may result in a threat of unapproved
personnel access or the denial of approved personnel access to
a restricted zone. In practice, Physical Access Control security
configurations typically span multiple zones, involve many users
and run to many thousands of access-control rules, and such
complexity may increase the likelihood of misconfiguration. In
this paper, a formal model for Physical Access Control security
configurations is presented. This model, implemented in SAT,
captures a number of unique anomalies specific to Physical Access
Control domain. A preliminary set of experiments that evaluate
our approach is presented.

I. INTRODUCTION

Physical Access Control (PAC) systems are specific in-

stances of access control that regulate access to a property,

a building or a room. They act as important points of de-

marcation between physical zones (areas/rooms) of different

levels of trust. They do so by controlling personnel flow to

and from zones in accordance with the enterprise-level security

policy. Note, a zone can be considered as a set of doors/panels

that collectively form a physical area such as a department.

A PAC system is typically composed of a number of inter-

operating security mechanisms, for example door readers,

video surveillance and alarms.

Management of PAC security configurations can be com-

plex, run to many thousands of access-control rules and are

typically maintained on an ad-hoc basis [1]. New access-

control rules are often added to the PAC security configu-

ration with little regard to how they interoperate with existing

access-control rules and likely resulting in an overly-restrictive

and/or overly-permissive PAC policy configuration. Similarly,

changes to the PAC security configuration of one PAC se-

curity mechanism (for example, door reader) may indirectly

impact the intent of a configuration of another PAC security

mechanism (for example an alarm or reachability to another

door reader). The ideal PAC security configuration provides

for consistent interoperating PAC security configurations that

support valid personnel access, and, preferably, no more and

no less.

Consider, as a running example, the following enterprise-

level security requirements to “permit relevant personnel ac-

cess to the research laboratory and deny all other access”. In

practice, deploying access-control rules for access to a zone

such as a research laboratory that upholds an enterprise-level

security policy, is not simply about making a zone accessible

or inaccessible for all personnel. One may wish to deny

certain personnel (for example, visitors), only accept access

from research personnel, require time-based constraints on

authorisation for other personnel (for example contractors).

One also has to consider the the various kinds of authentication

methods, for example proximity or biometric badges, that

various personnel will be required to use for authentication.

One may wish to provide entry and exit to the research labo-

ratory using a specified path (a set of doors) and not others.

Furthermore, it may also be prudent to provide surveillance to

a particular zone or set of zones. In practice, generating a PAC

security configuration that is aligned with the enterprise-level

security policy is challenging, and is largely dependent on the

expert-knowledge of the security administrator.

We argue that the challenges in composing an anomaly-free

Physical Access Control security configurations are compara-

ble to those for firewall security configuration. Management of

firewall security is complex and error-prone. Typical errors in

a firewall security configuration range from incorrect access-

control rule ordering (causing conflicts/anomalies) to errors

resulting from the poor comprehension of the enterprise-level

security policy. For example, two access-control rules are

said to conflict if they filter the same kinds of packets with

contradictory target actions or if one rule is a specialisation

of the other where their ordering is incorrect. An incorrect

ordering of access-control rules may change the intended

semantics of the firewall security configuration, resulting in in-

correct enterprise-level security policy enforcement. To avoid

misconfiguration, firewall administrators use structural analy-

sis techniques to detect for example redundancy, shadowing,

correlation and spuriousness anomalies [2]–[4].

In this paper, these well understood firewall structural

analysis techniques are taken and applied to the Physical

Access Control domain. To the best of our knowledge, this

approach provides a basis with which to identify new conflicts

not previously considered in other research. For example, the

detection of unintended denial of user access to zones due to

blocked paths (shadowing anomaly) or unintended user access



to restricted zones (spurious anomaly).

In this paper, we consider the management of PAC security

configuration for door access control. Note, future research

will consider the inter-operation of other security mechanisms

such as alarms and video surveillance.

The contribution of this paper is as followings. A formal

model for PAC security configuration with a specific emphasis

on door access control is presented. A number of novel con-

figuration anomalies are formally defined for Physical Access

Control. Thus, providing a basis for automated detection of

PAC security configuration anomalies.

