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Abstract

The product development process is concerned, not only with the design of prod-
ucts, but with how these products are manufactured, distributed and serviced. En-
gineering conceptual design can be defined as that phase of the product development
process during which the designer takes a specification for a product to be designed
and generates many broad solutions to it. Each of these broad solutions is, generally,
referred to as a scheme. Each scheme should be sufficiently detailed that the means
of performing each function in the design has been fixed, as have any critical spatial
and structural relationships between the principal components. While it is generally
accepted that conceptual design is one of the most critical phases of the product
development process, few computer tools exist which provide support to designers
working in this stage of product development.

The thesis defended in this dissertation is that constraint processing offers a rich
basis for supporting the human designer during engineering conceptual design. A
new perspective on the conceptual phase of engineering design is presented, upon
which a constraint-based approach to supporting the human designer is developed.
This approach is based upon an expressive and general technique for modelling: the
design knowledge which a designer can exploit during a design project; the life-cycle
environment which the final product faces; the design specification which defines the
set of requirements that the product must satisfy; and the structure of the various
schemes that are developed by the designer. A computational reasoning environment
based on the notion of constraint filtering is proposed as the basis of an interactive
design support tool to assist a human designer working in the conceptual phase of
design. Using this interactive design support tool, the designer can be assisted in
developing models of proposed schemes which satisfy the various constraints that are
imposed on the design.

The primary contribution of this research is that it provides a novel approach
to supporting the human designer during the conceptual phase of engineering de-
sign. The approach presented here not only addresses the issue of modelling and
reasoning about the design of products from an abstract set of requirements, but it
also demonstrates how life-cycle knowledge can be incorporated into the conceptual
design of a product and how alternative schemes can be compared.
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Chapter 1

Introduction

This chapter briefly introduces the research presented in this dissertation. The influ-
ence of conceptual design on the remainder of the product development process and
on the final product is presented. The research objective and scope of the project is
defined. A formal statement of the thesis is presented. The major contributions of
this work are outlined in general terms. The chapter ends with a description of the

architecture of the dissertation and a guide to reading it.

1.1 Engineering Design and Product Development

Engineering design' is concerned with the development of detailed specifications
for products which provide a technical function. It is a demanding process which
requires expertise in many different fields such as science, engineering and, often,
art. Product development is concerned not only with the design of products, but
with how these products are manufactured, assembled, distributed and so on. A
typical product life-cycle is illustrated in Figure 1.1. In this figure it can be seen
that design can be considered to be a phase of the life-cycle of a product.

Over the past few years, a good deal of research has been carried out in the fields
of design and product development. This is due to the recognition that product de-
velopment has become the battleground upon which industry can achieve competitive
advantage [104]. Improving the product development process increases efficiencies in
operational areas within an organisation, such as manufacturing and assembly. The

benefits include shorter development and manufacturing lead-times, increased prod-

'In the remainder of this dissertation the term design will be used as a shorthand for the phrase
engineering design.
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Figure 1.1: Engineering design and the product life-cycle

uct life-cycle revenue, reduced engineering change-order costs and less development
waste.

In an effort to increase the effectiveness and productivity of design, several ap-
proaches to incorporating knowledge of the downstream phases of the product life-
cycle have been developed. The most commonly used of these approaches is Design
for X (DFX) [17, 85]. The “X” in DFX can be interpreted in a number of ways
[150]. For example, “X” could be interpreted as either a life-cycle process, such as
manufacturing or assembly, or a design property, such as quality or cost; it can also
be interpreted as meaning a set of these processes or design parameters. The ob-
jective of DFX is the optimisation of the design of a product from the perspective

of the life-cycle process(es) or design parameter(s) referred to by “X”. DFX tech-



niques have been successfully applied to the design of products in industry [17]. The
improvement in the competitiveness of many companies has been due to the use of
DFX during product development.

Due to the level of sophistication and customisation expected by customers in
today’s markets, the amount of knowledge required for bringing a product to market
has become vast. Consequently, modern approaches to product development ad-
vocate integration amongst the various phases of the product development process.
This model of product development has given rise to several approaches to sup-
porting multidisciplinary decision making and design, such as Integrated Product

Development [5], Concurrent Engineering [39] and Design Coordination [51].

1.2 The Topic of this Research

The thesis presented in this dissertation is concerned with the development of a
constraint-based approach to supporting engineering conceptual design. Engineering
conceptual design can be regarded as that phase of the design process in which the
designer takes a specification for a product to be designed and generates many broad
solutions to it. Each of these broad solutions is generally referred to as a scheme
[65]. Each scheme should be sufficiently detailed that the means of performing each
function in the design has been fixed, as have any critical spatial and structural
properties of, and relationships between, the principal components.

It is generally accepted that conceptual design is one of the most critical phases of
the product development process. It has been reported that up to 80% of a product’s
total cost is dictated by decisions made during the conceptual phase of design [101].
Furthermore, poor conceptual design can never be compensated for by good detailed
design [82].

The cost of a product is a complex function of the elements from which it is
configured and the various processes required to design, manufacture, assemble and
service it. During design, the human designer has an ideal opportunity to tailor the
design of a product to the particular life-cycle processes which face the products that
she? develops. Therefore, major cost advantages can be gained through ensuring that,

during conceptual design, the decisions which are made are informed by data relating

2Throughout this thesis the feminine pronoun she is used to refer to the human designer. This
is a neater approach than continually writing he or she, or (s)he.



to the product being designed and the life-cycle processes required to produce and
deliver the final product.

Although the many benefits of effective conceptual design have been recognised,
very few computational tools exist which provide support to the human designer
working in this stage of the design process. The majority of those tools which do
exist are to be found mostly in research laboratories in universities around the world.
Additionally, many of the tools which are available do not assist the designer in the
task of design but dominate the entire design process. However, a designer may
be inhibited by the design policies of her company or may be required to carry
out design tasks in a particular order due to the design tools being used. While
the design policies of the company should be supported, indeed enforced, by good
design tools, the designer should be allowed to perform design tasks in any order she
wishes. It is the primary objective of this research to address this need for interactive
designer support during conceptual design. A more precise statement of the goals of

this research are presented in Section 1.3.

1.3 The Goals of this Research

In the discussion of engineering design and product development presented so far,
the importance of conceptual design has been highlighted. The benefits of providing
support during the conceptual phase of design are well-known. Thus, there exists
a real justification for developing approaches to supporting the designer during this
phase of design.

The Galileo constraint programming language [22, 49, 116] has been widely used
to develop design adviser systems for supporting integrated approaches to design,
such as Concurrent Engineering [22] and post-design verification [49, 116]. It has
been shown that Galileo offers an appropriately rich basis for developing design
adviser systems for these aspects of the detailed phase of design. It is believed that
Galileo can also provide an appropriately rich basis for supporting conceptual design.

Therefore, the objectives of the work presented in this dissertation are as follows:

1. To investigate whether constraint-based reasoning can be used as a basis for

supporting conceptual design;

2. To determine if the expressiveness needs of conceptual design motivate the



introduction of new features into Galileo.

These goals have been used to form a central thesis which will be defended in this

dissertation. This thesis is presented in Section 1.4.

1.4 A Statement of the Thesis

To achieve the goals presented in the previous section, the approach adopted in this
research is to attempt to use constraint processing to provide a basis for the modelling
and evaluation of a set of alternative schemes for a product. In this approach,
constraint processing is used to ensure that all design concepts are consistent with
respect to the various restrictions imposed by the design specification and by the
product life-cycle.

Thus, the thesis which is presented and defended in this dissertation can be stated

as follows:

“It is possible to develop a computational model of, and an interac-
tive designer support environment for, the engineering conceptual design
process. Using a constraint-based approach to supporting conceptual de-
sign, the tmportant facets of this phase of design can be modelled and

supported.”

1.5 Contributions of this Research

The research presented in this dissertation contributes to the state of knowledge in
the fields of constraint processing and computer-aided engineering design. The re-
search addressed many important issues in product development, such as computer
support for a primarily abstract and creative phase of design, constraint processing in
early-stage engineering design, computer-assisted evaluation of alternative schemes
and the use of DFX concepts during conceptual design. The research provides a
unique insight into how constraint processing techniques can be used to support
conceptual design. The concept of the function-means tree [28] was extended and
used as a vehicle for interactively developing alternative constraint-based models
of a product having particular properties while providing a particular functional-

ity. The use of Pareto optimality within the constraints paradigm to actively prune



uninteresting parts of the design space during design is also novel. From a design
perspective, this research represents a novel approach to interactively supporting de-
signers during conceptual design. The interactive nature of the approach advocated
here ensures that the utility of the designer’s expertise, knowledge and creativity is

never compromised.

1.6 Structure of this Dissertation

This dissertation comprises six chapters and four appendices. The remainder is

structured as follows:

Chapter 2 reviews the background literature relevant to the thesis presented in

this dissertation.

Chapter 3 presents the theory of conceptual design upon which the thesis presented

in this dissertation is based.

Chapter 4 describes a constraint-based implementation of the conceptual design

theory presented in Chapter 3.

Chapter 5 demonstrates the approach to supporting conceptual design that is
presented in this dissertation, on two design problems: a toy design problem,

related to the design of a transportation vehicle, and an industrial case-study.

Chapter 6 presents a number of conclusions and recommendations for further

study.

Appendix A presents an overview of the Galileo language and its run-time envi-

ronment.

Appendix B presents the Galileo implementation of the various generic design
concepts which are used as a basis for supporting every conceptual design

project.

Appendix C presents all the Galileo code used in the toy design problem related

to the design of a transportation vehicle.

Appendix D presents all the Galileo code used in the industrial case-study carried

out in association with Bourns Electronics Ireland.



Chapter 2

Background

This chapter reviews the background literature relevant to the thesis presented in this
dissertation. The literature on conceptual design research is reviewed from three per-
spectives: firstly, with a focus on the approaches to modelling design problems, design
knowledge and design solutions; then, with a focus on the various design reasoning
techniques which have been advocated; thirdly, a number of trends in conceptual de-
sign research are identified and discussed. Constraint processing techniques have
been applied to many aspects of the engineering design problem. This chapter also
reviews the literature on the application of constraint processing techniques to engi-
neering design. It will be shown that, while constraint processing has been applied to
many aspects of design, there is considerable scope for research into using constraint
processing techniques to support the conceptual phase of design. Finally, this chap-
ter reviews the concept of Pareto optimality. The principle of Pareto optimality is
used in this research as a basis for assisting the human designer compare alternative

schemes that satisfy a design specification for a product.

2.1 A Review of Conceptual Design Research

Conceptual design has been defined as that phase of design which takes a statement
of a design problem and generates broad solutions to it in the form of, what are
generally referred to as, “schemes” [65]. A scheme should be sufficiently detailed
that the means of performing each major function has been fixed, as have any spatial
and structural relationships of the principal components.

While conceptual design is regarded as the most demanding phase of design on

the designer [101], it also offers the greatest scope for improvements in the design

7



of the product [65]. It is the phase of design where engineering science, practical
knowledge, knowledge of production methods and commercial expertise must be
brought together, and where the most important design decisions are made. It is
widely acknowledged that up to 80% of a product’s total cost is dictated by decisions
made during the conceptual phase of design [101]. Furthermore, the effects of poor
conceptual design can never be rectified by good detailed design [82]. Most errors in
design, as opposed to those made during production, are due to the use of a flawed
conceptual design [124].

In Chapter 1 the role of conceptual design in the product development process
was discussed. While in many theories of design there is no explicit mention of a
conceptual phase of design, all theories recognise the need to synthesise preliminary
solutions to the design problem. It is these early synthesis activities that can be

regarded as conceptual design.

Design Specification

Scheme Generation

Selected schemes

Figure 2.1: A simple perspective on the conceptual design process.

A simple perspective on the conceptual design process is illustrated in Figure 2.1.
A design specification can be regarded as a set of requirements that the product must
satisfy. The output of the conceptual design process is a set of schemes for products
that have the potential to satisfy the requirements described in the design specifica-
tion. This set of schemes has been selected from a larger set of alternatives which
have been considered during conceptual design. These schemes will be further devel-

oped during later stages of product design. A more detailed view of the conceptual



design process is presented in Figure 2.2.

Design Specification

Scheme Generation

.

[Accept/ reject/improve schem% [Eval uate and compare schem%

Selected schemes

Figure 2.2: A more detailed view of the conceptual design process.

From Figure 2.2 it can be seen that conceptual design is an iterative process dur-
ing which the designer generates a set of alternative schemes for a product based on a
design specification. The design specification will contain a set of requirements that
the product to be designed must satisfy. Based on these requirements the designer
begins an iterative process of scheme generation. During this process the designer
will develop a scheme that is intended to satisfy the design specification. The de-
signer will then evaluate the scheme against the design specification and compare it
to those schemes which have already been developed. As new schemes are gener-
ated, the designer may decide to accept, improve or reject from the existing pool of
schemes. One of the primary objectives at this stage of design is to avoid prematurely
selecting one scheme without considering as many other schemes as possible. This
model of conceptual design is consistent with all of the “text-book” descriptions of

the process that exist in the literature [86, 118, 153, 156].
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2.1.1 Modelling for Conceptual Design

In the design theory literature it is recognised that modelling, both the product
design and the design knowledge from which the design is developed, is one of the
most difficult issues to address [29, 82]. A number of approaches have been proposed

that attempt to address this issue. These approaches can be classified as:
e Function-based representations;

e Domain representations;

Design grammars;

Geometrical representations;

Ontologies and Object-oriented techniques;
o Knowledge-based approaches.

These will now be reviewed.

Function-based Modelling

Since designs exist to satisfy some purpose or function [35], knowledge of functional-
ity is essential in a wide variety of design-related activities, such as the specification,
generation, modification, evaluation, selection, explanation and diagnosis of designs.
Generally, function can be regarded as the abstraction of the intended behaviour of a
product. A number of researchers have integrated the role of function into complete
theories of design [4, 86, 99].

Formalising the representation of functional design requirements is essential for
supporting conceptual design using a computer. Two approaches to representing
function have been reported in the literature [155]. These approaches involve repre-
senting functions as either verb-noun pairs [106] or as input-output transformations
where inputs and outputs can be energy, materials or information [118]. The former
approach is often referred to as the symbolic function model while the latter is often
referred to as the I/0 function model [100].

It has been reported that while the I/O function model is more systematic than
the symbolic function model, the symbolic function model is the more flexible of the

two approaches [100]. The symbolic function model has been widely used [64, 106,
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115, 127, 145, 154, 157]. However, the 1/O based approach has also been widely
advocated [36, 25, 121]. One of the major advantages of the symbolic function
model is that designers can define a function at quite a high level of abstraction.
Furthermore, by describing the intended functionality in this way the designer is not
biased towards developing a product with a particular physical structure.

The term “synthesis” is used in design to refer to the process of developing a
physical realisation for an abstract notion of a product. For example, developing a
configuration of parts from a functional specification of a product can be regarded
as an instance of synthesis. Many approaches to design synthesis based on function
have been reported in the literature [28, 33, 36, 100, 127, 157].

Function-means modelling is based on the notion of a function-means tree [28].
A function-means tree describes alternative ways of providing a top-level (root) func-
tion through the use of means. A means is a known approach to providing function-
ality. Two types of means can be identified in a function-means tree: principles and
entities. A principle is defined as a collection of functions which, collectively, provide
a particular functionality; it carries no other information than the lower-level func-
tions to be used in order to provide a higher-level function. An entity represents a
part or sub-assembly. The function-means approach has been adopted by several re-
searchers as a basis for supporting synthesis [28, 99]. Indeed, from the earliest stages
of the development of the thesis presented in this dissertation a similar approach has
been adopted [111, 115].

Another approach to design synthesis based on function is known as Function-
Behaviour-State modelling [157]. Function-Behaviour-State modelling has been pro-
posed as an approach to minimising the subjectivity of function in design [157]. This
approach is based on a distinction between two types of relationships: Function-
Behaviour relationships and Behaviour-State relationships. Function-Behaviour re-
lationships are used to relate functions to behaviours. For example, the function “to
make a sound” can be provided by behaviours such as “something striking a bell”.
In order to support synthesis, Behaviour-State relationships are used to describe all
possible behaviours of an entity.

Some researchers have adopted a “Function-Behaviour-Structure” (FBS) approach
to supporting synthesis based on function [127]. This approach uses the relation-
ships between the physical structure, behaviour and functionality of existing designs

to provide a basis upon which designs for new products can be developed using ana-
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logical reasoning. Integrating new production technologies has been addressed using
a generalisation of the FBS approach called “Function-Behaviour-Process-Structure”
modelling [33].

The interpretation of function as a transformation between inputs and outputs is
the basis for systems such as the DICAD-Entwurf system [100] and the FuncSION
system [36, 37]. In these, a functional model of a product is developed from a set
of 1O function units. These units can be configured in a particular way to develop
a complete functional description of a product based on the transformation of flows
through the design. Amongst the advantages of the 10 approach is that it is a
formal approach to conceptual design. However, the disadvantages are that it is not
very flexible and is often limited to particular design domains such as the design of

mechanical mechanisms.

Domain Representations

Many European design researchers regard the design of mechanical systems as a pro-
gression through a two dimensional space [4]. This space is illustrated in Figure 2.3.
One dimension of this space relates to the designer’s understanding of a solution to
a design problem - defined as a progression from an abstract to a concrete under-
standing. The second dimension relates to the specification of the design solution -

defined as a progression from a simple to a detailed specification of the solution.

Under standing of the design problem

Abstract Concrete

Smple

Specification of the product

Detailed ‘\\

A completely specified design

Figure 2.3: The progression of a designer’s ideas through the design process.

When a designer is developing a design for a product there are several perspectives

that she can have on the emerging design. For example, the “Theory of Domains”
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defines four perspectives, called domains, of a mechanical system design [4]. These
four domains are the process domain which describes the transformation that takes
place in the product, the function domain which describes the functions to be pro-
vided in the product and the relationships between them, the organ domain which
describes the interfaces between the entities that provide the functions and the part
domain which describes the parts and structure of the product.

Another approach to supporting design synthesis based on the maintenance of
consistency between a number of views of a product model is the “Artifact Model”
approach [132]. This approach is based on the premise that a sufficient level of
support can be offered to a designer through the use of three product viewpoints:
a function view, a solution view and a state view [132]. These views collectively
provide a complete model of the state of the product being designed and the design

activities that were performed by the designer.

Grammars and Ontologies

Grammatical approaches to design effectively define a design language [138]. There
are two main categories of design grammar: shape grammars [143] and graph gram-
mars [61]. Grammars have been developed as a mechanism for specifying a set of
designs in terms of the transformations that can be used to generate that set [143].
For example, shape grammars are often used in CAD systems to ensure the validity
of the geometric model of the product [61, 79].

The use of design grammars during conceptual design has been widely reported in
the literature [3, 82]. Designs which have been generated from shape grammars may
often need to be modified before they are considered in further detail. The refinement
of designs generated from shape grammars has been reported in the literature [30,
138]. Some grammar-based approaches to conceptual design attempt to ensure the
validity of designs in terms of the design specification, which may change during
design, and in terms of the constraints inherent in the life-cycle of the product. For
example, the issue of ensuring that the designs that are generated using grammars
are manufacturable has been addressed [26]. In addition, predicting the variety
of possible designs that can be generated using a given grammar has also been
addressed [95].

Instead of developing ad-hoc design languages, many researchers have directed
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their efforts at developing a common design ontology. An ontology is a set of common
terms and concepts that are general enough to describe different types of knowledge
in different domains but specific enough for application to particular design prob-
lems [82]. The YMIR ontology has been proposed as a domain-independent ontology
for the formal representation of engineering design knowledge [2]. Design ontologies
have been used as the basis for many general-purpose approaches to addressing
some critical aspects of product development, such as the evaluation of designs using

design norms [44].

Geometry-based Methods

Most modern CAD systems are geometry-based. In other words, when using a
conventional CAD system, the designer focuses on the dimensions and spatial rela-
tionships between design elements. However, during conceptual design the various
alternatives that are created and compared by a designer are generally created from
a non-spatial perspective and lack detailed geometric structure [9]. That is not to
say that consideration of geometry is irrelevant at the conceptual design stage. In
order to satisfactorily evaluate an engineering design concept, it is often important
to consider all critical geometric and spatial relationships that are relevant.

The “minimum commitment principle” is well-known in engineering design. This
principle states that no decision should be made beyond what is necessary to ensure
the quality of the current solution [6, 53, 74]. This principle has been used as an
approach to creating geometric models of design solutions at the conceptual stage of
design in which only the most critical details of the product are modelled [74]. This
ensures that the designer has maximum scope later in the design process to make
decisions about the specifics of a particular design.

The use of features as carriers of function in design has been an important area of
research for a number of years [55, 96, 126]. A feature is considered to be “a region
of interest in a part model” which provides some function [159]. Since features
provide function and are generally described geometrically, feature modelling for
conceptual design is a specific application for geometry-based modelling. Many
sophisticated approaches for supporting feature modelling for conceptual design in
both two and three dimensions have been reported [55]. Representing features for use

in collaborative product design environments has also be reported in the literature
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[96]. In these approaches features are represented by different views - each view
relating to a particular discipline represented in the product development team.
Some researchers have combined parametric geometry, features and variational

modelling into integrated design representation schemes for conceptual design [117].

Knowledge-based Methods

During conceptual design a designer exploits a considerable variety of knowledge to
effectively generate a set of good design concepts. A designer will typically exploit
information relating to function, technologies for providing function, cost information
and life-cycle knowledge. To represent the variety in the knowledge required by
designers, flexible modelling paradigms are required. Knowledge-based methods
have been developed by a number of researchers which are capable of modelling
many aspects of the design problem that are relevant to the conceptual stage of
design.

While there exist domain specific knowledge-bases for domains such as vehicle
design [32, 40] and the preliminary design of tall buildings [135], more general ap-
proaches have also been reported. For example, a knowledge-base known as the
“Design Model”, which provides a basis for enhancing the design process by provid-
ing the designer with a means for communicating a broad range of design knowledge
derived from the multiple disciplines involved in the design process, has been re-
ported [94]. Two of the more well-known knowledge-based systems for conceptual
design are the QPAS system [91] and the Scheme-Builder system [25, 125].

The use of databases of known design solutions has become very common in
conceptual design [1, 48, 89, 90, 160]. These databases have the flexibility to store
vast amounts of data relating to many different aspects of the design domain of
interest to the designer.

Many other knowledge-based design approaches have been reported in the litera-
ture [14, 34, 37, 44, 47, 93, 108, 140, 146]. Amongst the approaches taken are the use
of model-based representations, analogical knowledge-bases and concept libraries for
modelling complex collections of design knowledge. These systems address different
aspects of the knowledge requirements of conceptual design and general engineering

design.
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2.1.2 Reasoning Techniques for Conceptual Design

Based on the modelling techniques presented in Section 2.1.1, many approaches
to supporting reasoning during conceptual design have been developed. Design
reasoning techniques form the basis for computer-based design support systems.
Computer-based design tools can provide the human designer with various levels of
support, from fully automated design generators through to post-design verification
environments [151].

A review of the literature on reasoning techniques for conceptual design is pre-
sented here. The review is structured according to the predominant reasoning mech-
anisms for conceptual design which have been reported in the literature; the following

categories will be used here:
e Adaptive Methods;
e (Case-based Reasoning;

e Other Knowledge-Based Approaches.

Adaptive Methods

Adaptive Search is a collective term which describes those search and optimisation
techniques with operational characteristics that are heuristic in nature [119]. The
term “adaptive search” relates to search techniques, such as genetic algorithms, evo-
lutionary search, simulated annealing and hill-climbing. In general, adaptive search
techniques have been used as a basis for automated design applications. The goal
of these automated design applications has been improving the features of existing
designs through the optimisation of variables defined within the system [31]. Of the
many adaptive search methods that exist, Genetic Algorithms [72] have been most
widely used to support reasoning during conceptual design; thus, the emphasis in
this section will reflect that.

Genetic Algorithms (GAs) have been used to generate candidate solutions to
particular types of design problems. The design of optical prisms and other solid
objects has been reported in the literature [11, 12]. The use of GAs in general
engineering is a considerably more difficult problem due to the possibility of the
existence of constraints on what constitutes a valid design. The use of problem-

specific knowledge to both enhance the search power and ensure that only valid
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designs are generated has been reported [88, 119]. The use of GAs in automatically
generating design solutions is often used in conjunction with other techniques such
as backtracking, constraint propagation and heuristic-based methods [18].

A number of other adaptive methods have been used to support reasoning in
conceptual design. These include neural networks and machine learning [31, 50, 71,

75, 97].

Case-based Reasoning

Case-based Reasoning (CBR) is a relatively new approach to decision automation
[89]. CBR is based on the premise that humans generally solve new problems by
modifying solutions to previously solved problems. The solutions to previously solved
problems are stored in a case-base. When a new problem is being addressed, the
case-base is searched for solutions to similar problems that can be used as a basis
for a solution to the current project. Failed searches form the basis for a new case.
It is in this way that the case-base can be extended over time.

Many successful applications of CBR have been reported in the literature. DO-
MINIC is a multi-domain parametric design system in which general design goals are
explicitly represented in term of design parameters [80, 45]. KRITIK is a case-based
design system for the conceptual design of physical devices [14].

A number of CBR systems have been developed for the conceptual design of
structures. Amongst these are the analogical reasoning system STRUPLE [163], and
the architectural design systems CADSYN [103] and ARCHIE [120]. CADRE is an
architectural design system that can support reasoning about topologies and spatial
relationships [83].

The development of a distributed conceptual design system based on using CBR
over the world-wide web has been reported [89, 90, 160]. This work is of considerable
interest since an approach to supporting design through a combination of Internet,
multimedia and CBR technologies is a very promising approach to supporting dis-

tributed concurrent engineering.

Other Knowledge-based Approaches

A number of knowledge-based reasoning systems for supporting conceptual design

have been reported in the literature. These systems have been developed to support
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conceptual design in a number of specific engineering domains such as the preliminary
design of buildings, creative elementary mechanism design and early-stage design of
machine systems.

A knowledge-based expert system called TALLEX has been developed for sup-
porting the preliminary design of buildings [135]. This system is based on the inte-
gration of symbolic and numerical processing. The knowledge-base for this system
is based on a set of IF/THEN rules that provide the inference mechanism with the
information needed to support the designer during the design process.

The creative design of elementary mechanisms has been addressed from a knowledge-
based system perspective [146]. Explanation-based learning has also been used to
support the acquisition of conceptual design knowledge through an analysis of the
structural features of designed objects [93].

The HIDER methodology enables detailed simulation models to be used during
the early stages of design [131]. HIDER uses a machine learning approach to develop
abstractions from these detailed models. These abstractions are used as a basis for
formulating a multiple objective optimisation problem which is used to generate
a set of “optimal” conceptual designs for a product. The designer is supported
in interactively exploring the design space by managing trade-offs between design
objectives.

Constraint-based approaches to supporting engineering design have been re-

ported in the literature. However, these will be reviewed separately in Section 2.2.

2.1.3 Trends in Conceptual Design Research

Over the past number of years industry has needed to become more effective in
bringing new products to the market. There is an increasing demand from customers
for customised products. In order to achieve manufacturing and field-maintenance
economies in this sort of competitive environment, modern manufacturers must strive
for minimum lead-time, a minimum of dedicated machine tools and considerable flex-
ibility to react to changes in market demand for their products. In response to these
market characteristics, manufacturers have invested heavily in maximising the degree
of flexibility of their facilities while minimising lot sizes, minimising manufacturing
and delivery lead-times, and maximising the quality and variety of products available

to their customers. In terms of product design, the effect has been that manufac-
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turers must have extremely efficient product development processes. Concurrent
Engineering and Integrated Product Development have been applied in industry al-
though they are macro-approaches to addressing the problem, the detail of whose
implementation is largely unreported.

In the field of engineering design, and in particular conceptual design, there
are a number of issues which have emerged as areas which can offer significant
competitive advantage to companies. The following have attracted the most attention

from industry and academia as critical issues to be addressed:
e Design reuse;
e The design of product families;
e Configurability and modularity in product design.

Each of these issues will be discussed in a little more detail here.

Design Reuse

One of the most difficult aspects of conceptual design is that it can be regarded
as a problem solving process aimed at addressing an abstractly defined problem.
Conceptual design is often performed in a free-form manner which can result in
a designer developing a solution that comprises many novel elements. This can
have a considerable effect on the manufacturabily of a product and can cause many
difficulties in managing the re-design of the product, if this becomes necessary at a
later date. The reuse of design knowledge in new design projects is an attempt at
minimising the non-standard content in the designs for new products.

Many companies have tried to increase the degree of commonality between differ-
ent products by re-using libraries of preferred parts and technologies [54]. It is now
becoming commonplace for companies to attempt to structure their design knowl-
edge in a form which can be readily used by designers who develop new designs to
new design problems. The DEKLARE project (ESPRIT project 6522) developed
a methodology for generating specialised computer-based re-design support systems
by capturing the design knowledge used in a company [63]. This approach has also
proved useful in supporting the design of new products since designers can use known

technological approaches in their product designs.
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A number of methodologies have been put in place to assist industry in building
databases of design knowledge. The “PS Methodology” has been proposed as a
practical approach to rationalising past designs for their effective reuse in future

design projects [52].

Modularity and Configurability

Many industrial approaches to increasing the efficiency of product design focus on
two issues: modularity and configurability. Modularity in product design relates
to the use of modules in structuring a product. Configurability in product design
relates to the composition of parts or modules to satisfy some set of design require-
ments. These two issues have been receiving considerable interest from industry and
academia since they offer a methodology for managing the complexity of product
design.

A module is a physical element of a technical system which has a clear and
explicitly defined interface, is totally self-contained, provides particular known func-
tionalities and exhibits a well-understood behaviour. A product can be regarded as
modular if it is composed of a set of modules. Adopting a modular approach to
product design can yield significant benefits for the design process, such as reduced
design lead-time and limited product complexity [122]. Using a modular approach
to product design facilitates an “engineer-to-order” approach to manufacturing since
specific customer requirements can be realised by modifying and composing a set of
predefined modules.

A number of surveys reporting the experiences of industrial companies who ex-
ploit modularity in product design have been carried out [58, 141]. Due to the
importance of modularity in product design a new technique for supporting product
structuring called “Modular Function Deployment” has been proposed [57]. This
technique provides a basis for supporting the design of modular products from the
gathering of customer requirements, through conceptual design, to the final design
of a fully modular product.

Product configuration management has become a crucial product development
success factor in a number of industries. Configuration design can be regarded as
the activity of combining a set of predefined components and their relationships in

a certain manner so that the resulting design satisfies a set of design requirements
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[42, 107]. It has been reported that configuration is a critical factor in a number of
industries [66]. A number of extensive reviews of the field of product configuration
design exist in the literature [134]. An open question in the field of configuration
relates to the problem of re-configuration [128, 144]. The need for approaches which
can cope with the re-configuration of an existing configured design is becoming more

critical.

Product Family Design

Modern manufacturing companies are facing an ever increasing demand for cus-
tomised products to be manufactured and delivered within ever shortening lead-
times. In many industries the design of families of products has been an attempt at
managing market demands while maintaining competitiveness [54]. Competitiveness
in many industries requires efficient design and delivery of large numbers of product
variants [152]. Product variants can be regarded as members of a product family.
During the research presented in this dissertation some work in the area of product
family design has been carried out, although it is not presented in this dissertation.
In that research a product family was regarded as a collection of products which are
similar from some perspective [114].

The effective design of product families requires that designers can quickly de-
velop product designs which are based on a common well-defined set of design el-
ements. The use of modular design techniques is obviously relevant, as indeed is
the use of configuration. The key to successful product family design is the use of a

small set of well-understood modules whose interfaces are well-defined [56].

2.2 A Review of Constraint Processing for Design

Most decisions that are made in daily life involve considering some form of restric-
tion on the choices that are available. For example, the destination to which someone
travels has a direct impact on their choice of transport and route: some destinations
may only be accessible by air, while others can be reached using any mode of trans-
port. Formulating decision problems in terms of parameters and the restrictions
that exist between them is an intuitive approach to stating these types of problems.
These general restrictions can be referred to as “constraints”.

The fact that constraints are ubiquitous in many decision problems has given rise
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to the emergence of many popular problem-solving paradigms based on the notion
of constraints. These techniques have been widely reported in the literature in such
research fields as Operations Research (OR) and Artificial Intelligence (AI).

Some of the most popular approaches to solving problems comprising a set of con-
straints defined on a set of parameters stem from the constraint processing paradigm.
Constraint processing is concerned with the development of techniques for solving
the Constraint Satisfaction Problem (CSP) [102]. A large number of problems in
Al, computer science, engineering and business can be formulated as CSPs. For
example, many problems related to machine vision, scheduling, temporal reasoning,
graph theory, design, design of experiments and financial portfolio management can
be naturally modelled as CSPs.

One of the major advantages of the constraint processing approach to solving
decision problems is that all that is required is an appropriate formulation of the
CSP. There is no need to specify an approach to solving it since constraint processing

techniques can be readily used to solve a problem formulated as a CSP.

2.2.1 Constraint Processing for the Phases of Design

In Chapter 1 the process of product design was discussed. In Figure 1.1 it was shown
that this process could be divided into two phases: conceptual design and detailed
design. Constraint processing techniques have been applied to a variety of aspects of
the product design process in recent years. In the following, the literature reporting

constraint-based research for phases of the product design process will be presented.

Constraint Processing and Conceptual Design

Research related to constraint-based approaches to supporting conceptual design has
been on the increase. However, most of this research does not address the synthesis
problem; the vast majority has focused on constraint propagation and consistency
management relating to more numerical design decisions.

One of the earliest works in the field of constraint management for conceptual
design was carried out in the MIT [137]. The research resulted in the develop-
ment of a computer tool called “Concept Modeller”. This system is based on a set
of graph processing algorithms that use bipartite matching and strong component

identification for solving systems of equations. The Concept Modeller system allows
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the designer to construct models of a product using iconic abstractions of machine
elements. However, a number of issues are not addressed by this work. Amongst
these issues is the dynamic nature of conceptual design. During conceptual design
constraints may be added or deleted at any point. In addition, the system does
not address the issue of design synthesis, nor does it address the comparison of al-
ternative solutions to a design problem. However, Concept Modeller demonstrated
that constraint processing did offer a useful basis for supporting designers working
through particular aspects of the conceptual design problem.

Based on the earlier work on Concept Modeller, a system called “Design Sheet”
has been developed [27, 130]. This system is essentially an environment for facil-
itating flexible trade-off studies during conceptual design. It integrates constraint
management techniques, symbolic mathematics and robust equation solving capa-
bilities with a flexible environment for developing models and specifying tradeoff
studies. The Design Sheet system permits a designer to build a model of a design by
entering a set of algebraic constraints. The designer can then use Design Sheet to
change the set of independent variables in the algebraic model and perform trade-off
studies, optimisation and sensitivity analysis.

Some researchers have used the Dynamic Constraint Satisfaction Problem as
a basis for managing conflict during the preliminary phases of engineering design
[69, 76]. Traditional conflict resolution techniques in constraint-based models of the
design process use backtracking and constraint relaxation. Some researchers focus
on differentiating between types of assumptions that are made by designers during
design. Variations on this type of approach have also been proposed for managing
conflict in collaborative design [7].

The use of autonomous agents to solve CSPs for conceptual design has been
reported in the literature [73]. The motivation for the work is the support of spatial
layout generation. The constraint specification used in the work facilitates a high-
level representation and manipulation of qualitative geometric information. The
search engine used in the proposed system is based on a genetic algorithm. The
issue of constraint consistency is not addressed in the work. In addition, important
design issues such as synthesis are not considered. However, it is realised that the
primary focus of this work is the use of autonomous agents to solve CSPs.

The use of constraint logic programming for supporting reasoning about dynamic

physical systems has been reported [60]. This work combines a constraint logic
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programming approach with bond graphs to assist in the development of a simulation
model of a system in the form of a set of differential algebraic equations. The
approach can be used for identifying causal problems of a bond graph model of a

dynamic physical system.

Constraint Processing and Detailed Design

The later phases of design are concerned with developing a subset of the schemes
generated during the conceptual design phase into fully detailed designs. In the
design literature two later phases of design are generally identified: embodiment
design and detailed design [118]. The embodiment phase of design is traditionally
regarded as the phase during which an initial physical design is developed. This
initial physical design requires the determination of component arrangements, initial
forms and other part characteristics [150]. The detailed phase of design is tradi-
tionally regarded as the phase during which the final physical design is developed.
This final physical design requires the specification of every detail of the product in
the form of engineering drawings and production plans [150]. In reality the bound-
aries between the various phases of design are quite fuzzy. Therefore, the constraint
processing literature for supporting the later phases of design will be reviewed as a
whole. However, the constraint processing literature relating to configuration will
be reviewed separately in Section 2.2.2. This is to reflect the fact that there exists
a clearly identifiable body of literature on constraint processing and configuration
design.

