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Summary. In many practical applications users often find it difficult to articulate their con-
straints. While users can recognize examples of where a constraint should be satisfied or vio-
lated, they cannot articulate the constraint itself. In these situations we would like the computer
to take an active role in acquiring the user’s constraints. In this paper we present an approach
to interactive constraint acquisition based on techniques from the field of machine learning.
During interactive constraint acquisition we would like to employ a strategy which minimizes
the dialog length between the user and the computer. In this paper, we compare a number of
different heuristics for interactive query generation. We demonstrate that the interactive strat-
egy used to acquire constraints depends on the topology of the hypothesis space and the degree
to which the human user is being helpful.
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1 Introduction

In many practical applications users find it difficult to articulate their constraints.
While users can recognize examples of where a constraint should be satisfied or
violated, they cannot articulate the constraint itself. For example, a customer may be
trying to specify a constraint to an engineer, without being able to use the correct
engineering terms for the relevant concepts.

Recently, researchers have become more interested in techniques for solving
problems where users have difficulties articulating constraints. Freuder and Wallace
have considered suggestion strategies for applications where a user cannot articulate
all constraints in advance, but can articulate additional constraints when confronted
with something which is unacceptable [2]. However, that work assumes that the user
can actually articulate each of the constraints when required. In essence their ap-
proach is model focussed, in the sense that they are concerned with acquiring a par-
tial model of the user’s CSP which is sufficient to be able to find a solution that
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the user would find acceptable. Padmanabhuni et al. have proposed a framework for
learning constraints [6]. However, they do not show how negative (unacceptable)
examples can be handled by their approach. Rossi and Sperduti have studied the
utility of using inductive learning, through the application of gradient descent tech-
niques, for acquiring global and local preferences in the context of interactive soft
constraint solving [7]. Their approach assumes that the constraints of the problem
are known but that the local and global preferences are not. Freuder and O’Sullivan
have begun studying the interactive acquisition of tradeoff constraints in interac-
tive constraint-based configuration [1]. Their approach focuses on generating con-
straints which model tradeoffs between variables in problems which have become
over-constrained during a interactive configuration session. Again, while some con-
straints in the problem are being acquired, it is assumed that the user can accurately
articulate constraints, and that the issue is how to remove over-constrainedness in
a model. Finally, a preliminary report on the research reported here has also been
presented [5]. Therefore, while constraint acquisition, in one sense or another, is re-
ceiving some attention, there is a lack of work on techniques which can support the
acquisition of individual constraints necessary to model the user’s problem. It is this
gap in the research which the work reported here is beginning to address.

The remainder of the paper is organized as follows. In Section 2 the model of
interaction which we base our experiments is presented. Section 3 presents the set of
query generation strategies that we consider here. Section 4 presents the results of
our experiments. In Section 5 some brief concluding remarks are made.

2 A Model for Interactive Constraint Acquisition

In this paper we present an approach to interactive constraint acquisition based on
techniques from the field of machine learning. In our system, constraint acquisition
is modelled as search through an “hypothesis space” of constraints over which a
general-to-specific ordering is explicitly known, or is implicit in its representation.
Examples provided by the user can be used to identify a version space ([3]) of con-
straints that the user could be attempting to articulate. The system then attempts to
generalize the user’s examples by choosing an hypothesis from the current version
space and attempting to validate it. This attempt at generalization involves proposing
a qualifying example (a query) to the user based on the the candidate hypothesis.
If the qualifying example is accepted by the user, the system attempts to generalize
again. An accepted qualifying example is implicitly positive and is therefore used
to further refine the version space for the constraint. Generalization continues until
either the version space for the user’s constraint has been reduced to a single hy-
pothesis, or an example has been proposed to the user which he rejects. A rejected
example is implicitly negative. Therefore, these negative examples are also used to
further refine the version space for the constraint. If the user rejects an example he
is invited to provide another positive example if one is available. The process termi-
nates once the version space has converged upon a single hypothesis.
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3 Generalization Strategies

In the work presented here, generalization is performed interactively through the
computer’s generation of a qualifying question (a query) and presenting it to the
user. Mitchell [4] suggests that the optimal query generation strategy to adopt when
learning using version spaces is one that involves generating instances that satisfy
exactly half of the hypotheses in the version space. For the purposes of this paper we
will refer to this strategy as 50/50. Given that we are concerned with the interactive
acquisition of constraints, one of the key metrics that is relevant to us is the total
number of interactions with the user (the dialog length). Obviously, we would wish
this number to be minimal. Therefore, query generation strategies which have the
potential to minimize the length of the interaction (dialog) with the human are of
significant value. One could imagine that in the real-world the difference between a
user using an interactive constraint acquisition system and abandoning it maybe their
lack of tolerance of one more interaction.