This paper is organised as follows. Section II presents a

formal model for PAC security configuration. An example

scenario for PAC security configuration is outlined in Sec-

tion III. Section IV defines the anomalies for PAC security

configurations. Section V outlines a preliminary evaluation

of our approach where SAT has been used to encode the

PAC model. Related research is outlined in Section VI and

Section VII concludes the paper.

II. A SECURITY MODEL FOR PAC

This section presents a formal model for PAC security

configuration. In this paper, we do not capture all of the

possible security configuration attributes in PAC systems,

rather we focus on a subset and consider door access controls.

The aim of this model is to illustrate some of the analysis that

can be usefully done over such security configurations. The

model is presented in Z notation [5].

A PAC security configuration assigns badge holders, which

identify individual users, to doors in a given zone for which

users are permitted access. While a user may hold multiple

badges such that access to different zones in a building is

possible, we only consider a user that has a single badge.

Note, we believe that extending the model for multiple badges

is straightforward. Let the basic type [User] represent the set

of all possible users. While the majority of the user interfaces

available in PAC solutions provide a personalized view to a

user, we will be using groups that constitute of a set of users.

The assumption that the users are grouped also eases the policy

administration. The set of all possible groups is defined as

Group == PUser

Let basic types [Room,Door] represent the set of all possible
rooms and doors, respectively. While a door d ∈ Door

identifies a unique physical door, it has two faces/sides. Access

rules on the door are expressed relative to these faces which

are identified by the room that a given side of the door faces.

We define

DoorFace == (Room× Door)

Thus, the access controls for a door d that connects rooms r

and r′ are defined in terms of door faces (r, d) and (r′, d).
The building topology is defined in terms of a partial

function

otherside : (Room× Door) 7→ Room

whereby otherside(r1, d) = r2 means that on the other side of

a door d facing room r1 is the room r2. We use the constant

outside ∈ Room to denote the outside ‘room’ of the building.

For consistency, otherside(otherside(r, d), d) = r must hold.

For example, the door at the main entrance to the building in

Figure 1 can be identified as (outside,D1) (the door facing

the outside) and we have otherside(outside,D1) = Lobby.

In general, there is a path through the building from a

starting door ds in a room rs through a destination door df
in room rf if existPath((rs, ds), (rf , df )), where

existPath : (Room× Door) ↔ (Room× Door)

existPath((rs, ds), (rf , df )) ⇔
∃ di : Door •

(rs, ds) ∈ dom otherside ∧
existPath((otherside(rs, ds), di), (rf , df ))

Note, that there may exist several paths between the given

door faces (denoted by the corresponding room and door). An

auxiliary function that checks the existence of a unique path

will be introduced further on.

Access controls may be defined for either face of a door and,

therefore, an access control is specified in terms of whether a

user/group may go through a given door in a given room. A

set of these (room,door) faces specifies a Zone:

Zone == P (Room× Door)

If no ambiguity can arise then, given z ∈ Zone, z.Room denotes

the corresponding room and z.Door denote the corresponding

door, respectively. Thus, for example, if z = (Lobby,D1) ∈
Zone then z.Door = D1, and so forth. Note, zones may be

classified according to a hierarchical structure.

Conventionally, some PAC systems work on a Close World

Assumption (CWA) such that any request for a non-existent

permission is denied. However, enabling the specification of

deny rules (in addition to a default deny rule) might be more

natural in certain circumstances [6]. For instance, an employee

who is on vacation can be denied access to his/her office space

for the vacation period, by the addition of a deny rule, unless

otherwise all rules that allow the user to do so are modified.

Moreover, in PAC systems, the logging of events is crucial

after a permitted request. Thus, we consider three kind of

decisions that define the actions to be taken by the authorizer.

Let Action denote the different access decisions.

Action ::= allow | deny | log

An access-control rule (g, z, a) is a triple specifying that

users in group g are granted a access to zone z.

Rule == Group× Zone× Action

As a result, the access control rules in our model can

specify whether a group is permitted access (allow) to a zone,

explicitly denied access (deny) to a zone or permitted access

to the zone but that the access be logged (log).