The CADET system has been developed at the Cambridge University Engineering
Design Centre (EDC) as a computer tool for supporting embodiment design [148].
CADET is an acronym for Computer-Aided Embodiment Design Tool. CADET
is capable of assisting the designer to formulate and satisfy large sets of algebraic
constraints. CADET comprises a generic database of components which can be
used to develop a constraint-based model of the geometry of the product being
designed. The CADET system uses simulated annealing as the basis for its constraint
satisfaction algorithm for solving the constraint-based representation of the geometric
product model [149]. Recent research at the Cambridge EDC has focused on the
development of tools that can assist a constraint-driven design process based on the

CADET system [161].
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A constraint-based knowledge compiler for parametric design in the mechanical
engineering domain called MECHANICOT has been proposed [109]. This system
is based on the assumption that the design process can be modelled as a CSP. The
purpose of the tool is to generate knowledge-based systems for parametric design of
mechanical products by using knowledge compilation techniques. The MECHANI-
COT knowledge compiler is useful for supporting the reuse of design knowledge and
can be used for producing design plans.

Many constraint-based systems reported in the literature have been developed
for supporting reasoning about purely geometric aspects of design for use with CAD
systems [13, 67, 68, 139]. However, these systems have been developed to address
aspects of the design process which are too specific to geometric CAD to be reviewed

in depth here.

2.2.2 Constraint Processing for Configuration

The use of constraint processing techniques for supporting configuration design has
been widely reported in the literature. Configuration can be regarded as a special
case of engineering design. The key feature of configuration is that the product being
designed is assembled from a fixed set of predefined components that can only be
connected in predefined ways [133]. The core of the configuration task is to select
and arrange a collection of parts in order to satisfy a particular specification. The
growing interest in configuration systems is reflected by the level of interest reported
from industry [59]. The role of constraint-based configurators has been reported in
a number of reviews [134].

The configuration problem can be naturally represented as a CSP. In general
a configuration problem can be formulated as a CSP by regarding the design ele-
ments as variables, the sets of predefined components as domains for each of the
design elements and the relationships that must exist between the design elements
as constraints. Constraints can also be used to state the compatibility of particular
arrangements of components and connections.

One of the earliest works in the field of constraint-based support for configura-
tion was based on dynamic constraint satisfaction [107]. The key characteristic of
Dynamic Constraint Satisfaction Problems is that not all variables have to be as-

signed a value to solve the problem. Depending on the value of particular variables,
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other variables and constraints may be introduced into the network. Inspired by this
approach, the use of constraint processing for configuration problems in complex
technical domains has been reported [62, 77].

A general constraint-based model of configuration tasks represented as a new
class of non-standard constraint satisfaction problem, called the Composite CSP,
has been proposed [133]. The Composite CSP unifies several CSP extensions to
provide a more comprehensive and efficient basis for formulating and solving con-
figuration problems. In the Composite CSP approach, variables in the problem can
represent complete sub-problems in their own right. This approach provides a useful
basis for supporting abstraction in configuration whereby the product can be viewed,
recursively, as a larger component aggregated from a set of parts.

A number of variations on the standard configuration problem have been high-
lighted by industry with a number of constraint-based solutions being proposed in the
literature. Amongst these are: reactive and interactive configuration [105]; reconfig-
uration [144]; and the management of configuration complexity through abstraction

[158].

2.2.3 Constraint Processing for Integrated Design

Design is a complex activity which requires a variety of knowledge to enable a prod-
uct to be successfully designed and developed. The phase model of design is often
considered to imply that design is carried out as a sequential process. However, this
is not generally how design is performed in industry. Modern approaches to product
development, such as Concurrent Engineering [16], Integrated Product Development
[5] and Design Coordination [51], attempt to maximise the degree to which design
activities are performed in parallel. One of the most common techniques used during
the design phase of product development is to use knowledge of the life-cycle of the
product being designed to assist designers make well-informed decisions at as early
a stage in product development as possible. This is generally known as Design For
X (DFX) [150].

A number of researchers in the constraint processing community have developed
constraint-based technologies that support integrated approaches to product devel-
opment [22, 116, 151]. These technologies can be used to support collaborative
design by facilitating the use of DFX knowledge during the design process.
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Constraint-based approaches to supporting Concurrent Engineering have been
very successful, although these systems generally focus on the design of a product in
the detailed stages of design. The inter-dependencies between design and manufac-
turing have formed the basis for the development of design adviser systems which
can evaluate the manufacturability of a design and generate re-design suggestions to
alleviate any problems that may exist. The “Manufacturing Evaluation Agent” is a
computer-assisted Concurrent Engineering technology which identifies cost-critical
tolerances in the design and generates cost-reducing design suggestions [78]. The
purpose of the system is to help focus the designer’s attention on the specific aspects
of the design that influence manufacturing cost.

A more general approach to supporting Concurrent Engineering using constraints
has been adopted in developing the Galileo constraint programming language [22, 49,
116]. The Galileo language is based on a generalisation of the Predicate Calculus. A
program in Galileo is a declarative specification of a constraint network. Constraints
may be atomic, compound or quantified sentences in the Predicate Calculus. An
interactive run-time environment has been developed for the Galileo language [22].
Using this system a Galileo program becomes fully interactive. At run-time users,
who can be regarded as designers, can declare additional parameters and constraints.
Alternatively, users may ask questions about the consequences of the existing con-
straints. A constraint network in Galileo can be divided into various, possibly over-
lapping, regions which correspond to the perspectives of the various members of
a product development team. Each perspective can be presented in a variety of
interface styles, including spreadsheets and simple feature-based CAD [19].

The use of Pareto optimality in managing conflict in collaborative design systems
has been reported [7]. The same principle has also been reported as part of the
research presented in this dissertation [112]. Indeed, there is also a recognised need
for assisting the design team co-ordinate the design activities that must be carried
out. The use of constraint processing for assisting in the co-ordination of design
activities has also been reported [151].

Constraint-based approaches to supporting the use of DFX knowledge during
design have been widely reported in the literature. Amongst these are techniques
for supporting the evaluation of design norms during the design process [44]. A
design norm can be regarded as a statement of good design practice stated in the

form of a quality standard or a code of good design practice. The constraint logic
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programming language CLP(R) has been used to support the Design For Test of
active analog filters [110]. Models of active circuits are developed in CLP(R) and
these models are then used to support fault diagnosis of the designed circuit. The
constraint programming language Galileo has been used to develop design adviser
modules for use with electronics CAD systems which critique a design against a set

of user specified life-cycle guidelines [49, 116].

2.2.4 Constraint Processing and Design Domains

Constraint processing techniques have been applied to the design of a wide variety of
design domains, such as mechanical system design, electronics design and structural
design.

In the field of mechanical design, constraint processing techniques have been ap-
plied to the validation of features [46] and the general design of mechanical parts
[142]. The automated generation of constraint-based design expert systems for me-
chanical design has also been reported [109].

In the field of electronics design, constraint programming techniques have been
widely used to support the verification of both expected and observed functionality of
electronics systems. For example, constraint programming has been used to support
model based diagnosis of analog circuits [15]. Many modern electronics CAD systems
are marketed as having constraint-based editors built-in to allow designers to specify
customised relationships that must be maintained during design. Amongst these
CAD systems are the electronics CAD systems from such vendors as Zuken-Redac
[129], Mentor Graphics [41] and Cadence Systems [147].

Structural and architectural design have also been reported as application do-
mains for constraint processing. The design of bridges has been used as an applica-
tion domain for constraint processing research into issues such as dynamic constraint
satisfaction [84] and conflict management during preliminary phases of design [76].
Constraint-based approaches to floor-planning have also been reported [10]. The
layout planning problem has been studied in depth by researchers in the constraint

processing community [81].
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2.3 Pareto Optimality

A design specification defines the various requirements that a product must satisfy.
Many of these requirements are categorical in the sense that they must be satisfied by
every scheme that the designer considers. Sometimes, however, a design requirement
will merely specify some preference about some aspect of the design; for example, a
requirement may state that the mass of the product should be as small as possible.
These preferences play a critical role in the evaluation of schemes. There may be
many preferences defined in the design specification, related to many aspects of the
product and its life-cycle. These design preferences can be regarded as defining a
constrained multiple objective optimisation problem.

Pareto optimality [123], which takes its name from the economist Vilfredo Pareto,
is an economics technique for identifying solutions to a multiple objective optimisa-
tion problem; the principle has been in use since 1906. The principle of Pareto
optimality can be used to assist the designer in making decisions about the details
of a design which will result in a Pareto optimal concept being developed [113, 115].

In contrast to a single objective optimisation problem which produces a single
optimum (or a set of equivalent optima), multiple objective optimisation produces
a set of non-dominated (Pareto optimal) solutions [131]. A set of non-dominated
solutions is characterised by the property that every solution in the set is either
better than every other solution to the problem, with respect to at least one of the
objectives, or is at least as good as every other solution on all objectives.

Interest in the principle of Pareto optimality has resulted in the development of a
number of techniques for solving multiple objective optimisation problems. Amongst
such techniques are “The Method of Weighted Convex Combinations” [162], goal
programming [136], multilevel programming [38] and Normal-Boundary Intersection
[43]. Recently, a number of researchers have begun to apply the principle of Pareto
optimality to a wide variety of problems in design [31, 70, 112, 115, 123, 131]. Indeed,
in this dissertation, the principle of Pareto optimality will be used to assist in the
evaluation and comparison of alternative schemes that are intended to satisfy a design
specification.

The principle of Pareto optimality is illustrated in Figure 2.4 (adapted from
[131]). In this figure the the points X, Y and Z represent the Pareto optimal set

of solutions to a multiple objective optimisation problem involving two conflicting
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Figure 2.4: The Pareto optimal set of solutions to a multiple objective optimisation
problem.

objective functions, both of which are to be maximised. The point X is not domi-
nated by any other solution since there is no solution which is better than it in terms
of Objective 2. The point Y is not dominated by any other solution since there is
no solution which is is better than it in terms of both Objective 1 and Objective 2,
simultaneously. The point Z is not dominated by any other solution since there is no
solution which is is better than it in terms of Objective 1. Two dominated solutions
are shown in Figure 2.4; these are points A and B. Point A is dominated by point
X because point X performs better than point A on both Objective 1 and Objective
2. Point B is dominated by both points Y and Z; it is dominated by Y because
Y performs better than B on Objective 2 while it does just as well on Objective 1;
point B is dominated by Z because Z performs better than B on Objective 1 while
it does just as well on Objective 2.

Formally, given the set, S, of candidate solutions to a multi-objective optimisation

problem the Pareto optimal set, P;, can be defined as

P, = {s;|s; € S,not_dominated(s;, S)}.

The predicate not_dominated(s;, S) means that a candidate solution, s;, is not dom-
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inated by any other candidate solution in S. Thus,
not_dominated(s;, S) < Vs; € S, ~dominates(s;, s;).

A solution, s1, dominates another solution, s,, if s; improves_on s, with respect to

any objective and sy does not improve on s; with respect to any objective. Thus,
dominates(si, s3) < improves_on(sy, s2) A ~improves_on(sa, s1).

The predicate improves_on(sy, $3) can be defined as follows,
improves_on(sy, s3) < I(F, I) € O, better than(F(s1), F(ss), ).

where O is the set of objective functions, each objective function in O being a
pair, (F,I), where F' is a function and I € {minimal, maximal}; the predicate

better_than is defined as
better than(z,y, mazimal) < x >y

better_than(x,y, minimal) < x < y.

Later in this dissertation it will be shown how the dominates relation is used
to compare schemes that are being developed by the designer. A scheme which is
dominated by another can be regarded as being Pareto sub-optimal and must be

either improved or discarded.

2.4 Summary

This chapter reviewed the relevant background literature for the thesis presented in
this dissertation. The literature on conceptual design research was reviewed from
three perspectives. The literature was firstly reviewed with a focus on the approaches
to modelling design problems, design knowledge and the design solutions. The lit-
erature was then reviewed with a focus on the various design reasoning techniques
which have been advocated. Thirdly, a number of trends in conceptual design re-

search were identified and discussed.
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This chapter also reviewed the literature relating to the application of constraint
processing techniques to engineering design. It can be seen from the literature review
presented in this chapter that there have been a wide variety of approaches adopted
by the constraint processing community in addressing the problem of support for the
human designer. However, it should be noted that much of this research addresses
either well-structured aspects of the design problem or more parametric phases of
design. There is a particular lack of constraint processing research in the area of
designer support during conceptual design which addresses the critical aspects of the
process such as design synthesis and the evaluation and comparison of alternative
schemes for a product. As noted in the previous chapter, successful conceptual design
adds significantly to the potential for overall successful product design. It is this need
which is a primary motivation for the research presented in this dissertation.

Finally, this chapter reviewed the principle of Pareto optimality; this will be
used in this research as a basis for assisting the human designer compare alternative

schemes that satisfy a design specification for a product.
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Chapter 3

Theory

Conceptual design is an extremely demanding phase of the design process. Design-
ers must often combine imagination and technical expertise to satisfactorily solve a
design problem; thus, in order to assist a designer during conceptual design, a com-
puter needs be to capable of supporting both the technical and non-technical aspects
of the process. Conceptual design can be regarded as a process which translates a
specification for a product into a set of broad product concepts, known as “schemes”.
During conceptual design, the human designer develops a set of alternative schemes
for the product by applying design knowledge which is known to her. In this chapter
a theory of conceptual design is presented. This theory was developed as a result
of conversations with design researchers and a review of the design research litera-
ture. The theory was then used as the basis for the computer-based implementation

presented later in this dissertation.

3.1 A Perspective on Conceptual Design

Engineering conceptual design can be regarded as that phase of the design process
during which the designer takes a specification for a product to be designed and
generates many broad solutions to it. These solutions are generally referred to as
“schemes” [65]. Each scheme should be sufficiently detailed that the means of per-
forming each function in the design has been fixed, as have any critical spatial and
structural relationships between the principal components [65]. The task of develop-
ing even a single scheme for a design specification requires the application of expertise
from a wide variety of technical and non-technical disciplines. Also, designers are

often required to use imagination and creative flair in order to develop satisfactory
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Figure 3.1: The model of the conceptual design process adopted in this research.

The model of conceptual design adopted in this research is based on the fact
that during the conceptual design process a designer works from an informal state-
ment, comprising an abstract functional requirement and a set of physical design
requirements, and generates alternative configurations of parts which satisfy these
requirements. Central to this exercise is an understanding of function and how it
can be provided. Figure 3.1 illustrates this model of conceptual design graphically.
While this model is based on a well-known approach to conceptual design [118], the
detail is novel. In particular, the approach to developing schemes is based on an
extension of the function-means tree; this extension, called the function-means map,

has been developed as part of the research presented in this dissertation [113]. Vari-
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ous parts of the model presented in Figure 3.1 are annotated with section references.
Each section reference points to the section of this chapter which offers a detailed
discussion of that part of the conceptual design process which has been marked.
One section reference pertains to a number of aspects of the model of the conceptual
process illustrated in the figure. The scope of this section reference is denoted by a
dashed box.

From Figure 3.1 it can be seen that the conceptual design process can be regarded
as a series of activities and achievements. The achievements and activities relate
to the development of the design specification and an iterative process of scheme
generation. The process of scheme generation involves the development of a function
decomposition which provides the basis for a configuration of parts that form a
scheme. This scheme is then evaluated and compared against any schemes that
have already been developed. Based on this comparison, the designer will choose to
accept, improve or reject particular schemes. The process of scheme generation will
be repeated many times in order to ensure that a sufficiently large number of schemes
have been considered. The role of design knowledge and learning are also illustrated
in Figure 3.1, using dotted lines. Design knowledge is used during the process of
scheme generation. During scheme generation the designer may develop a greater
understanding of the design problem being addressed; this learning may affect the
design specification for the product or the design knowledge used to generate schemes.

In the remainder of this chapter a detailed discussion of the theory of conceptual

design used in this research will be presented with reference to Figure 3.1.

3.2 The Design Specification

From Figure 3.1 it can be seen that the conceptual design process is initiated by the
recognition of a need or customer requirement. This need is analysed and translated
into a statement which defines the function that the product should provide (referred
to as a functional requirement) and the physical requirements that the product must
satisfy. This statement is known as a design specification. A number of techniques
exist for generating a design specification from a perceived need. The most well
known of these techniques is Quality Function Deployment (QFD) [92]. The for-
mulation of the various requirements which comprise the design specification can be

regarded as the first major achievement of the conceptual design process.
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Design Specification

Functional Requirement:
Function to be provided

Physical Requirements:
= Product requirements:

t Categorical requirements
Preferences

—> Life-cycle requirements:

t Categorical requirements
Preferences

Figure 3.2: The contents of a design specification.

The contents of a design specification are illustrated in Figure 3.2. The design
specification contains a set of requirements that the product must satisfy. Two cate-
gories of design requirement can be identified: functional requirements and physical
requirements. A design specification will always contain a single functional require-
ment; it may also contain a set of physical requirements. The nature of each of
these requirements will be discussed in further detail in the following sections with
the aid of the example design specification for a transportation vehicle presented in

Figure 3.3.

Design Specification

Functional Requirement:

provide

transport

O

Physical Requirements:

1. the width must not be greater than 2m

2. the product has minimal mass

3. the product comprises a minima number of parts
4. the product must be recyclable

Figure 3.3: An example design specification for a transportation vehicle.
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3.2.1 The Functional Requirement

The functional requirement represents an abstraction of the intended behaviour of
the product. For example, in the design specification presented in Figure 3.3 the
functional requirement is that the product can fulfill the function “provide trans-
port”. At this stage, there is no association made between the function that is to
be provided and the physical mechanism that provides it. The designer’s task is to
find a physical configuration of parts that satisfies the functional requirement. A
design specification should never be more specific about the intended behaviour of
a product, for example, by specifying several functions — that would be far from
ideal, since it would indicate a decision, made unwisely early, about the means for
providing the required functionality. In this research the design specification will
always contain only a single functional requirement. This gives the designer greatest
scope to search for schemes for the required product.

In some cases the product specification resulting from an analysis of a market need
may be couched in terms of a set of functions. However, before design commences,
this set of functions should be re-stated in terms of a single, more abstract, function
from which the designer can begin to develop schemes. This re-statement of a set of
functions in terms of a more abstract parent function can be treated as the basis for
developing a new design principle which is then used to structure the scheme !. the

scheme.

3.2.2 Physical Requirements

As stated earlier, the designer’s task is to develop a complete physical configuration
of parts which satisfies the functional requirement specified in the design specifica-
tion. However, since the design specification also contains a set of physical design
requirements, the physical solutions which the designer develops must not only pro-
vide the required functionality but must also satisfy these physical requirements. In
Figure 3.2 two classes of physical requirement can be identified: product require-
ments and life-cycle requirements. A product requirement can be either a categorical
requirement that defines a relationship between attributes of the product or it can
be a preference related to some subset of these attributes. A life-cycle requirement

can be either a categorical requirement that defines a relationship between attributes

!Design principles will be presented in Section 3.3.3.
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of the product and its life-cycle, or it can be a preference related to some subset of
these attributes. Each of these classes of physical requirement are explained further

here.

Categorical Physical Requirements

These describe relationships between some subset of the attributes that define a
product (a product requirement), or between some subset of the attributes that define
a product and its life-cycle (a life-cycle requirement). For example, in the electrical
domain the current, resistance and voltage related to a resistor would be regarded
as attributes of the resistor while Ohm’s Law defines a particular relationship that a
resistor must satisfy, namely that the voltage is equal to the product of the current
and resistance. This is an example of a product requirement. On the other hand,
a life-cycle requirement might forbid the use of particular materials in the design of
a product because of an environmental issue or might specify that products to be
manufactured using a particular process must have a particular geometry.

The design specification illustrated in Figure 3.3 contains a categorical product
requirement that the width of the transportation vehicle be no greater that 2 metres.
This implies that it must be possible to compute the width of the product in order to
check that this requirement is satisfied. There may be many ways of computing the
width of a product depending on the components involved and the manner in which
they are configured. The functions used to compute the width of a product would
be part of the knowledge of the particular company designing the product.

The design specification illustrated in Figure 3.3 contains one categorical life-
cycle requirement, namely that the product be fully recyclable. The meaning of
this life-cycle requirement is again part of the design knowledge of the organisation
designing the product.

The example categorical physical requirements just discussed are quite simple.

However, in general, these requirements can, of course, be arbitrarily complex.

Design Preferences

Often it may not be possible or appropriate to define a categorical relationship over
some subset, of attributes of the design or its life-cycle. For example, it may not be

appropriate to stipulate that the mass of a product be less than a particular number
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of kilograms, but rather that the mass should be as small as possible. Therefore, a
design specification will often contain one or more design preferences.

A design preference is a statement about the designers intent regarding some
aspect of a product or its life-cycle. For example, a design preference may relate
to the value associated with a particular attribute of a product or its life-cycle. A
preference for an attribute may be that its value be maximal or minimal. However,
design preferences may be also stated about any other aspect of a scheme, such as
preferences on the use of particular components or relations over several product or
life-cycle attributes.

The design specification illustrated in Figure 3.3 contains two design preferences,
namely that the product have minimal mass and comprise a minimal number of parts.
The functions used to calculate the values of these design attributes are, generally,

part of the design knowledge of the organisation designing the product.

3.3 Conceptual Design Knowledge

During conceptual design, the designer must reconcile the functional and physical
requirements for a product into a single model of the product. This means that the
designer must synthesise a configuration of parts which satisfies each of the func-
tional and physical requirements in the design specification. To do so, the designer
needs considerable knowledge of how function can be provided by physical means.
Often, this knowledge exists in a variety of forms. For example, a designer may not
only know of particular components and technologies that can provide particular
functionality, but may be aware of abstract concepts which could also be used. For
example, a designer may know that an electric light-bulb can generate heat or, al-
ternatively, that heat can be generated by rubbing two surfaces together. The latter
concept is more abstract that the former. In order to effectively support the human
designer during conceptual design, these alternative types of design knowledge need
to be defined and modelled in a formal way. In Figure 3.1 it can be seen that design
knowledge is used: to develop the function decomposition and the configuration of
parts for a product; to form a scheme; and to evaluate and improve the schemes that
are generated. The various aspects of the design knowledge used during conceptual

design will be discussed in the remaining parts of Section 3.3.
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3.3.1 The Function-Means Map

The notion of the function-means tree has been proposed by researchers from the
design science community as an approach to cataloguing how function can be pro-
vided by means [4]. The use of function-means trees in supporting conceptual design
has attracted considerable attention from a number of researchers [25, 99]. In gen-
eral, the level of interest in the use of functional representations in conceptual design
has increased in recent times [35], showing growing confidence in the potential of
approaches incorporating such techniques.

In this dissertation a generalisation of the function-means tree called a function-
means map is used to model functional design knowledge. The early developments
of the concept of the function-means map has been reported in literature available
on the research presented in this dissertation [111, 115]. A function-means map can
be used to reconcile functions with means for providing them. In a function-means
map two different types of means can be identified: a means can either be a design
principle or a design entity.

A design principle is a means which is defined in terms of functions that must
be embodied in a design in order to provide some higher-level functionality. The
functions that are required by a particular design principle collectively replace the
function being embodied by the principle. The functions which define a design
principle will, generally, have a number of context relations defined between them.
These context relations describe how the parts in the scheme which provide these
functions should be configured so that the design principle is used in a valid way.
Design principles are discussed in greater detail in Section 3.3.3.

A design entity is a physical, tangible means for providing function. A design
entity is defined by a set of parameters and the relationships that exist between these
parameters. Design entities are discussed in greater detail in Section 3.3.4.

Before a more detailed discussion of design principles and design entities is pre-

sented, the notion of function embodiment will be discussed.

3.3.2 Embodiment of Function

As the designer develops a scheme every function in the scheme is embodied by a
means. In this section the icons used to describe the embodiment of functions will

be presented.
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function Function to be embodied

name

The port between the function to be embodied
and the means for providing it

Figure 3.4: The icon used to represent a function to be embodied.

In Figure 3.4 it can be seen that an embodiment icon is defined by a function
that is to be embodied and a port which will be connected to a means that is to be
used to embody the function. This port is referred to as the “means port” of the
embodiment icon. In Figure 3.4 no means has yet been selected for this embodiment

since the port is an empty circle.

T <——— Theport for fulfilling an embodiment

meansname <|——— The name of the means being depicted

Figure 3.5: The icon used to represent a means.

In Figure 3.5 it can be seen that a means icon is defined by the name of the
means being represented and a port which can be connected to the means port of
an embodiment icon to indicate that the means is being used to provide the function
being embodied. Two types of means are available: a design principle and a design
entity. The detailed representation of these different means will be presented later
in this chapter.

In Figure 3.6 an example of embodying a function with a means is illustrated. In
this example a function provide light is embodied using a means called bulb. This is
indicated by “plugging” the port of the means icon into the port of the embodiment
icon for the function. While, in this example, there is a one-to-one mapping between
a function and a means, this may not always be the case. A means will often be able
to provide more than one function in a design.

Each means that is available to the designer has an associated set of behaviours.
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rovide <— Anembodiment

ight

The embodiment is fulfilled by the means

bulb

<— A means

Figure 3.6: A means fulfilling an embodiment.

Each behaviour is defined as a set of functions that the means can be used to pro-
vide simultaneously. Each behaviour associated with a design principle will contain
only one function to reflect the fact that it is used to decompose a single function.
However, a behaviour associated with a design entity may contain many functions
to reflect the fact the there are many combinations of functions that the entity can
provide at the same time. For example, the bulb design entity mentioned above
may be able to fulfill the functions provide light and generate heat simultaneously.
However, when a design entity is incorporated into a scheme (for the purpose of
supporting functionality provided by one of its behaviours), it is not necessary that

every function in this behaviour be used in the scheme.

rovide %enerate
ight eat

bulb

Figure 3.7: An example of entity sharing.

In Figure 3.7 a single bulb design entity is used to embody the functions provide
light and generate heat. In other words these functions share the same entity. This

is valid as long as the set of functions that share an entity are a valid behaviour of
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the entity.

Knowing the various possible behaviours of an entity is useful when the designer
is embodying functions. Knowledge of behaviour enables a designer to identify when
a particular design entity can be used to provide several functions simultaneously. In
this research, the mapping of several functions onto a single design entity is known
as entity sharing. Entity sharing is a critical issue in design because, without the
ability to reason about entity sharing, a designer has no way of removing redundant
parts from a design. For example, the body of a car is used to provide many
functions because designers know that a single body can provide all of these functions.
However, if a designer could not identify the fact that a car body can simultaneously
provide many functions, the designer would introduce a different car body for each
function to be provided; this would result in a designer attempting to incorporate
several car bodies into her design, obviously not a desirable situation.

From a design perspective one of the novel aspects of the work presented in this
dissertation is the manner in which design principles and design entities are defined
and used. Using design principles to define abstract design concepts in terms of
functions and relationships between them is novel. The ability to represent means
at both an abstract functional level as well as a physical level provides a basis for
a designer to combine and explore new approaches to providing the functionality
defined in the design specification. In the remaining parts of Section 3.3 a detailed

discussion of the different types of means will be presented.

3.3.3 Design Principles: Supporting Abstraction

A design principle is a statement which declares that a particular function, called
the parent function, can be provided by embodying a set of child functions, provided
the embodiments of these child functions satisfy certain contezt relations. A design
principle is, therefore, a known approach, defined in abstract terms, to providing
functionality. When a designer uses a design principle in a design to embody a
particular function, she must incorporate each child function into the function de-
composition of the product being designed. The child functions of a design principle
replace the parent function at the point in the functional decomposition where the
parent function was required.

Context relations define how the design entities which are, ultimately, used to
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embody the functions in the scheme must relate to each other. Thus, when each
function in a function decomposition is mapped onto a design entity for providing

it, context relations will define how these entities must be configured or interfaced.

function: provide transport

bicycle

| |

support
passenger

change

provide )
ener direction

O O] O]

Design Principle
Physical Instance]

handlebar assembly

] =de

wheel assembly |
pedal assembly
—

frame

Figure 3.8: Abstracting an example design principle from a bicycle.

Typically, design principles are abstracted from previously successful designs. An
example of a design principle, abstracted from a bicycle, is illustrated in Figure 3.8.
The parent function in this example is provide transport. The child functions are
facilitate movement, provide energy, support passenger, change direction and provide
support. These functions are abstracted from the wheels, pedal assembly, saddle,
handlebar assembly and frame parts of a bicycle, respectively.

The icon which represents a design principle is the same shape as the icon for a
means except that it contains within it a number of icons representing the embodi-
ments that must be fulfilled in order to properly use the principle. The icon for the
bicycle design principle is illustrated in Figure 3.9.
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bicycle

i rovide support change rovide
L‘lao:l\llt:%eent g1ergy p&ger direction gjppon
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Figure 3.9: The icon used to represent the bicycle design principle.

The major parts of a bicycle from which these functions are abstracted have a
context in the bicycle. This context is represented in the design principle as context
relations. In the iconic representation of a design principle, context relations are
represented as dashed boxes; they are connected to the embodiment icons of the
functions to which they relate, using dashed lines. Two types of context relation
between the child functions of the bicycle design principle are shown in Figure 3.9.
These are the drives relation and the supports relation. A drives relationship must
exist between the design entities that are used to provide the function provide energy
and the function facilitate movement. In addition, a supports relationship must exist
between the the design entities that are used to provide the function provide support
and each of the functions facilitate movement, provide energy, support passenger,
and change direction. We will see this principle being implemented in Chapter 4
(Figure 4.31) and being used in Chapter 5 (Figure 5.5).

Ultimately, every function in a scheme is provided by a design entity. The precise
meaning of a context relationship depends on the design entities which are finally
used to embody the functions between which the context relationship is defined. The
context relation will define various relationships which must be considered in order
to develop a valid configuration of design entities; as well as providing the required
functionality these entities must respect the context relations due to any design
principles used. For example, the drives context relation which is defined between
the function provide energy and the function facilitate movement implies that those

entities which provide the function provide energy must be capable of driving the
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entities which provide the function facilitate movement. This may mean that, if the
function facilitate movement is embodied by a wheel assembly design entity and
the function provide energy is embodied by a pedal assembly design entity, there

must exist a chain design entity between the wheel assembly and the pedal assembly.

Later in this chapter, once design entities have been discussed, the meaning of context

rovide
ransport

relations will be revisited.

(i) The function "provide transport" has not yet been embodied by a means.

rovide
ransport

bicycle

faciitate provide support change provide
movement energy passenger direction support
F O O O
********* drives [ ------- t----5 supports ~--~!

(ii) The function "provide transport” is embodied by the design principle "bicycle".

Figure 3.10: Using a design principle to embody a function.

In Figure 3.10 the embodiment of a function using the bicycle design principle is
illustrated. In Figure 3.10 (i) it can be seen that there is a function provide transport
whose embodiment is not complete, since the means port for the embodiment icon is
empty. In Figure 3.10 (ii) the designer has embodied the function using the bicycle
design principle. The effect of this is that the embodiment of the function provide
transport is complete, but five further embodiments must now be considered. These
five embodiments have been introduced due to the five child functions of the bicycle

design principle. These embodiments have empty circles as their ports, to show that
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they have not yet been fulfilled. The designer must fulfill each of these embodiments
by selecting means for them.

Design principles are used by a designer to develop the function decomposition
upon which a scheme will be configured. At the functional level, what is of concern
to the designer is the development of a function decomposition of a product from the
functional requirements specified in the design specification. The designer is generally
not concerned with how this detailed function decomposition should be embodied in a
physical sense. The use of a design principle in a scheme increases the level of detail
of the function decomposition, by increasing the number of functions and context
relations to be considered by the designer. In this way, the use of a design principle
increases the complexity of the function decomposition. If the number of functions
in the function decomposition increases, the complexity of the final scheme may also
be greater, since there is the possibility that a designer will employ a larger number
of design entities. Since there may be a choice of more than one design principle
to provide a given function, there may be many alternative function decompositions
which provide same the required functionality. Designers should investigate as many

alternative function decompositions as possible.

3.3.4 Design Entities: Design Building Blocks

A design entity defines a class of physical parts or sub-assemblies which can pro-
vide specific functionalities. In order to give physical form to a particular function
decomposition, functions are embodied by design entities. Entities are defined in
terms of a set of attributes. Each attribute defines a parameter associated with a
design entity and its domain of possible values. For example, an attribute may be
used to define the mass of a design entity which may take its value from the set of
real positive numbers. Alternatively, an attribute may be used to define the colour
of a design entity which may take its value from a set of colours. There may also
be a number of constraints on these attributes which describe the relationships be-
tween them. For example, if the notion of a resistor is modelled as a design entity,
it may be defined in terms of a set of attributes representing the voltage, resistance
and current associated with it. In addition, there will be a constraint which will
define the relationship between these attributes due to Ohm’s Law. Since schemes

are configured from design entities, a number of functions must be pre-defined over
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design entities, and over configurations of them, in order to facilitate the evaluation
of schemes against the various criteria defined in the design specification. For ex-
ample, in order to compute the power output from an electrical circuit, functions
which compute the power output of each design entity used in the scheme must be
available. In the case of the resistor, such a function could be that the power output

of a resistor is the product of the voltage and current flowing through it.

T

pedal-assembly

Figure 3.11: The icon used to represent a pedal assembly.

The icon for an example design entity, a pedal-assembly, is illustrated in Fig-
ure 3.11. This design entity could be part of a design knowledge-base used to

generate schemes for the vehicle design specification presented Figure 3.3.

structure of a pedal-assembly

pedal-assembly parameters
parameter| type
width rea function mass_of( pedal-assembly material ) -> real
mass real Q { (cfrp, 2), (titanium, 3), (@luminium, 5), (stedl, 10) }
material | pedal-assembly material j pedal -assembly material
{ cfrp, titanium, aluminium, steel }

Figure 3.12: A graphical representation of an example design entity.

There are many possible representations for this design entity, one of which is
illustrated in Figure 3.12. It can be seen that the pedal-assembly design entity is
defined by three attributes: width, mass and material. The width and mass of the
pedal-assembly are real numbers, while the material of the pedal-assembly takes its
value from a set of materials, called pedal-assembly materials. The materials that
are available are cfrp, titanium, aluminium and steel. There is a function available

called mass_of which can estimate the mass of a pedal-assembly from its material.
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For example, if the material of a pedal-assembly is cfrp, the estimated mass of the
pedal-assembly is 2. The functions defined over design entities can be arbitrarily

complex.

3.3.5 Scheme Configuration using Interfaces

When a designer begins to develop a scheme for a product, the process is initiated
by the need to provide some functionality. The designer begins to develop a scheme
to provide this functionality by considering the various means that she has available
in her design knowledge-base. Generally, the first means that a designer will select
will be a design principle. This design principle will substitute the required (parent)
functionality with a set of child functions.

As the designer develops a scheme and produces a function decomposition tree
she will ultimately embody all leaf-node functions in the scheme with design entities.
During this embodiment process the context relations, from the design principles
used in the scheme, will be used as a basis for defining the interfaces between the
design entities used in the scheme. The precise nature of these interfaces cannot be
known with certainty until the designer embodies functions with design entities; this
is because the link between functions and design entities is generally not known with
certainty during the development of the function decomposition for the scheme.

The types of interfaces that may be used to configure a collection of design entities
will be specific to the engineering domain within which the designer is working. For
example, the set of interfaces that a designer working in the mechanical domain
would typically use are different to those used by a designer in the electrical domain.
Indeed, these interfaces may also be specific to the particular company to which the
designer belongs.

In Section 3.4 an example of scheme generation will be presented. As part of this
presentation a detailed discussion of how context relations drive the configuration of

a scheme will be presented.

3.4 Scheme Generation

In Figure 3.1 it can be seen that scheme generation is an iterative process comprising

a number of activities. These activities relate to the development of a function
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decomposition for the scheme, the development of a configuration of design entities
based on this function decomposition and an evaluation and comparison of the newly
developed scheme with those schemes which have already been developed. As new
schemes are developed, the designer will constantly consider which schemes to accept,
reject or improve.

Once the design specification has been formulated the designer must attempt
to search for as many schemes as possible which have the potential to satisfy the
requirements in the design specification. The first step in developing a scheme is
to explore the functional requirement and develop a function decomposition which
can be used to configure a set of design entities to form a scheme. Developing
a function decomposition involves substituting higher level functions with sets of
equivalent functions which collectively provide the required functionality. To assist
the designer in developing this decomposition, design principles are used.

There are generally many function decompositions possible from the same func-
tional requirement. Generating alternative function decompositions can be regarded
as a way of systematically exploring the design space for a product. This search is
executed by a designer by considering the functional requirement for the product and
exploring alternative ways of providing the functionality by using design principles
to decompose the functional requirement into less abstract functions. In this way
the designer can reduce the functional requirement into one which allows the use of
standard technologies, represented as design entities, to satisfy it.

Using a function decomposition the designer can begin to develop a configuration
of design entities. Each leaf-node function in a particular function decomposition
must be provided by a design entity. The context relations inherited from the branch-
nodes in the function decomposition, due to the use of particular design principles,
are used to define the manner in which the design entities used in the scheme should
be configured or interfaced. Some context relations will define constraints on the
spatial relationships between design entities, while others may define particular types
of interface which may be required between the entities. As the designer incorporates
design entities into a scheme the various physical requirements which are described
in the design specification can be brought to bear on it.

Before discussing how a designer can evaluate and compare schemes, an example

of scheme development will be presented in Section 3.4.1.
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3.4.1 An Example of Scheme Generation

In this section an example of how schemes are developed using the design theory
described here, is presented. A number of schemes will be developed based on
the vehicle design specification presented in Section 3.2. The process of scheme
development presented here will be illustrated, in an example designer-computer

interaction, in Chapter 5.