The rules in a rule pair (r, s) that will be analysed for

anomalies/conflicts are categorized as an upstream rule and a



downstream rule if their zones are disjoint, r.Zone∩ s.Zone =
∅. Specifically, r is an upstream rule if its zone contains a door

face or set of door faces that control inward bound personnel

flow in the direction of the door face or set of door faces

controlled by (downstream) rule s. For instance, a rule r that

contains D1 would be the upstream rule when analysed with a

rule s that has D6 in the zone definition for a personnel flow

path from Outside to OSLab.

A PAC security configuration/policy is the set of access-

control rules in place for a building.

Config : PRule

For the sake of clarity, we use the name of a defining type as

an accessor function for access-control rule attributes. In par-

ticular, given r ∈ Rule then r = (r.Group, r.Zone, r.Action).
A configuration query mayPass(u, r, d) returns the access-

decision as to whether a user u in room r is permitted to

pass through door d. In evaluating a query there may be a

number of matching access-control rules in which the user is

a member of the group and the room-door pair is in a zone.

In the event that the matching rules specify conflicting access

decisions a precedence ordering is assumed over Actions. This

(total) precedence ordering provides an upper bound operator

max.

We define

mayPass : User × Room× Door → Action

mayPass(u, r, d) = max({g : Group; z : Zone; a : Action
| (g, z, a) ∈ Config ∧
u ∈ g ∧ (r, d) ∈ z

• a} ∪ {deny})

where the order between decisions is deny ≥ log ≥ allow

and in the absence of matching rules, the default decision is

deny.

Note, that the current model assumes that access rules are

expressed in no particular order and that a mayPass query

is made across the entire set of access rules. Similar inter-

pretations are commonly used in conventional access control

policies, for example, [7]–[9]. An alternative interpretation

would be to treat a PAC security configuration as a sequence

of access rules whereby for a given (user, room, door) triple,

the query is tested against each access-control rule, starting

from the first, in sequence, and the first rule that matches gives

the result that is returned. Similar interpretations are used in

firewall policy rules [2], [10]–[12].

III. PAC SECURITY CONFIGURATION

Consider as a running example, the building topology for

our computer laboratory used to construct a PAC security

configuration (Figure 1). The main entrance (D1) leads to a

lobby where there are two doors to enter the computer science

facility. Computer science facility has a meeting room that is

protected with an anti-passback mechanism. The lobby leads to

an open space which is also accessible from the meeting room.

Individual research group locations for Software Engineering

(SELab), Security (SecLab) and Operating Systems (OSLab)

are also protected with access control. Note, the ∗ in Figure 1

for D2 and D3 represents doors with two readers (one on each

side).

Fig. 1. Example Building Topology

As part of the SAT implementation outlined in Section V, a

graph is constructed for all possible paths between a starting

position (Out most) for example Outside and an end position

(In most) for example SecLab within a given building topol-

ogy (Figure 2). Nodes represent the door faces with readers

and edges represent the room that a given door face leads to.

Note, nodes Out most and In most do not represent physical

nodes (doors), rather they are markers to state a starting and

an end position.

Fig. 2. Example Graph Of Possible Paths Between Two Nodes

The following is an example PAC security configuration. All

employees are permitted access to the Lobby and OpenSpace

areas and we have the rule:

({alice, bob, bill},
{(Outside, D1), (Lobby, D7)}, allow) ∈ Config

Eve and Clare are contractors and are permitted access to the

Lobby area

({eve, clare}, {(Outside, D1)}, allow) ∈ Config

while Clare and Bob both work on a security project which

gives them access to the SecLab

({bob, clare},
{(Lobby, D7), (OpenSpace, D5)}, allow) ∈ Config



Lastly, Bob and Bill have management roles and have access

to the MeetingRoom

({bob, bill},
{(Lobby, D2), (OpenSpace, D3)}, allow) ∈ Config

Note, that the PAC security configuration defined by this set

of access-control rules is incomplete and contains a number

of inconsistencies. For example, while employees may enter

the Lobby area by D1, no access-control rule specifies that

they are permitted to exit the Lobby area. The next section

considers a range of such anomalies/inconsistencies that may

exist in PAC security configurations.

IV. ANOMALIES IN PAC SECURITY CONFIGURATION

A. Building Topology Anomalies

One might like to check whether there is a physical path

from the outside to every room in the building.

∀ r : Room •
∃ d, d′ : Door • existPath((outside, d), (r, d′))

While every room may be physically accessible in principle,

it is possible that there is a room that may not be accessed by

any user in practice as a result of the PAC security configura-

tion. Let mayPass∗(u, (rs, ds), (rf , df )) indicate whether a user

starting in Room rs can gain access, from door ds, to the door

df in room rf .

mayPass∗ : User ↔ (Room× Door) ↔ (Room× Door)

mayPass∗(u, (rs, ds), (rf , df )) ⇔
∃ di : Door •

(rs, ds) ∈ dom otherside ∧
mayPass(u, rs, ds) = allow

mayPass∗(u, (otherside(rs, ds), di), (rf , df ))

We then can then specify that access to every room is permitted

by the policy:

∀ r : Room •
∃ u : User; d, d′ : Door •

mayPass∗(u, (outside, d), (r, d′))

A similar check can be specified that determines whether a

user (permitted) in a particular room can exit the building.

∀ r : Room; u : User; d, d′ : Door •
mayPass∗(u, (outside, d), (r, d′))

⇒ ∃ d′′ : Door • mayPass∗(u, (r, d′),
(outside, d′′))

Note that the definition of mayPass∗ permits the exit path (per

the policy) to be different to the entry path.

B. Redundant and Conflicting Rules

Simple Anomaly analysis examines the relationship that

access-control rules have with one another without considering

topology information. While the access-control rules on an

individual basis may be compliant with the enterprise-level

security policy requirements, the relationships between the

access-control rules themselves may introduce a scenario such

that the overall PAC security configuration is inconsistent with

the enterprise-level security policy. For example, the following

PAC security configuration:

• Rule A: Main entrance door remain locked except for

scheduled times.

• Rule B: Main entrance door remain locked except for

scheduled times where scheduled times are activated by

first-unlock.

is ambiguous whereby Rule A is inconsistent with Rule B and

vice versa. The following is an formal model of access-control

rule anomaly analysis definitions with respect to door access

control.

a) Redundancy Anomaly: Given access-control rules

r, s : Rule then access-control rule r is redundant to access-

control rule s, denoted as r ⊑ra s, if the Group and Zone

attribute fields of r are subsumed by those of s and both r and

s have the same actions.

⊑ra : Rule ↔ Rule

∀ g1, g2 : Group; z1, z2 : Zone; a1, a2 : Action •
(g1, z1, a1) ⊑ra (g2, z2, a2)
⇔ g1 ⊆ g2 ∧ z1 ⊆ z2 ∧ a1 = a2

For example, consider the following access-control rules

r, s : Rule:

r = ({alice, bob}, {(Lobby, D7)}, allow)
s = ({alice, bob, eve}, {(Lobby, D7)}, allow)

then access-control rule r is considered redundant to s

where r.Group = {alice, bob} is subsumed by s.Group =
{alice, bob, eve}, r.Zone = {(Lobby, D7)} equals s.Zone =
{(Lobby, D7)} and r.Action = allow = s.Action = allow.

While redundancy does not influence the semantics of a

physical access control policy, having to reason over additional

and unnecessary rules may result in a performance cost.

Resolution of redundancy conflicts corresponds to removing

the redundant access-control rule.

b) Exception Anomaly: Given access-control rules r, s :
Rule then access-control rule r is an exception to access-

control rule s, if the Group and Zone attribute fields of r are

subsumed by those of s and both r and s have different actions.