! ! !

wheel assembly pedal assembly saddle
behaviours = { { providetransport} } behaviours = { { faciliate movement} }  behaviours={ { provideenergy } } behaviours = { { support passenger } }
? ? ? ?
molded frame handlebar assembly frame chain
behaviours ={ { provide support, behaviours = { { changedirection} } behaviours ={ { provide support } } behaviours={ { transmit energy } }
support passenger } }
? ? ? ?
air cushion engine chassis harness
behaviours ={ { faciliate movement } } behaviours={ { provideenergy } }  behaviours={ { provide support } } behaviours = { { support passenger } }
? ? ?
skateboard steering assembly axle
behaviours = { { providetransport} } behaviours = { { changedirection} } behaviours = { { support wheel, faciliate rotation },

{ punch holes} }

Figure 3.13: The means contained in an example design knowledge-base and their
possible functionalities.

In Figure 3.13 an illustration of the means contained in an example design
knowledge-base is presented. This knowledge-base comprises one design princi-
ple, called bicycle, and a number of design entities, such as a wheel assembly and a
saddle. The set of behaviours for each means in the knowledge-base are presented
under the icon representing the means. Remember that behaviour is a set of functions

that the means can provide simultaneously (Section 3.3.2). Thus the behaviours for a
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means is a set of sets. Most of the means in this example knowledge-base have only
one behaviour; that is, the set of behaviours for each means contains only one set of
functions. Furthermore, most of the behaviours of the means in this knowledge-base
can provide only one function at a time. However, the molded frame and azle design
entities have more complex behaviours. The molded frame entity can provide two
functions simultaneously: provide support and support passenger. The azle entity
has two behaviours: it can provide the two functions support wheel and facilitate
rotation simultaneously, but can also be used to provide the single function punch

holes.

rovide
ransport

Figure 3.14: The functional requirement for a product.

The functional requirement from the vehicle design specification in Figure 3.3
is illustrated in Figure 3.14. It can be seen from this figure that the functional
requirement is that the scheme must provide the function provide transport. To
simplify this discussion of scheme development, the various physical requirements
will not be considered until the scheme has been configured. However, in general a
designer may be able to consider some of these requirements throughout the scheme

development process.
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Figure 3.15: Using a design principle to embody the functional requirement.

In Figure 3.15 an instance of the design principle bicycle, called bicycle 12 , has
been used to embody the function provide transport. This design principle introduces
the need for five more functions to be embodied. In particular, the bicycle design
principle introduces the need to embody the functions facilitate movement, provide
enerqgy, support passenger, change direction and provide support. The designer must

now select means for embodying each of these functions.

2When a designer selects a means to embody a function, an instance of the means in incorporated
into the scheme. Thus bicycle 1 is the first instance of the bicycle design principle to be used by
the designer.
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wheel assembly 1

Figure 3.16: Using a design entity to embody a function in the scheme.

In Figure 3.16 the designer selects the wheel assembly design entity to embody
the function facilitate movement. This introduces an instance of this means, called
wheel assembly 1, into the scheme. As the designer introduces design entities into the
scheme the context relations that exist between the function embodiments must be
considered. However, since there is only one design entity in the scheme presented
in Figure 3.16 no context relations are considered at this point in the scheme’s

development.
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wheel assembly 1 pedal assembly 1

chain 1
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, mechanical interface 1 | | mechanical interface 2 |

Figure 3.17: The effect of a context relation on the configuration of design entities.

In Figure 3.17 the designer has chosen to embody the function provide energy
with the pedal assembly design entity. This introduces an instance of this means,
called pedal assembly 1, into the scheme. Since the drives context relation must exist
between the embodiments of the functions facilitate movement and provide energy,
the designer must consider this context relation between wheel assembly 1 and pedal
assembly 1. Before the meaning of this context relation is discussed, the approach to
reconciling context relations with the entities to which they relate will be presented.

The meaning of a context relation is part of the company-specific design knowl-
edge that is used to develop schemes. Context relations are implemented as interfaces
between design entities. An interface is used to define some relationship that should

exist between design entities. The design knowledge-base of a company will contain
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a repertoire of interfaces that are used in the conceptual design of products in the
company. For example, a company may have interfaces for handling various types
of mechanical, spatial or electrical relationships between design entities. The mean-
ing associated with a context relation may be that an interface of a particular type
should exist between the design entities, the precise nature of this interface being
specified during a later phase of design. Alternatively, a context relation may intro-
duce new design entities into a scheme with interfaces between them and the design
entities between which the context relation should be satisfied. The precise meaning
of a context relation may depend on the type of design entities between which the
context relation must be considered.

In order to be able to identify the design entities between which a context relation
should be considered it is necessary to be able to identify which design entities derive
from which functions. Each design entity used in a scheme derives from at least one
function. Essentially, a context relation must be considered between design entities

that derive from the embodiments between which a context relation is defined.

principle 1

! [ |
,,,,,,,, WI]::,,,,,,,A
principle 2
B
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I ent1 ent2 } ent3

| |

I I

| |

l 1 ; l

! T I !

| r2 |

\ - 7/

Figure 3.18: The structure of a scheme illustrating the use of context relations in
configuring a scheme.
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In Figure 3.18 an example scheme structure is illustrated. The top-level function
in this scheme is f0. This function is embodied using a design principle called
principle 1. This design principle introduces two functions, fI and f2 to replace
the function f0. A context relation, r1, is specified between these functions. The
function f1 is embodied by a design principle, principle 2, which introduces two
further functions, f3 and f/ into the scheme. A context relation, r2, is specified
between these functions. The function f3 is embodied with the design entity ent
1, the function fj is embodied with the design entity ent 2 and the function f2
is embodied with the design entity ent 3. However, between which design entities
should the context relations 71 and r2 be considered?

The context relation 72 must exist between the entities that derive from the
functions f# and f4. The design entities ent I and ent 2 are used to embody these
functions. Thus, the context relation r2 must be considered between these entities.
Since, the design entities ent 1 and ent 2 are the means used to provide the functions
f8 and f4, these entities can be regarded as being directly used to provide these
functions.

The context relation r1 is a little more complex. This context relation must exist
between the entities that derive from the functions f7 and f2. The design entity ent
3 is used to embody the function f2. Thus this entity can be regarded as being
directly used for the function f2. The function f1 is provided by the design principle
principle 2, whose child functions are in turn embodied by the design entities ent
1 and ent 2. Thus, these design entities can be regarded as being indirectly used
to provide the function f1. Therefore, the context relation r1 must be considered
between the combination of design entities ent 1 and ent 2 on the one hand, and ent
3 on the other hand.

In Figure 3.17, the drives context relation that exists between the embodiments
of the functions facilitate movement and provide energy must be considered between
the design entities wheel assembly 1 and pedal assembly 1. In this figure it can
be seen that this caused, in addition to the existence of the design entities wheel
assembly 1 and pedal assembly 1, the introduction of an instance of the chain design
entity, called chain 1. Furthermore, it caused a mechanical interface between chain
1 and wheel assembly 1 and another between chain 1 and pedal assembly 1. Both
of these interfaces are used, along with chain 1, to embody the drives relation that

should exist between wheel assembly 1 and pedal assembly 1.
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In the company design knowledge-base that is used here, one type of interface
that is available is a mechanical interface. A mechanical interface can be used to
define many relationships between design entities. One of these relationships is a
form of drives relationship. During detailed design a more precise specification for

this mechanical interface would be given.
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Figure 3.19: An example scheme configuration.

Figure 3.19 shows the state of the scheme after the designer has chosen to embody
the function support passenger with the design entity saddle, the function change

direction with the design entity handlebar assembly and the function provide support
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with the design entity frame. Due to the bicycle design principle, a context relation
called supports must exist between the embodiment of the function provide support
and the embodiments of each of the functions facilitate movement, provide energy,
support passenger and change direction. Each of these context relations is embodied
by a mechanical interface that defines a supports relationship. The details of these
mechanical interfaces that define a supports relationship will be specified during
detailed design.

Since all the functions have been embodied in the scheme presented in Figure 3.19,
the designer must now begin to select values for the attributes associated with each
design entity in the scheme. In making these decisions the designer must ensure
that the various constraints that are imposed on her due to the design specification
or the design knowledge-base must be satisfied. In addition, this scheme must be
compared with any other alternative scheme for this product that are developed.
However, before the process of evaluating and comparing schemes is discussed, the
structure of a second scheme will be presented.

A second scheme is presented in Figure 3.20. This scheme is also based on the
bicycle design principle. In this scheme the function facilitate movement is provided
by an instance of the design entity wheel assembly, called wheel assembly 2, while the
function provide energy is provided by an instance of the design entity engine, called
engine 1. The drives relation that must exist between wheel assembly 2 and engine
1 is embodied by a mechanical interface between wheel assembly 2 and an instance
of the chain design entity, called chain 2, and a mechanical interface between engine
1 and chain 2.

The function support passenger is provided by an instance of the design entity
molded frame, called molded frame 1, while the function change direction is provided
by an instance of the design entity handlebar assembly, called handlebar assembly 2.
The function provide support is also provided by the design entity molded frame. In
Figure 3.13 it was shown that one of the behaviours of a molded frame is that it can
provide the functions provide support and support passenger simultaneously. Thus,
since an instance of the molded frame design entity already exists in the scheme,
there is no need for a second one to be introduced. Thus, the functions provide
support and support passenger share the instance of the design entity molded frame
called molded frame 1.

In order to embody the supports context relation between the embodiment of
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Figure 3.20: A second example scheme configuration.

the function provide support and the embodiments of each of the functions facilitate
movement, provide energy, support passenger and change direction, a number of me-
chanical interfaces are used. These interfaces define a supports relationship between

the appropriate design entities.

3.4.2 Evaluation and Comparison of Schemes

The designer’s primary objective during conceptual design is to develop a set of
alternative schemes which satisfy both the functional and physical requirements de-

fined in the design specification. This set of schemes will be further refined during
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subsequent stages of the product development process until a small number of fully
specified designs, possibly just one, will be selected for commercialisation.

In developing a particular scheme a designer must ensure that she does not violate
any of the physical requirements defined in the design specification. In Section 3.2.2
two types of physical requirements were presented: product requirements and life-
cycle requirements. Where possible during the development of a scheme, the designer
should consider these requirements and ensure that the scheme being developed has
the potential to produce a “good” product.

Every scheme must satisfy the categorical product and life-cycle requirements
that are defined in the design specification. If a scheme violates one of these the
designer must either reject the scheme which has been developed or modify it in
order to satisfy them. For example, in the vehicle design specification presented in
Figure 3.2 the categorical product requirement that the width of the vehicle be no
more than two metres must be satisfied by every scheme. For the two schemes that
have been developed here, the designer will, at some stage in the design process,
need to define a spatial configuration of the design entities used in each scheme
in order to estimate the width for each scheme. Likewise, the categorical life-cycle
requirement that the scheme by recyclable must also be satisfied by every scheme.
This requirement may mean that every design entity in the scheme be manufactured
from a recyclable material. Thus, when the designer selects materials for each of the
design entities in the scheme this life-cycle requirement can be checked.

While every scheme may satisfy the categorical physical requirements, not every
one of these schemes will be selected for development in subsequent phases of design.
This is due to particular schemes not “satisfying” the preferences that were defined
in the design specification. For example, in the vehicle design specification presented
in Figure 3.3, two preferences were defined: the product should have minimal mass
and comprise a minimal number of parts. As the designer develops a scheme an
estimate of its mass can be made. This estimate may be based on the materials used
for each design entity and, possibly, the geometry of the design entity in the scheme.
The number of parts can be regarded being the same as the number of design entities
in the scheme.

In Chapter 2 the principle of Pareto optimality was introduced as a way of deter-
mining the best solutions to a problem involving multiple objective functions. Each

design preference can be regarded as an objective function. Thus, the best schemes
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that are developed are those that are not dominated, in the Pareto optimal sense, by
any other scheme. Obviously, in order to compare two schemes they must be based

on the same design specification.

‘ Property ‘ Preference ‘ First Scheme ‘ Second Scheme ‘
number of parts | minimal 6 5
mass minimal <z z

Table 3.1: Using the principle of Pareto optimality to compare two schemes.

Table 3.1 presents a comparison of the two schemes shown in Figure 3.19 and
Figure 3.20. The first scheme comprised six parts while the second scheme comprised
five. Thus, on the preference for a scheme comprising a minimal number of parts, the
second scheme is better than the first. At this point it is not possible to determine
if the first scheme is dominated. However, if the first scheme is not to be dominated
by the second scheme it will have to have a smaller mass than the second scheme. In
this way, each scheme would be better than the other on one design preference.

Using the principle of Pareto optimality provides a useful basis for comparing
alternative schemes. It can be used to identify schemes that are completely dominated
by schemes which have already been developed; this should motivate a designer to
modify a scheme so that it is no longer dominated. Using the principle of Pareto
optimality a designer can compare schemes that have been developed in order to
select those that will be developed further and in order to identify those schemes
that should be either improved or discarded. However, a designer should not be
forced to discard dominated schemes. The objective is to motivate the designer to

think about ways of improving them.

3.5 Learning during Conceptual Design

During the conceptual phase of design a designer is faced with a number of problems,
such as interpreting a design specification and developing a set of alternative schemes
for it. While designing the designer may discover something new about the design
problem that she is addressing or may discover that an issue which should have been
considered earlier was not. Thus, as designers design they often develop a better

understanding of the particular problem they are working on. This learning process
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may often result in new requirements being incorporated into the design specification
or may cause the introduction of new means into the design knowledge-base being
used. This is illustrated in Figure 3.1. Therefore, the designer will often need to
return to work which has already been done in order to ensure that new design
requirements do not invalidate any schemes that have been developed. In this way

the conceptual design process is very dynamic.

3.6 Summary

This chapter presented the approach to conceptual design upon which the research
presented in this thesis is based. It was noted that conceptual design is an extremely
demanding phase of the product development process. In order to assist a designer
during conceptual design a computer needs be to capable of reasoning about the
technical and non-technical aspects of the process. The input to the conceptual
phase of design is the specification of the product which is to be designed. During
conceptual design the human designer develops a number of alternative schemes
which have the potential to satisfy the design specification.

The chapter presented a novel perspective on design knowledge that can be used
during conceptual design. This perspective involves formulating design knowledge
into a mapping between functionality and means for providing functionality. It was
shown how means could be described either at a parametric level using design entities
or an abstract functional level using design principles. The various issues associated
with developing schemes that satisfy a set of requirements, using this knowledge,
were also discussed.

Finally, this chapter presented an approach for evaluating and comparing alter-

native schemes using the principle of Pareto optimality.
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Chapter 4

Implementation Strategy

One of the most difficult aspects of providing computer-based support for conceptual
engineering design is the modelling of products at various levels of abstraction. This
chapter presents an approach to using constraints as a modelling paradigm for engi-
neering design. In particular, this chapter describes a constraint-based implementa-
tion of the conceptual design theory presented in Chapter 3. The constraint program-
ming language Galileo is used as the modelling language. This chapter demonstrates
how the design knowledge that is required during the conceptual phase of design can
be modelled in Galileo; it also shows how constraint-based modelling can be used
as a basis for developing and evaluating schemes for a product described in a de-
sign specification. This chapter uses material from Appendiz B and Appendiz C.
Appendiz B provides full Galileo implementations of the generic conceptual design
concepts presented in this chapter. Appendiz C provides full Galileo tmplementations
of a company-specific design knowledge base and a project-specific design specifica-
tion. The modelling techniques that are presented in this chapter will be used in
Chapter 5 where an interaction scenario between a designer and a conceptual design

advice system will be presented.

4.1 Modelling for Conceptual Design

Conceptual design involves considering a specification for a product and developing a
set of alternative schemes for it. This transformation, from an abstract specification
to a set of alternative schemes, requires a range of different types of knowledge which,
if a computer is to assist in the conceptual design process, must be represented in

the machine. First, in order for the machine to understand the design problem that
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is being addressed by the designer, the design specification for the product which is
to be developed must be modelled in some way. Second, if the machine is to assist
the human designer, the design knowledge possessed by the company for which the
designer is working must be modelled. Third, in order to evaluate each alternative
scheme that the designer attempts to develop, the various evaluation criteria that

the designer uses must also be modelled.

4.2 The Implementation Language Used: Galileo

The implementation language used in this research was Galileo [22, 49|, a frame-
based constraint programming language derived from the First-Order Predicate Cal-
culus (FOPC). It is assumed in the remainder of this dissertation that the reader is
familiar with Galileo. For those readers who wish to familiarise themselves with the
language, an overview is presented in Appendix A. Section A.3 of this appendix
presents an explanation of constraint filtering, the form of constraint processing
which is provided by Galileo and which is used as the basis for supporting designers
in this dissertation.

There were several reasons for using Galileo. First, Galileo is an extremely
expressive language which has been developed for building systems to support en-
gineering design. Second, since FOPC is widely used to represent the semantics of
natural language, a programming language derived from it, such as Galileo, seems to
offer a good basis for re-stating in a computer-understandable formalism any body
of knowledge for which only a natural language formulation exists, such as a theory
of conceptual design. Third, a more pragmatic reason, the centre in which this re-
search was carried out is developing the Galileo language and its associated tools to
suit various aspects of the design process and, since all previous developments were
motivated by applications in detailed design, there was interest in seeing how well
the language would support applications in conceptual design.

Two questions were to be addressed by the research presented in this disserta-
tion. First: could constraint-based reasoning be used as the basis for supporting
conceptual design? Second: would the expressiveness needs of conceptual design
motivate the introduction of new features into Galileo?

The existence of this dissertation indicates that the first question was answered

in the positive. Regarding the second question: although the pre-existing version
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of Galileo could have been used to support conceptual design, it was found that,
by adding a few features to the language, program length could be reduced and
the user-interface could be improved. Before the implementation of the conceptual
design theory presented in Chapter 3 is discussed, these extensions to Galileo will

be introduced.

4.2.1 An Enhancement to the Semantics of Quantification

In the current standard version of Galileo, quantification over structured domains
only applies to top-level parameters. For example, in Figure 4.1', the universally
quantified constraint over the structured domain room in Lines 9-10 would only
apply to top-level parameters which are instances of this structured domain; it would
not apply to fields of other parameters, even if those fields were also instances of the
same structured domain.

domain house

=::= ( bedroom : room
price : real ).

domain room
=::= ( length : real,
width : real ).

h1l: house.
rl: room.

all room(R):
R.length >= R.width.

Figure 4.1: Example usage of quantification in Galileo

Thus, in standard Galileo, while the constraint in Lines 9-10 would apply to room
r1 (the top-level parameter declared in Line 8), it would not apply to hl.bedroom
(a field of the top-level parameter declared in Line 7), even though hi.bedroom is
also of type room (Line 2).

In this dissertation, it is proposed that all quantified constraints apply to all

instances of the domain over which they are quantified, regardless of whether these

'Tn this dissertation, examples of Galileo code are presented annotated with line numbers on the
left. Please note that these line numbers are not part of the Galileo program, but are introduced
in this dissertation to facilitate easy reference to particular lines in a Galileo program.
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instances are top-level parameters or merely fields of parameters. For example, in
Figure 4.1 the universally quantified constraint in Lines 9-10 would apply to all
instances of structured domain room. Thus, the universally quantified constraint in
Lines 9-10 would also apply to the bedroom field of all instances of the structured

domain house; in other words, it would apply to hl.bedroom as well as to ri.

4.2.2 Applying the “!” operator to the exists Quantifier

In this dissertation it is proposed that the ! operator [23] be applicable to the
“exists” quantifier. Before explaining what this means, the semantics of the “exists”

quantifier in Galileo will be discussed.

domain store_room
=::= ( length : real,
breadth : real,
number_of_contents : nonnegative integer ).

number_of_boxes : nonnegative integer.

number_of _boxes > 0 implies
exists store_room(S):
S.number_of_contents = number_of_boxes.

number_of_boxes = 10.

Figure 4.2: Example usage of the “exists” quantifier.

If the program in Figure 4.2 were submitted to a Galileo interpreter, a con-
straint violation message would be produced. The parameter number_of boxes has
the value 10 (Line 9). The constraint in Lines 6-8 deduces from this fact that
there ought to exist a parameter of type store room (defined on Lines 1-4) whose
number_of_contents field should also have the value 10. However, no such parame-
ter exists, so the constraint in Lines 6-8 is violated.

Now consider a modified version of this program, as presented in Figure 4.3.
The only difference between the two programs is that, in Figure 4.3, the ! oper-
ator is applied to the exists quantifier in Line 7. The ! operator [23] tells the
Galileo interpreter that, if a constraint in which the operator is used is violated, the
interpreter system should perform some operation (in effect, make a non-monotonic

assumption) which eliminates the violation. The ! operator is only allowed in cer-
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domain store_room
=::= ( length : real,
breadth : real,
number_of_contents : nonnegative integer ).

number_of_boxes : nonnegative integer.

number_of _boxes > 0 implies
lexists store_room(S):
S.number_of_contents = number_of_boxes.

number_of_boxes = 10.

“|”

Figure 4.3: Example usage of the operator applied to the exists quantifier.

tain situations and, in the current standard version of Galileo, it cannot be applied
to the exists quantifier. The operational semantics of its application, as proposed
here, is that, if the requisite kind of parameter does not exist, the interpreter should
automatically introduce a new parameter which satisfies the constraint. Thus, in the
case of Figure 4.3, the interpreter will introduce a new parameter, store_room_1, to
satisfy the constraint in Lines 6-8 and will make its number_of_contents field have
the value 10.

Those who are familiar with the Free Logic underpinnings of Galileo will remem-
ber that the exists predicate is used to require the presence of a specific parameter
in a constraint network or, if it is absent, to enforce its introduction into the network.
Applying the ! operator to the exists quantifier is subtly different. It is similar in
that it does require the presence of a parameter or force its introduction. However,
it does not require the presence of a specific parameter; instead, it requires the pres-
ence of a parameter of particular type which must also have certain characteristics.

Consider, for example, the program presented in Figure 4.4.
domain colour =::= { red, green, blue }.
exists( my_colour : colour ) and my_colour = green.

lexists colour(C):
C = blue.

Figure 4.4: Existance: predication versus quantification.

In Line 2 the existance of a specific parameter, called my_colour, is enforced;
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it is specified that this parameter must be of type colour and must have the value
green. In Lines 3-4 the existance of some parameter is required; it is specified
that this parameter must also be of type colour and that it must have the value
blue. This second constraint would cause the introduction of a new parameter into
the network. However, the name of the parameter would be chosen by the Galileo
run-time system.

Contrast the above program with that presented in Figure 4.5. Line 2 will behave
exactly the same as Line 2 in Figure 4.4: it will cause the introduction of a colour
parameter called my_colour and will assign it the value green. However, Lines 3—4
will not cause the introduction of any parameter: the requirements specified by this

constraint are satisfied by the parameter introduced by Line 2.
domain colour =::= { red, green, blue }.
exists( my_colour : colour ) and my_colour = green.

lexists colour(C):
C = green.

Figure 4.5: Existance: predication versus quantification.

Care must be exercised when applying the ! operator to the exists quanti-
fier. However, it offers considerable user-friendliness in terms of the resolution of
constraint violations, since it can automatically introduce missing parameters into
a constraint network. The introduction of this usage of the ! operator has been
discussed with the developer of Galileo and its contribution to the language has been
recognised [20]. While the inspiration for this new application of the ! operator has
come from the conceptual design domain, further study on its utility is required in
order to ensure that it is suitable for inclusion in the standard version of the Galileo
language. As will be seen later, the research reported in this dissertation provides

significant motivation for the introduction of this new usage of the operator.

4.2.3 Other Extensions

As well as the extensions to quantification, a number of other minor extensions to
the standard version of Galileo are assumed in this dissertation. The first is the

introduction of a new keyword, “hidden”. The second is the introduction of a new
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meta-level function called #parent_of.

domain box
=::= ( length : positive real,
width : positive real,
area : positive real,
hidden name : string ).

Figure 4.6: Example usage of the keyword “hidden”.

The new keyword hidden is used to indicate which fields of a structured domain
are visible on the user interface of the constraint filtering system. An example of
its use is illustrated in Figure 4.6, where a structured domain called box is defined.
This structured domain comprises a number of fields: length, width, area and
name. The name field is annotated with the keyword hidden which indicates that
this field will never be seen on the filtering system interface. This is a useful way of
avoiding clutter on the filtering system interface by ensuring that uninteresting fields
are not seen by the user. All fields not declared as hidden are, of course, visible to
the user.
domain room

=::= ( length : positive real,
breadth : positive real ).

domain house
=::= ( owner : string,
kitchen : room,
bedroom : room ).

relation has_the_same_owner_as( room, room )
=::= { (R1,R2): #parent_of(R1).owner
= #parent_of (R2) .owner }.

Figure 4.7: Program fragment showing a usage of the “#parent_of” function.

The standard version of Galileo already includes some meta-level relations and
functions [21]. However, the meta-level aspects of the language are still under de-
velopment and the range of relations and functions that currently exist is regarded
as merely a first step in developing this aspect of the language. The research re-
ported in this dissertation motivated the need for a new meta-level function, called

#parent_of. This function can be used to access any field of a structured parameter
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from any one of its other fields. An example usage of this function is presented in
Figure 4.7.

The three definitions presented in Figure 4.7 would, to have any effect, have to
be part of some larger program. The relation has the _same owner as (defined on
Lines 8-10) establishes whether two rooms belong to the same person, by checking
whether the rooms belong to house(s) which have the same owner. The #parent_of
function is used to access the house of which a room is a part; once this has been

accessed, the owner field of the house can be reached in the usual way.

4.3 Generic versus Application-Specific Concepts

It is believed that the approach to supporting conceptual design which is presented
in this dissertation has wide applicability; it seems suitable for use in a wide vari-
ety of design domains. Consequently, its Galileo implementation should distinguish
between those features which are generic to all appropriate applications and those
features which are specific to individual design domains.

The generic aspects of the implementation are in Appendix B. Several applications
of the approach have been investigated during the research. The implementations
of two of them are presented in this dissertation: an implementation of an advice
system for the conceptual design of “leisure vehicles” (bicycles and skateboards)
is given in Appendix C; an implementation of a system for advising designers of
electrical connectors is provided in Appendix D. Both of these application-specific
implementations build on the implementation of the generic concepts.

The implementation of the generic concepts is discussed in Section 4.4. The way
in which application-specific advice systems can be built on top of these generic
concepts is illustrated in Section 4.5 by considering the implementation of an advice

system for designing leisure vehicles.

4.4 Implementing Generic Concepts

As seen in Chapter 3, the development and comparative evaluation of schemes is
the core task during the conceptual phase of design. Thus, in considering how to
implement the generic concepts needed to support conceptual design, we will start

by considering how to implement the generic notion of a scheme and will continue in
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a top-down fashion by considering how to implement the various concepts that are
needed to support the notion of a scheme. Unless otherwise specified, all fragments of
Galileo code which appear in the following discussion are borrowed from the Galileo
module generic_concepts.gal which is presented in Section B.1 of Appendix B;
the line numbers quoted in these fragments are those which the quoted lines have in

the appendix.

4.4.1 A Generic Scheme Structure

The underlying premise of the approach to conceptual design presented in Chapter 3
is that every product exists to perform a particular function. The designer’s task is
to develop a scheme which embodies this required functionality. Since the Galileo
language contained no model of a scheme, part of the research task was to design a
suitable model of a scheme and any other concepts required to implement the design
theory presented in Chapter 3.

domain scheme

=::= ( scheme name : string,
structure : embodiment ).

Figure 4.8: The representation of a generic scheme.

In Figure 4.8 the Galileo model of a generic scheme is presented. This shows
that the concept of a scheme is implemented as a Galileo structured domain called
scheme which has two fields, called scheme_name and structure, respectively.

The scheme_name is of type string and is used to uniquely identify a scheme.
Thus, no two schemes should have the same name, a requirement which is specified
by the constraint shown in Figure 4.9.

alldif scheme(S1), scheme(S2):
not ( S1.scheme_name = S2.scheme_name ).

Figure 4.9: All scheme names must be unique.

Since a scheme exists solely to provide the functionality required in the design
specification, its structure should be the embodiment of that functionality. This is
reflected by Line 48 in Figure 4.8, where the structure field of a scheme is declared

to be of type embodiment.
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4.4.2 A Generic Model of Function Embodiment

As seen in Chapter 3, a large part of the designer’s task in conceptual design consists
of identifying, from among the technologies allowed by the company’s design policy,
ways of providing required functionality; this required functionality may be either
the “top-level” functionality specified in the design specification or lower-level func-
tionalities which are identified as necessary during scheme development. In other
words, the designer is mostly concerned with producing embodiments for intended
functions by choosing, from among the known means, those which will provide the
required functionality. This is reflected in Figure 4.10 which presents the Galileo
implementation of an embodiment as a structured domain which has four fields:

scheme _name, intended_function, chosen_means and reasons.

domain embodiment
=::= ( hidden scheme name : string,

intended_function : func,
chosen_means : known_means,
reasons : set of func_id ).

Figure 4.10: Modelling the embodiment of a function.

The scheme_name field, of type string, cross-references an embodiment to the
scheme to which it belongs. At first glance, this form of cross-reference may seem
unnecessary, since the only embodiment we have encountered so far in this discussion
of implementation is the structure field of a scheme. However, as seen in Chapter 3,
when principles are used to provide functionality they cause the introduction of fur-
ther embodiments. These “derived” embodiments also need to be cross-referenced
to their parent schemes and the method chosen to do this was to make each embod-
iment quote the name of its parent scheme. Since this type of cross-reference is of
no interest to the user (although an essential housekeeping task for the computer),
we do not want it to appear on the user interface; thus, it is labelled, in Line 3, as
hidden.

The field intended_function represents the function which is to be provided by
the embodiment; in Line 4 it is declared to be of type func. We will now consider
the definition of type func in some detail, because when we have done so it will be
easier to explain the rest of the embodiment definition.

First, it should be noted that the same type of functionality is frequently needed
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in different parts of a scheme; that is, the function to be provided by one embodiment
may be the same type of function as that to be provided by a different embodiment
in the same scheme (or, indeed, by an embodiment in a different scheme). Thus, a
func must represent, not a function, but an instance of a function. Furthermore,
of course, one function instance must be distinguishable from a different instance of
the same function. Having noted this, consider the definition of a func provided in

Figure 4.11.

17 domain func

18 =::= ( verb : string,
19 noun : string,
20 id : func_id ).

21 all func(F):
22 has_a unique_id(F).

23 domain func_id
24 =::= { I: nonnegative integer(I) }.

Figure 4.11: Modelling a function instance in Galileo.

In the conceptual design theory presented in Chapter 3, the approach to repre-
senting functionality is a symbolic one, consisting of representing a function by a
verb-noun pair. As can be seen in Figure 4.11, this approach is implemented in the
first two fields of the structured domain used to represent a func. Since a func
is a function instance, it must contain some field which distinguishes it from other
instances of the same function. On Line 20 in Figure 4.11, it can be see that the
approach used was to give each func an id field, of type func_id; from Lines 23-24
it can be seen that a func_id is simply a synonym for a nonnegative integer.

The requirement that each function instance be distinguishable from all other
function instances, including all other instances of the same function, is implemented
by the constraint in Lines 21-22 of Figure 4.11. This constraint uses a relation called

has_a unique_id whose implementation is provided in Figure 4.12.

77 relation has_a unique_id( func )
78 =::= { F: exists nonnegative integer(I): I = F.id and
79 contains only one func with the id( #parent of (F).scheme name, I) }.

Figure 4.12: Uniqueness for identifiers of function instances.
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Examining Figure 4.12, we see that, for a func, F, to have a unique (and well-
defined) id, the id must satisfy two conditions. First, the id of F must be a non-
negative integer. Second, F must be the only func within its parent scheme which has
this non-negative integer as its id. This second condition is implemented by using a
relation called contains_only_one_func_with_the_id; the details of this relation are
beyond the scope of this discussion but can, of course, be traced by the determined
reader — it is defined in Lines 66-70 of Section B.1 in Appendix B.

For the purposes of this chapter, it is sufficient to note that a func in one scheme
may use the same integer for its id as a func in a second scheme; this is because
a func is uniquely identified by a combination of two things: its own id and the
scheme _name field of the embodiment in which the func is used. This explains
Line 79 in Figure 4.12: if a func, F, is to have a unique id, the scheme whose name
is in the scheme_name field of the data object which is the #parent_of F (this parent
will be an embodiment) must contain only one func which uses as its id the integer
that is used by F as its id. The reader may wonder why this approach was used:
why permit a function instance in one scheme to have the same identity number as
a function instance in a different scheme? The decision to allow this was motivated
by concern about the user interface. If every function instance were to have an
identity number which is unique across all schemes, the designer of the first scheme
would not be affected. However, the designer of every subsequently conceived scheme
would find that the first function instance in her scheme would be allocated as its id
some integer whose value depended on how many function instances were used in all
previously conceived schemes — she might learn to accept this but would probably
find it somewhat confusing. Instead, as we will see later, the first function instance
in each scheme will have the id 0, the second 1, and so on.

It is worth noting one more point about funcs before we return to complete our
consideration of embodiments. In Figure 4.13 a relation called provides_the_function
is defined. This relation, which maps between a func and the function of which it
is an instance, takes three arguments. The first argument is of type func while the
others are of type string; the relation is true if the func in the first argument is an
instance of the function which is described symbolically by the verb-noun pair in the
second and third arguments. This relation is introduced here because it is a generic
concept, although we will not see it being used until we see specific functions being

introduced in Section 4.5.
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relation provides_the_function( func, string, string )
=::= { (F,V,N): V = F.verb and N = F.noun }.

Figure 4.13: Relation between a verb-noun pair and an instance of the function which
they describe.

After this digression into the implementation of a func, let us return to the
remaining part of the definition of an embodiment, which was presented in Fig-
ure 4.10. The third field in this structured domain is chosen_means. This repre-
sents the approach chosen by the designer to provide the intended_function for the
embodiment. The approach chosen by the designer must conform to the technology
policy adopted by the company for which she works: in other words, the means she
chooses must be known and approved. This is reflected by the fact that in Line 5 of
Figure 4.10 the field chosen means must be of type known _means.

The repertoire of technologies known to, and approved by, a company varies,
of course, from one company to another. Thus, the definition of known_means is
not generic; it depends on the design domain to which the conceptual design advice
system is being applied. Although we cannot, therefore, consider it further in this
section, we will see an example definition of known_means in Section 4.5.

Before proceeding to discuss the final field in an embodiment, consider the con-
straint shown in Figure 4.14. This specifies that whatever known_means is chosen for
an embodiment must, in fact, be capable of providing the function intended for the

embodiment.

all embodiment (E):
can_be_used_to_provide(E.chosen means, E.intended function).

Figure 4.14: The means chosen for an embodiment must be serviceable

The relation can_be_used_to_provide used Figure 4.14 is defined in Figure 4.15.
As will be seen when we consider the definition of company-specific knowledge in
Section 4.5, a known_means may be able to provide several functions simultane-
ously. Furthermore, a known_means may, if used in different ways, be able to
provide different sets of functions simultaneously. The definition of the relation
can _be used_to_provide states that a known means can provide a function if that
function appears in some set of functions that the means can simultaneously pro-

vide. The relation can_simultaneously_provide used in this definition cannot be
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discussed here: it is company-specific knowledge and the way in which it is defined
will be discussed in Section 4.5.

53 relation can_be_used_to_provide( known means, func)
54 =::= { (K,F): can_simultaneously_provide(K,Fs) and F in Fs}.

Figure 4.15: Definition of can_be_used_to_provide.

The final field in the definition of an embodiment (Figure 4.10) is called reasons.
As discussed in Chapter 3, an embodiment may be introduced into a scheme because
of different factors: it could be introduced to provide the top level functionality re-
quired in the design specification; alternatively, it could be introduced to provide
some functionality whose necessity was recognised when some design principle was
used during the development of the scheme. The reasons field in an embodiment
records the motivation for introducing the embodiment. It does so by recording the
identity numbers of the function instances whose provision required the introduction
of the embodiment. This is reflected by the fact that, in Line 6 in Figure 4.10, the
reasons field has the type set of func_id. The reasons field of an embodiment
provides the basis for identifying those design entities between which context rela-
tions must be considered. The process of defining context relations between design
entities will be discussed later in Section 4.5.4.

49 all scheme( S ):
50 is_the first_embodiment_in( S.structure, S.scheme_name ).

Figure 4.16: A constraint on the structure of the generic scheme representation.

Remember that, as we saw earlier, the structure field of a scheme is an embodiment.
Since the structure of a scheme is intended to satisfy the top-level functionality re-
quirement in the design specification, it will be the first embodiment in the scheme.

This is reflected by the constraint shown in Figure 4.16.

116 relation is_the_first_embodiment_in( embodiment, string )

117 =::= { (E,Sn): is_in the scheme( E, Sn ) and
118 E.intended_function.id = 0 and
119 E.reasons = {} }.