⊑ea : Rule ↔ Rule

∀ g1, g2 : Group; z1, z2 : Zone; a1, a2 : Action •
(g1, z1, a1)⊑ea(g2, z2, a2)
⇔ g1 ⊆ g2 ∧ z1 ⊆ z2 ∧ a1 6= a2



For example, consider the following access-control rules

r, s : Rule:

r = ({alice, bob}, {(Lobby, D7)}, allow)
s = ({alice, bob, eve}, {(Lobby, D7)}, deny)

then access-control rule r is considered an exception to access-

control rule s where r.Group = {alice, bob} is subsumed

by s.Group = {alice, bob, eve}, r.Zone = {(Lobby, D7)}
equals s.Zone = {(Lobby, D7)} and r.Action = allow is not

equal to s.Action = deny.

The above exception anomaly definition may be further

constrained such that one can determine whether the access-

control rule causing the exception anomaly is of the kind that

permits the action that the generalized access-control rule is

denying or vice versa. Given rules r and s then a permit-

exception conflict occurs iff (r⊑ea s ∧ s.Action 6= deny),
and a deny-exception conflict occurs iff (r⊑ea s ∧ s.Action 6=
allow).
Resolution of such an anomaly may be to remove the

exception access-control rule or leave the access-control rule

as it was intended.

c) Correlation Anomaly: Two access-control rules r, s :
Rule are said to be correlated (symmetric relation), denoted

r⊑ca s, where

⊑ca : Rule ↔ Rule

∀ g1, g2 : Group; z1, z2 : Zone; a1, a2 : Action •
(g1, z1, a1)⊑ca(g2, z2, a2)
⇔ ((g1 ⊃ g2 ∧ z1 ⊂ z2) ∨ (g1 ⊂ g2 ∧ z1 ⊃ z2)
∧ a1 6= a2

Consider the following access-control rules r, s : Rule:

r = ({alice, bob},
{(Outside, D1), (Lobby, D7), (SecLab, D4)}, deny)

s = ({alice, bob, eve}, {(Outside, D1)}, allow)

where r.Group = {alice, bob} is subsumed by

s.Group = {alice, bob, eve} and r.Zone =
{(Outside, D1), (Lobby, D7), (SecLab, D4)} subsumes

the attribute field s.Zone = {(Outside, D1)} and both r and

s have opposing actions.

The conjunction of access-control rules r and s may be

interpreted in one of two ways. In the case where access-

control rule r is given precedence over s (where a deny

action is default security policy) implies an implicit access-

control rule x where x.Group = {alice, bob}, x.Zone =
{(Outside, D1)} and x.Action=deny. However, if access-

control rule s is given precedence over r (where a allow

action is default security policy) implies an implicit access-

control rule x where x.Group = {alice, bob}, x.Zone =
{(Outside, D1)} and x.Action=allow. The result is that users
alice and bob are either denied access to Lobby instead of

being allowed or allowed access to Lobby instead of being

denied.

Such an anomaly is a paradox and resolution (if any)

through removal of an access-control needs careful consid-

eration. Another resolution without the removal of a single

access-control is to replace both access-control rules with two

new access-control rules re-written without the correlation

anomaly.

C. Topology Anomalies

Access-control rules that define user authorisation for one

zone versus another zone may appear disjoint and not related

(for example access-control rules r and s illustrated below).

By considering additional external information such as the

enterprise-level security requirements and/or the building’s

room topology, an additional set of access-control rule rela-

tionships may be defined. In this paper, the building’s topology

where a path between a given set of rooms is considered in

conjunction to the access-control rules themselves.

As a running example, consider the following scenario.

A path to SecLab is to first enter Lobby from Outside

through D1, then OpenSpace through D7 and finally SecLab

through D5. Therefore, generating a suitable room PAC se-

curity configuration requires permitting a set of users access

to all rooms in a given path of rooms that lead to the room

where access is being sought. The following is an example

PAC security configuration, Config, that permits user alice

access to SecLab.

Config = {r, s,w}

where

r = ({alice}, {(Outside,D1)}, allow)
s = ({alice}, {(Lobby,D7)}, allow)
w = ({alice}, {(OpenSpace,D5)}, allow)

d) Shadowing Anomaly: An upstream access-control

rule is denoted by sup and a downstream access-control rule is

denoted by rdown. Given access-control rules rdown, sup : Rule,
access-control rule rdown is shadowed (overly restricted) by

access-control rule sup, if the attribute field of rdown.Group is

a subset of or a superset of the corresponding attribute field

of access-control rule sup, the attribute field of rdown.Zone is

disjoint from the corresponding attribute field of access-control

rule sup where sup is denying what access-control rule rdown is

intending to allow and a path exists between rooms encoded

within rules rdown and sup.