Figure 4.17: The meaning of the relation is_the_first_embodiment_in.
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The definition of the relation is_the first_embodiment_in that is used in this
constraint is shown in Figure 4.17. The details of this definition are beyond the scope
of this discussion. It is enough to note two points. First, as shown in Line 118 of
Figure 4.17, the id of the intended_function for the first embodiment in a scheme
must be zero; this reflects the fact that the functionality to be satisfied by the first
embodiment in a scheme is the top-level functionality required in the design specifi-
cation. Second, as shown on Line 119, the set of reasons for the first embodiment in
a scheme is empty; this reflects the fact that, apart from the intended_function of
the embodiment (which, of course, is the top-level functionality required in the design
specification), no other function instances in the scheme motivated the introduction

of this first embodiment.

4.4.3 A Generic Model of Means

As was mentioned above, the repertoire of technologies known to, and approved by, a
company varies from one company to another. Thus, the issue of defining the specific
means available to a designer is not something that will be covered in this section,
which is concerned only with the definition of generic concepts. However, when
specific means are defined (the method of doing so will be considered in Section 4.5),
they will be defined in terms of a generic notion of means, whose definition we will
consider now.

Figure 4.18 illustrates how the generic notion of a means can be modelled as a

structured domain in Galileo.

domain means
=::= ( hidden scheme name : string,
type : means_type,
funcs_provided : set of func_id ).

all means(M):
is_a possible _behaviour of ( M.funcs_provided, M ).

domain means_type
=::= { a_principle, an_entity }.

Figure 4.18: Modelling a design means in Galileo

As shown in Lines 35-38, a means is implemented as a Galileo structured domain

called means. This has three fields: scheme name, type and funcs_provided. As
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was the case with the definition of an embodiment, the scheme_name field is used to
cross-reference a means with the scheme in which the means is being used; similarly,
for the same reasons as the scheme _name field was declared hidden in the definition
of an embodiment, it is declared as hidden here.

It will be remembered from Chapter 3 that there are two kinds of means: prin-
ciples and entities. This is reflected by the fact that, as shown in Figure 4.18, the
domain from which the type field of a means takes its value contains only two pos-
sible values, a_ principle and an entity (see Lines 41-42).

The final field in the definition of the generic notion of a means is called funcs_pro-
vided and is of type set of func_id. It is used to remember which function in-
stances within a scheme the means is being used to provide. Of course, a means
should be used to provide only those function instances which it is capable of pro-
viding; this requirement is captured in the constraint in Lines 39-40. The definition
of the relation is_a possible_behaviour_of which is used in this constraint will
not be considered here. It is presented in Lines 82-85 of generic_concepts.gal in
Section B.1 but the details of its semantics are beyond the scope of this discussion;
they can, of course, be traced by the determined reader. Essentially, however, the
provision of a set of function instances can be regarded as a possible behaviour of
a means if and only if the means can simultaneously provide the variety of function
types as well as the quantity of instances of each type of function that is implied by

the set of function instances.

4.4.4 A Generic Model of Design Principles

As discussed in Chapter 3, a design principle is an abstraction of a known approach
to satisfying a functional requirement. A design principle describes how a particular
type of functionality can be provided by embodying a set of lower-level functions. In
addition, the principle may specify certain relationships, called context relationships,
between the embodiments of these lower-level functions.

Having noted this, it can be seen that a specific design principle is a piece of
intellectual property which, if not the patented property of a company, is central
to the company’s way of doing conceptual design. Thus, consideration of how to
define specific principles will be delayed until Section 4.5. However, we will see in

Section 4.5 that specific principles are implemented in terms of a generic notion of a
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principle, a concept which we will consider here.

domain principle
=::= { P: means(P) and
P.type = a principle }.

Figure 4.19: A generic design principle model.

The generic notion of a principle is defined in Figure 4.19 as a specialisation of
the generic notion of a means. Similarly, when we consider the definition of specific
principles, in Section 4.5, we will see that these are defined as specialisations of this

generic notion of a principle.

4.4.5 A Generic Model of Design Entities

A design entity represents a class of part, instances of which can be incorporated
into a scheme to realize one or more of the function instances identified during the
conceptual design of a product. As with design principles, specific design entities
are part of a company’s body of design expertise. As such, their representation will
not be considered here, being delayed until Section 4.5. However, as with design
principles, specific design entities are defined as specialisations of a generic notion
of a design entity, a concept whose definition we will consider here.

domain entity

=::= { E: means(E) and

E.type = an_entity and
exists ( E.id : entity_id ) }.

all entity(E):
has_a unique_id(E).

domain entity_id
=::= { I: positive integer(I) }.

Figure 4.20: The model of a generic design entity.

In Figure 4.20 the generic notion of a design entity is defined, like the generic
notion of a design principle, as a specialisation of the concept of a means. A strict
approach to implementing computer-based support for conceptual design might dis-
tinguish between design entities and design entity instances. However, for our pur-

poses here, we can avoid making this distinction. Consequently, the generic notion
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called an entity in Figure 4.20 actually represents a design entity instance. As
such, it requires an identity field, which is provided by specifying (in Line 12) that it
contains a field additional to those present in the generic notion of a means. This ad-
ditional field, the id field, is of type entity_id which, as can be seen in Lines 15-16,
is merely a synonym for a positive integer?.

Each design entity instance should have a unique id, a requirement which is spec-
ified by the constraint in Lines 13-14. The meaning of the relation has_a_unique_id
which is used in this constraint is given in Figure 4.21. It will not be explained
here, since id uniqueness with respect to design entity instances is similar to id
uniqueness with respect to function instances — in both cases, id uniqueness is local
to the parent scheme; the explanation of func_id uniqueness in Figure 4.12 can be

applied, mutatis mutandis, to Figure 4.21.

relation has_a unique_id( entity )
=::= { E: exists positive integer(I): I = E.id and
contains_only_one_entity with_the_id( E.scheme_name, I) }.

Figure 4.21: Uniqueness for entity identifiers.

4.4.6 Context Relationships and Entity Interfaces

As seen earlier, a design principle introduces a set of embodiments and a set of con-
text relationships between them. Eventually, of course, each embodiment is realized
by the introduction of design entity instances. This means that context relationships
between embodiments will have to be realized by interfacing appropriately the entity
instances which realize the embodiments.

In conceptual design, the minute detail of how a pair of components in a product
are interfaced or connected is generally not of interest. However, there are certain
minimum details which must be known in order to evaluate the quality of the scheme
being developed. We will see in Section 4.5.4 how these details are represented. They
will be represented as specialisations of a generic concept called an interface, whose

definition we will consider here; it is provided in Figure 4.22.

2Tt will be remembered that a func_id was defined to be a non-negative integer. This is because
the top-level functionality requirement in a scheme, which comes from the design specification, is
given the special func_id of 0. Since no entity instance is treated as special, there is no need to
allow 0 as a entity_id; thus, an entity_id can only be positive integer.
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domain interface
=::= ( hidden scheme_name : string,
entity_1 : entity_id,
entity 2 : entity.id ).

all interface(I):
exists entity(El1), entity(E2):
I.entity_1 = E1.id and
I.entity 2 = E2.id and
is_in the_same_scheme_as( I, E1 ) and
is_in_the_same_scheme_as( I, E2 ).

Figure 4.22: Modelling generic interfaces between design entities.

As can be seen in Lines 2528, an interface is represented as a Galileo struc-
tured domain with three fields. The first field, scheme_name, is hidden from the user
because it is present merely to facilitate system housekeeping; it cross-references the
interface to the scheme in which it is used. The remaining two fields, entity_1
and entity_2, contain the identity numbers of the two design entity instances which
are being interfaced.

The constraint defined in Lines 29-34 ensures that, for every interface which is
defined, both of the entity instances to which it relates exist in the same scheme as the
interface. An entity instance is, as we have already seen, merely a specialisation of a
means so the relation is_in the_same_scheme_as used in the above constraint is the
one defined in Figure 4.23, which is defined over an interface and a means. From
this definition, we can see that an interface and a means are in the same scheme
if the contents of their scheme_name fields are the same. Examination of Section B.1
in Appendix B will reveal that, although there are several different relations called
is_in_the_same_scheme_as, defined between different pairs of concepts, they all rely

on equality between scheme_name fields; we will not consider them further here.

relation is_in the_same_scheme_as( interface, means )
=::= { (I,M) : I.scheme name = M.scheme name }.

Figure 4.23: One of the several versions of the relation is_in the same_scheme_as.

A similar relation, which will be considered a little further here because it will
be referenced later, is the relation is_a part_of between a means (that is, either a

principle or an entity) and a scheme. This relation’s definition is shown in Figure 4.24
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where it can be seen that a means is part of a scheme if the scheme_name field of the
means contains the name of the scheme.

relation is_a part_of( means, scheme )
=::= { (M,S) : M.scheme name = S.scheme name }.

Figure 4.24: The relation is_a part_of.

4.4.7 Generic Concepts for Comparing Schemes

Every scheme for a product must, of course, provide the functionality required by the
design specification. However, as we have seen in Chapter 3, a design specification
may, in addition to stipulating functionality, describe certain desirable, although not
essential, properties of a design. These desirable properties are called preferences.

A design specification may include several preferences; the approach to be used
for comparing two schemes when more than one preference is to be considered is
described in Chapter 3. The implementation of that approach, or at least its generic
aspects, can be found in Section B.2 of Appendix B, where a Galileo module called
comparison.gal is presented. In what follows, unless otherwise noted, all Galileo
code fragments come from this module.

domain intention
=::= { minimal, maximal }.

domain preference
=::= ( value : real,
intent : intention ).

Figure 4.25: Modelling a design preference.

The basic notion in the approach for comparing schemes is the preference. It
is defined in Figure 4.25 as a structured domain containing two fields: the value
field, which contains the value of whatever scheme property is the subject of the
preference, and the intent field, which indicates whether it is preferred that this
scheme property be minimised or maximised.

When two schemes are being compared, this will involve comparing how well they
do in respect of each preference given in the design specification. A relation called

better_than is used for comparing the instantiation of a preference in one scheme
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=::= { (P1,P2): Pl.intent = minimal and
P2.intent = minimal and P1.value < P2.value,
(P1,P2): Pl.intent = maximal and
P2.intent = maximal and P1.value > P2.value }.

Figure 4.26: Comparing two design preferences to determine which is better.

with the instantiation of the same preference in the other scheme. The definition
of this relation is given in Figure 4.26. We can see that, if a preference involves
minimising some property, the better instantiation of the preference is the one with
the smaller value; similarly, if a preference involves maximising some property, the
better instantiation of the preference is the one with the larger value. This notion of
better_than was introduced in Section 2.3 on Page 31.

As explained in Chapter 3, no scheme for a product should dominate (in the
sense of Pareto optimality) another scheme. This requirement is implemented as the
constraint in Figure 4.27. If a designer develops a scheme which is dominated by a
scheme that she (or one of her colleagues) has previously developed, this constraint
will be violated and she will be given a message to that effect. Similarly, if she
develops a scheme which dominates a previously developed scheme the constraint
will be violated. In either case, it is intended that, as a result of the violation
message, (one of) the designer(s) will be motivated to improve the inferior scheme
or else to discard it.

The constraint in Figure 4.27 is defined in terms of a relation called dominates
which is also defined in Figure 4.27. We can see that one scheme dominates another
scheme if the first scheme improves_on the latter (in respect of some preference)
while at the same time it is not true that the latter scheme improves_on the first
in respect of any preference; this implements the ideas introduced in Section 2.3 on
Page 31.

alldif scheme(S1), scheme(S2):
not dominates( S1, S2 ).

relation dominates( scheme, scheme)
=::= { (81,82): improves_ on( S1, S2) and
not improves on( S2, S1 ) }.

Figure 4.27: Comparing two schemes.
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The relation improves_on, between two schemes, is defined in terms of the rela-
tion better_than, between instantiations of preferences. However, this definition is
not generic; it will vary from one design specification to another and, thus, will not be
discussed here; it will be considered later, in Section 4.6.3, when the representation

of design specifications is discussed.

4.5 Implementing Application-Specific Concepts

The generic concepts introduced in Section 4.4 merely serve as the basis for defining
the company- and project-specific concepts that are needed to support conceptual
design. The definition of these application-specific concepts in terms of the generic
concepts will now be considered.

To illustrate how this is done, we will use extracts from a design knowledge-base
for a company called “Raleigh Leisure Vehicles Limited”. This knowledge base,
which is in a module called raleigh knowledge.gal, is concerned with the design
of products such as bicycles and skateboards; the module is presented in Section C.1
of Appendix C. In what follows, unless otherwise noted, each Galileo fragment

quoted comes from this module.

4.5.1 Defining Known Means

As mentioned earlier, an important part of the company-specific knowledge that
must be defined is the set of technologies that are available for use by the company’s
designer(s).

To define this knowledge we must list the known_means, that is the design prin-
ciples and design entities that are approved for use by designers working for the
company. We must specify what functionality is offered by these known means. We
must also describe each of these principles and entities in detail.

Listing the known means is simply done. It merely involves defining a Galileo
scalar domain which contains one symbol for each of the available principles or
entities. In Figure 4.28 the collection of means which are available to designers
working for Raleigh Leisure Vehicles Limited is presented.

As can be seen, the means available include an_axle, a bicycle and a_skateboard

and so on; as we shall see later, some of these refer to design principles while others
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41 domain known_means

42 =::= { an_axle, a_bicycle, a_skateboard, a_wheel_assembly,
43 a_saddle, a_chain, a_chassis, a_steering assembly,
44 an_engine, a_harness, an_air_cushion, a frame,

45 a_handlebar_assembly, a_molded_frame,

46 a_pedal_assembly, a_chain }.

Figure 4.28: A domain of known means available to designers.

refer to design entities.

As well as listing the known means that are available to designers working for a
company, the company knowledge-base must specify the functions that each known _means
can provide. This is done by declaring the relation called can_simultaneously_provide.
This company-specific relation was invoked by the generic definition which we saw
earlier in Figure 4.15 but could not be considered at that stage, because we were
considering only generic concepts.

Figure 4.29 provides the definition of this relation specific to Raleigh Leisure
Vehicles Limited. It provides the information on means functionality that was shown
in Figure 3.13. The relation shows the functionality that can be simultaneously
provided by the various known_means available to engineers working for this company.
Each pair in this binary relation associates a known_means with a set of functions. In
many cases, this set of functions is simply a singleton set; however, the notion of a
set is used in the definition of this relation because, in general, a known means could
provide multiple function instances at the same time. In Lines 133-134, it can be seen
that an_air_cushion provides only one function, namely facilitate movement. In
Lines 135-139 it can be seen that an_axle can provide the two functions support
wheel and facilitate rotation simultaneously, but can also be used to provide the

single function punch holes.
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relation can_simultaneously_provide( known means, set of func )
=::= { (an_air_cushion,{F}):

provides_the_function( F, ’facilitate’, ’movement’ ),
(an_axle,{F}):

provides_the function( F, ’punch’, ’holes’ ),
(an_axle,{F1,F2}):

provides_the _function( F1, ’support’, ’wheel’ ) and

provides_the function( F2, ’facilitate’, ’rotation’ ),
(a_bicycle,{F}):

provides_the _function( F, ’provide’, ’transport’ ),
(a_chasis,{F}):

provides the function( F, ’provide’, ’support’ ),
(an_engine, {F}):

provides_the function( F, ’provide’, ’energy’ ),
(a_frame,{F}):

provides_the function( F, ’provide’, ’support’ ),
(a_handlebar_assembly,{F}):

provides_the_function( F, ’change’, ’direction’ ),
(amolded frame,{F1,F2}):

provides_the _function( F1, ’provide’, ’support’ ) and

provides_the function( F2, ’support’, ’passenger’ ),
(a-harness, {F}):

provides_the function( F, ’support’, ’passenger’ ),
(a_pedal_assembly,{F}):

provides_the _function( F, ’provide’, ’energy’ ),
(a_saddle,{F}):

provides_the_function( F, ’support’, ’passenger’ ),
(a_skateboard,{F}):

provides_the_function( F, ’provide’, ’transport’ ),
(a_steering assembly,{F}):

provides_the function( F, ’change’, ’direction’ ),
(a_wheel_assembly,{F}):

provides_the function( F, ’facilitate’, ’movement’ ) }.

Figure 4.29: Relating means to the functions that they can provide.

In the cases discussed here the function instances that a known_means can provide
simultaneously are instances of different functions. In general, however, two or
more function instances provided by a known_means could be instances of the same
function. For example, in Figure 4.30 two instances of the function provide light are

being provided by the same design entity.
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provide
light
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entity

Figure 4.30: Embodying two instances of the function provide light with the same
design entity.

4.5.2 Defining Company-specific Design Principles

In Figure 4.19 the notion of a generic design principle was presented. All the design
principles that are available to designers working for specific company can be defined
as specialisations of this generic design principle. Consider, for example, the principle
of a bicycle which was seen in Figure 3.9. It is defined in Figure 4.31.

This application-specific principle is defined to be a specialisation of the generic
notion of a principle (Line 8); the specialisation is specified by the extra properties
that are defined in Lines 9-28.

It was seen in Figure 3.9 that a bicycle principle involves five embodiments.
These are specified in Lines 9-13 of Figure 4.31. The functions which Figure 3.9
states are to be provided by these embodiments (facilitate movement, provide
energy, support passenger, change direction and provide support) are speci-
fied in Lines 14-23 of Figure 4.31, using the generic relation provides_the_function
which we saw defined earlier in Figure 4.13.

The context relationships between the embodiments which are shown in Figure 3.9
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domain bicycle
=::= { B: principle(B) and

exists( B.el : embodiment ) and
exists( B.e2 : embodiment ) and
exists( B.e3 : embodiment ) and
exists( B.e4 : embodiment ) and
exists( B.eb : embodiment ) and

provides_the function( B.el.intended function,
>facilitate’, ’movement’ ) and

provides_the function( B.e2.intended function,
’provide’, ’energy’ ) and

provides_the function( B.e3.intended function,
’support’, ’passenger’ ) and

provides_the function( B.e4.intended function,
’change’, ’direction’ ) and

provides_the function( B.e5.intended function,
’provide’, ’support’ ) and

drives( B.e2, B.el ) and

supports( B.e5, B.el) and

supports( B.e5, B.e2) and

supports( B.e5, B.e3) and

supports( B.e5, B.e4) }.

Figure 4.31: Definition of a company-specific design principle.

are stated in Lines 24-28 of Figure 4.31. In Line 24 it is stated that a drives
relationship must exist between the embodiment e2 and embodiment el. Line 25
states that a supports relationship must exist between the embodiment e5 and
embodiment el. Line 26 requires that a supports relationship must exist between
the embodiment e5 and embodiment e2. Line 27 states that a supports relationship
must exist between the embodiment e5 and embodiment e3, while Line 28 requires
that a supports relationship must exist between the embodiment e5 and embodiment
ed.

Ultimately, as was seen in Chapter 3, each embodiment introduced by a principle
is realized by the introduction of a set of one or more design entity instances. Thus, if
a design principle specifies a context relationship between some of its embodiments,
that relationship will, ultimately, be realized by some analogous relationship between
the sets of design entity instances which realize the embodiments. We will see later,

in Section 4.5.4, how these relationships are defined.
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4.5.3 Defining Company-specific Design Entities

Design entities represent classes of parts which provide physical realizations of the
functions that are identified in the function decomposition of the product being de-
signed. Company-specific design entities are defined as specialisations of the generic
notion of a design entity which was presented in Section 4.4.5.

In every company there are particular properties of parts that are of general
interest. For example, in the mechanical domain, properties such as mass, geometry
and material may be considered important enough to be represented as attributes of
all design entities. In such cases, a company will define its own “pseudo-generic” type
of design entity as a specialisation, containing fields to represent these important
properties, of the generic design entity. It will also define functions to compute
important properties of these pseudo-generic design entities.

For example, Raleigh Leisure Vehicles Limited considers the width, mass and
matertal to be important properties of all parts. Thus, as shown in Figure 4.32,
it was considered appropriate to define the notion of a raleigh entity which has

these properties.

domain raleigh_entity
=::= { R: entity(R) and
exists( R.width : real ) and
exists( R.mass : real ) and
exists( R.material : raleigh material ) and
R.mass = mass_of( R ) }.

domain raleigh material
=::= { cfrp, titanium, aluminium, steel }.

function mass_of ( raleigh entity ) -> real
=::= { E -> 2: E.material = cfrp,
E -> 3: E.material = titanium,
-> 5: E.material aluminium,
-> 10: E.material = steel }.

E
E

Figure 4.32: The implementation of a company-specific design entity
called raleigh_entity.

As can be seen in Lines 5661, the concept of a raleigh entity is defined to be

a specialisation of the generic notion of an entity. The specialisation consists of an
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additional three fields, representing width, mass and material, with an equational
constraint for estimating the mass. The width and mass fields are of type real but
the material field is of type raleigh material; according to the definition of the
type raleigh material, in Lines 67-68, this company’s designers are restricted to
using one of just four materials: cfrp, titanium, aluminium and steel.

In Line 61 the mass of a raleigh entity is estimated using a function called
mass_of. The implementation of this function is presented in Lines 236-240. In a
real situation, the mass of an entity instance would, of course, depend on its volume
as well as the constituent material; however, in order to simplify matters for the sake
of this example, it is assumed that the mass_of all instances of raleigh_entity can
be estimated by knowing just the material of the entity. Thus, for example, the
mass_of a raleigh entity whose material is steel is estimated to be 10 units
(Line 240).

domain chassis
=::= { C: raleigh entity(C) }.

Figure 4.33: A chassis design entity.

When a company has defined its own pseudo-generic concept of a design entity, it
can define a repertoire of company-specific design entities. These company-specific
design entities may be specialisations, with further additional fields, of the company’s
pseudo-generic concept of design entity or they may be merely synonyms of it. For
example, in Figure 4.33 a design entity called chassis is implemented. This design
entity is simply a synonym for raleigh_entity because, apparently, for the purposes
of conceptual design, no attribute of a chassis is considered important, besides
those that are already defined for a raleigh entity.

A company-specific design knowledge-base, such as the one presented in Sec-
tion C.1, will usually contain many different types of design entity that are available
to designers for use in their schemes. An inspection of Section C.1 will show that,
as well as chassis, it defines the following types of raleigh entity: air_cushion,
axle, chain, engine, frame, handlebar_assembly, harness, molded_frame, pedal-

-assembly, saddle, steering_assembly, wheel_assembly.
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4.5.4 Defining Company-Specific Context Relationships

If a design principle specifies a context relationship between some of its embodi-
ments, that relationship must, ultimately, be realized by some analogous relationship
between the sets of design entity instances which realize the embodiments. We will
now see how that is specified.

Consider, for example, the bicycle principle defined in Figure 4.31. Line 24
specifies that a drives relationship must hold between the first two embodiments
introduced by the principle, those which embody the functions provide energy and
facilitate movement.

The drives relationship between two embodiments is defined in Figure 4.34. This
definition specifies that the drives relationship holds between two embodiments if
and only if an analogous relationship, also called drives, holds between the two sets
of entity instances that derive from these embodiments?.
relation drives( embodiment, embodiment )

=::= { (E1,E2): drives( { X | exists entity( X ):
derives from( X, E1 ) },

{ Y | exists entity( Y ):
derives_from( Y, E2 ) } ) }.

Figure 4.34: The meaning of the drives context relation between embodiments.

The analogous relationship between the sets of entity instances that derive from
the embodiments involved in a context relationship must be defined. The drives
relationship between sets of derived entity instances is shown in Figure 4.35. It is
defined in terms of yet another analogous relationship, this time between individual
entity instances: apparently, one set of entity instances drives another set of entity
instances if there exists one individual entity instance in the first set which drives

an individual entity instance in the second set.

3The relation derives_from used in this definition is a generic relation and, as such, is defined
in Section B.1 of Appendix B. A detailed consideration of its definition would distract us from
the focus of the current discussion. Suffice it to say that if a determined reader were to follow
the definition she would discover that an entity instance can derive either directly or indirectly
from an embodiment. An entity instance derives directly from an embodiment if it is used, with-
out recourse to any design principle, as the means of implementing the function intended for the
embodiment, while an entity instance derives indirectly from an embodiment if one or more prin-
ciples were used in the reasoning that led to the entity instance being used to implement part of
the function intended for the embodiment. The reasoning that leads to a particular embodiment
being introduced into a scheme can be determined from its reasons field.
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relation drives( set of entity, set of entity )
=::= { (E1s,E2s): exists El1 in Eis, E2 in E2s:
drives( E1, E2 ) }.

Figure 4.35: The meaning of the drives context relation between sets of design
entity instances.

The precise realization of the context relationship specified in a principle depends
on which design entities are used to realize the embodiments that must satisfy the
context relationship. Suppose that a pedal_assembly is the design entity used to
provide energy and a wheel_assembly is the design entity used to facilitate
movement. We can see in Figure 4.36 the relationship that would have to be satisfied

between these two entity instances.

relation drives( entity, entity )
=::= { (P,W): pedal _assembly(P) and wheel assembly (W) and
is_in the same _scheme as( P, W ) and
lexists chain(C):
is_in_the_same_scheme_as( P, C ) and
lexists mechanical_interface(M1):
Mi.entityl = P.id and
Mi.entity2 = C.id and
Ml.relationship = drives and
lexists mechanical_interface(M2):
M2.entityl = W.id and
M2.entity2 = C.id and
M2.relationship = drives }.

Figure 4.36: The meaning of the drives context relation between a pedal assembly
and a wheel assembly.

According to the definition of this relationship, if a pedal_assembly is to drive
a wheel_assembly, they must be in_the_same_scheme and there must be a further
design entity instance, a chain, in the same scheme. These entity instances must
be interfaced in the following way: there must be a mechanical_interface between
the pedal_assembly and the chain and another one between the wheel_assembly
and the chain. This arrangement was used in Figure 3.17.

As we shall now see, a mechanical_interface is simply a specialisation of the
generic notion of an interface which we encountered in Section 4.4.6. The defi-
nition of a mechanical_interface is given in Figure 4.37. It can be seen to be a

specialisation of a company-specific notion of interface, called a raleigh interface,
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which, from its definition in Figure 4.38, can be seen to be a specialisation of the
generic notion of interface.
domain mechanical_interface

=::= { S: raleigh_interface(S) and S.type = mechanical and
g yp
exists( S.relationship : mechanical_relationship ) }.

domain mechanical_relationship
=::= { controls, drives, supports }.

Figure 4.37: Modelling a mechanical interface.

It can be seen from Figure 4.37 that amechanical_interface isaraleigh inte-
rface whose type field contains the value mechanical and which also has an ad-
ditional field called relationship that specifies the nature of the mechanical rela-
tionship involved in the interface; it can be seen that three kinds of relationship are
supported: controls, drives and supports.

It can be seen from Figure 4.38 that a raleigh_interface is simply an interface
with an additional field called type which specifies the class of relationship involved
in the interface; it can be seen that two classes of relationship are supported: spatial

and mechanical.

domain raleigh_interface
=::= { I: interface(I) and
exists( I.type : raleigh interface_type ) }.

domain raleigh interface_type
=::= { spatial, mechanical }.

Figure 4.38: Modelling company-specific interfaces.

4.6 Representing Design Specifications

In Chapter 3 a detailed discussion on the contents of a design specification was
presented. A constraint-based approach to modelling a design specification will be
presented here.

A design specification comprises a set of requirements which define the functional
and physical properties of the product to be designed. During the conceptual phase of

design, a designer (or, possibly, a team of them) generates a set of alternative schemes
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which satisfy the requirements defined in the design specification. The designer(s)
will select a subset of these schemes for further development during the later phases
of the design process. Thus, a design specification can be regarded as an intensional
specification of a set of schemes.

In Section 4.4.1, a generic model of a scheme was presented. This generic scheme
provides a basis for the development of schemes for any product. Each requirement
in the design specification can be regarded as a constraint on the schemes that the
designer will develop. The requirements defined in the design specification can be
modelled as constraints which are universally quantified over all instances of the

scheme representation. For example, consider the following design specification:
Design a product which exhibits the following properties:

e provides the function provide transport;

is recyclable;

has a width not greater than 2m;

has minimal mass and

e comprises a minimal number of parts.

In this specification there is one functional requirement and four physical require-
ments. The functional requirement states that the product must provide the function
provide transport. The physical requirements state that the product must be recy-
clable, must have a width not greater than 2m, should have minimal mass and should
comprise a minimal number of parts.

In the following sections a constraint-based model of this design specification
will be developed in stages. A full constraint-based implementation of this design
specification is presented in a Galileo module called vehicle_spec.gal presented in
Section C.2. Parts of this design specification model will be presented in the following

sections in order to demonstrate the modelling approach used in this dissertation.

4.6.1 Modelling Functional Requirements

It was explained above that a design specification can be regarded as an intensional
specification of a set of schemes. This means that a design specification can be

represented in Galileo as a specialisation of the generic notion of a scheme. This
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is illustrated in Figure 4.39, where a fragment from the design specification in Sec-
tion C.2 is given. The specification for a new vehicle is called a vehicle_scheme

and, as can be seen, is a specialisation of a scheme.

domain vehicle_scheme
=::= { S: scheme( S ) and

Figure 4.39: A design specification is a specialisation of the generic notion of a
scheme.

In the design specification whose representation we are considering here, the
functional requirement is that the product can provide transport. In terms of the
modelling approach being presented here, this requirement can be treated as a con-
straint on the kind of scheme that is acceptable as a vehicle_scheme. This is shown
in Figure 4.40.
domain vehicle_scheme

=::= { S: scheme( S ) and

provides_the function( S.structure.intended function,
’provide’, ’transport’ ) and

Figure 4.40: Modelling the functional properties of a scheme

Recall, from Section 4.4.1, that the generic model of a scheme has a field called
structure which is of type embodiment. The intended function field of this em-
bodiment represents the function that is to be provided by the scheme. In the frag-
ment from the vehicle design specification that is given in Figure 4.40, it is stated that
a vehicle_scheme is a scheme whose structure provides the intended_function

provide transport.

4.6.2 Modelling Categorical Physical Requirements

The example design specification presented earlier contains several physical require-
ments. These relate to the recyclability, width and mass of the product and the
number of parts in it. Two of these requirements, those referring to recyclability and
width, are categorical; that is, they must be satisfied. The other two, those referring
to the mass of the product and the number of parts in it are preferences; they merely

indicate that the mass and number of parts should be as small as possible.
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In this section, we will consider how to incorporate categorical physical require-
ments into the Galileo representation of a design specification. The incorporation of
preferences will be discussed in Section 4.6.3.

The requirement that the product be recyclable is a life-cycle requirement; it can
be easily represented as a constraint, as shown in Line 9 of Figure 4.41.
domain vehicle_scheme

=::= { S: scheme( S ) and
provides_the function( S.structure.intended function,

’provide’, ’transport’ ) and
recyclable(S) and

Figure 4.41: Modelling the physical requirement recyclable

Of course, the meaning of the relation recyclable used here is company-specific
and, as such, must be defined in the company-specific design knowledge-base. Sup-
pose that a scheme’s being recyclable means that all the individual entity instances
in the scheme should be made of recyclable materials; this meaning is defined in Fig-
ure 4.42, which is taken from the Galileo module raleigh knowledge.gal presented

in Section C.1.

relation recyclable( scheme )
=::= { S: all entity(E): is_in the scheme(E,S) implies
recyclable(E) }.

relation recyclable( entity )
=::= { E: recyclable material( E.material ) }.

relation recyclable material( raleigh material )
=::= { cfrp, aluminium, steel }.

Figure 4.42: Modelling the physical requirement recyclable

A scheme is recyclable if all of the entities in the scheme are recyclable
(Lines 194-196). An entity isrecyclable ifitsmaterial isarecyclable material
(Lines 197-198). The recyclable materials are cfrp, aluminium and steel (Lines 199—
200). It will be recalled, from Figure 4.32, that, normally, four materials are available
to designers working for this company: cfrp, titanium, aluminium and steel. For
designers working on this project, however, titanium is not allowed, because it is

not deemed recyclable.
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The implementation of the relation recyclable in Figure 4.42 is quite straightfor-
ward. However, this is not always the case with physical design requirements. Some
physical requirements can be quite complex to implement. However, it is generally
true that, for a particular company, physical requirements relate to a known set of
critical product properties; consequently, it would be worth the company’s while to
spend the effort to develop a representation for these requirements and incorporate
them into the company-specific design knowledge-base. We will now consider the
representation of a slightly more complex physical requirement: the product should
have a width no greater than two metres.
domain vehicle_scheme

=::= { S: scheme( S ) and
provides_the_function( S.structure.intended_function,
’provide’, ’transport’ ) and
recyclable(S) and
exists( S.width : real ) and

1S.width = width_of( S ) and
S.width =< 2.0 and

Figure 4.43: Modelling the requirement which limits width.

This requirement implies several features that should be incorporated into the
design specification. The requirement implies that there exists a width attribute for
the scheme, that this attribute will have a numeric value and that its value should
not exceed two metres. In Figure 4.43 the design specification fragment presented
in Figure 4.41 is extended to incorporate this requirement.

In Line 10 of Figure 4.43, the existence in every vehicle_scheme of a field called
width, of type real, is stipulated. The manner in which the width of the scheme
is computed is specified in Line 11. The value of the width of the scheme will
be computed using a function called width_of. In Line 11 the ! operator is ap-
plied to the width of the vehicle_scheme because, as and when the width of the
vehicle_scheme changes when entities are introduced during scheme development,
the Galileo filtering system will need to update the value of this attribute. This is
done by the filtering system making a sequence of non-monotonic assumptions about
the value of this attribute, essentially retracting its old value and asserting the up-
dated value whenever necessary; this is the standard semantics of the ! operator in

Galileo [23]. The actual requirement that the width of the scheme be no more than
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two metres is specified on Line 12.

function width_of( scheme ) -> real
=::= { 8 -> width of( { E | exists entity(E):
is_apart of(E, S) } ) }.

function width of( set of entity ) -> real
=::= { Es -> sum( { E.width | exists E in Es:
not exists E2 in Es:
overlaps( E2, E ) and
E2.width > El.width } ) }.

Figure 4.44: Specifying how to compute the width_of a scheme.

The function width_of used to estimate the width of a scheme is presented in Fig-
ure 4.44. The width_of a scheme is estimated as the width of the set of entities which
make up the scheme (Line 244-246 of raleigh knowledge.gal). The width_of a
set of entities is estimated, in this case, as the sum of the widths of entities which
are not overlapped by larger entities (Lines 247-251). A relation called overlaps is

used to determine whether two entities overlap each other or not (Line 250).

relation overlaps( entity, entity )
=::= { (E1,E2): is_in the _same _scheme_as( E1, E2 ) and

lexists spatial_interface(S):
is_in the_same_scheme_as( S, E1 ) and
S.entity_.1 = El1.id and
S.entity_2 = E2.id and
S.relationship = above or
S.relationship = under }.

Figure 4.45: The meaning of the relation overlaps.

The meaning of the relation overlaps is defined in Figure 4.45. Two design
entities are considered to overlap if there exists a spatial_interface between the
entities which defines one entity as being either above or under the other. Obviously,
more accurate estimates are possible; our purpose here is merely to illustrate the

flavour of how complex physical requirements can be implemented.

4.6.3 Modelling Design Preferences

In the example design specification being discussed in this chapter there are two

design preferences. These relate to the mass of the product being designed and the
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number of parts used in it; in each case, the preference is to have a minimal value.

These preferences are incorporated into the design specification in Figure 4.46.

domain vehicle_scheme
=::= { S: scheme( S ) and
provides_the function( S.structure.intended function,
’provide’, ’transport’ ) and
recyclable(S) and
exists( S.width : real ) and
!S.width = width_of( S ) and

S.width =< 2.0 and

exists( S.mass : preference ) and
S.mass.intent = minimal and
IS.mass.value = mass_of( S ) and

exists( S.number_of parts : preference ) and
S.number_of_parts.intent = minimal and
!S.number_of _parts.value = number_of_parts_in( S ) }.

Figure 4.46: Incorporating design preferences in the design specification model.

In Lines 13-15 the design preference related to the scheme’s mass is repre-
sented. Line 13 states that each scheme has a parameter called mass which is of
type preference; Line 14 states that the intent of the preference is that the mass
should be minimal while Line 15 states that the value of the mass is computed using
a function called mass_of. Similarly, Lines 16-18 define a preference specifying that
the number_of parts in the scheme should be minimal and that the actual number

of parts is computed using a function called number_of parts_in.

function mass_of( scheme ) -> real
=::= { S -> sum( { mass of ( E ) | exists entity(E):
is_apart of (E, S) } ) }.

Figure 4.47: Computing the mass of a scheme.

In Figure 4.47 the details of how the mass_of of a scheme is computed is presented.
In Lines 233-235 of raleigh knowledge.gal a function called mass_of is defined
which computes the mass_of of a scheme; it computes the mass of a scheme as the
sum of the masses of the individual design entities which are part of the scheme.
The meaning of the relation is_a part_of, which is used here, was considered in
Section 4.4.6. The mass of an entity is computed using the function defined in

Lines 236240 in Figure 4.32.
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The second preference in the design specification states that the number of parts
used in the scheme should be minimal. In Figure 4.48 the details of how the number
of parts in a scheme is computed are presented: it is the cardinality of the set of
design entities that are part of the particular scheme.

241 function number_of parts_in( scheme ) -> integer

242 =::= { S -> cardinality( { E | exists entity(E):
243 is.apart of(E, S ) } ) }.

Figure 4.48: Computing the number of parts used in a scheme

In Section 4.4.7, where the generic concepts for comparing schemes were consid-
ered, the notion of one scheme dominating another was defined in terms of a relation
called improves_on. It was stated there that this relation is project-specific. We
are now in a position to consider how this relation would be specified for the vehicle
design application; it is defined in Figure 4.49.

19 relation has_better_mass_than( vehicle_scheme, vehicle_scheme )
20 =::= { (S81,82): better_than( S1.mass, S2.mass ) }.

21 relation has better number of parts_than( vehicle_scheme, vehicle scheme )
22 =::= { (81,82): better than( S1.number of parts, S2.number of parts ) }.

23 relation improves_on( vehicle scheme, vehicle_scheme )
24 =::= { (81,82): has better mass than( S1, S2 ) or
25 has better number of parts_than( S1, S2 ) }.

Figure 4.49: Determining when one scheme improves on another.

Apparently, one vehicle_scheme, S1, improves_on another, S2, if and only if
S1 either has better mass_than or has _better number_of parts_than S2. The
relations has better mass_than and has better number_of parts_than are both
defined in terms of the generic relation better_than, between preference instantia-

tions, that was defined in Section 4.4.7.

4.6.4 Modelling Design For X Requirements

While the exploitation of Design For X (DFX) concepts during conceptual design is
not a key concern in the research presented here, the incorporation of DFX concepts

into the modelling approach presented here is quite straightforward. Indeed, the
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implementation of the categorical life-cycle requirement, related to the recyclability
of the product being designed, has already been discussed. However, it is worth
mentioning explicitly how the approach being presented here provides a basis for
incorporating arbitrary DFX guidelines into the model of a scheme.

The modelling approach presented here is capable of modelling both design entity
instances and their configuration, via interfaces. Consequently, repertoires of
generic, company-specific or project-specific DFX guidelines, which refer to design
entities and/or their configurations, can be developed. For example, some DFX
relationship between the attributes which define a design entity can be implemented
as a constraint quantified over all instances of the relevant design entity. Similarly,
a DFX relationship that should be satisfied by configurations of design entities can
be readily implemented as a constraint which is quantified over combinations of
instances of the relevant design entities and the interfaces between them. There is
ample literature available which demonstrates how DFX requirements can be stated

in Galileo [49, 151].

4.7 Scheme Generation

Once a constraint-based model of the design specification has been developed, the
designer (or team of designers) has the task of developing a set of alternative schemes
for the required product. The constraint-based model of the design specification

contains constraints relating to the following issues:

e constraints based on the functional requirements of the product as stated in

the design specification;

e constraints based on the categorical physical requirements of the product as

stated in the design specification;

e constraints based on the preferences regarding the values of particular design

properties; and

e constraints relating to any explicit DFX requirements which are either explicit

in the design specification or implicit in the company’s design policy.

From a design perspective, the designers’ task is to develop a number of alter-

native schemes which satisfy the design specification. However, from a constraint-
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processing point of view, their task is to search for a set of schemes which satisfy
the constraint-based design specification representation, each scheme resulting from
making different choices among the various means for providing the required func-
tionality. This process has already been discussed in Chapter 3.

The selection of means for providing the required functionality is subject to the
various constraints in the design specification. For example, if a designer selects a
means to embody a particular function which is not capable of providing the required
functionality this violates the constraint shown in Figure 4.14

As the designer selects a means for providing a particular function, further con-
straints are introduced into the scheme being developed, since each means has an
associated set of constraints defining its properties. In this way the constraint-based
model of the design comprises constraints representing the requirements stated in
the design specification as well as constraints on functionality, scheme structure and
life-cycle issues.

The interaction between a designer and a constraint-based model of the scheme
she is developing (as well as the models of whatever schemes have already been
developed for the product being designed) are governed by the constraint-filtering
behaviour of the Galileo run-time system. This will be illustrated in Chapter 5.

In the remainder of this section, we will consider some factors which govern the
behaviour that will be exhibited by the constraint filtering system. Recall that, in
Section 4.4.2, we stated that a designer is concerned with producing embodiments
for intended functions by choosing, from among the known means, those which will
provide the required functionality. Recall also that, in Section 4.5.1, the collection of
known means available for use by a company’s designers is defined (see Figure 4.28)
as a scalar domain, called known_means, which contains a list of symbolic names for
these known means. Further, recall that, in Section 4.4.3, we saw that each means,
whether it be a principle or a design entity, is represented as a structured domain.

When a designer selects a value for the chosen means field of an embodiment
she is saying that there should exist an instance of a means which is in some way
identified by the chosen known means. The particular means that should exist should
be determinable from the known_means which has been selected by the designer.

We now point out a convention which should be used by knowledge engineers
when selecting symbolic names to appear in the scalar domain known_means and

when selecting domain names for the various specialisations of the domain means
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which represent the different principles and design entities that are available for use
by designers.

Each known means which a designer may select should have a corresponding
means. The known means should always be the name of its associated means prefixed

Y

with either the substring “a_” or the substring “an_”. The company-specific design

knowledge-base raleigh knowledge.gal presented in Section C.1 of Appendix C

satisfies this knowledge engineering convention.

all embodiment(E): E.chosen means = a bicycle implies
lexists bicycle( B ):
must_be directly used for( B, E.intended function ) and
causes( E, B.el ) and

causes( E, B.e2 ) and
causes( E, B.e3 ) and
causes( E, B.e4 ) and
causes( E, B.eb5 ).

Figure 4.50: Modelling the use of a design principle for an embodiment.

When a designer selects a particular known means to provide the intended func-
tion for an embodiment, some processing is needed to ensure that the effects of
selecting the known means are propagated throughout the expanding constraint net-
work which represents the evolving model of the design. The knowledge engineering
convention described above should be followed because the actual introduction into
the design (in fact, into the constraint network which represents the design) of param-
eters representing principles and means is triggered by constraints in the company-
specific knowledge-base which rely on this convention. In other words, constraints
relying on this convention are what actually cause the existence, and consequently
the arrival onto the designer’s user interface, of constraint network parameters rep-
resenting the various principles and means she has selected. For example, consider
the constraint shown in Figure 4.50, which is taken from raleigh knowledge.gal
in Section C.1. This shows the effect of selecting the principle of a_bicycle as
the known means for realising an embodiment. According to this constraint, when
the designer decides to use a_bicycle as the chosen_means for an embodiment E,
it must be true that there exists some instance, B, of the principle bicycle which
must_be_directly used for the intended function of E (Lines 88-90). If there

already exists some instance of the principle and if this instance is free to be used
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for the intended function of E, then it will be so used. However, since this constraint
applies the ! operator to the exists quantifier, the effect of this constraint is that
an instance of the principle bicycle will be created if one does not already exist
or if all pre-existing instances of the principle are being used in other embodiments
and are, therefore, unavailable for use in embodiment E. A further effect of this con-
straint is that it notes that it was the use of the principle to embody E which causes
embodiments B.el, B.e2, B.e3, B.e4 and B.e5 — these are specific instances of the
embodiments specified in the definition of the principle bicycle (see Figure 4.31).

The relation must_be_directly_used_for invoked in the above constraint is a
generic relation defined in Section B.1. For convenience, it is quoted in Figure 4.51,
where we can see that if a means must_be directly used for a func they must
both relate to the same scheme (Line 121) and the identifier of the func must be in
the funcs_provided by the means (Line 122). Note that the use of the ! operator
in this relation definition (Line 122) means that, if the identifier of the func is not
already in the funcs_provided by the means, it will be inserted into the set.
relation must_be_directly used for( means, func )

=::= { (M,F): is_in the same scheme as( M, F ) and
F.id in !M.funcs provided }.

Figure 4.51: The meaning of the relation must_be_directly_used_for.

Recall that it was said above (when discussing Figure 4.50) that, if all pre-existing
instances of the bicycle principle are being used in other embodiments, they would,
therefore, be unavailable for use in embodiment E and a new instance of the principle
would be created. We will now consider which constraints would cause this. Refer to
the constraint shown in Lines 39-40 of Figure 4.18. This stated that, for each means
M (recall that a principle is a means), it must be true that the set of funcs_provided
by M is_a_possible_behaviour_of of M. The pre-existing instances of the bicycle
principle which are being used in other embodiments would violate this constraint
because, as can be seen in Figure 4.29, a bicycle can provide only one instance of the
function provide transport. The constraint filtering system maintains a quite sophis-
ticated set of dependency records and the violation of the constraint in Figure 4.18
would cause the system to undo whatever action it had performed which caused the
violation; this means that it would undo the insertion, caused by the relation in Fig-

ure 4.51, of the most recent func_id into the set of funcs_provided by the violating
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instance of the bicycle principle. When all pre-existing instances of the principle had
been exhausted, this would trigger the ! operator used in Line 89 Figure 4.50 to
create a new instance of the principle.

In Lines 91-95 of Figure 4.50, the relation causes is invoked to state that the
embodiments that have been introduced due to the use of the principle bicycle are
caused by the embodiment whose chosen means has been selected to be a_bicycle.
The meaning of the causes relation is defined in generic_concepts.gal (in Sec-
tion B.1) but is quoted in Figure 4.52. According to this definition, if an embodiment
P causes another embodiment E, then, as well both embodiments being in the same
scheme, E inherits all the reasons for P as well as having the identity number of the

function instance in P itself as one of its reasons.

relation causes( embodiment, embodiment )
=::= { (P,E): is_in the same scheme as( P, E ) and
E.reasons = {P.intended func.id} union P.reasons }.

Figure 4.52: The meaning of the relation causes.

We have just seen, in Figure 4.50, a constraint which specifies some consequences
of the user selecting a principle as the chosen means for an embodiment. We will
now consider what is implied by her choosing a design entity as the chosen _means
for an embodiment. The consequences attached to using a design entity to embody
a function are similar to those caused by using a design principle. The essential
difference is that additional embodiments are introduced (which means that further
functionality must be provided) when a design principle is used whereas, when a
design entity is used, no further embodiments are introduced and no more function-
ality must be provided (at least in this part of the functional decomposition of the
product).

The effect of using the chassis entity in a scheme is illustrated in Figure 4.53.
The constraint in this figure is take from raleigh _knowledge.gal in Section C.1. It
can be seen from this figure that, whenever a chassis is used as the chosen_means
for an embodiment, there must exist an instance of the chassis design entity which
must_be_directly_used_for the intended _function of the embodiment. Since the
! operator is applied to the exists quantifier in this constraint (Line 100), an
instance of the chassis design entity will be created, if necessary, to satisfy this

constraint. The relation must_be_directly_used_for has already been discussed.

106



99
100
101

114
115
116

all embodiment(E): E.chosen means = a_chassis implies
lexists chassis( C ):
must_be_directly_used _for( C, E.intended function ).

Figure 4.53: Embodying a function using a design entity.

We have just seen that, as a designer chooses known_means for embodying the
intended_functions of embodiments, new instances of design entities may be cre-
ated. For example, in Figure 4.53 the introduction of an instance of the chassis
design entity is required if the designer selects a_chassis as the chosen means for
an embodiment. She can only do this, of course, if the intended function of the
embodiment is provide support because, as we have seen in Figure 4.29, this is the
only function that can be provided by a chassis. Indeed, we can see in Figure 4.29
that a chassis can provide only one instance of this function so, if this functionality
is required in two different embodiments within a design, two separate instances of
the chassis design entity would be needed.

However, there are situations when one instance of a design entity can be used to
embody more than one function instance. For example, consider the known means
a-molded_frame. We can see, in Lines 150152 of Figure 4.29, that this known means
can provide two functions simultaneously: provide support and support passenger. If
a designer selected this known means as the chosen means to embody an instance
of the function provide support, an instance of molded frame design entity would be
introduced, if none already existed; the constraint which would cause this is shown
in Figure 4.54.
all embodiment(E): E.chosen means = a molded frame implies

lexists molded frame( M ):
must_be_directly_used_for( M, E.intended function ).

Figure 4.54: Embodying a function using a_molded_frame.

If the designer later selected the same known means to embody an instance of
the function support passenger no new instance of the molded _frame design en-
tity would be introduced. This is because both of these two function instances
can be provided by the existing instance of the molded frame design entity. In
other words, the constraint in Lines 39-40 of Figure 4.18 which, as we saw above

would be violated if the designer tried to use one instance of the bicycle principle
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to embody two instances of the function provide transport, would not be violated if
she used one instance of the molded frame design entity to embody an instance of
the function support passenger as well as an instance of the function provide sup-
port. This is because provision of two function instances, one of each of these two
functions, is_a_possible_behaviour_of an instance of the molded frame design en-
tity; in the definition of the relation is_a_possible_behaviour_of (Lines 82-85 in
generic_concepts.gal in Section B.1), it can be seen that this relation is defined
in terms of the relation can simultaneously provide and, as can be seen in Fig-
ure 4.29, a molded frame can simultaneously provide an instance of the function
provide transport and one of the function support passenger.

The use of a design entity instance to provide more than one function instance
is called entity sharing. The fact that the implementation of conceptual design
reasoning we have described here can support entity sharing means that the collection
of entity instances that are configured to provide the required functionality of a
product is minimal. Entity sharing of the type just discussed was used in the scheme

shown in Figure 3.20.

4.8 Summary

One of the most difficult aspects of providing computer-based support for conceptual
engineering design is the modelling of products and specifications at various levels of
abstraction. This chapter presented an approach to using constraints as a modelling

paradigm for conceptual design.
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Chapter 5

Illustration and Validation

In this chapter the approach to supporting conceptual design that has been proposed
in this dissertation is demonstrated on two design problems. Firstly, in Section 5.1,
a sitmple conceptual design problem is presented. The development of a set of al-
ternative schemes for this problem is explained through the use of a series of in-
teractions with a Galileo constraint filtering system. The various characteristics of
the approach presented in this dissertation are explained in detail with respect to this
design problem. Secondly, the conceptual design of an industrial product is presented
in Section 5.2. This section describes how the approach proposed in this dissertation
could be applied to support the design of a real-world product. The case-study design
problem was provided by an electronic component manufacturer based in Cork called

Bourns Electronics Ireland.

5.1 An Illustrative Example

In this section an example conceptual design problem is presented and a number
of schemes are generated for it. The design problem considered is based on vehicle
design. The presentation of this design problem comprises three phases. Firstly,
in Section 5.1.1, a simple design specification will be presented and modelled using
the constraint-based approach presented in Chapter 4. Secondly, in Section 5.1.2,
an appropriate constraint-based design knowledge-base will be presented using the
implementation approach presented in Chapter 4. Finally, in Section 5.1.3, the
development of two schemes based on the design specification will be presented.
The use of constraint filtering in the process of developing these schemes will be

described using a number of screen-shots from a constraint filtering system that
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would be capable of reasoning about the extended version of the Galileo language
that is recommended in this dissertation.

A full Galileo implementation of the design specification and the design knowledge-
base used in this section are presented in Appendix C. The various project-specific
concepts that are used to develop schemes for the vehicle design specification are

based upon the generic design concepts presented in Appendix B.

5.1.1 An Example Design Specification

The design specification that is to be considered here is as follows:
Design a product which satisfies the following requirements:

e the product provides the function provide transport;

the product is fully recyclable;

the product has a width not greater than 2m;

the product has minimal mass and

the product comprises a minimal number of parts.

Using the techniques presented in Chapter 4, a constraint-based implementation
of the design specification can be easily developed. Indeed, the modelling of this
design specification has already been discussed in depth in Section 4.6. A full im-
plementation of the design specification is presented in Section C.2 of Appendix C,
in a Galileo module called vehicle_spec.gal.

This specification module imports a library containing a company-specific design
knowledge-base (Line 2), a library of generic concepts (Line 3) and a library of
concepts for comparing schemes using Pareto optimality (Line 4). The contents of
the library of generic concepts has already been discussed (Chapter 4). The contents
of the library containing company-specific design knowledge will be discussed later;
here, we will focus on the contents of the vehicle specification module.

The notion of a vehicle scheme is defined in Lines 5-18. Line 6 specifies that
a vehicle scheme must be a scheme, which is a generic concept imported in Line 3
from a library. Lines 7-18 specify that, in addition to possessing the characteristics
of a generic scheme, a vehicle scheme must satisfy all the all the requirements which

are defined in the design specification.
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The functional property required by the design specification is modelled in Lines 7
8 using a relation imported from generic_concepts.gal. The requirement that the
product be recyclable is modelled on Line 9. The physical requirement relating to
the width of the product is modelled on Lines 10-12. The design preferences relating
to the mass and number of parts of the product are modelled on Lines 13-15 and
Lines 16-18, respectively, using functions imported from raleigh _knowledge.gal.
The various relations used to compare alternative schemes, which are specific to this
particular design specification, are defined on Lines 19-25; these relations are used
to “plug-in” a definition for the relation improves_on, a relation which is expected
by the generic system of libraries.

The constraint-based model presented in Section C.2 has been generated manu-
ally. However, the development of a computer tool for transforming the requirements
defined in the design specification into an equivalent constraint-based model should
not be a difficult task. However, these issues are beyond the scope of the research
presented in this dissertation.

Once a constraint-based model of the design specification has been developed, a
designer (or a team of designers) can begin to develop a set of alternative schemes by
interacting with this model and with an appropriate design knowledge-base, using
a constraint filtering system. However, before that process is discussed, the con-
tents of an example constraint-based design knowledge-base will be discussed in

Section 5.1.2.

5.1.2 An Example Design Knowledge-Base

In the scenario being discussed here, the knowledge-base that is being used contains
a design principle based on the notion of a bicycle and a collection of design entities
such as a wheel assembly, a pedal assembly, a saddle and handlebars. In Section C.1
of Appendix C, a constraint-based implementation of a suitable design knowledge-
base is presented, in a Galileo module called raleigh knowledge.gal.

A number of means are available in this design knowledge-base. These means
are listed in a domain called known means which is defined on Lines 41-46. For
example, it can be seen that there is a means known as a_bicycle, another known
as a_skateboard and a further one known as a_wheel_assembly.

The techniques used to implement the various design concepts contained in the
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Galileo module raleigh knowledge.gal were discussed in Section 4.5. Therefore,
the implementation of this module will not be discussed any further, apart from
the fact that, in the next section, particular aspects of the implementation will be
highlighted when explaining the interactions, between the designer and the filtering

system, that result in the development of a set of schemes.

5.1.3 Interactive Scheme Development

The filtering system being referred to in this section is based on previously pub-
lished research on constraint-based reasoning for supporting concurrent engineering
[19, 22]. However, the research presented in this dissertation takes a different per-
spective on the role that constraint filtering can play in designer support. In this
research constraint filtering is used as a basis for providing interactive support to
the human designer throughout the entire process of scheme development. This not
only includes reasoning about the physical aspects of the scheme, but includes the
design synthesis activities associated with developing a configuration of design enti-
ties from an initial statement of the required functionality that is to be provided by
the product being designed.

The constraint filtering system being discussed here is assumed to be capable of
reasoning about the extended version of the Galileo language that was discussed in
Section 4.2. In addition, it is assumed that there are a number of different designers
using this system. The meta-level language associated with this filtering system con-
tains a number of pre-defined meta-level predicates such as #designer, #parameter,
#was_introduced_by and #is_visible_to. These predicates can be used to write
a constraint which states that a designer can only see those parameters which she
introduced. This constraint can be implemented as follows:
all #designer(D), #parameter(P):

#was_introduced_by(P,D) equiv
#is_visible_to(P,D).

In the discussion which follows it is assumed that there are two different designers
using the system, designer_1 and designer_2. In addition it is assumed that the
above meta-level constraint is implicitly defined in the filtering system. Thus, when
a screen-shot is presented, the name of the designer who is associated with that

screen-shot will appear on the title of the interface that is depicted. In addition, the
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screen-shot will only contain parameters for which the named designer is responsible.

The interface which is depicted in the screen-shots is not intended to reflect an
ideal interface with which a human designer would interact. Rather, it is intended as
a means for explaining how the approach proposed in this dissertation could be used
to develop a set of alternative schemes. The development of an appropriate interface
with which a real designer would use is beyond the scope of this research.

Before considering these screen-shots in detail, some remarks should be made.
The screen is divided into three areas. The title area, at the top of the screen, shows
the name of the adviser system and the identity of the designer who is currently
interacting with it — in Figure 5.1 the user is designer_1. The middle of the screen
shows parameters that are visible to the user. The bottom, command area, of the
screen shows the commands that have been entered by the user and any responses
the system has made. Finally, note that the screen-shot shown in a figure shows the

state of the screen after all the user’s commands have been executed by the system.

Conceptual Design Adviser System — designer_1

> load vehicle_spec.gal

Processing vehicle_spec.gal...
Importing raleigh_knowledge.gal...
Importing generic_concepts.gal...
Importing comparison.gal...

Done!

Figure 5.1: Loading the design specification model into the filtering system.

In Figure 5.1 the Galileo module called vehicle_spec.gal, which is defined in
Section C.2, was loaded into the filtering system interpreter. This was done using
the filtering system command load. Since vehicle spec.gal imports the Galileo
modules raleigh knowledge.gal, generic_concepts.gal and comparison.gal,

these modules are also loaded. These modules must be loaded into the filtering
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system before designers can begin to develop schemes for the product described in
the design specification. The middle portion of the screen is empty because the user

has not yet introduced any parameters.

Conceptual Design Adviser System — designer_1

[ | scheme_1.scheme_name ’my vehicle’
[ | scheme_1.structure >
[ | scheme_1.width ,
[ | scheme 1.mass >
[ | scheme_1.number_of parts >

> scheme_1 : vehicle_scheme
> expand scheme_1
> scheme_1.scheme_name ="my vehicle’

Figure 5.2: Introducing a scheme instance called scheme_1.

Figure 5.2 shows the state of the user interface after designer_1 has invoked three
commands. Firstly, an instance of the Galileo structured domain, vehicle_scheme,
was introduced by the designer. This instance is being called scheme_1. Since
designer_1 introduced this parameter, scheme_1 appears on her filtering system
interface.

Then, the designer used the constraint filtering system command expand to ex-
amine the various fields associated with the parameter scheme_1. It can be seen that
scheme_1 is a structured parameter which comprises five fields: a scalar field called
scheme_name, a structured field called structure, a scalar field called width, a
structured field called mass and a structured field called number_of_parts'. These
fields exist due to the domain definition of vehicle scheme defined in Lines 5-
18 of vehicle_spec.gal in Section C.2. There, a vehicle_scheme was defined
to be a generic scheme (which has two fields, scheme name and structure — see

Lines 46-48 of Section B.1 of Appendix B) with three additional fields, width, mass

IStructured fields are indicated on the screen by the presence of a >, which is intended to
“invite” the user to examine the field further by expanding it; the value of a scalar field whose

value is known is shown; for a scalar field whose value is not yet known a “_” is shown.
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and number_of parts. Finally, in Figure 5.2 the designer asserted a value for the

scheme _name field of the parameter scheme_1; the value asserted was ‘my vehicle’.

Conceptual Design Adviser System — designer_1

scheme_1.scheme_name ‘my vehicle’
scheme_1.structure.intended _function.verb provide
scheme_1.structure.intended_function.noun transport
scheme_1.structure.intended_function.id 0
scheme_1.structure.chosen_means

scheme_1.width

[]

[]

[]

[]

[] -
% % scheme_1.structure.reasons {}
[ | scheme_1.mass.value _
[]
[]
[]

scheme_1.mass.intent minimal
scheme_1.number_of _parts.value -
scheme_1.number_of _parts.intent minimal

> expand scheme_l.structure

> expand scheme_l.structure.intended_function
> expand scheme_1.mass

> expand scheme_l.number_of_parts

Figure 5.3: Examining the initial state of the scheme.

In Figure 5.3 the initial state of scheme_1 was examined by designer_1. In order
to get a full picture of the design specification, the structure field (along with its
sub-field intended_function), the mass field and the number_of _parts field were
all expanded.

It can be seen from Figure 5.3 that the intended function of the structure of
scheme_1 is to provide transport. This function was specified in the definition of
the vehicle _scheme (Lines 7-8 of Section C.2). This function has an identifier (id)
of 0 and the empty set as its set of reasons. This reflects the fact that this function is
the first function to be introduced into the scheme; in other words, no other function
was responsible for this function being introduced into the scheme. The assignment
of the 0 identifier and the empty set of reasons is done by the constraint, quantified
over all schemes, in Lines 49-50 of Section B.1; this constraint uses the relation
defined in Lines 116-119 of Section B.1, which actually makes the assignments.

It can also be seen from this figure that the mass and number_of_parts associated
with scheme_1 are preferences. It can be seen that, in both cases, the intent is that
these should have minimal values; this comes from Lines 14 and 17 of the specification

in Section C.2.
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Conceptual Design Adviser System — designer_1

[ | scheme_1.scheme name ‘my vehicle’
[ | scheme_1.structure.intended_function.verb provide

[ | scheme_1.structure.intended_function.noun transport

[ | scheme_1.structure.intended_function.id 0

[ | scheme_1.structure.chosen means _

[ | scheme 1.structure.reasons {}

[ | scheme 1.width _

[ | scheme_1.mass >

[ | scheme_1.number_of parts >

> contract scheme_1.mass

> contract scheme_1.number_of_parts

> advise on scheme_1.structure.chosen_means

Advice: scheme_1.structure.chosen_means must be in the set:
{a_bicycle, a_skateboard}

Figure 5.4: Querying for a valid means for providing the function required by the
design specification.

In Figure 5.4 the designer has hidden the details of the mass and number_of_parts
fields of scheme_1 using the filtering system command contract. The designer then
asks for the set of consistent means that could be used to provide the intended_function
of the structure of scheme_1. The designer is told that the current set of consis-
tent means for this function comprises a_bicycle and a_skateboard. This response
is due to the constraint defined on Lines 7-8 in Section B.1 which specifies that
the means chosen for any embodiment (remember the structure of a scheme is an
embodiment) must be able to provide the intended function of that embodiment.
The relation used in this constraint is defined in Lines 53-54 of Section B.1; it in-
vokes the relation shown in Lines 132-164 of Section C.1, an inspection of which

shows that two known_means can provide the function “provide transport”.
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Conceptual Design Adviser System — designer_1

scheme_1.scheme_name ‘my vehicle’
scheme_1.structure.intended_function.verb provide
scheme_1.structure.intended_function.noun transport
scheme_1.structure.intended_function.id 0
scheme_1.structure.chosen_means a_bicycle

scheme_1.width
scheme_1.mass

[]

[]

[]

[]

[]

[ | scheme 1.structure.reasons {}
[]

[]

[ | scheme_1.number_of parts

[]

vV V V I

> scheme_l.structure.chosen_means = a_bicycle
Info: Parameter bicycle_1 has been created...

Figure 5.5: Using the principle of a bicycle in scheme_1 to provide the function
“provide transport”.

Figure 5.5 depicts the scenario where the designer selects a_bicycle as the
chosen means for providing the intended function of the structure of scheme 1.
The effect of this is that a new parameter called bicycle_1 is automatically intro-
duced. The parameter bicycle_1 is an instance of the structured domain bicycle.
The introduction of this new parameter is due to the constraint defined on Lines 88—

95 of Section C.1. This embodiment is illustrated in Figure 3.15.
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Conceptual Design Adviser System — designer_1

bicycle_1.e3
bicycle_1.e4
bicycle_1.eb

>
>
>
wheel_assembly_1 >

[ ] bicycle 1.type a_principle
[ ]| bicycle_1.funcs_provided {0}

[ | bicycle_1.el.intended _function.verb facilitate
[ ]| bicycle_1.el.intended function.noun movement

[ ]| bicycle 1.el.intended function.id 1

[ ]| bicycle 1.el.chosen means a_wheel assembly
[ ] bicycle_1.el.reasons {0}

[ | bicycle_1.e2 >

[]

[]

[]

[]

> focus on bicycle_1

> expand bicycle_1.el

> expand bicycle_1.el.intended_function

> bicycle_1.el.chosen_means = a_wheel_assembly

Info: Parameter wheel_assembly_1 has been created...

Figure 5.6: Incorporating a wheel_assembly entity to provide the function
“facilitate movement”.

In Figure 5.6 the designer begins to explore the parameter bicycle_1. The
designer uses the filtering system command “focus on” to clear the filtering system
interface of all parameters except for the parameter of interest — in this case the
bicycle_1 parameter. Since bicycle_1 is a structured parameter, the designer can
use the expand command to explore its fields. It can be seen that bicycle_1 is a
design principle and that the funcs_provided by this principle is a singleton set
containing the value 0; this means that bicycle_1 provides one function, namely,
the function whose id is 0 — this was seen in Figure 5.3 to be the function required
in the design specification.

It can also be seen from Figure 5.6 that bicycle_1 contains a number of other
structured fields, namely, el, e2, €3, e4 and e5. These fields represent further
embodiments which the designer must make in order to properly incorporate the
bicycle_1 design principle into scheme_1.

In Figure 5.6 the designer explores the parameter bicycle_1.el by expanding
it. It can be seen that the function to be embodied is facilitate movement. This

function has an id of 1 since this is the next unique function identifier for this scheme.
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The constraint which is responsible for determining this value is in Lines 21-22 of
Section B.1. This constraint calls the relation defined in Lines 77-79 of Section B.1
which in turn calls the relation defined in Lines 66-70 of Section B.1. The meaning
of this constraint and these relations is that a function identifier is only valid if it
a positive integer and if only one function within a scheme has that integer as an
identifier; in determining an identifier for a newly introduced function, the system
merely chooses the next positive integer that has not already been used.

The reasons for the embodiment bicycle_1.el is the singleton set containing
the function identifier 0; this represents the fact that the function whose identifier is
0 is a reason for this embodiment.

Finally, in Figure 5.6, the designer chooses a_wheel_assembly as the chosen_means
for this embodiment. This causes the automatic introduction of another new pa-
rameter, wheel_assembly_1, into the scheme, because it triggered the constraint in

Lines 129-131 of Section C.1. This embodiment is illustrated in Figure 3.16.

Conceptual Design Adviser System — designer_1

bicycle_1 >
wheel_assembly_1.type an_entity
wheel assembly 1.funcs provided {1}

1

wheel_assembly_1.width -
wheel_assembly_1.mass -

[]

[]

[]

[ | wheel assembly_1.id

[]

[]

[ | wheel assembly 1.material _

> contract bicycle_1
> expand wheel assembly_1

Figure 5.7: Examining the wheel_assembly.

In Figure 5.7 the designer explores the wheel_assembly_1 parameter. When the
designer expands this parameter she sees that it comprises several fields. The type
field indicates that this new parameter represents a design entity. The funcs_provided
by this entity is a singleton set which refers to a function whose identifier is 1,

namely the function “facilitate movement” seen in Figure 5.6. The id field of
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wheel assembly_1 indicates that it is the first design entity to be incorporated into
this scheme. This value is computed from the constraint defined on Lines 13-14
of Section B.1. A number of other fields are illustrated in Figure 5.7. These are
the fields width, mass and material associated with wheel assembly 1. As the
designer develops the scheme she may make choices about the values that will be

associated with these parameters.

Conceptual Design Adviser System — designer_1

bicycle_1.type a_principle
bicycle_1.funcs provided {0}

bicycle_1.el >
bicycle_1.e2.intended_function.verb provide
bicycle_1.e2.intended_function.noun energy
bicycle_1.e2.intended_function.id 2
bicycle_1.e2.chosen_means a_pedal_assembly
bicycle_1.e2.reasons {0}

bicycle_1.e4
bicycle_1.e5
wheel_assembly_1
pedal_assembly_1
chain_1
mechanical_interface_1
mechanical_interface_2

[]
[]
[]
[]
[]
[]
[]
[]
[ ]| bicycle_1.e3 >
[]
[]
[]
[]
[]
[]
[]

vV VvV vV VvV Vv Vv yVv

> contract wheel_assembly_1

> expand bicycle_1

> expand bicycle_1.e2

> expand bicycle_1.e2.intended_function

> bicycle_1.e2.chosen_means = a_pedal_assembly

Info: Parameter pedal _assembly_1 has been created...

Info: Parameter chain_1 has been created...

Info: Parameter mechanical_interface_1 has been created...
Info: Parameter mechanical_interface_2 has been created...

Figure 5.8: Using a pedal assembly to provide the function “provide energy”.

In Figure 5.8 the designer selects a_pedal_assembly as the chosen_means to em-
body the function provide energy. This causes a new parameter, pedal_assembly_1,
to be introduced. Although it is not apparent in Figure 5.8, the parameter pedal_asse-
mbly_1 is a design entity. If the designer were to expand pedal_assembly_1 we would
see that its id field contains the value 2, reflecting the fact that it is the second design

entity to be incorporated into the scheme.
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Once the designer selects a_pedal assembly as the chosen means to embody
the function provide energy a number of other parameters are also immediately
introduced into the scheme. These are chain 1, mechanical interface_1 and
mechanical_interface 2. These parameters exist in order to fulfil the context
relation drives that must exist between the embodiments for the functions provide
power and facilitate movement, as specified in the principle for a bicycle. The
need for this context relation is stated in Line 24 of Section C.1; its meaning is spec-
ified in Lines 173-185 of Section C.1, which is responsible for the introduction of the
additional parameters in Figure 5.8. The parameter chain_1 exists in order to sat-
isfy the context relation that the embodiment for the function provide power drives
the embodiment for the function facilitate movement. According to the relation
defined on Lines 173— 185 of Section C.1, there must be a mechanical_interface
between pedal_assembly_1 and chain 1 and another between wheel_assembly_1
and chain 1. This will be explored in further detail in Figure 5.9. This scenario

corresponds to that shown in Figure 3.17.

Conceptual Design Adviser System — designer_1
[ ] bicycle_1 >
[ | wheel assembly_1 >
[ | pedal_assembly_1 >
[ ] chain_1 >
[ | mechanical_interface_1.entity_1 1
[] 3
[]
[]
[]

mechanical_interface_1.entity_2

mechanical_interface_1.type mechanical
mechanical_interface_l.relationship drives
mechanical_interface_2 >

> contract bicycle_1
> expand mechanical_interface_1

Figure 5.9: Embodying the drives context relation.

The context relation drives requires a chain design entity acting between the de-
sign entities wheel _assembly_1 and pedal_assembly_1. In Figure 5.9 mechanical_
interface_1 is being explored. It can be seen that mechanical_interface_1 im-

plements a drives relationship between the entities whose identifiers are 1 and 3,
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namely, wheel assembly_1 and chain_ 1, respectively. (The parameter chain 1 is
the third design entity to be incorporated into this scheme; thus, if we were to expand

it, we would see that its id field contains the value 3).

Conceptual Design Adviser System — designer_1
scheme_1 >
bicycle_1
wheel_assembly_1
pedal_assembly_1
chain 1
mechanical _interface_1
mechanical _interface 2

mechanlcal interface_3
mechanical_interface_4

mechanlcal interface_5
handlebar_assembly_1
mechanical_interface_6

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

[,
n]
Qo
=
(D
|_s
vvVvVvVvVvVvVvVvVvVvVVvVvVv V.V

> focus on all

Figure 5.10: The state of scheme_1 once means have been selected for each function.

In Figure 5.10 the state of scheme_1 is presented after several more decisions
have been made by the designer, namely after means have been selected to provide
each function that is associated with the scheme. This scheme comprises a number
of design entities, interfaces and principles. The scheme was based on the principle
of a bicycle. The final scheme comprises six design entities and six interfaces. The
bicycle principle introduced five functions into the scheme: facilitate movement,
provide energy, provide support, support passenger and change direction.
The introduction of these functions by the use of a bicycle design principle is caused
by Lines 9-23 of Section C.1.

The wheel _assembly_1 entity was used by the designer to provide the function
facilitate movement. The pedal_assembly_1 entity was used to provide the func-
tion provide energy. The chain_1 entity was required to fulfill the drives context
relationship that must exist between the embodiments of the functions facilitate
movement and provide energy (Line 24, Section C.1). The interface between

wheel_assembly_1 and chain_1 is embodied through mechanical_interface_1.
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The interface between pedal _assembly_1 and chain_1 is embodied through mechani-
cal_interface 2. The frame_1 entity was used by the designer to provide the func-
tion provide support. The supports context relation between the embodiments of
the functions facilitate movement and provide support (Line 25, Section C.1) is
embodied by mechanical_interface_3. The supports context relation between the
embodiments of the functions provide energy and provide support (Line 26, Sec-
tion C.1) is embodied by mechanical_interface_4. The saddle_1 entity was used
by the designer to provide the function support passenger. The supports context
relation between the embodiments of the functions support passenger and provide
support (Line 27, Section C.1) is embodied by mechanical interface 5. The
handlebar_assembly_1 entity is used to provide the function change direction.
The supports context relation between the embodiments of the functions change
direction and provide support (Line 28, Section C.1) is embodied by mechanical_

interface_6. This scenario is also shown in Figure 3.19.