⊑sa : Rule ↔ Rule

∀ g1, g2 : Group; z1, z2 : Zone; a1, a2 : Action •
(g1, z1, a1)⊑sa(g2, z2, a2)
⇔ ((g1 ⊆ g2 ∨ g1 ⊇ g2) ∧ (z1 * z2 ∧ z1 + z2)) ∧

a1 6= a2 ∧ a2 = deny ∧
∃ d1, d2 : Door; r1, r2 : Room •
(r1, d1) ∈ z1 ∧ (r2, d2) ∈ z2 ∧
existPath((r1, d1), (r2, d2))

Consider the following access-control rules rdown, sup :
Rule and given there exists a path between OpenSpace and

SecLab, then rdown is shadowed by sup. That is, user alice

is denied access (along a path) to SecLab.

sup = ({alice, bob}, {(Lobby,D7)}, deny)
rdown = ({alice}, {(SecLab,D5)}, allow)



Note, in the current security PAC model, shadowing is only

considered between access-control rules within a single path

and not across multiple paths. Another path may exist from an

outmost room to an inmost room. For example, an alternative

path from Outside to OSLab using doors D1, D2, D3 and D6

with the correct access controls may exist.

The following access-control rules, demonstrates a par-

tial shadowing conflict as a consequence of rdown.Group ⊇
sup.Group where only user alice (not bob) has inadvertently

been denied access to SecLab along the path defined as

((Lobby, D7), OpenSpace) and ((OpenSpace, D5), SecLab)

sup = ({alice}, {(Lobby,D7)}, deny)
rdown = ({alice, bob}, {(SecLab,D5)}, allow)

If one was to adopt the view that all enterprise-level

downstream access-control security requirements are to have

precedence over all enterprise-level upstream access-control

security requirements then the upstream low-level access-

control rule causing the shadowing should be modified as to

remove the shadowing anomaly. Note, this view assumes that

the low-level downstream access-control rule has been written

correctly.

e) Spurious Anomaly: Given access-control rules

rdown, sup : Rule, access-control rule sup is spurious (overly

permissive) to access-control rule rdown , if the attribute field

of sup.Group is a subset of or a superset of the corresponding

attribute field of access-control rule rdown, the attribute field of

sup is disjoint from the corresponding attribute field of access-

control rule rdown.Zone where sup is allowing what access-

control rule rdown is intending to deny and a path exists

between rooms encoded within rules sup and rdown.

⊑spa : Rule ↔ Rule

∀ g1, g2 : Group; z1, z2 : Zone; a1, a2 : Action •
(g1, z1, a1)⊑

spa(g2, z2, a2)
⇔ ((g1 ⊆ g2 ∨ g1 ⊇ g2) ∧ (z1 * z2 ∧ z1 + z2)) ∧

a1 6= a2 ∧ a1 = deny ∧
∃ d1, d2 : Door; r1, r2 : Room •
(r1, d1) ∈ z1 ∧ (r2, d2) ∈ z2 ∧
existPath((r1, d1), (r2, d2))

Consider the following access-control rules rdown, sup : Rule
and given there exists a path between OpenSpace and SecLab

((OpenSpace, D5), SecLab), then sup is spurious to rdown (in

terms of unintended door reachability). That is, user bob

is permitted access to Openspace (sup) where bob has the

potential to exploit a single door (D5) to gain access to

SecLab.

sup = ({alice, bob}, {(Lobby,D7)}, allow)

rdown = ({bob}, {(OpenSpace,D5)}, deny)

In practice, one may like to implement a security in depth

approach, where for example SecLab may be categorized as

a critical room such that it requires access to two or more

doors in a given path. Note, access-control rule sup is spurious

only in the context of access-control rule rdown. However,

access-control rule sup when considered in isolation, maybe

correctly upholding an enterprise-level security requirement

defining who may access OpenSpace. If as with the shad-

owing anomaly, one adopts the view that the downstream

access control rule should have precedence over an upstream

access-control rule, then access-control rule sup will require

modification as to exclude user bob from OpenSpace thereby

providing defense in depth to SecLab.

V. IMPLEMENTATION AND EVALUATION

The security model presented in Section II was implemented

and the anomalies were encoded in SAT. We developed an

anomaly discovery algorithm similar to the ones in firewall

systems. Our algorithm, summarized in Algorithm 1, uses

SAT solving (denoted as solve()) as a sub-procedure to reason

about two given rules for an anomaly. Note that, SAT has

been successfully used to perform analysis over large firewall

rule-sets [13], [14]. We have not provided the details of

our SAT encoding due to space limitations but necessary

explanations are provided when necessary. In simple terms, we

have followed a monolithic approach in the encoding such that

a large part of the clauses corresponds to our policy model and

basic predicates in anomaly definitions, and is shared among

all anomaly encodings. In this way, the actual query, checking

whether there is an anomaly between a rule pair, is created by

forcing the satisfiable assignment of the necessary predicates

for the anomaly under consideration.

In order to reduce the overhead caused by translation of

a rule pair, topology information and the anomaly in SAT,

we introduced two types of clauses: once-clauses and pair-

clauses. The former contains all the static information that

is available in a PAC configuration and represents the basic

relations such as subsumption between elements (e.g. usersets)

of a PAC setting or inequality of decisions in rules. The latter

contains the actual rule pair under consideration, and starting

and ending nodes (e.g. Outmost and Inmost) of the directed

graph that represents building topology.

Our algorithm also uses helper methods such as store()
and extractPath() for reporting purposes. In general, the time

complexity associated with the discovery algorithm is charac-

terized with the following formula:

t × (n× n− 1)

2

where t is the average time for analyzing all anomalies

combined and n is the number of rules. As can be noted from

the formula, the driving factor in the overall complexity is the

number of rules.

A. Evaluation

We carried out a set of preliminary experiments to evaluate

the effectiveness of our approach. The experimental setup

was constructed as follows. Experiments were performed on

a computer with an Intel i7 3.40GHz processor and 8GB of

RAM. The building topology consisted of 50 rooms and 60

doors where the maximum number of paths between the nodes



Algorithm 1: Anomaly Discovery

Input : PAC Configuration (Topology, List of Readers,
Policy), List of Anomalies

Output: Rule Pair, Anomaly
1 Generate a directed graph from topology and readers
2 Generate “once-clauses”
3 for i = 1 to | R | −1 do
4 for j = i+ 1 to | R | do
5 foreach anomaly ∈ Anomalies do
6 Generate “pair-clauses” for R[i] and R[j]
7 cls[][] ← once-clauses ∪ pair-clauses ∪

“anomaly”-unit-clause
8 solution[] ← solve (cls)
9 if solution 6= null then break
10 switch anomaly do
11 case redundancy and exception anomalies
12 store (“Anomaly:”+anomaly+R[i] + R[j])
13 Generate “pair-clauses” for R[j] and R[i]
14 cls[][] ← once-clauses ∪ pair-clauses ∪

“anomaly”-unit-clause
15 sol[] ← solve (cls)
16 if solution 6= null then
17 store (“Anomaly:”+ anomaly+R[j] +

R[i])

18 case correlation
19 store (“Anomaly:”+ anomaly+R[i] + R[j]

20 case topology anomalies
21 store (“Anomaly:”+ anomaly+R[i] + R[j]

+ extractPath (solution))

22 if ¬ anomalyFound then return “No Anomaly”

Outmost and Inmost (see Figure 2) was 20. Note, the number

of door faces was selected randomly from 120, that is, each

face of a door. The number of users was set to 100.