Conceptual Design Adviser System — designer_1

scheme_1 >
bicycle_1 >
wheel_assembly_1.type an_entity
wheel assembly_1.funcs_provided {1}

wheel_assembly_1.id
wheel_assembly_1.width
wheel_assembly_1.mass
wheel_assembly_1.material
pedal_assembly_1

[]
[]
[]
[]
[]
[]
[]
[]
[]
[] chain_1
[]
[]
[]
[]
[]
[]
[]
[]
[]

o N
Fh
H
ol

mechanical_interface_1
mechanical_interface_2

mechan1ca1 interface_3
mechanical_interface_4

mechanlcal interface_5
handlebar_assembly_1
mechanical_interface_6

vV VvV VvV VvV VvV Vv VYV

> expand wheel_assembly_1
> wheel_assembly_1.material = cfrp

Figure 5.11: Selecting materials for the entities in scheme_1.
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In Figure 5.11 designer_1 has begun to select materials for the entities in
scheme_1. In this figure the designer selects the material cfrp for the wheel_assembly_1
design entity. Once the designer selects a material for this entity, its (relative) mass
can be estimated by the system. Here the (relative) mass of the wheel assembly 1
entity is estimated to be 2 by the function mass_of defined on Lines 236-240 of
Section C.1.

Conceptual Design Adviser System — designer_1
scheme_1.scheme_name ‘my vehicle’
scheme_1.structure >
scheme_1.width -
scheme_1.mass.value 12
scheme_1.mass.intent minimal
scheme_1.number_of_parts.value 6
scheme_1.number_of_parts.intent minimal
bicycle_1
wheel_assembly_1

[]
[]
[]
[]
[]
[]
[]
[]
[]
[ | pedal_assembly_1
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

chain_1
mechanical_interface_1
mechanical_interface_2

mechanlcal interface_3
mechanical_interface_4

mechanlcal interface_5
handlebar_assembly._1
mechanical_interface_6

[
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Q
=
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VvV VvV VVVVVVVvyV

> expand scheme_1
> expand scheme_1.mass
> expand scheme_1.number_of_parts

Figure 5.12: The state of scheme_1 once materials have been selected for all the
entities from which it is configured.

In Figure 5.12 the state of scheme_1 is shown after several more decisions have
been made by the designer, namely after materials have been selected for all the
entities from which it is configured. In this figure, the mass and number_of parts
fields of scheme_1 have been expanded. It can be seen that the total mass of this
scheme is estimated to be 12 units and that it comprises 6 parts.

The next few figures show a different scenario. They show snapshots from the
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development by another designer, designer_2, of a different scheme for the spec-
ification in Section C.2. As we will see, the system will automatically use Pareto
optimality to compare this second scheme with the scheme that was developed by

designer_1.

Conceptual Design Adviser System — designer_2
scheme_2 >
bicycle_ 2
wheel_assembly_2
pedal_assembly_2
chain_2
mechanical interface 7
mechanical interface 8

mechan1ca1 interface_9
mechanical_interface_10

mechanlcal interface_11
handlebar_assembly_2
mechanical_interface_12
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[]
[]
[]
[]
[]
[]
[]

>

Figure 5.13: A second scheme, scheme_2, has been developed by the designer known
as designer_2.

In Figure 5.13 a second scheme, scheme_2, is presented which has been devel-
oped by designer_2. Although designer 2 worked completely independently of
designer_1, the exact same approach as that for scheme_1 was used and the same
means to embody its functions. As we will see, however, she chooses different mate-

rial from those chosen by designer_1.
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Conceptual Design Adviser System — designer_2

scheme_2 >
bicycle_ 2 >
wheel_assembly_2.type an_entity
wheel_assembly_2.funcs_provided {1}
wheel_assembly_2.id 1

[]

[]

[]

[]

[]

[ | wheel assembly 2.width _

[ | wheel assembly 2.mass 10

[ | wheel_assembly_2.material steel
[ | pedal_assembly_2

[ ] chain 2

[ | mechanical interface 7

[ | mechanical interface 8

[]
[]
[]
[]
[]
[]
[]

handlebar_assembly_2
mechanical_interface_12
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> expand wheel_assembly_2
> wheel _assembly_2.material = steel

Figure 5.14: A material is selected for the wheel assembly 2 entity used in
scheme_2.

In Figure 5.14 designer_2 begins to select materials for the various design entities
associated with scheme_2. She begins with wheel_assembly_2, selecting steel as
its material. Thus, the mass of this entity is estimated to be 10 units (Line 240,

Section C.1).
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Conceptual Design Adviser System — designer_2

scheme_2 >
bicycle_ 2 >
wheel_assembly_2 >
pedal_assembly_2.type an_entity
pedal_assembly_2.funcs_provided {1}
pedal_assembly_2.id 2

[]

[]

[]

[]

[]

[]

[ | pedal assembly 2.width _

[ | pedal_assembly_2.mass 10

[ | pedal_assembly 2.material steel
[ ] chain 2

[ | mechanical interface 7
[ | mechanical interface 8
[]
[]
[]
[]
[]
[]
[]

handlebar_assembly_2
mechanical_interface_12

vV VvV VvV VvV Vv VYV

> contract wheel_assembly_2

> expand pedal_assembly_2

> pedal_assembly_2.material = steel

VIOLATION: The following constraint has been violated:

alldif scheme(S1), scheme(S2): not dominates( S1, S2 ).

Figure 5.15: Due to her choice of materials, scheme_2 is dominated by the scheme
developed earlier.

In Figure 5.15 designer_2 selects steel as the material for pedal_assembly_2.
Upon the designer making this assertion, a constraint violation is detected. This
constraint violation is related to the fact that the system has recognised that there
exists a scheme which is dominated by another. The reason for this will be discussed

in conjunction with Figure 5.16.
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Conceptual Design Adviser System — designer_2
scheme_2.scheme_name ‘another vehicle’
scheme_2.structure >
scheme_2.width _
scheme_2.mass.value 20
scheme_2.mass.intent minimal
scheme_2.number_of _parts.value 6
scheme_2.number_of _parts.intent minimal
bicycle_2
wheel_assembly_2
pedal_assembly_2
chain_2
mechanical_interface_7
mechanical _interface_8

mechanlcal interface_9
mechanical_interface_10

mechanlcal interface_11
handlebar_assembly_2
mechanical_interface_12

[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]
[]

'_h
[a]
oY)
=
(D
I\J
vV VVVVVVVVVvyVvVvVvVvyVv

> contract pedal_assembly_2

> expand scheme_2

> expand scheme_2.mass

> expand scheme_2.number_of_parts

Figure 5.16: The state of scheme_2 after materials have been selected for
wheel _assembly_2 and pedal_assembly_2.

In Figure 5.16 the state of scheme 2 after materials have been selected for
wheel assembly 2 and pedal _assembly_ 2 is illustrated. It can be seen that the
mass of scheme_2 is currently estimated to be 20 units and that it comprises 6
parts. Therefore, this scheme is certainly dominated by scheme_1 since, although
both schemes have the same number of parts as each other, scheme_1 has the smaller
mass. This means that, since scheme_2 does not improve on scheme_1 on any design
preference, scheme_2 is dominated by scheme_1.

It is not obvious just from a constraint violation what corrective action is required
of a designer in order to ensure that a particular scheme is no longer dominated. In
the discussion of scheme development presented here these issues have not been ad-
dressed. The manner in which advice on what schemes dominate a particular scheme

is presented to the designer has been regarded as an interface issue. The presen-
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tation here has not addressed the issue of a suitable interface for constraint-aided
conceptual design. However, a number of possibilities are obvious. For example, a
graphical tool could display a window which contains in a tabular form the schemes
that have been developed against their current values for the various preferences that
have been defined in the design specification. When a designer develops a scheme
which is dominated by one or more schemes the dominating schemes could be high-
lighted in some way. Thus, the designer simply gets feedback stating that it is
possible to develop a better scheme, but not how to do it. In this way, the designer’s

independence of thought is maintained.

5.1.4 Review of the Example Design Problem

In Section 5.1.3 the use of constraint filtering to provide interactive support to a
designer developing constraint-based scheme models to satisfy a design specification
has been presented.

A graphical representation of scheme_1 is presented in Figure 5.17. Both of the
schemes developed in this section were based on the same means for embodying
each function in the scheme. In this figure it can be seen that there was an ini-
tial embodiment which had to be made for the function “provide transport”. The
bicycle design principle was used to provide this function. This design principle in-
troduced the need for five further embodiments to be made: “facilitate movement”,
“provide energy”, “support passenger”, “change direction” and “provide support”.
These functions were embodied using five design entities: a wheel assembly, a pedal
assembly, a saddle, a handlebar assembly and a frame. During the embodiment of
the functions with these means a number of context relations had to be embodied

between the entities used. These are all illustrated in Figure 5.17.
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Figure 5.17: The structure of the scheme presented in Section 5.1.
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5.2 An Industrial Case-Study

This section describes, through the use of an industrial case-study, how the approach
to conceptual design proposed in this dissertation could be applied to support the
design of a real-world product. The case-study was provided by an electronic com-
ponent manufacturer based in Cork called Bourns Electronics. The section begins
with a profile of the company. The case-study product is discussed in general terms
and an informal design specification for it is presented. The knowledge that is re-
quired to design the product is presented and it is demonstrated how this can be
formalised using the modelling approach developed in this research. A formal design
specification is then presented, which incorporates all of the requirements that the
product is required to satisfy. A number of schemes are also discussed which satisfy

the requirements defined in the design specification.

5.2.1 A Profile of the Company

Bourns Electronics Incorporated was founded in 1947 in Altadena, California. Bourns
has 11 manufacturing facilities worldwide. Amongst these are manufacturing plants
in California, Utah, Mexico, Costa Rica, Ireland, China and Taiwan. In the early
1980’s, a new subsidiary company, called Bourns Electronics Limited, was opened
in Cork, Ireland to support growing European market demands. It is in this plant
that the case-study discussed here was undertaken.

Bourns manufactures over 4,000 products, which are designed for use in vir-
tually every type of electronic system. The Bourns product offering includes chip
resistors/arrays, modular contacts, resistor networks, dials, multi-fuse resettable fuse
arrays, surge products, encoders, panel controls, switches, inductive components, pre-
cision potentiometers, trimming potentiometers and linear motion potentiometers.
The company’s products are used in the automotive, industrial, medical, computer,

audio/visual, telecommunications and aerospace industries.

5.2.2 Discrete Components from Bourns

Bourns’ discrete components meet a variety of electronics design needs. They are
small in size, and give design engineers solutions to address the growing portable

electronics market and other industries where conserving board space is a critical
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issue.

N

Figure 5.18: A sample collection of discrete electronic components manufactured by
Bourns Electronics

A selection of discrete components manufactured by Bourns is illustrated in Fig-
ure 5.18. In this figure components such as male and female modular contacts,
sealed surface-mount technology (SMT) switches and thick-film chip resistors are
illustrated. Modular contacts provide an off-the-shelf solution for facilitating con-
nectivity in portable electronic systems. Sealed SMT switches are available in sizes
starting at 3mm and are suitable for all popular soldering and cleaning methods,
above and below the board. Thick-film chip resistors are available in surface-mount
compatible packaging. Bourns also offers a wide selection of inductor and trans-

former components.

5.2.3 The Case-Study Product

The case-study product discussed here relates to the design of electrical contacts.
More specifically, the case-study relates to systems of electronic contacts that involve
male and female components which facilitate electrical contact. These contact sys-
tems are generally used in electronics applications where some part of the product
must be in electrical contact with another part. For example, when fitting a battery
pack into a portable computer or a mobile phone, there is a requirement for an elec-
trical connection between the battery-pack and the remainder of the system. This
type of electrical connection is often facilitated by the use of a modular contact sys-
tem. An example of a modular contact system which is currently being marketed by
Bourns Electronics is illustrated in Figure 5.19. This system is known as the Bourns

70AD modular contact system. The system comprises a male contact (highlighted
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on the left) and a female contact (highlighted on the right).

Figure 5.19: The Bourns 70AD Modular Contact System

There is a second modular contact system available from Bourns Electronics.
This system is known as the Bourns 70AA modular contact system. However, this

system comprises only a male contact. The male component of the system is illus-

trated in Figure 5.20.

Figure 5.20: The Bourns 70AA /Male Modular Contact

The female component of the Bourns 70AA modular contact system has not yet
been designed. The conceptual design problem which will be addressed here will
be the design of a female mating component for the Bourns 70AA/Male Modular

Contact. The design of this component will complete a second modular contact

system for the company.

133



5.2.4 The Design Specification

Based on the requirement for a complementary female modular contact for the
70AA/Male Modular Contact, a set of requirements for the desired component can
be formulated. The set of requirements for the design of this new contact are pre-

sented in Table 5.1.

| Property | Requirement |

Required function provide structured contact
Current 3 Amps

Contact pitch 2.54mm

Power consumption minimal

Contact-solder resistance | minimal

Mass minimal

General End-to-end stackable

Table 5.1: An informal design specification for the Female Modular Contact that is
required to complement the 7T0AA /Male Modular Contact

In Table 5.1 it can be seen that there are several different types of requirement
in the design specification. Some of these requirements relate to the functional as-
pects of the product, while others relate to the physical and life-cycle aspects of the
product. The function that is to be provided by the product is to “provide structured
contact”. The current that will be carried through the product will be 3 Amps and
the product will have a contact pitch of 2.54mm. The contact pitch is the distance
between adjacent points of contact on the component. The concept of contact pitch

is illustrated in Figure 5.21.

substrate

|
/
‘ _ contact-area

=

contact pitch

|
|
|
|
Il
|
I
|
|
|
|
|
|
|
|
|
|
I
T
|
|
|
|

|
I
|
|
|
|
|
|
I
|
|
|
I
T
|
|
|
|

Figure 5.21: The meaning of the contact pitch requirement.
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Also specified in Table 5.1 are a number of preferences about the physical aspects
of the component. For example, the values of power consumption, contact-solder
resistance and mass of the component should all be minimal. These requirements
can be used to compare alternative schemes that are developed by the designer in
order to satisfy the design specification.

The power consumption of the component relates to the total amount of power
that is consumed by the component when it is in use. The contact-solder resistance
is the total resistance of any conductive elements within the component.

Finally, there is a life-cycle requirement specified in the design specification,
namely, that the product being designed should be end-to-end stackable. This re-
quirement means that the contact pitch of a series of contacts that are placed end-
to-end on a printed-circuit board (PCB) should be maintained. This requirement is

illustrated in Figure 5.22.

oA ] | B |

contact pitch ' contact pitch ' contact pitch

Figure 5.22: Graphical explanations of the life-cycle requirement defined in the design
specification

A full Galileo implementation of the design specification discussed here is im-
plemented in a module called contact_spec.gal presented in Section D.2 of Ap-
pendix D. However, for convenience, a segment of the Galileo model of the design
specification is presented here in Figure 5.232.

This implementation of the design specification incorporates all of the require-

ments from the design specification discussed above. The functional property re-

2Please note that the line numbers in this figure correspond to the line numbers in
contact_spec.gal presented in Section D.2.
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domain contact_scheme
=::= { S: scheme( S ) and
provides_the function( S.structure.intended function,
’provide’, ’structured contact’ ) and
exists( S.contact_pitch : real ) and
S.contact_pitch = 2.54 and
exists( S.current : real ) and
S.current = 3 and
exists( S.power_consumption : preference ) and
S.power_consumption.intent = minimal and
!S.power_consumption.value = power_consumption of( S ) and
exists( S.contact_to_solder_resistance : preference ) and
S.contact_to_solder_resistance.intent = minimal and
IS.contact_to_solder_resistance.value
= contact_to_solder resistance_of( S ) and
exists( S.mass : preference ) and
S.mass.intent = minimal and
IS.mass.value = mass_of( S ) and
end_to_end stackable( S ) }.

relation has better_contact_solder_resistance_than( scheme, scheme )
=::= { (S1,82): better_than( Si.contact_solder_resistance,
S2.contact_solder_resistance ) }.

relation has_better_mass_than( scheme, scheme )
=::= { (81,82): better_than( Si.mass, S2.mass ) }.

relation has better_power_consumption_than( scheme, scheme )
=::= { (81,82): better_ than( S1.power_consumption,
S2.power_consumption ) }.

relation improves_on( scheme, scheme )
=::= { (81,82): has better power_consumption than( S1, S2 ) or

has_better_contact_solder_resistance_than( S1, S2 ) or
has_better mass_than( S1, S2 ) }.

Figure 5.23: A constraint-based model of the case-study design specification.
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quired by the design specification is modelled in Lines 7-8. The contact pitch and
current requirements are modelled on Lines 9-10 and Lines 11-12, respectively.

The design preferences relating to the power consumption, contact-to-solder re-
sistance and mass of the product are modelled on Lines 13-15, Lines 16-18 and
Lines 20-22, respectively. The value of the power consumption of the compo-
nent is computed using a function called power_consumption of. The value of
the contact-to-solder resistance of the component is computed using a function
called contact_to_solder_resistance_of. The value of the mass of the compo-
nent is computed using a function called mass_of. Finally, the life-cycle requirement
that the product be end-to-end stackable is modelled on Line 23. A relation called
end_to_end_stackable is used. The various relations used to compare alternative
schemes, which are specific to this particular design specification, are defined on
Lines 24-35.

The meaning of the various functions and relations referred to in the design spec-
ification model presented in Figure 5.23 are part of the domain knowledge required
to develop schemes for this product. In order to be able to develop a set of schemes
for the product described in the design specification presented in Table 5.1 and
Figure 5.23, an appropriate design knowledge-base must be available for designing
electrical contact systems. This knowledge-base should contain a variety of means
for providing typical functions in this domain. The knowledge-base should also con-
tain various functions and relations which can be used to evaluate schemes from
those perspectives which are relevant to the particular design problem. In the next

section the contents of a suitable knowledge-base will be presented.

5.2.5 Modelling Design Knowledge for Bourns

In Section D.1 of Appendix D a full constraint-based implementation of a suitable de-
sign knowledge-base is presented in a Galileo module called bourns_knowledge.gal.
Aspects of that knowledge-base will now be discussed, in order to demonstrate how
the design knowledge required for the case-study can be modelled in a manner con-

sistent with the approach presented in this dissertation.
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52 domain known_means

53 =::= { a_female_modular_contact, a_precious_metal_contact,
54 a_substrate, amolded_body, a_machined_body,

55 a_thickfilm_termination, a_male_contact,

26 a_conducting_strip, a_conducting wire,

57 a_metal_termination, a_thickfilm_conductor }

Figure 5.24: Known means for use in designing electrical contact components.

The design knowledge-base that is presented here contains a number of known
means which are useful when designing electrical contact components; these are

presented in a domain called known means in Figure 5.24.
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relation can_simultaneously_provide( known means, set of func )

=::= { (a_female modular_contact,{F}):
provides_the_function(F, ’provide’,’structured contact’),
(amale_contact,{F}):
provides_the _function(F,’provide’,’structured contact’),
(a_substrate,{F}):
provides_the_function(F, ’provide’, ’support’),
(amolded_body,{F}):
provides_the _function(F, ’provide’,’support’),
(a_machined body,{F}):
provides_the function(F, ’provide’,’support’),
(a_thickfilm termination,{F}):
provides_the function(F,’facilitate’,’external connection’),
(a_conducting strip,{F1,F2,F3}):
provides_the function(F1,’provide’,’contact’) and
provides_the function(F2,’connect’,’contact’) and
provides_the _function(F3,’facilitate’,’external connection’),
(ametal_termination,{F}):
provides_the function(F,’facilitate’,’external connection’),
(a_precious metal contact,{F}):
provides_the _function(F, ’provide’,’contact’),
(a_thickfilm conductor,{F1,F2}):
provides_the function(F1,’provide’,’contact’) and
provides_the _function(F2,’connect’,’contact’),
(a_conducting wire,{F}):
provides_the function(F, ’connect’, ’contact’) }.

Figure 5.25: Modelling the functions that can be provided by a known means.

The various functions that can be provided by each of the known means is spec-
ified in the relation presented in Figure 5.25. For example, it can be seen from
Lines 145-147 that a_thickfilm conductor can simultaneously provide the func-
tions provide contact and connect contact. The relation presented in this fig-
ure is structurally identical to that used in the example design problem discussed in

Chapter 4 and Section 5.1.
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domain female modular_contact
=::= { F: principle(F) and

exists( F.el : embodiment ) and

exists( F.e2 : embodiment ) and

exists( F.e3 : embodiment ) and

exists( F.e4 : embodiment ) and

provides_the function( B.el.intended function,
’provide’, ’support’ ) and

provides_the function( B.e2.intended function,
’provide’, ’contact’ ) and

provides_the function( B.e3.intended function,
’connect’, ’contact’ ) and

provides_the function( B.e4.intended function,
>facilitate’, ’external connection’ ) and

is_electrically connected to( B.e2, B.e3 ) and

is_electrically_connected_to( B.e3, B.e4 ) and

supports( B.el, B.e2 ) and

supports( B.el, B.e3 ) and

supports( B.el, B.e4 ) }.

Figure 5.26: The female modular contact design principle.

The knowledge-base being discussed here contains one design principle, based on
an idealised female modular contact. The Galileo representation of this principle is
presented in Figure 5.26. The female modular_contact design principle introduces
the need for four embodiments to be made. These embodiments, el, e2, e3 and
e4, are associated with the functions “provide support”, “provide contact”, “connect
contact” and “facilitate external connection”, respectively. A number of context rela-
tions also appear in this design principle. Specifically, the embodiment of the function
“provide contact” must be electrically connected to the embodiment of the function
“connect contact” (Line 44) and the embodiment of the function “connect contact”
must be electrically connected to the embodiment of the function “facilitate external
connection” (Line 45). Additionally, the embodiment of the function “provide sup-
port” must support the embodiments of the functions “provide contact”, “connect
contact” and “facilitate external connection” (Lines 46-48). The implementation of
these relations can be found in the Galileo module bourns_knowledge.gal presented
in Section D.1. However, the implementation of the is_electrically_connected_to

relation will be discussed later in this section.

140



3
4
3
6
7
8
9

10
11
12

22
23
24

150
151

domain bourns_entity
=::= { R: entity(R) and

exists( R.width : real ) and
exists( R.height : real ) and
exists( R.length : real ) and
exists( R.mass : real ) and
exists( R.material : known_material ) and
exists( R.resistance : real ) and

R.mass = mass of ( R ) and
R.resistance = resistance of( R ) }.

Figure 5.27: The generic Bourns design entity.

In Figure 5.27 the generic design entity model appropriate for the case-study
product is presented. The bourns_entity is a design entity which has a number
of additional fields such as width, height, length, mass, material and resistance.
There are a number of materials available which can be used as the material of
choice for a Bourns design entity; these are presented in Lines 49-51 of Section D.1.
The mass and resistance of the entity are computed using the functions mass_of
and resistance_of, respectively (Lines 11 and 12). The implementation of these
functions can be found in the Galileo module bourns_knowledge.gal presented in
Section D.1. However, the implementation of the resistance_of function will be

discussed later in this section.

domain conductor_entity
=::= { C: bourns_entity( C ) and
conductor_material( C.material ) }.

relation conductor_material( known_material )
=::= { gold, palladium silver, palladium gold, platinum gold }.

Figure 5.28: A conductor entity for on the Bourns case-study.

In the company where this case-study was carried out, there are two classes of
design entity: conductor entities and substrate entities. These entity classes rep-
resent significantly different entity types relevant to the design of electrical contact
systems. In Figure 5.28 the model of a conductor_entity is presented. A conductor
entity is based on the generic Bourns entity, but must be made of a conductor mate-
rial (Line 24) There are a number of conductor materials available such as gold and

palladium silver (Lines 150-151). In the Galileo module bourns_knowledge.gal,
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presented in Section D.1, several design entities are defined in terms of a conductor
design entity.
domain bourns_interface

=::= { I: interface(I) and
exists( I.type : bourns_interface type ) }.

domain bourns_interface_type
=::= { spatial, physical, electrical }.

Figure 5.29: Suitable interfaces for the Bourns case-study.

In Figure 5.29 a system of interfaces for this case-study is presented. A bourns_in-
terface is an interface which has a type field that can take three possible values:

spatial, physical or electrical.

domain electrical_interface
=::= { S: bourns_interface(S) and S.type = electrical and
exists( S.relationship : electrical_relationship ) }.

domain electrical_relationship
=::= { insulative, conductive }.

Figure 5.30: Modelling electrical interfaces.

In Figure 5.30 an electrical_interface is defined in terms of a bourns_interface.
An electrical interface can be used to represent various relationships between design
entities; in this case-study an electrical interface can either represent an insulative

or conductive relationship.

relation is_electrically connected to( entity, entity )
=::= { (E1,E2): E1 = E2 and conductor_entity(El),
(E1,E2): is_in the_same_scheme_as( E1, E2 ) and
lexists electrical_interface(E):
E.entityl = E1.id and
E.entity2 = E2.id and
E.relationship = conductive }.

Figure 5.31: The “electrically connected to” context relation.

The context relation “electrically connected to” can be modelled in terms of a
conductive electrical interface between a pair of design entities. This is illustrated

in Figure 5.31. This relation between design entities is used, in the same way as was
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done in Section 5.1, to implement the analogous relation between the embodiments
within a principle.
function contact_to_solder_resistance_of( scheme ) -> real

=::= { S -> sum( { E.resistance | exists conducting entity(E):
is_a_part of ( E, S ) }.

Figure 5.32: Computing the contact-to-solder resistance of a scheme.

In the design specification model presented in Figure 5.23 a number of functions
are used to compute the values of various properties of a scheme. For example, a
function called contact_to_solder_resistance_of is used to computer the contact-
solder resistance of a scheme. An appropriate implementation of this function is
presented in Figure 5.32. The contact-to-solder resistance of a scheme is computed

as the sum of the resistances of all the conducting entities used in the scheme.

function resistance_of( bourns_entity ) -> real
=::= { E -> resistivity_of( E.material ) * E.length
/ ( E.width * E.height ) }.

function resistivity_of( known material ) -> real
=::= { gold -> 0.005,
palladium_silver -> 0.03,
palladium_gold -> 0.05,

platinum gold -> 0.05,
alumina96 -> 1.0E14,
alumina995 -> 1.0E14,
beryllia995 -> 1.0E14 }.

Figure 5.33: Computing the resistance of a design entity.

As seen earlier in Figure 5.27, the resistance of an entity is computed using a
function called resistance_of. The implementation of this function is illustrated in
Figure 5.33. The resistance of an entity depends on its material and geometry. The
implementation presented in this figure is based on the normal calculation performed
in Bourns to determine the resistance of a design entity.

In Figure 5.34 a relation is presented which characterises the meaning of the
requirement that a scheme be end-to-end stackable. Essentially, a contact component
can be regarded as being end-to-end stackable if the length of its substrate element

is twice the contact pitch of the component.
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relation end_to_end_stackable( scheme )
=::= { S: exists substrate_entity(E):
is_.a part of ( E, S ) and
E.length = 2 * S.contact_pitch }.

Figure 5.34: The meaning of the end-to-end stackable requirement.

In this section various aspects of the Galileo implementation of a design knowledge-
base for developing schemes for the Bourns case-study product was presented. It can
be seen that the approach presented in this dissertation for doing so is very flexible
and expressive. It has been demonstrated that the approach is capable of modelling
all the necessary design knowledge encountered in Bourns related to the design of
a contact system which meets the design specification. A full Galileo implementa-
tion of the Bourns design specification and design knowledge-base are presented in

Appendix D.

5.2.6 Generating Alternative Schemes

In this section a number of schemes are described based on the design knowledge-
base presented in the previous section. The development of three schemes will be
presented graphically. The schemes discussed here are intended to satisfy the design
specification presented in Section 5.2.4. The purpose of this section is to demonstrate
that the approach presented in this dissertation could be used to develop schemes
for an industrial product.

In the presentation of these schemes no screen-shots will be used to demonstrate
the interaction between the constraint filtering system and the designer. This has
already been demonstrated in Section 5.1.3. Also, a presentation of the use of Pareto
optimality will not be given here, since this would require a detailed sequence of

screen-shots and, in addition, has already been discussed in Section 5.1.3.
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Figure 5.35: A graphical representation of the principle of a female modular contact.

In Figure 5.35 a graphical representation of the principle of a female modular
contact is presented. The implementation of this principle is presented in Lines 30—
48 of Section D.1. This principle requires that four embodiments are made in the
design. These embodiments are associated with the functions provide support, pro-
vide contact, connect contact and facilitate external connection. There are a number
of context relations defined between these functions, namely, that there is an electri-
cally connected relation between the embodiments of the functions provide contact
and connect contact, that there is an electrically connected relation between the
embodiments of the functions connect contact and facilitate external connection, a
supports relation between the embodiments of the functions provide support and pro-
vide contact, a supports relation between the embodiments of the functions provide
support and connect contact and a supports relation between the embodiments of
the functions provide support and facilitate external connection.

According to Lines 125-126 of Section D.1 it can be seen that the principle of
a female modular contact can be used to provide the function provide structured
contact.

In Figure 5.36 a number of design entities are presented graphically. Each of
these design entities are implemented in Section D.1. For example, the molded body
design entity is implemented in Lines 64-65.

By inspecting the relation defined on Lines 124-149 of Section D.1 it can be seen
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’ ¢ ’

molded body machined body conducting strip

behaviours = { { provide support } } behaviours = { { provide support } } behaviours={ { provide contact,
connect contact,

facilitate external connection } }

’ ’ ’

thickfilm conductor thickfilm termination

substrate

behaviours = { { provide contact, behaviours = { { faciliate external connection} } behaviours = { { provide support } }
connect contact } }

Figure 5.36: A graphical representation of the entities that will be used to develop
schemes for the case-study product.

that a molded body can provide the function provide support, a machined body can
provide the function provide support, a conducting strip can provide the functions
provide contact and facilitate external connection, a thickfilm conductor can provide
the function provide contact, a thickfilm termination can provide the function facili-
tate external connection, and a substrate can provide the function provide support.
Using the various means illustrated in Figure 5.35 and Figure 5.36 a number of

schemes for the design specification presented in Section D.2 will be described.
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Figure 5.37: A graphical representation of the structure of a scheme which comprises
a molded body and a conducting strip.

In Figure 5.37 a scheme is presented which could have been generated by inter-
acting with a constraint-based filtering system using the Galileo modules presented
in Appendix D. This scheme uses the design principle female modular contact to
provide the function provide structured contact. As discussed already, this design
principle requires the designer to consider four further embodiments in order to de-
velop the scheme. The associated functions are provide support, facilitate external
connection, provide contact and connect contact. The designer chooses to embody
the function provide support with a molded body design entity and to embody the
remaining three functions with the same design entity, namely, a conducting strip.

The conducting strip design entity is capable of providing three functions si-

multaneously: provide contact, connect contact and facilitate external connection.
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Therefore, when the designer selects to provide the function facilitate external con-
nection with a conducting strip, an instance of this design entity is introduced into
the design due to the constraint defined in Lines 87-89 of Section D.1. When the
designer then embodies the functions connect contact and provide contact with a
conducting strip, no new entities are introduced into the design since the conducting
strip entity introduced earlier can simultaneously provide all of these functions. This
is due to the relation specified in Lines 124-149 of Section D.1.

The context relations that will need to be considered in the physical structuring of
this scheme are the supports relation and the electrically connected relation. There
will exist a physical interface between the conducting strip and the molded body
entities. This physical interface will implement a supports relationship between
these entities in other to embody the supports context relation. This is due to the
relations defined on Lines 174-192 of Section D.1. Since the embodiment of the
functions facilitate external connection, provide contact and connect contact is a
single conductor design entity there is no requirement for an explicit interface for
the electrically connected context relation. This is due to the relations defined on

Lines 156—-171 of Section D.1 and, in particular, Line 166.
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Figure 5.38: A graphical representation of the structure of a scheme which comprises
a machined body and a conducting strip.

In Figure 5.38 a second scheme is presented. This scheme also uses the design
principle female modular contact to provide the function provide structured contact.
The designer chooses to embody the function provide support with a design entity
called machined body and to embody the remaining three functions with the same
design entity, namely, a conducting strip. Therefore, for similar reasons as for the
scheme presented in Figure 5.37, the context relations that will need to be considered
in the physical structuring of the scheme are the supports relation and the electrically
connected relation. Again, there is only one interface required in this scheme. This
is to implement the supports relation between the conducting strip and machined
body design entities. No explicit interface is required for the electrically connected

context relation.
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Figure 5.39: A graphical representation of the structure of a scheme which comprises
a substrate, a thick-film termination and two distinct thick-film conductor
entities.

In Figure 5.39 a third scheme is presented. This scheme also uses the design
principle female modular contact to provide the function provide structured contact.

The function provide support was embodied with a substrate design entity, the
function facilitate external connection was embodied with a thick-film termination
design entity, the function provide contact was embodied with a precious metal con-
tact design entity and the function connect contact was embodied with a thick-film
conductor design entity.

In order to fulfill the various context relations required by the female modular

contact design principle the designer must consider a number of relations amongst the
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design entities in this scheme. The supports context relation between the substrate
and the thick-film conductor is implemented through a physical interface providing
a supports relationship. The supports context relation between the substrate and the
precious metal contact is implemented through a second physical interface providing
a supports relationship. The supports context relation between the substrate and the
thick-film termination is implemented through a third physical interface providing
a supports relationship.

The electrically connected context relation between the thick-film conductor and
the precious metal contact is implemented through an electrical interface providing
a conductive relationship. The electrically connected context relation between the
thick-film conductor and the thick-film termination is implemented through a second

electrical interface providing a conductive relationship.

5.2.7 Review of the Industrial Case-Study

In the previous parts of Section 5.2 it was illustrated how the approach presented in
this dissertation could be applied to support the design of a real-world product. The
information for the case-study presented here was provided by an electronic compo-
nent manufacturer based in Cork called Bourns Electronics. A brief profile of Bourns
Electronics was given. The application of the case-study product was discussed in
general terms and an informal design specification was presented. The knowledge
that was required to design the product was presented and it was demonstrated how
this can be formalised using the modelling approach presented in Chapter 4. A for-
mal design specification for the case-study product was presented. The development
of a number of alternative schemes for the case-study product was discussed.

While only three schemes have been discussed in this section many other schemes
could have been generated. However, in order to respect the confidence of Bourns
these schemes have not been presented here. Bourns were highly impressed with the
approach. Indeed, one scheme that was developed using this approach was actually
the same as a scheme which the company had developed independently and which they
had recently patented: the scheme in question is not presented here at the request
of the company. Bourns believes that a tool based on the approach presented here
would be extremely valuable to them as a means for improving their new product

development capability.
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Chapter 6

Conclusions

In this dissertation a constraint-based approach to providing support to a human
designer working during the conceptual phase of design has been presented. In this
chapter the conclusions of the research will be discussed. This is done by relating the
achieved results to the goals formulated in Chapter 1 and by discussing the results

in the context of the thesis defended in this dissertation:

“It is possible to develop a computational model of, and an interac-
tive designer support environment for, the engineering conceptual design
process. Using a constraint-based approach to supporting conceptual de-
sign, the tmportant facets of this phase of design can be modelled and

supported.”

In this chapter a number of recommendations for further study are also presented.

6.1 The Goals of the Research Revisited

In Chapter 1 the goals of this research were presented; these were as follows:

1. To investigate whether constraint-based reasoning can be used as a basis for

supporting conceptual design;

2. To determine if the expressiveness needs of conceptual design motivate the

introduction of new features into Galileo.

It will be discussed in this section how these goals were achieved by the research

presented in this dissertation.
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6.1.1 Constraint-based support for conceptual design

In has been demonstrated in this dissertation how constraint-based reasoning can
be used to support the human designer during conceptual design. In Chapter 3, a
theory of conceptual design was presented upon which the research reported in this
dissertation was based. In Chapter 4, a constraint-based implementation of this the-
ory of conceptual design was presented. In Chapter 5, this approach was validated
on two design problems: a toy design problem related to the design of a transporta-
tion vehicle, and an industrial case-study. Therefore, the goal to investigate whether
constraint-based reasoning can be used as a basis for supporting conceptual design

has been achieved, the answer provided by the investigation being positive.

6.1.2 Motivation for new features in Galileo

Although the pre-existing version of Galileo could have been used to support con-
ceptual design, it was found that, by adding a few features to the language, program
length could be reduced and the user-interface could be improved. These exten-
sions to Galileo were discussed in Section 4.2 and related to: an enhancement to

“|’7

the semantics of quantification; the application of the operator to the exists
quantifier; the introduction of a new meta-level function, called #parent_of; and the
introduction of a new keyword hidden. These extensions will be briefly discussed
here.

In this dissertation, it was proposed that all quantified constraints should apply
to all instances of the domain over which they are quantified, regardless of whether
these instances are top-level parameters or merely fields of parameters.

It was also proposed in this dissertation that the ! operator be applied to the
exists quantifier. The operational semantics of its application, as proposed here,
is that, if the requisite kind of parameter does not exist, the interpreter should
automatically introduce a new parameter which satisfies the constraint.

While the standard version of Galileo already includes some meta-level relations
and functions, the meta-level aspects of the language are still under development.
The research reported in this dissertation motivated the need for a new meta-level
function, called #parent_of. This function can be used to access any field of a
structured parameter from any one of its other fields.

Finally, it was proposed that a new keyword, hidden, be introduced into the
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language. This keyword can be used to indicate which fields of a structured domain
are visible on the user-interface of the constraint filtering system.

As already mentioned, the standard version of Galileo already includes some
meta-level relations and functions. However, the meta-level aspects of the language
are still under development and the range of relations and functions that currently
exist is regarded as merely a first step in developing this aspect of the language. From
the experience gained in carrying out the research presented in this dissertation a
number of comments can be made regarding future developments for the meta-level
aspects of Galileo.