For each experiment, involving an access-control rule-set

of different size, five different PAC configurations were ran-

domly generated and their average has been used as the final

result. Specifically, for the experiment that involved 10 rules

we obtained five random PAC configurations with different

building topologies and policy configurations. Note that, we

measured the times at each multitude of 10. That is, the first

experiment was for a PAC security configuration that consisted

of 10 access-control rules, the second for 20 access-control

rules and so forth.

While the performance of our approach is acceptable for

modest number of rules, we believe certain optimizations can

be applied to scale for very large number of rules. For instance

an alternative SAT encoding that addresses anomalies individ-

ually rather than a monolithic approach as ours may prove

to be more efficient. Our approach on the other hand enables

other types of queries that an individual anomaly encoding

may not offer. We are currently investigating optimization

possibilities for our current SAT encoding of the model and

alternative encodings that would allow more efficient analysis.

VI. RELATED WORK

While firewall security configuration analysis has been

extensively researched [2], [10]–[12], research on Physical

Access Control has been limited. In [15], the authors use

association rule mining to detect misconfigurations in a PAC

security configurations. Their approach identifies potential

misconfigurations/inconsistencies by comparing and analysing

the history of previous PAC security configurations with the

current PAC security configuration. The anomalies presented

in our paper build upon those defined within the firewall

domain, for example [2], [11], [16] and are specialized for

the Physical Access Control domain.

Discovering anomalies in access control policies has also

attracted some attention [17]. The authors tackle a similar

problem to that presented in this paper but for eXtensible

Access Control Markup Language (XACML). They present

a binary decision diagram (BDD) based technique to check

whether an anomaly, such as redundancy, exists. Property

analysis on access control policies has been mainly centered

around XACML and RBAC. A SAT encoding for analysing

properties of XACML policies is presented in [18].

VII. CONCLUSION

This paper considered the management of anomaly-free

PAC security configurations. A formal model for PAC security

configuration that governs user access through doors was pre-

sented. Drawing upon analysis techniques for firewall security

configuration (for example [2], [10]–[12]) comparisons where

made with PAC security configurations. This facilitated the key

contribution of this paper where a number of configuration

anomalies have been identified, for example a shadowing

anomaly. The formal model and anomalies have been encoded

in SAT. This provided a basis for an automated testing of PAC

security misconfiguration.

Future research will extend this model to consider other

attributes of users and security mechanisms and their con-

straints. In this paper, anomaly detection was considered. Fu-

ture research shall investigate (semi-) automated PAC security

misconfiguration resolution.

One may avoid much of the anomalies/conflicts, if each

access-control rule is defined as a permission for a single user

to access to a single zone. However, such singleton-based

access-control rules are not reflective of modern enterprise

hierarchical structures. For example enterprises are composed

of departments and have different kinds of personnel (em-

ployees, contractors, visitors). In practice, access-control rules

are defined to with respect to groups of users that may have

permission to access a room or set of rooms (zones).

Given that conflict-free singleton-based access-control rules

are impractical, future research will consider physical access

control policy relaxation techniques [19]. Relaxation of access-

control rules will generate PAC security configurations that

are anomaly-free. However, these PAC security configurations

while conflict-free may not be optimal.



For example, given the following conflicting access-control

rules:

r = ({alice, bob}, {(Lobby, D7)}, deny)
s = ({alice, bob, eve}, {(Lobby, D7)}, allow)

a relaxation of those access-control rules may produce the

following anomaly-free PAC security configurations.

PAC security configuration a : Config such that a = {r}:

r = ({alice, bob, eve}, {(Lobby, D7)}, deny)

where security configuration a adopts a deny by default policy.

Thereby unintentionally denying user eve.

PAC security configuration b : Config such that b = {r, s}:

r = ({alice, bob}, {(Lobby, D7)}, deny)
s = ({eve}, {(Lobby, D7)}, allow)

PAC security configuration c : Config such that c =
{q, r, s}:

q = ({alice, }, {(Lobby, D7)}, deny)
r = ({bob}, {(Lobby, D7)}, deny)
s = ({eve}, {(Lobby, D7)}, allow)

In this example, PAC security configuration b may be the

optimal solution depending on the security policy require-

ments. As a consequence, optimisation of access-control rule

relaxations will also be considered in future research.
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