It will now be shown that it would be desirable if the constraint filtering system
could automatically derive the need for certain constraints from the presence, in
a company-specific knowledge-base, of certain domain definitions. Such automatic
inference would, however, need to be programmed into the filtering system. This
could only be done by adding further meta-level constructs to Galileo.

In Chapter 4 an approach to implementing the various generic- and company-
specific design concepts was presented. However, there is quite a high degree of
commonality between certain aspects of the implementation of particular types of
concepts. For example, consider Figure 4.53 and Figure 4.54. These figures are
presented here as Figure 6.1 and Figure 6.2, without line numbers.
all embodiment(E): E.chosen means = a_chassis implies

lexists chassis( C ):
must_be_directly used _for( C, E.intended function ).

Figure 6.1: The embodiment constraint presented in Figure 4.53.

all embodiment(E): E.chosen means = amolded_frame implies
lexists molded frame( M ):
must_be directly used for( M, E.intended function ).

Figure 6.2: The embodiment constraint for a design entity presented in Figure 4.54.

It can be seen that these two constraints are structurally identical, except for
the fact that a parameter of a different type is begin introduced. The domains
chassis and molded_frame are specialisations of the domain entity. In addition,
a convention has been used in this dissertation to relate a known_means, such as

a_chassis, to an actual means, such as chassis. Therefore, it should be possible for
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the constraint filtering system to automatically infer a constraint from the definition
of an entity. For example, consider the definition of an application-specific design
entity, called widget_entity, which is a specialisation of the generic design entity,

shown in Figure 6.3.

domain widget_entity
=::= { W: entity(W) and ... }.

Figure 6.3: The definition of a specialisation of the generic design entity, called
widget_entity.

From the entity definition presented in Figure 6.3, the constraint filtering system
should be able to infer the necessary embodiment constraint. The constraint that

should be inferred is shown in Figure 6.4.

all embodiment(E): E.chosen means = a_widget_entity implies
lexists widget_entity( W ):
must_be directly used for( W, E.intended function ).

Figure 6.4: The inferred embodiment constraint that introduces an instance of the
widget_entity design entity where required.

A similar process of automatically inferring embodiment constraints could also
apply to design principles. As is the case for design entities, the embodiment con-
straints for design principles will be structurally similar. In Figure 4.50 an embod-
iment constraint for the bicycle design principle was shown. This constraint is

shown, without line numbers, in Figure 6.5 for convenience.

all embodiment(E): E.chosen means = a bicycle implies
lexists bicycle( B ):
must_be directly used for( B, E.intended function ) and
causes( E, B.el ) and

causes( E, B.e2 ) and
causes( E, B.e3 ) and
causes( E, B.e4 ) and
causes( E, B.eb ).

Figure 6.5: The embodiment constraint for a design principle presented in Fig-
ure 4.50.

It should be possible for the filtering system to automatically infer this type of

constraint from the definition of a principle. For example, consider the definition of
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an application-specific design principle, called widget_principle, which is a spe-
cialisation of the generic design principle, as shown in Figure 6.6.
domain widget_principle

=::= { W: principle(W) and
exists( W.el : embodiment ) and

exists( W.en : embodiment ) and

Y

Figure 6.6: The definition of a specialisation of the generic design principle, called
widget_principle.

From the principle definition presented in Figure 6.6, the constraint filtering sys-
tem should be able to infer the necessary embodiment constraint. The constraint that
should be inferred is shown in Figure 6.7. Notice that the basic idea is the same as
for the automatic derivation of the embodiment constraint for entities. The only dif-
ference is that a design principle introduces a number of embodiments into a scheme;
the embodiment being fulfilled by the design principle causes these embodiments to
be introduced.
all embodiment(E): E.chosen_means = a_widget_principle implies

lexists widget_principle( W ):

must_be_directly used _for( W, E.intended function ) and
causes( E, W.el ) and

causes( E, W.en ).

Figure 6.7: The inferred embodiment constraint that introduces an instance of the
widget_principle design entity where required.

The addition of the capability to infer embodiment constraints from the defini-
tions of means would dramatically reduce the size of the company- or application-
specific knowledge-bases that must be developed by each company who wishes to use
the approach presented in this dissertation to support conceptual design. This can-
not be done at present. It would require the addition of further meta-level constructs

to the language, a subject for further research.
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6.2 Comparison with Related Research

The approach to supporting conceptual design presented in this dissertation is based
on a combination of design theory, constraint processing techniques and Pareto opti-
mality. In this section, the approach presented here will be compared with a number
of approaches which have been reported in the literature. The approaches that are
selected from the literature are regarded as being most similar to the approach pre-
sented in this dissertation and are categorised as being either design theory-driven
(Section 6.2.1), constraint processing-driven (Section 6.2.2) or Pareto optimality-

driven (Section 6.2.3).

6.2.1 Design Theory Approaches

The design theory upon which the approach presented in this dissertation is based
assumes that products exist to provide some required functionality. There are a
number of theories of design, such as “The Theory of Domains” [4] and “The General
Procedural Model of Engineering Design” [86], that describe the parallelism between
the decomposition of a functional requirement and the composition of a set of parts
that fulfill that requirement.

The function-means tree approach to design synthesis is one approach that as-
sists the designer is decomposing a functional requirement into an equivalent set of
functions that can be provided by a set of known parts [28]. A function-means tree
describes alternative ways of providing a top-level (root) function through the use
of means. A means is a known approach to providing functionality. Two types of
means can be identified in a function-means tree: principles and entities. A principle
is defined by a collection of functions which, collectively, provide a particular func-
tionality; it carries no other information than the lower-level functions to be used in
order to provide a higher-level function. An entity represents a part or sub-assembly.

In the approach adopted here, the function-means tree concept was extended by
adding context relations between the functions that define a design principle. This
enables a computer to assist a designer to reason about the configuration of a set of
design entities that obey the relationships that should exist between the functions in
a design. It also helps to ensure that there is a valid mapping between the functional
decomposition of a product and its physical composition in terms of parts.

The Scheme-Builder system [25, 125] uses function-means trees as a basis for
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structuring a design knowledge-base and generating schemes. The system interprets
a function as an input-output transformation. The advantage of the system is that it
is very systematic in terms of how functions are decomposed into sets of equivalent
functions. However, its applications are limited to very highly parameterised design
domains, such as mechatronics and control systems. The symbolic approach to rep-
resenting function adopted in the research presented in this dissertation, coupled
with the use of context relations in design principles, makes this approach far more

flexible.

6.2.2 Constraint-Based Approaches

A number of systems have been developed for supporting aspects of conceptual design
based on constraints. The “Concept Modeller” system was one of the earliest of
such systems reported in the literature [137]. Aspects of the approach adopted in
Concept Modeller were extended in a system called “Design Sheet” [27]. These
systems focused on using constraint processing techniques to manage consistency
within a constraint-based model of a design. In these systems conceptual designs
are represented as systems of algebraic equations.

The approach presented in this thesis addresses a wider variety of issues that
are crucial to successful conceptual design. The most important of these issues is
design synthesis. In the approach presented here a designer is assisted in interac-
tively synthesising a scheme for a design specification. In addition, a designer can
develop multiple schemes for a design specification and be offered advice based on
a comparison of these schemes. These are critical issues to supporting conceptual
design which are not addressed in either Concept Modeller or Design Sheet.

The work presented in this dissertation builds on earlier work on interactive
constraint processing for engineering design [22]. The earlier work focused on using
constraint processing as a basis for interacting with a human designer who was
working on a detailed model of design. The work presented in this dissertation
builds on this work by demonstrating that the idea of using constraint processing
as the basis for interacting with a human designer can be extended to support the
development of a number of alternative schemes for a design specification from an

initial statement of functional and physical requirements.
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6.2.3 Pareto Optimality Approaches

As discussed in Section 2.3, the principle of Pareto optimality has been applied to a
wide variety of problems in design. Most of these applications have used the principle
of Pareto optimality in conjunction with evolutionary algorithms to generate a set
of “good” design concepts [31, 70, 119]. These approaches focus on the automatic
generation of design alternatives, an issue not of interest in the research presented
here.

The use of the principle of Pareto optimality to monitor progress in design has
been reported [123]. The approach focuses on the “tracking” of Pareto optimality
to co-ordinate distributed engineering agents. Tracking Pareto optimality, in this
case, means that the problem solver being used can automatically recognise Pareto
optimality loss and the particular opportunity to improve the design. That approach
inspired aspects of the approach to using Pareto optimality in the research presented
in this dissertation. However, in this dissertation, Pareto optimality is used to com-
pare two different schemes for a design specification rather than recognising when
Pareto optimality is lost within an individual scheme. In this research, it is be-
lieved that the natural competition between designers can be harnessed to motivate

improvements in the quality of schemes.

6.3 Recommendations for further study

This section presents a number of recommendations for further research in the area

of constraint-aided conceptual design. These recommendations relate to:
1. Further prototyping and tool development;
2. The need for constraint filtering research;
3. The development of design knowledge-bases for different engineering domains;
4. An industrial-standard implementation;

5. CAD standard integration.
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6.3.1 Further Prototyping and Tools Development

Although the pre-existing version of Galileo could have been used to support concep-
tual design, it was found that, by adding a few additional features to the language,
program length could be reduced and the user-interface could be improved. Thus,
in order to enable conceptual design support tools to be built, based on the ap-
proach presented in this dissertation, a new implementation of the Galileo filtering
system incorporating the new features that have been proposed in this dissertation
is required.

In order to make the process of design knowledge management more accessible
to a user not familiar with constraint programming, one possible avenue for further
study would be the development of tools which assist specification and maintenance
of design knowledge. For example, a tool could be developed which would maintain
consistency in the function-means tree database by ensuring that the various func-
tions that are defined are mapped onto means for providing them. This tool would
also be capable of assisting the human-user to define the various design principles,
design entities, interfaces and evaluation utilities that are required for a particular
company or engineering domain. Such a tool could be programmed using constraints,

but it would require meta-level functions and relations.

6.3.2 Constraint Filtering Research

This research presented in this dissertation demonstrates that constraint filtering
can be used to provide a high standard of designer support during conceptual phase
of design. This phase of design can be characterised as a problem-solving process
which is aimed at identifying a number of schemes for a design problem. Each of
these schemes are defined by a relatively small number of variables and constraints,
as opposed to the high number of variables and constraints used in a detailed design
of a product. Therefore, conceptual design presents a more computationally modest
problem to be addressed through constraint-filtering than is presented by more de-
tailed phases of design. In addition, the benefits that can be realised by a company
who have control over the conceptual design process are significant. Therefore, con-
ceptual design represents an ideal problem domain to both the constraint processing
research community and the industrial community.

Secondly, this research has demonstrated that there exists significant potential for
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designer support based on constraint filtering during the conceptual design process.
Therefore, there is a significant practical justification for research which contributes
to the efficiency of algorithms for constraint filtering. In particular, research which
addresses consistency processing, constraint propagation, dynamic constraint satis-

faction and constraint-based advice generation should be encouraged.

6.3.3 Knowledge-bases for Different Engineering Domains

This research has presented the design community with a evidence for the utility
of a constraint-based approach to supporting one of the most difficult and impor-
tant phases of product development. In order to exploit the approach presented
in this dissertation, research that focuses on the development of conceptual design
knowledge-bases should be encouraged. This research should attempt to identify
generic knowledge in various engineering domains which relates to the development
of constraint-based function-means databases that can be used in real-world design

situations.

6.3.4 An Industrial Implementation

Another recommendation for further study relates to the development of a industrial-
standard constraint-aided conceptual design system based on the research presented
in this dissertation. This system should be capable of supporting the development of
schemes in a graphical manner similar to existing CAD systems. Such work provides
an interesting application for the use of visual constraint programming technologies.

A further enhancement of such a CAD system would be support for collabora-
tive design. A CAD system capable of supporting collaborative conceptual design
would be instrumental in assisting companies reap the benefits of effective conceptual

design.

6.3.5 CAD Standard Integration

The final recommendation for further study relates to the integration of CAD stan-
dards with the approach to conceptual design presented in this dissertation. The
possibility of using existing CAD standards, for example STEP, to translate the
constraint-based models of schemes into a CAD system, such as AutoCAD or Pro-

Engineer, for further design would significantly increase the utility of the approach
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in an industrial context.

6.4 Summary

As a summary of the conclusions of this dissertation, the central thesis of this research

has been defended. Therefore, the following statement can be made:

“It is possible to develop a computational model of, and an interac-
tive designer support environment for, the engineering conceptual design
process. Using a constraint-based approach to supporting conceptual de-
sign, the tmportant facets of this phase of design can be modelled and

supported.”
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Appendix A

An Overview of Galileo

This appendix presents an overview of the Galileo language. A brief discussion of the
various Galileo implementations and tools is also presented. An example program is
explained in detail before an example interaction is discussed. Much of the discussion
presented here is adapted from the literature on Galileo [8, 22, 19]. This is done for
the convenience of the reader. No claim is being made regarding the originality of

the contents of this appendiz.

A.1 The Galileo Language

In this research the constraint programming language Galileo has been used as the
modelling language of choice. Galileo [22, 49] is a frame-based constraint program-
ming language based on the First-Order Predicate Calculus (FOPC). Galileo offers
designers a very rich language for describing the design of a product, the environ-
ment in which a product is being developed and the responsibilities of the various
participants in an integrated product development environment [22, 49, 116].

A frame-based constraint programming language provides a designer with the
expressiveness required to describe the various aspects of the design problem effec-
tively. Frames can be used to represent the product being designed, the components
from which it is configured or the materials from which it is made. Frames can also
be used to describe the life-cycle environment in which the product will be manufac-
tured, tested and deployed. Constraints between frames can be used to express the
mutual restrictions between the objects in the design and the product’s functionality,
the component/material properties and the product life-cycle.

Amongst the many features of the Galileo language are the availability of pre-
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defined domains such as the real and integer numbers, arbitrary scalars and frame-
like structured domains. It is possible to define sets and sequences in Galileo and
structured domains can be defined and organised into inheritance hierarchies. The
language comes with a number of predefined predicates such as equality and numeric
inequality. There are a number of standard functions available which includes the
complete range of arithmetic and trigonometric functions. There are also a number
of set- and sequence-based predicates and functions available as standard. Com-
pound constraints can be written using the standard logic connectives as well as the
negation operator.

In Galileo constraints can be universally and/or existentially quantified. Quanti-
fiers in Galileo can be nested arbitrarily. In Galileo the existence of certain parame-
ters and constraints can be expressed as being dependent on certain conditions being
met. This is due to the fact that Galileo is based on a generalisation of First-Order
Logic known as First-Order Free Logic [24]. This is the means by which Dynamic

Constraint Satisfaction Problems [107] can be easily modelled in Galileo.

A.2 Galileo Implementations and Tools

At present there are three computer tools available for processing Galileo programs.
These tools range from interactive constraint filtering systems to compilation systems
which generate code for developing constraint checking applications.

There are two implementations of interactive constraint filtering for the Galileo
language. The first of these runs on the MS-DOS platform and was implemented
in Prolog [22]. This implementation was developed in order to demonstrate that
certain aspects of Concurrent Engineering could be readily supported through a
constraint processing approach. The second constraint filtering system for Galileo
was developed during a research project called CEDAS (an acronym for Concurrent
Engineering Design Adviser System)'. This implementation of the filtering system
was implemented using Haskell? and runs under the Solaris operating system.

The Galileo compilation system was also developed as part of the CEDAS project
[49, 116]. This system is based on version 6 of the Galileo language and is imple-

mented in Haskell. There are compilers currently available for the Solaris, HP-

1The CEDAS project was funded under the ESPRIT programme — the project number is 20501.
2Haskell is a non-strict, purely functional programming language [87].
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UX and Windows NT operating systems. This compilation environment translates
a Galileo specification of a set of design guidelines and a specification of a CAD
database representation into a form which is appropriate for a particular CAD sys-
tem. During the CEDAS project the Galileo compilation system was demonstrated
using the Visula CAD system from Zuken-Redac [129].

A.3 Constraint Filtering and Galileo

In this section a brief description of constraint filtering in Galileo is presented. This
presentation is adapted from the literature on Galileo [19].
A constraint restricts the values that may be assumed by a group of one or more

parameters. A constraint network is a collection of such constraints [102].

(t,m):
s> 19 (100,m1),
1mpres ‘_’@‘—’ (200,m2),
s =<t (300,m3)
gj (c,m):
s<0 (150,m1)
. . m b )
N ngphes_ {c ) (190,m2),
&) abs(s) =< ¢ (250,m3)
’

Figure A.1: Constraints on a load-carrying bar.

Consider the network shown graphically in Figure A.1, with parameters in oval
nodes and constraints in rectangular nodes. The parameters [, a, s, m,t and c rep-
resent, respectively, the load on a bar, the cross-sectional area of the bar, the stress
induced in the bar by the load, the material from which the bar is made, the tensile
strength of this material, and its compressive-strength.

Constraint filtering is a form of processing which progressively restricts the ranges
of possible values for parameters, by enforcing the restrictive effects of user-asserted
constraints. This means that a constraint network can capture the impact of a
decision — made concerning one phase of a product’s life-cycle by an expert in
that phase — on the other phases of the life-cycle. Suppose, for example, that
a network represents the mutually constraining influences that exist between the
functionality and production cost of a product. Such a network could, with equal

ease, determine the impact of functionality decisions on production cost or, on the

other hand, determine the impact of cost decisions on functionality.
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Consider the network in Figure A.1 again. If, for example, a designer interacting
with this network were to specify that the area of the bar is 2 and that the load
to be carried by the bar will be greater than 240 (that is, if he were to impose the
additional constraints that a = 2 and [ > 240), the set of possible values for the
tensile strength, s, would be restricted to half-open interval (120,300] and, since the
tensile strength of m1 is only 100, the set of possible values for m would be restricted
to {m2, m3}. This is an example of constraint filtering.

In the above situation, decisions about bar area and load resulted in restrictions
on the material that could be used to make the bar. Restrictive influence could
also flow in the opposite direction. Consider a scenario in which the above decisions
made by a designer were followed by an engineer saying state that material m3 is
unavailable; this could be expressed as the constraint m <> m3. As a consequence
of this, m must be m2 and the set of possibilities for s is restricted to (120,200]

which, in turn, means that the load [ cannot exceed 400.

A.4 A Concurrent Engineering Application

In this section, a Galileo program called KLAUS2 [8], which is an advice system
for printed wiring board design, will be discussed. Figure A.2 presents a modified
version of KLAUS2, adapted from [8]. An example interaction with KLAUS2 will
be discussed briefly in Section A.5. In this section, a number of extracts from
KLAUS2 will be considered. Much of the discussion presented here is adapted from
the literature on Galileo [8, 22]. This is done for the convenience of the reader. No
claim is being made regarding the originality of the remainder of this appendix.

A Galileo program specifies a frame-based constraint network and comprises a
set of declarations and definitions. The declaration statements include declarations
of the parameters that exist in the network and the constraints that exist between
these parameters. The definition statements include definitions for: partitions which
divide the network into different regions that may be seen by different classes of
user; application-specific domains, functions, and relations that are used in constraint
declarations [8].

The statements in a Galileo program can be written in any order. In Figure A.2,
the statements in the program have been listed in an order which facilitates the

discussion here. The numbers which are used to annotate the program in Figure A.2
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are not part of the program, but are present to faciliate discussion here.

[y

’the facility where the board will be tested’(the_test_facility) : test_facility.
2 domain test_facility =::=
(’the name of the equipment at’(name) : tester,
’the maximum clock frequency testable at’(maxfreq) : frequency,
’the maximum number of test points testable at’(maxtpoints) : counter).
3 domain tester =::= {’Dynamax Tester Mark I’(dynatestl),
’Dynamax Tester Mark II’(dynatest2),
’Erdsys TX’(erdsys)}.
{X : real(X) and 3.0 =< X =< 40.07}.
X : integer(X) and X >= 0}.
(’the type of’(type) : comp_type,
’the number of leads on’(nleads) : counter,
’the power consumed by’(power) : positive real).
7 domain comp_type =::= {processor,dsp,comm_cntrlr,divider,crystal,resistor,capacitor,diode}.
8 domain ’crystal oscillator’(osc_crystal) =::=
{X : component(X) and X.type=crystal and
exists(X.’the oscillation frequency of’(freq) : positive real)}.

4 domain frequency
5 domain counter =::=
6 domain component

nmesn

9 domain ’frequency divider’(divider) =::= {X:component(X) and X.type=divider and ... }.
10 domain cpu =::= {X:component(X) and X.type=processor and ... }.
11 domain resistor =::= {X:component(X) and X.type=resistor and ... }.

12 all component(X): X.nleads in !lst_tpoints.

13 num_tpoints = sum(lst_tpoints).

14 num_tpoints =< the_test-facility.maxtpoints.

15 ’the numbers of test points required by components’(lst_tpoints) : bag of counter.

16 ’the total number of test points on the board’(num_tpoints) : counter.

17 not(exists tester(X): cost(X) < cost(the_test_facility.name) and satisfactory(X)).

18 function ’the total cost per hour of’(cost) -> real =::= {X -> 1.8 * price(X)}.

19 function ’the direct cost per hour of usage of’(price) -> real =::= datafile(qdb,TSTRCSTS).

20 relation ’capable of testing the board’ (satisfactory) =::=
{X : num_tpoints =< max_tpoints(X) and
(all osc_crystal(Y): Y.freq =< max_clock(X))}.

21 function ’the maximum number of nails usable by’(max_nails) -> integer =::= datafile(qdb,TSTRNALS).
22 function ’the clock limit for’(max_clock) -> real =::= datafile(qdb,TSTRCLKS).
23 all component(X): X.type in {processor,comm_cntrlr,dsp}

implies exists(X.’the oscillator for’(crystal) : osc_crystal) and

exists(X.’the pullup resistor for’(pullup) : resistor).
24 all osc_crystal(X):
implies X.freq =< the_test_facility.maxfreq else
exists(X.’an ancillary divider for’(a_d) : divider).
25 ’the power consumptions of the components’(lst_powers) : bag of positive real.
26 ’the total power consumed by the board’(total_power) : positive real.
27 all component(X): X.power in !lst_powers.
28 total_power = sum(lst_powers).
29 ’the goal power consumption’(power_goal) : positive real.
30 ’the maximum acceptable power consumption’(max_power) : positive real.
31 ’the power consumption discrimination increment’(power_inc) : positive real.
32 total_power =< (power_goal to max_power step power_inc).
33 no_tpoints < 200.
34 hardness(no_tpoints < 200) = 0.9.
35 field ’the circuit designers perspective’(configuration) =::= {X : component(X)}.
36 field ’the perspective taken by test engineers’(testability) =::= {the_test_facility}.
37 permission({X:component(X)},configuration).

Figure A.2: Extracts from KLAUS2, a Galileo program.

A.4.1 Modelling with Frames

Frames can be used to represent the product being design, the components from
which it is configured and the life-cycle machines being used to manufacture the
product. For example, statement 1 of Figure A.2 declares the existence of a parameter

called the_test_facility and specifies that it is of type test_facility. The string
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[ [Help [ JFile [ [New [ [Utilities [ ]Search

[ ]Up [ ]IDown [ JFocus [ ]Toggle

[ Jthe name of the equipment at the facility where the  Erdsys TX
board will be tested

[ Jthe maximum clock frequency testable at the facility 9.8
where the board will be tested

[ Jthe maximum number of test points testable at the 200
facility where the board will be tested

>>>

KLAUS2 - a PWB Design Advisor (Testability)

Figure A.3: An example of the KLAUS2 interface

delimited by apostrophes is a long synonym which will be displayed in all output
given to users of the program®. Thus, it can be seen that this parameter represents
the facility where the board will be tested.

This parameter is a frame, as can be seen in statement 2, which defines the
application-specific domain test_facility referenced in statement 1. The statement
specifies that a test facility is represented by a frame defined by three fields. For each
field, its name, its long synonym and its domain are specified. In output given by the
system to users, the long synonyms of the fields in a frame are concatenated with the
long synonyms of the frame-valued parameters. This can be seen in Figure A.3, where
the fields of the the _test_facility parameter are presented in a scrollsheet; thus,
for example, the field the_test_facility.maxfreq is known as the maximum clock
frequency testable at the facility where the board will be tested.

The fields of a test_facility frame, as specified in statement 2, have scalar
application-specific domains. These domains are defined in statements 3, 4 and
5. Notice that, while scalar domains may be defined extensionally by listing each
possible value (statement 3), they may also be defined intensionally by specifying an
appropriate logical formula (statements 4 and 5). (Notice the use of long synonyms
in statement 3; internally, the system will use values such as erdsys, but the user
will see names like Erdsys TX — see Figure A.3.)

Frame-based inheritance is illustrated in statements 6, 7, 8, 9, 10 and 11. State-
ment 6 defines the frame domain component; for simplicity, only three fields are

given. Notice, from statement 7, that there can be several different types of com-

3These synonym strings are optional and, if they are absent, the actual parameter names will
appear on the user-interface — this is the case in Chapter 4 and Chapter 5.
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ponent. By using inheritance, frames for these different types of component can be
defined in terms of the generic component frame. In statement 8, for example, it is
specified that an osc_crystal frame, which is used to represent a crystal oscillator,
is a component frame which has the value crystal in its type field and which also
has an additional field, freq, that represents the frequency at which the crystal os-
cillates. In statement 9, a divider frame, which is used to represent a frequency
divider, is specified to be a component frame in which the type field has the value
divider and which has several other fields — these additional fields are not specified
here, however. A cpu frame is defined similarly in statement 10, and a resistor

frame in statement 11.

A.4.2 Modelling with Constraints

In a frame-based constraint network, constraints can be used to represent the inter-
dependencies that exist within the frame-based model of a product, and the life-cycle
interdependencies that exist between the product and the life-cycle model.

Consider statement 12 in Figure A.2. This is a universally quantified constraint
which specifies that the number of test-points required by each component on the
board (which, for the purposes of this discussion, is taken as being equal to the num-
ber of leads on the component) must be recorded in a list. This list is referenced in
statement 13, which states that the total number of test-points in the circuit being
designed is the sum of the numbers of test-points required by the individual compo-
nents. Statement 14 then expresses an important life-cycle interdependency between
this total number of test-points and the intended test-facility. This constraint states
that the total number of test-points on the board must be less than or equal to the
maximum number of test-points testable at the facility where the board is being
tested.

The two parameters 1st_tpoints and num_tpoints, referenced in statements 12
and 13, are declared in statements 15 and 16 . Statement 15 illustrates another
feature of the language — its ability to handle set-valued parameters. Indeed, the
constraint uses a special kind of set, a bag, in which multiple copies of the same
member are treated as distinct. This is needed in order to deal with the fact that
different components can have the same number of leads.

While the life-cycle interdependency expressed in statement 12 required universal
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quantification, statement 17 shows a constraint which requires the other form of
quantification in logic, that is, existential quantification. Statement 17 specifies that
the cheapest tester available should be used, by specifying that there should not be
any tester available which is capable of testing the board and which costs less than the
chosen tester. This constraint is worth further discussion, because it illustrates usage
of other features of Galileo that are only available because the language provides the
full expressive power of the predicate calculus. This statement shows that while
Galileo provides generic predicates such as < and generic functions such as x, it also
allows application-specific functions and predicates to be used.

The meaning of any application-specific functions and predicates must be defined.
In Galileo, this can be done using either of the notions of extensional or intensional
definition from set theory. Consider, for example, statement 18 which defines the
meaning of the function cost. The meaning of a function is a set of mappings from
inputs to outputs. In statement 18, the meaning of cost is defined intensionally; the
total cost of using a tester is 1.8 times the direct cost of using the tester, which is
denoted by the function symbol price. There is a finite number of possible testers, so
the meaning of the price function is a finite set which can be defined extensionally.

Galileo allows extensional set definitions to be given either in the program text
or in an external database file. Statement 19, for example shows that the meaning
of the function price is defined by specifying that the set of pairs of values is in
the database file TSTRCSTS. (It was found, in application experiments, that tying
function and predicate definitions to database files is a very natural way of linking
design adviser systems to corporate relational databases.)

As with a function, the meaning of a predicate is also a set, which can also
be defined either extensionally or intensionally. In statement 20, the meaning of
the predicate satisfactory is defined by specifying an intensional formula which
uses universal quantification and two application-specific function symbols whose

meanings are defined in statements 21 and 22.

A.4.3 Free-Logic and Non-Parametric Design

In parametric design, the overall architecture of the product and its life-cycle have
already been determined and the task is merely one of establishing appropriate values

for the parameters of this architecture. Design is not this simple. Parametric design
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must be accompanied by product structuring, in which the structure of the product
or its life-cycle environment is determined.

Using the notion of conditional existence from free logic [98] enables a constraint
processing inference engine to deduce that, when certain conditions are true, addi-
tional parameters must be introduced into a constraint network [24]. Consider, for
example, statement 23. This is a universally quantified constraint which uses the no-
tion of conditional existence from free logic to specify that if a parameter of domain
component is used to represent a CPU, a communications controller or a digital
signal processor device, then the parameter must have an extra slot to represent the
oscillator which drives the device and must have a further slot to represent a pullup
resistor. The exists tokens in this constraint are free logic existence specifiers, not
existential quantifiers.

A more interesting usage of free logic appears in statement 24, which also uses
modal logic. The else connective in this constraint comes from modal logic. The
constraint specifies that, ideally, every crystal should oscillate at a frequency which
does not exceed the maximum clock speed that is testable by the test facility. How-
ever, it then goes on to say that if this is not possible, then any crystal which
oscillates at a faster frequency must have an ancillary divider circuit. Here, we see
the constraint network extending itself by introducing a new parameter when a cer-
tain condition arises. This new parameter represents a new component, the necessity
of whose existence has been inferred by the system. (This effect of this constraint

will be seen in Section A.5.)

A.4.4 Optimization

Statement 17 used existential quantification to require that the cheapest possible
tester be used. Since there is a finite number of possible testers, this statement
illustrated optimization of a parameter which ranged over a discrete domain. Galileo
also supports optimization of parameters which range over infinite domains, provided
these domains are discretized into finite numbers of equivalence sets.

Consider, for example, statement 32. This specifies that the total power con-
sumed by the board (see statements 25 through 28) should, ideally, not exceed the
goal power consumption (statement 29), that it should certainly not exceed the max-

imum acceptable power consumption (statement 30), and that between those two
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values the optimization tolerance is equal to a value called the power consumption

discrimination increment (statement 31).

A.4.5 Prioritization

By default, all constraints in a Galileo program are treated as being equally im-
portant, and are treated as hard constraints, that is, as constraints that must be
satisfied. However, we can also specify that some constraints in a program are soft.
The meaning of a constraint being soft is that the constraint should, if possible, be
satisfied but, if there ever arises a situation in which violating the constraint would
relieve an over-constrained situation, then it may be ignored. We can have as many
soft constraints as we want in a Galileo program and can assign them different levels
of hardness or priority. Constraint hardness is a number in [0,1], with 1 being the
default and 0 being the hardness of a constraint that has been disabled completely.
Statement 34 is a second-order constraint which specifies that the hardness of the

first-order constraint in statement 33 is 0.9.

A.4.6 Multiple Perspectives and Interfaces

Galileo enables constraint networks to be divided into (possibly overlapping) regions
called fields of view. A field of view is that region within a constraint network that
is currently important to a user interacting with the network. A field of view can
be either global or local. The global field of view consists of the entire constraint
network. A local field of view contains only a subnetwork. Each field of view contains
all the parameters that are of interest to the user, as well as all constraints which
reference these parameters.

A field of view can be defined by specifying the set of parameters which it con-
tains. In Figure A.2, for example, two of the fields of view that are provided by
the KLAUS2 application are defined. Statement 35 defines a configuration field
of view, which will be seen by a circuit designer, and specifies that it contains the
set of all parameters of domain component. Statement 36 defines a testability
field of view and specifies that its set of parameters contains just one parameter,

the_test_facility.
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A.4.7 Specifications and Decisions

Galileo programs are interactive. A user can augment the set of constraints in the
initial network that is specified in a program, by inputting additional constraints to
represent his design decisions. Thus, for example, if a test engineer decides to use an
Erdsys TX tester, he can indicate this decision by inputting the following equational
constraint: the_test_facility.name = erdsys. (Note that the test engineer would
not have to type this constraint — the desired decision can be input by using a mouse
to select appropriate options in a series of pull-up menus. Furthermore, because of
the system’s use of long synonyms, the engineer would think that he was entering the
following decision: the equipment at the facility where the board will be
tested = Erdsys TX. The test engineer need never know about such “unfriendly”
tokens as the_test_facility.name or erdsys.)

Decisions like the above selection of a tester are parametric design decisions.
A user can express architectural decisions by adding new parameters to the initial
network that is defined by the program. Thus, for example, a circuit designer in-
teracting with the KLAUS2 application can introduce new parameters to represent
various parts of his evolving circuit. To introduce a CPU, for example, he can ei-
ther introduce a parameter of domain component and specify that the type slot of
this parameter has the value processor, or he can achieve exactly the same result,
through frame-based inheritance, by introducing a parameter of domain cpu.

In Galileo, it can be specified which users of an application that supports multiple
fields of view are allowed to introduce new parameters and what classes of parameters
they are allowed to enter. Statement 37 of Figure A.2, for example, specifies that
users of the configuration field of view are allowed to introduce parameters of
domain component or of any domain (such as osc_crystal, divider, resistor or
cpu) that is a sub-class of the component domain.

One further point should be made on the representation of design decisions in
Galileo. Any syntactically well-formed Galileo constraint may be used to represent
a design decision. We are not restricted to equations of the form seen above in
the test engineer’s selection of test equipment. Any sentence, atomic, compound or
quantified, in first-order predicate calculus, including modal and free logic as well as

classical logic, can be used to represent a design agent’s decision.

173



A.4.8 Explanation

As well as specifying information by introducing new parameters and new constraints,
the user of a Galileo program can ask for information. He can, for example, ask for
the range of allowable values for any of the parameters in a network. He can also
ask for justifications for these ranges — whenever the range of allowable values for a
parameter is reduced by a constraint, the rationale for this reduction is noted by the
run-time system as a dependency record which can be accessed later for explanation
purposes. We will see an example of explanation in the example interaction in

Section A.5.

A.4.9 “What If” Design Reasoning

A user can always withdraw any constraint or parameter that he has added. Thus,
by introducing and withdrawing constraints and parameters, the user can investigate

“what if” scenarios.

A.5 An Example Interaction

To illustrate how programs written in Galileo support design, it will be shown how
the KLAUS2 application that we considered above supports interaction with two
members of the product development team and how it provides system-mediated
negotiation when these perspectives lead to conflicting decisions. This will be done
by considering an example scenario.

Several points deserve emphasis about this scenario. First, this scenario presents
only one of very many possible orders of interaction with KLAUS2. Second, it shows
only a few steps in this interaction.

In the following scenario, it is assumed that the project leader has set up a
database entry for a new project. The story is taken up when the test engineer, who
in this case is the first team member to make some decisions about this new project,
starts to interact with KLAUS2 about the project. Figure A.3 shows the interface
presented by KLAUS2 to the test engineer after he has selected the test equipment
to be used for the project. The largest window in this screen is a single-column
spreadsheet, or “scrollsheet,” in which each cell occupies one or more lines.

Figure A.4 shows the perspective of the circuit designer. This screen represents
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Jthe oscillator for the cpu
Jthe pullup resistor for the cpu

A crystal oscillator has been introduced

A pullup resistor has been introduced

>>>

KLAUS2 - a PWB Design Advisor (Circuit Designer)

Figure A.4: The perspective of the circuit designer.

the circuit after the designer has introduced a CPU, and KLAUS2 has used its
constraint information to induce automatically the need for an associated crystal
and pullup resistor (see statement 23 in Figure A.2), and the designer has decided

to accept these suggested components as part of his design.
Suppose that the designer, having accepted the crystal, specifies that it should
oscillate at 25 Mhz. Now, however, the following constraint in the KLAUS2 program

(statement 24 in Figure A.2) comes into play:

all X : osc_crystal(X)
implies X.freq =< the_test_facility.maxfreq else

exists(X.’an ancillary divider for’(a_d) : divider).

and, because 25 Mhz exceeds the maximum testable frequency of 9.8 Mhz specified
earlier by the test engineer (Figure A.3), the system introduces an ancillary divider
circuit for this oscillator. The result can be seen in Figure A.5, where KLAUS?2 is

suggesting that the new component on the screen should be added to the circuit.

|Help [ [File [ [New [ ]Utilities [ ]Search
]Up [ ]Down [ [Focus [ [Toggle

Jthe oscillator for the cpu
Jthe pullup resistor for the cpu

[
[
[ Jthe cpu
[
[
[ Jan ancillary divider for the oscillator for the cpu

>>> cpul.crystal.freq = 25

A divider has been introduced

>>>

KLAUS2 - a PWB Design Advisor (Circuit Designer)

Figure A.5: A divider has been introduced.

The designer is surprised by the introduction of this component, so he asks

KLAUS2 to justify it. In KLAUS2’s explanation (Figure A.6), the constraint given
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above, which introduced the component, is paraphrased in natural language; note
the use in this paraphrase of the natural language synonym “an ancillary divider
for” defined in the constraint for the field “a_d”. (The number (49) associated with
this constraint in the explanation is system-generated, to enable easy reference to

this constraint by the user.)

Justification
an ancillary divider for the oscillator for the cpu exists
because of the following constraint
(49) every crystal oscillator must satisfy the following:
ideally, the oscillation frequency of the crystal oscillator =<
the maximum frequency testable at the facility
where the board will be tested;
otherwise, an ancillary divider for the crystal oscillator
must exist and must be a frequency divider;
and because of the following parameter value(s):
the maximum clock frequency testable at the facility where
the board will be tested = 9.8;
the oscillation frequency of the oscillator for the cpu = 25.

the maximum clock frequency testable at the facility where the board will
be tested was established according to the perspective taken by
test engineers.

the oscillation frequency of the oscillator for the cpu = 25
because you said so.

Figure A.6: The justification for the existance of the divider.

Despite this justification, the designer decides to reject this ancillary component.
Now, however, the constraint which wanted to introduce the ancillary divider is
violated, leading to the message shown in Figure A.7.

Choosing among the suggestions offered in this message, the designer decides to
disable constraint (49). However, this constraint also refers to a parameter in the
test perspective, so the decision to disable the constraint must be accepted by the
test engineer. Whenever a user disables a constraint other than one he previously
asserted himself, he is required to enter a free-text explanation of his action, which
is saved for possible use in a design audit. These free-text explanations are also used
in system-mediated negotiation between users of different perspectives.

When the test engineer next logs into KLAUS2, he is told that a constraint of
interest to him was disabled by another user. Checking on this, he calls up the design
state from the database. The system tells him which constraint was disabled and

produces the free-text explanation given by the circuit designer.
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VIOLATION:
an ancillary divider for the oscillator for the cpu
should exist, but is prohibited.

SUGGESTIONS:
(1) Retract the constraint
(97) an ancillary divider for the oscillator for the cpu
should not exist.
(2) Disable the constraint
(49) every crystal oscillator must satisfy the following;:
ideally, the oscillation frequency of the crystal oscillator =<
the maximum frequency testable at the facility
where the board will be tested;
otherwise, an ancillary divider for the crystal oscillator
must exist and must be a frequency divider.
(3) Change the oscillation frequency of the oscillator for the ¢cpu.
(4) Request that, in the perspective taken by test engineers,
a change be made to
the maximum clock frequency testable at the facility where
the board will be tested.

Figure A.7: The violation message.

The test engineer decides that he is unwilling to allow this constraint to be dis-
abled because of the difficulty in testing that would result. However, to compromise,
he changes the test equipment to one which is able to handle a frequency of 25 MHz.
After making this change, the test engineer reactivates the disabled constraint (49).
Because of the higher frequency testable by the test equipment, the re-enabled con-
straint does not attempt to re-introduce an ancillary divider circuit, so no constraint
violation occurs. The test engineer saves the new design state and starts to work on
another project.

When the circuit designer next logs in, he is told that the test engineer has re-
enabled the constraint but, since the unwanted divider circuit has not reappeared,
the designer is content.

Suppose, however, that no such easy compromise was possible. For example,
the designer might have selected an oscillation frequency that exceeded even the
upper limit of the fastest available tester. In this case, the test engineer and designer
will successively disable and reenable their shared constraint (49), offering free-text
explanations to each other until one or the other gives way or appeals to the project
leader. In this case, the test engineer could give give way by deciding to build a
special divider test fixture; the circuit designer could give way by using a lower

oscillation frequency.
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Appendix B

Generic Design Concepts

This appendix presents the Galileo implementation of the various generic design
concepts used in this dissertation to support conceptual design. The implementation
of these concepts is discussed in detail in Chapter 4. Two Galileo modules are
presented in this appendiz. The first module is called generic_concepts.gal. The
second module is called comparison.gal. Both of these files contain the generic

repetoire of concepts that a company can build upon for their own design projects.

B.1 The contents of generic concepts.gal

The generic_concepts.gal module contains Galileo implementations of the various
generic concepts that are required to support reasoning during conceptual design.
These concepts provide a basis for a particular company to define a repetoire of
functions, design principles, design entities and evaluation functions that can be used
to develop new products based on technologies known to the company. This module
is organised as follows. Domain definitions and constraints quantified over these
domains are presented first, in alphabetical order of the domain names. Relation
definitions are then presented, followed by function definitions, both in alphabetical

order.
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29
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32
33
34

35
36
37
38

module generic_concepts.

domain embodiment

=::= ( hidden scheme name : string,
intended_function : func,

chosen_means
reasons

all embodiment (E):

can be_used_to_provide( E.chosen means, E.intended function ).

domain entity

=::= { E: means(E) and

: known_means,
: set of func_id ).

E.type = an_entity and

exists ( E.id :

all entity(E):
has_a_unique_id(E).

domain entity_id

=::= { I: positive integer(I) }.

domain func
=::= ( verb : string,
noun : string,
id : func_id

all func(F):
has_a_unique_id(F).

domain func_id
=::= { I: nonnegative

domain interface

integer(I) }.

=::= ( hidden scheme name : string,
entity_1 : entity_id ,
entity 2 : entity.id ).

all interface(I):

exists entity(E1), entity(E2):
I.entity_1 = E1.id and
I.entity_ 2 = E2.id and

is_in_the_same_scheme_as( I, E1 ) and
is_in_the_same_scheme_as( I, E2 ).

domain means

=::= ( hidden scheme name : string,

type
funcs_provided

: means_type,
set of func_id ).
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44
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95
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61
62
63
64
65

66
67
68
69
70

71
72
73

all means(M):
is_a_possible_behaviour_of ( M.funcs_provided, M ).

domain means_type
=::= { aprinciple, an entity }.

domain principle
=::= { P: means(P) and
P.type = a_principle }.

domain scheme
=::= ( scheme_name : string,
structure : embodiment ).

all scheme( S ):
is_the first_embodiment_in( S.structure, S.scheme_name ).

alldif scheme(S1), scheme(S2):
not ( S1.scheme_name = S2.scheme_name ).

relation can be_ used to_provide( known means, func )
=::= { (K,F): can simultaneously provide(X,Fs) and F in Fs }.

relation can_provide( set of func, string, set of func_id )
=::= { (B,Sn,IDs): Fs = functions identified by( Sn, IDs ) and
Fs subset B }.

relation causes( embodiment, embodiment )
=::= { (P,E): is_in the_same_scheme_as( P, E ) and
E.reasons = {P.intended_function.id} union P.reasons }.

relation contains_only one_entity with_the_id( string, entity_id )
=::= { (S5n,I): not existsdif entity(E1l), entity(E2):
is_in the_scheme(E1,Sn) and
is_in the_scheme(E2,Sn) and
I = El1.id and I = E2.id }.

relation contains_only one_func with the_id( string, func_id )
=::= { (Sn,I): not existsdif func(F1), func(F2):
is_in_the_scheme(F1,Sn) and
is_in_the_scheme(F2,Sn) and
I =Fl.id and I = F2.id }.

relation derives_from( entity, embodiment )

=::= { (M,E): is_directly used_for( M, E.intended function ) or
is_indirectly used for( M, E.intended function ) }.
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100
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103

104
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106
107

relation has_a unique_id( entity )
=::= { E: exists positive integer(I): I = E.id and
contains_only_one_entity with the_id( E.scheme_name, I) }.

relation has_a unique_id( func )
=::= { F: exists nonnegative integer(I): I = F.id and
contains_only_one_func_with the id( #parent_of (F).scheme_name, I) }.

relation is_a part_of( means, scheme )
=::= { (M,S): M.scheme name = S.scheme name }.

relation is_a_possible_behaviour_of( set of func_id, means )
=::= { (IDs,M): KM = known means of (M) and

can_simultaneously_provide( KM, B ) and

can provide( B, M.scheme name, IDs ) }.

relation is_a_reason_for( func, embodiment )
=::= { (F,E): F.id in E.reasons }.

relation is directly used for( means, func )
=::= { (M,F): is_in_the_same_scheme_as( M, F ) and
F.id in M.funcs provided }.

relation is_in the_same_scheme_as( embodiment, embodiment )
=::= { (E1,E2): El.scheme name = E2.scheme name }.

relation is_in_the_same_scheme_as( embodiment, func )
=::= { (E,F): E.scheme name = #parent_of ( F ).scheme name }.

relation is_in the_same_scheme_as( func, func )
=::= { (F1,F2): #parent_of( F1 ).scheme_name

= #parent_of ( F2 ).scheme name }.

relation is_in the_same_scheme_as( interface, means )
=::= { (I,M): I.scheme name = M.scheme name }.

relation is_in the_same_scheme_as( means, embodiment )
=::= { (M,E): M.scheme name = E.scheme name }.

relation is_in the_same_scheme_as( means, func )
=::= { (M,F): M.scheme name = #parent of ( F ).scheme name }.

relation is_in_the_same_scheme_as( means, means )
=::= { (M1,M2): Ml.scheme name = M2.scheme name }.

relation is_in the_scheme( embodiment, string )
=::= { (E,Sn): Sn = E.scheme_name }.
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relation is_in the_scheme( func, string )
=::= { (F,Sn): Sn = #parent_of (F).scheme_name }.

relation is_in the_scheme( means, string )
=::= { (M,Sn): S = M.scheme_name }.

relation is_indirectly_used_for( means, func )
=::= { (M,F): exists embodiment(E):
is_a reason_for( F, E ) and
is_ directly used for( M, E.intended function ) } .

relation is_the_first_embodiment_in( embodiment, string )
=::= { (E,Sn): is_in the scheme( E, Sn ) and
E.intended _function.id = 0 and
E.reasons = {} }.

relation must_be directly used for( means, func )
=::= { (M,F): is_in the_same_scheme_as( M, F ) and
F.id in !M.funcs_provided }.

relation provides_the _function( func, string, string )
=::={ (F,V,N): V = F.verb and N = F.noun }.

relation is_the_reason_for( func, embodiment )
=::= { (F,E): is_in the same scheme as( E, F ) and
F = E.intended_function and
E.reasons = {F.id} }.

relation is_used_to_embody_the functionality_of( means, embodiment )
=::= { (M,E): E.chosen means = known_means_of( M ) and
is_directly_used_for( M, E.intended function ) }.

function functions_identified by( string,
set of func_id ) -> set of func

=::= { (Sn,IDs) -> { F | exists func(F):
exists I in IDs: F.id

= I and
is_in_the_scheme(F,Sn) } }.

B.2 The contents of comparison.gal

The module comparison.gal contains a number of Galileo domains, relation and
constraint definitions that can be used to compare alternative schemes using a nu-
meric preference. These definitions provide a basis for using the principle of Pareto

optimality to compare a set of alternative schemes against a set of preference criteria.
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module comparison.

domain intention
=::= { minimal, maximal }.

domain preference
=::= ( value : real,
intent : intention ).

relation better_than( preference, preference )
=::= { (P1,P2): Pl.intent = minimal and

P2.intent = minimal and P1.value < P2.value,
(P1,P2): Pl.intent = maximal and
P2.intent = maximal and P1l.value > P2.value }.

alldif scheme(S1), scheme(S2):
not dominates( S1, S2 ).

relation dominates( scheme, scheme )

=::= { (81,82): improves on( S1, S2 ) and
not improves on( S2, S1 ) }.
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Appendix C

An Illustrative Example

This appendix presents all the Galileo code used in the toy running example related to
the design of a product which provides the function provide transport and which
exhibits a required set of physical properties. This example is discussed in detail in
Section 5.1. Aspects of the code presented here are also used as illustrative examples
in the discussion in Chapter 4. Two Galileo modules are presented. The first module,
called raletgh_knowledge.gal, can be regarded as a database of design knowledge
that can be used to design vehicles. The second module, called vehicle_spec.gal,
contains the full Galileo implementation of the specification for the required product.
Using these two modules in conjunction with the modules presented in Appendiz B,
designers can be supported in developing a set of alternative schemes to meet the

design specification for the product.

C.1 The contents of raleigh knowledge.gal

The raleigh knowledge.gal module can be regarded as a database of design knowl-
edge that can be used to design “leisure vehicles”. Using this module in conjunction
with the the vehicle_spec.gal module presented in Section C.2 and the modules
presented in Appendix B, designers can be supported in developing a set of alterna-
tive schemes to meet the design specification of the product. This module is organised
as follows. Domain definitions and constraints quantified over these domains are pre-
sented first, in alphabetical order of the domain names. Relation definitions are then

presented, followed by function definitions, both in alphabetical order.

184



w

(=2}

© 00

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

31
32

33
34

35
36

37
38

module raleigh knowledge.
import generic_concepts.

domain air_cushion

=::= { A: raleigh entity(4) }.

domain axle

=::= { A: raleigh entity(A) }.

domain bicycle
=::= { B: principle(B)
exists( B.el :
exists( B.e2 :
exists( B.e3 :
exists( B.e4 :
exists( B.e5 :

and
embodiment
embodiment
embodiment
embodiment
embodiment

N NV N

and
and
and
and
and

provides_the function( B.el.intended function,
’facilitate’, ’movement’ ) and
provides_the function( B.e2.intended function,
’provide’, ’energy’ ) and
provides_the function( B.e3.intended function,
’support’, ’passenger’ ) and
provides_the function( B.e4.intended function,

’change’,

’direction’ ) and

provides_the function( B.e5.intended function,
’provide’, ’support’ ) and
drives( B.e2, B.el ) and

supports( B.e5,
supports( B.e5,
supports( B.e5,
supports( B.e5,

domain chassis

B.el) and
B.e2) and
B.e3) and
B.e4) }.

=::= { C: raleigh entity(C) }.

domain chain

=::= { C: raleigh entity(C) }.

domain engine

=::= { E: raleigh entity(E) }.

domain frame

=::= { F: raleigh entity(F) }.

domain handlebar_assembly

=::= { H: raleigh entity(H) }.
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67
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69
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71
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domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

domain

harness

::= { H: raleigh entity(H) }.

known_means

a_saddle, a_chain, a_chassis,
an_engine, a_harness, an_air_

1= { an_axle, a_bicycle, a_skateboard, a_wheel_assembly,

a_steering assembly,
cushion, a_frame,

a_handlebar_assembly, a_molded_frame,

a_pedal_assembly, a_chain }.
mechanical_interface
exists( S.relationship

mechanical_relationship

molded_frame

::= { M: raleigh entity(P) }.

pedal_assembly

::= { P: raleigh entity(P) }.

raleigh _entity

::= { R: entity(R) and

exists( R.width : real )
exists( R.mass : real )
exists( R.material : rale
E.mass = mass_of( E ) }.

raleigh _interface

::= { I: interface(I) and

::= { S: raleigh interface(S) and S.type = mechanical and
: mechanical relationship ) }.

::= { controls, drives, supports }.

and
and
igh material ) and

exists( I.type : raleigh interface type ) }.

raleigh_interface_type

::= { spatial, mechanical }.

raleigh material

::= { cfrp, titanium, aluminium, s

saddle

::= { S: raleigh entity(S) }.

skateboard

::= { S: raleigh entity(S) }.

spatial_interface

teel }.

=::= { S: raleigh interface(S) and S.type = spatial and

exists( S.relationship :
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domain spatial_relationship

domain steering_assembly

=::= { S: raleigh entity(S) }.

domain wheel_assembly

all

all

all

all

all

all

all

all

all

=::= { W: raleigh entity(W) }.

embodiment (E) : E.chosen_means
lexists air_cushion( A ):
must_be_directly_used_for(

embodiment (E): E.chosen_means
lexists axle( A ):
must_be_directly_used _for(

embodiment (E) : E.chosen_means
lexists bicycle( B ):
must_be_directly_used for(

causes( E, B.el ) and
causes( E, B.e2 ) and
causes( E, B.e3 ) and
causes( E, B.e4 ) and
causes( E, B.eb5 ).
embodiment (E) : E.chosen_means

lexists chain( C ):
must_be_directly_used_for(

embodiment (E) : E.chosen_means
lexists chassis( C ):
must_be_directly_used_for(

embodiment (E) : E.chosen_means
lexists engine( En ):
must_be_directly_used for(

embodiment (E): E.chosen_means
lexists frame( F ):
must_be_directly_used _for(

embodiment (E) : E.chosen_means
lexists handlebar_assembly( H
must_be_directly_used_for(

embodiment (E) : E.chosen_means
lexists harness( H ):
must_be_directly_used_for(

::= { above, beside, under }.

= an_air_cushion implies

A, E.intended_function ).

an_axle implies

A, E.intended_function ).

a_bicycle implies

B, E.intended_function ) and

a_chain implies

C, E.intended_function ).

a_chassis implies

C, E.intended_function ).

= an_engine implies

En, E.intended_function ).

= a_frame implies

F, E.intended_function ).
a_handlebar_assembly implies

):
H, E.intended_function ).

= a_harness implies

H, E.intended_function ).
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139
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all

all

all

all

all

all

embodiment (E) : E.chosen_means
lexists molded frame( M ):
must_be_directly_used_for(

embodiment (E): E.chosen_means
lexists saddle( S ):
must_be_directly_used for(

embodiment (E): E.chosen_means
lexists skateboard( S ):
must_be_directly_used _for(

amolded_frame implies
M, E.intended_function ).
embodiment (E) : E.chosen means = a pedal_assembly implies

lexists pedal_assembly( P ):
must_be_directly_used_for(

P, E.intended_function ).

a_saddle implies

S, E.intended_function ).

a_skateboard implies

S, E.intended_function ).

embodiment (E) : E.chosen_means = a_steering assembly implies

lexists steering_assembly( S ):
must_be_directly_used_for( S, E.intended function ).

embodiment (E) : E.chosen means = a wheel assembly implies

lexists wheel assembly( W ):
must_be_directly used for( W, E.intended function ).

relation can simultaneously_provide( known means, set of func )

::= { (an_air_cushion,{F}):

provides_the function(
(an_axle,{F}):
provides_the_function(
(an_axle,{F1,F2}):
provides_the_function(
provides_the_function(
(a_bicycle,{F}):
provides_the_function(
(a_chasis,{F}):
provides_the_function(
(an_engine, {F}):
provides_the_function(
(a_frame,{F}):
provides_the_function(

(a-handlebar_assembly,{F}):

provides_the_function(
(amolded_frame,{F1,F2}):
provides_the_function(
provides_the_function(
(a_harness,{F}):
provides_the_function(
(a_pedal assembly,{F}):
provides_the_function(
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171
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175
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187
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189
190
191
192
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194
195
196

197
198

(a_saddle,{F}):

provides_the _function( F, ’support’, ’passenger’ ),
(a_skateboard,{F}):

provides_the_function( F, ’provide’, ’transport’ ),
(a_steering assembly,{F}):

provides_the function( F, ’change’, ’direction’ ),
(a_wheel assembly,{F}):

provides_the function( F, ’facilitate’, ’movement’ ) }.

relation drives( embodiment, embodiment )
=::= { (E1,E2): drives( { X | exists entity( X ):
derives from( X, E1 ) },
{ Y | exists entity( Y ):
derives_from( Y, E2 ) } ) }.

relation drives( set of entity, set of entity )
=::= { (E1s,E2s): exists El1 in Els, E2 in E2s:
drives( E1, E2 ) }.

relation drives( entity, entity )
=::= { (P,W): pedal assembly(P) and wheel assembly (W) and
is_in the_same_scheme_as( P, W ) and
lexists chain(C):
is_in_the_same_scheme_as( P, C ) and
lexists mechanical interface(M1):
Mi.entityl = P.id and
Mi.entity2 = C.id and
Ml.relationship = drives and
lexists mechanical_interface(M2):
M2.entityl = W.id and
M2.entity2 = C.id and
M2.relationship = drives }.

relation overlaps( entity, entity )
=::= { (E1,E2): is_in the _same_scheme_as( E1, E2 ) and

lexists spatial_interface(S):
is_in the_same_scheme_as( S, E1 ) and
S.entity_1 = E1.id and
S.entity_.2 = E2.id and
S.relationship = above or
S.relationship = under }.

relation recyclable( scheme )
=::= { S: all entity(E): is_in the_scheme(E,S) implies
recyclable(E) }.

relation recyclable( entity )
=::= { E: recyclable material( E.material ) }.
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199 relation recyclable material( raleigh material )
200 =::= { cfrp, aluminium, steel }.

201 relation supports( embodiment, embodiment )

202 =::= { (E1,E2):

203 supports( { X | exists entity( X ):

204 derives from( X, E1 ) },

205 { Y | exists entity( Y ):

206 derives_from( Y, E2 ) } ) }.

207 relation supports( set of entity, set of entity )
208 =::= { (E1s,E2s): exists F in Els: frame(F) and supports( F, E2s ) }.

209 relation supports( frame, set of entity )
210 =::= { (F,Es): all E in (Es-{F}): supports( F, E ) }.

211 relation supports( entity, entity )

212 =::= { (E1,E2): is_in the same scheme as( E1, E2 ) and
213 lexists mechanical_interface(M):

214 is_in_the_same_scheme_as( M, E1 ) and
215 M.entity_1 = E1.id and

216 M.entity_2 = E2.id and

217 M.relationship = supports }.

218 function known means_of( means ) -> known_means
219 =::= { M -> a bicycle: bicycle(M),

220 M -> a_skateboard: skateboard(M),

221 M -> a wheel _assembly: wheel assembly(M),

222 M -> a_saddle: saddle(M),

223 M -> a_chassis: chassis(M),

224 M -> a_steering assembly: steering assembly(M),
225 M -> an_engine: engine(M),

226 M -> a_harness: harness(M),

227 M -> an_air_cushion: air_cushion(M),

228 M -> a_frame: frame(M),

229 M -> a_handlebar_assembly: handlebar_assembly (M),
230 M -> a_molded_frame: molded_frame (M),

231 M -> a pedal_assembly: pedal_assembly(M),

232 M -> a chain: chain(M) }.

233 function mass_of( scheme ) -> real

234 =::= { S -> sum( { mass_of ( E ) | exists entity(E):
235 is.apart of( E, S) } ) }.

236 function mass_of( raleigh_entity ) -> real

237 =::= { E -> 2: E.material = cfrp,

238 E -> 3: E.material = titanium,

239 E -> 5: E.material = aluminium,

240 E -> 10: E.material = steel }.
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function number_of parts_in( scheme ) -> integer
=::= { S -> cardinality( { E | exists entity(E):
is_apartof( E, S) } ) }.

function width_of( scheme ) -> real
=::= { S -> width of ( { E | exists entity(E):
is_apart of (E, S) } ) }.

function width of( set of entity ) -> real
=::= { Es -> sum( { E.width | exists E in Es:
not exists E2 in Es:
overlaps( E2, E ) and
E2.width > El.width } ) }.

C.2 The contents of vehicle spec.gal

This module contains the full Galileo implementation of the specification for a prod-
uct which provides the function provide transport and which exhibits a required
set of physical properties. This constraint-based representation of the design specifi-
ciation has been developed from the informal set of design requirements described in
Section 5.1. This module is organised as follows. A domain definition is presented

first. Relation definitions are then presented, in alphabetical order.
module vehicle_spec.

import raleigh_knowledge.
import generic_concepts.
import comparison.

domain vehicle_scheme
=::= { S: scheme( S ) and
provides_the function( S.structure.intended function,
’provide’, ’transport’ ) and
recyclable(S) and
exists( S.width : real ) and

!S.width = width_of( S ) and
S.width =< 2.0 and

exists( S.mass : preference ) and
S.mass.intent = minimal and
IS.mass.value = mass_of( S ) and

exists( S.number of parts : preference ) and
S.number_of _parts.intent = minimal and
!S.number_of parts.value = number of parts_in( S ) }.
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19 relation has_better_mass_than( vehicle_scheme, vehicle_scheme )
20 =::= { (81,82): better_than( Si.mass, S2.mass ) }.

21 relation has better number of parts_than( vehicle_scheme, vehicle scheme )
22 =::= { (S1,82): better_than( S1.number of parts, S2.number_of parts ) }.

23 relation improves_on( vehicle scheme, vehicle_scheme )
24 =::= { (S1,82): has_better mass_than( S1, S2 ) or
25 has_better_number_of parts_than( S1, S2 ) }.
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Appendix D

An Industrial Case-Study

This appendiz presents all the Galileo code used in the industrial case-study carried
out in association with Bourns FElectronics Ireland. This case-study is discussed
in detail in Section 5.2. Two Galileo modules are presented. The first module,
called bourns_knowledge. gal, can be regarded as a database of design knowledge
about designing the type of contact involved in the case-study. The second module,
called contact_spec. gal, contains the full Galileo implementation of the specifica-
tion for the case-study product. Using these two modules in conjunction with the
generic_concepts.gal and comparison.gal modules, presented in Appendix B,
designers can develop a set of alternative schemes to meet the design specification

for the product.

D.1 The contents of bourns knowledge.gal

The bourns_knowledge.gal module can be regarded as a database of design knowl-
edge that can be used to design products at Bourns Electronics Ireland. Using this
module in conjunction with the contact_spec.gal module presented in Section D.2
and the modules presented in Appendix B, designers can be supported in developing
a set of alternative schemes to meet the design specification of the product. This mod-
ule is organised as follows. Domain definitions and constraints quantified over these
domains are presented first, in alphabetical order of the domain names. Relation
definitions are then presented, followed by function definitions, both in alphabetical

order.
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module bourns_knowledge.
import generic_concepts.

domain bourns_entity
=::= { R: entity(R) and

© 00 IO O i W

10

12

13
14
15

16
17

18
19

20
21

22
23
24

25
26
27

28
29

30
31
32
33
34
35
36
37
38
39

domain

domain

domain

domain

domain

domain

exists( R.width : real ) and
exists( R.height : real ) and
exists( R.length : real ) and
exists( R.mass : real ) and
exists( R.material : known_material ) and
exists( R.resistance : real ) and

R.mass = mass_of( R ) and

R.resistance = resistance of ( R ) }.

bourns_interface

::= { I: interface(I) and
exists( I.type : bourns_interface_type ) }.

bourns_interface_type

conducting strip

::= { C: conductor_entity(C) }.

conducting wire

::= { C: conductor_entity(C) }.

conductor_entity

::= { C: bourns_entity( C ) and
conductor material( C.material ) }.

electrical_interface
exists( S.relationship

electrical_relationship

::= { insulative, conductive }.

female modular_contact

= { F: principle(F) and
exists( F.el : embodiment )
exists( F.e2 : embodiment )
exists( F.e3 : embodiment )
exists( F.e4 : embodiment )

::= { spatial, physical, electrical }.

::= { S: bourns_interface(S) and S.type

and
and
and
and

= electrical and
: electrical_relationship ) }.

provides_the function( B.el.intended function,
’provide’, ’support’ ) and
provides_the function( B.e2.intended function,

’provide’,

194

’contact’
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40
41
42
43
44
45
46
47
48

49
a0
ol

92
23
o4
35
o6
57

28
29

60
61

62
63

64
65

66
67
68

69
70

71
72

73
74
75

76
7

domain

domain

domain

domain

domain

domain

domain

domain

provides_the function( B.e3.intended function,
>connect’, ’contact’ ) and
provides_the function( B.e4.intended function,

’facilitate’, ’external connection’ ) and

is_electrically connected to( B.e2, B.e3 ) and
is_electrically_connected_to( B.e3, B.e4 ) and
supports( B.el, B.e2 ) and

supports( B.el, B.e3 ) and

supports( B.el, B.e4 ) }.

known_material

::= { gold, palladium silver, palladium gold, platinum gold,

alumina96, alumina995, beryllia995 }.

known_means

1= { a_female modular_contact, a_precious_metal_contact,

a_substrate, amolded body, amachined body,
a_thickfilm_termination, a_male_contact,
a_conducting_strip, a_conducting wire,
a_metal_termination, a_thickfilm_conductor }.

machined_body

::= { C: substrate entity(C) }.

male_contact

::= { C: conductor_entity(C) }.

metal_termination

::= { C: conductor_entity(C) }.

molded_body

::= { C: substrate_entity(C) }.

physical_interface

::= { S: bourns_interface(S) and S.type = physical and
exists( S.relationship : physical_relationship ) }.

physical_relationship

::= { solder, epoxy, print, plate }.

precious_metal_contact

::= { C: conductor_entity(C) }.

spatial_interface

::= { S: bourns_interface(S) and S.type = spatial and
exists( S.relationship : spatial_relationship ) }.

spatial_relationship

::= { above, beside, under }.
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78
79

80
81
82

83
84

85
36

87
88
89

90
91
92

93
94
95
96
97
98
99

100
101
102

103
104
105

106
107
108

109
110
111

112
113
114

domain substrate

=::= { C: substrate entity(C) }.

domain substrate_entity

=::= { S: bourns_entity( S ) and
substrate material( R.material ) }.

domain thickfilm_conductor

=::= { C: conductor_entity(C) }.

domain thickfilm termination

all

all

all

all

all

all

all

all

=::= { C: conductor_entity(C) }.

embodiment (E) : E.chosen_means = a_conducting strip implies
lexists conducting strip( S ):
must_be directly_ used for( S, E.intended function ).

embodiment (E) : E.chosen_means = a_conducting wire implies
lexists conducting wire( W ):
must_be_directly_used _for( W, E.intended function ).

embodiment (E) : E.chosen means = a female modular contact implies
lexists female_modular_contact( F ):
must_be_directly used for( F, E.intended function ) and
causes( E, F.el ) and

causes( E, F.e2 ) and
causes( E, F.e3 ) and
causes( E, F.ed ).

embodiment (E) : E.chosen_means = amale_contact implies
lexists male_contact( M ):
must_be_directly used for( M, E.intended function ).

embodiment (E): E.chosen_means = amachined body implies
lexists machined body( M ):
must_be_directly used _for( M, E.intended function ).

embodiment (E) : E.chosen means = ametal_termination implies
lexists metal_termination( T ):
must_be_directly used for( T, E.intended function ).

embodiment (E) : E.chosen means = a molded body implies
lexists molded body( B ):
must_be_directly_ used for( B, E.intended function ).

embodiment (E) : E.chosen_means = a_precious_metal contact implies

lexists precious_metal contact( P ):
must_be directly used for( P, E.intended function ).
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115
116
117

118
119
120

121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151

152
153
154
155

all embodiment(E): E.chosen means = a_substrate implies
lexists substrate( S ):
must_be_directly_used _for( S, E.intended function ).

all embodiment(E): E.chosen means = a_thickfilm conductor implies
lexists thickfilm_conductor( T ):
must_be_directly used for( T, E.intended function ).

all embodiment(E): E.chosen means = a thickfilm termination implies
lexists thickfilm termination( T ):
must_be directly used for( T, E.intended function ).

relation can_simultaneously_provide( known means, set of func )

=::= { (a_female modular_contact,{F}):
provides_the _function(F, ’provide’,’structured contact’),
(a_male_contact,{F}):
provides_the function(F, ’provide’,’structured contact’),
(a_substrate,{F}):
provides_the_function(F, ’provide’, ’support’),
(amolded body,{F}):
provides_the _function(F, ’provide’,’support’),
(a_machined body,{F}):
provides_the function(F, ’provide’,’support’),
(a_thickfilm termination,{F}):
provides_the _function(F,’facilitate’,’external connection’),
(a_conducting strip,{F1,F2,F3}):
provides_the_function(F1, ’provide’,’contact’) and
provides_the_function(F2,’connect’,’contact’) and
provides_the _function(F3,’facilitate’,’external connection’),
(ametal_termination,{F}):
provides_the function(F,’facilitate’,’external connection’),
(a_precious metal contact,{F}):
provides_the _function(F, ’provide’,’contact’),
(a_thickfilm conductor,{F1,F2}):
provides_the function(F1, ’provide’,’contact’) and
provides_the _function(F2,’connect’,’contact’),
(a_conducting wire,{F}):
provides_the _function(F,’connect’,’contact’) }.

relation conductor_material( known material )
=::= { gold, palladium silver, palladium gold, platinum gold }.

relation end to_end stackable( scheme )
=::= { S: exists substrate_entity(E):
is_apart of ( E, S ) and
E.length = 2 * S.contact pitch }.
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156
157
158
159
160
161

162
163
164

165
166
167
168
169
170
171

172
173

174
175
176
177
178
179

180
181
182
183

184
185

186
187
188
189
190
191
192

193
194
195

relation

relation

relation

relation

relation

relation

relation

relation

function

is_electrically_connected to( embodiment, embodiment )
{ (E1,E2):
is_electrically_connected_to( { X | exists entity( X ):
derives from( X, E1 ) },
{ Y | exists entity( Y ):
derives from( Y, E2 ) } ) }.

is_electrically connected to( set of entity, set of entity )
{ (E1s,E2s): exists El1 in Els, E2 in E2s:
is_electrically_connected_to( E1, E2 ) }.

is_electrically_connected_to( entity, entity )
{ (E1,E2): E1 = E2 and conductor_entity(E1l),
(E1,E2): is_in the_same_scheme_as( E1, E2 ) and
lexists electrical_interface(E):
E.entityl = El1.id and
E.entity2 = E2.id and
E.relationship = conductive }.

substrate_material ( known_material )
{ alumina96, alumina995, beryllia995 }.

supports( embodiment, embodiment )
{ (E1,E2):
supports( { X | exists entity( X ):

derives from( X, E1 ) },
exists entity( Y ):
derives_from( Y, E2 ) } ) and

[y

supports( set of entity, set of entity )

{ (E1s,E2s): exists E in Els:
substrate_entity(E) and
supports( E, E2s ) }.

supports( substrate_entity, set of entity )
{ (8,Es): all E in (Es-{S}): supports( S, E ) }.

supports( entity, entity )
{ (E1,E2): E1 = E2,
(E1,E2): is_in the_same_scheme_as( E1, E2 ) and
lexists physical interface(P):
is_in_the_same_scheme_as( P, E1 ) and
M.entity_1 = E1.id and
M.entity_2 = E2.id }.

contact_to_solder_resistance_of( scheme ) -> real

{ 8 -> sum( { E.resistance | exists conducting entity(E):
is_a part of ( E, S ) }.
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196 function density_of( known material ) -> real
197 =::= { M -> 2: substrate material(M),
198 M -> 4: conductor_material(M) }.

199 function known_means_of( means ) -> known_means

200 =::= { M -> a female modular contact: female modular contact(M),
201 M -> amale contact: male_contact(M),

202 M -> a precious_metal contact: precious_metal _contact(M),
203 M -> a_substrate: substrate(M),

204 M -> amolded body: molded_body (M),

205 M -> a machined body: machined body(M),

206 M -> a_thickfilm_termination: thickfilm_termination(M),
207 M -> a_conducting_strip: conducting strip(M),

208 M -> ametal_termination: metal_termination(M),

209 M -> a_thickfilm_conductor: thickfilm_conductor (M),

210 M -> a_conducting wire: conducting wire(M) }.

211 function mass_of( scheme ) -> real

212 =::= { S -> sum( { mass_of ( E ) | exists entity(E):
213 is_.apart of (E, S ) } ) }.

214 function mass_of( bourns_entity ) -> real

215 =::= { E -> density of ( E.material )

216 * E.length * E.width * E.height }.

217 function power_consumption of( scheme ) -> real
218 =::= { S -> S.contact_to_solder _resistance * S.current * S.current }.

219 function resistance_of( bourns_entity ) -> real
220 =::= { E -> resistivity_of( E.material ) * E.length
221 / ( E.width * E.height ) }.

222 function resistivity_of( known material ) -> real

223 =::= { gold -> 0.005,
224 palladium_silver -> 0.03,

225 palladium_gold -> 0.05,

226 platinum gold -> 0.05,

227 alumina96 -> 1.0E14,
228 alumina995 -> 1.0E14,
229 beryllia995 -> 1.0E14 }.

D.2 The contents of contact spec.gal

This module contains the full Galileo implementation of the specification for the
industrial case-study product discussed in Chapter 5. This constraint-based repre-

sentation of the design specificiation has been developed from the informal set of
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design requirements described in Section 5.2. This module is organised as follows.

A domain definition is presented first. Relation definitions are then presented, in

alphabetical order.

module contact_spec.

import bourns_knowledge.
import generic_concepts.
import comparison.

domain contact_scheme

=::= { S:

relation

relation

relation

relation

scheme( S ) and
provides_the function( S.structure.intended function,
’provide’, ’structured contact’ ) and
exists( S.contact_pitch : real ) and
S.contact_pitch = 2.54 and
exists( S.current : real ) and
S.current = 3 and
exists( S.power_consumption : preference ) and
S.power_consumption.intent = minimal and
IS.power_consumption.value
exists( S.contact_to_solder resistance : preference ) and
S.contact_to_solder _resistance.intent = minimal and
!S.contact_to_solder_resistance.value

= contact_to_solder_resistance_of( S ) and
exists( S.mass : preference ) and
S.mass.intent = minimal and
IS.mass.value = mass of( S ) and
end_to_end stackable( S ) }.

has_better_contact_solder_resistance_than( scheme, scheme )
{ (51,82): better_than( Si.contact_solder_resistance,

S2.contact_solder_resistance ) }.

has_better_mass_than( scheme, scheme )
{ (51,82): better_than( Sil.mass, S2.mass ) }.

has better_power_consumption than( scheme, scheme )
{ (81,82): better_than( Si.power_consumption,

S2.power_consumption ) }.

improves_on( scheme, scheme )

=::= { (51,82): has_better_power_consumption than( S1, S2 ) or

has_better_contact_solder_resistance_than( S1, S2 ) or

has better mass than( S1, S2 ) }.

200
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