Therefore, it is worthwhile posing the question: does the combination of acqui-
sition problem, user profile and version space topology have an effect on the perfor-
mance of different query generation strategies? In particular, can we tailor our query
generation strategy so that the total number of interactions with the human user is
minimized? The query generation strategies that we have studied are: (a) 50/50 – our
baseline case, (b) Least Generalization (Random), (c) Least Generalization (Max-
imum Connectivity), (d) Least Generalization (50/50) and (e) Random Choice. We
outline the differences below:

50/50 (Baseline case) – This heuristic represents the conventional wisdom in the
machine learning field and generates queries which satisfy half of the hypothe-
ses in the current version space. This is the best known general-purpose query
generation strategy for version space learning.

Least Generalization (Random) – One disadvantage with the previous strategy is
that while it is based on a sound principle, it can give rise to the generation
of queries that are difficult for the user to explain from the perspective of per-
spicuity. Therefore, it may be worthwhile to use strategies that generate queries
which the user would regard as “logical” generalizations. The Least Generaliza-
tion (Random) strategy generates a query at random from the set of examples
that could be used to qualify a minimally generalized hypothesis.

Least Generalization (Maximum Connectivity) – This strategy selects a query
whose set of generalizations is maximal. This is a risky strategy since it relies
on a negative response to the query to significantly reduce the size of the version
space.

Least Generalization (50/50) – This strategy attempts a least generalization step
based on the query which reduces the version space by a similar amount regard-
less of whether it is accepted or rejected.

Random Choice – This strategy selects a query at random.
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4 Evaluation

The objective of our evaluation was to compare the length of dialog (number of in-
teractions) between the user and computer required to acquire a constraint. The eval-
uation was performed by varying (a) the topology of the original hypothesis space
and (b) the extent to which the user was trying to be helpful.

We studied two alternative hypothesis space topologies. Each topology was pa-
rameterized with a single integer value representing the number of atomic examples
that formed the vocabulary of the interaction. Figure 1 presents the hypothesis-space
topologies used for the purposes of our evaluation. We will refer to the topology
illustrated in Figure 1(a) as the tree topology, while we will refer to the topology
illustrated in Figure 1(b) as the lattice topology.

More Specific

More General

(a) (b)

Fig. 1. The hypothesis space topologies used in our evaluation: (a) the tree topology and (b)
the lattice topology. Note that we do not show the trivially most specific case, where nothing
is acceptable.

For the purposes of our experiments, we developed an hypothesis-space based
on the tree topology having 64 example nodes, giving a total of 127 possible con-
straints. We also generated an hypothesis space based on the lattice topology having
15 example nodes, giving a total of 120 possible constraints.

The extent to which the user was trying to be helpful was modelled as the number
of examples that he would give to the computer when user-specified examples were
required. An unhelpful user gave a single example to the computer, while a helpful
user gave a randomly chosen subset of the examples that exemplify the constraint
being articulated. This is a reasonable approach to adopt since the user must be able
to present at least one example of the constraint, but may be able to provide more
than one in attempting to be helpful.

In the context of the hypothesis space based on the tree topology we compared
the 50/50 and Least Generalization (Random) strategies. The other two variants of
the Least Generalization strategy, namely the Least Generalization (Maximum Con-
nectivity) and Least Generalization (50/50) would behave in exactly way as Least
Generalization (Random) the context of this hypothesis space topology, since there
is never a situation where a principled choice could be made between alternative
queries. In the context of the lattice topology, all strategies were compared.
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The model of interaction used in the evaluation was based on that described in
Section 2. Each experiment involved counting the number of interactions, between
the simulated user and our constraint acquisition system, required to acquire con-
straints from each of the hypothesis spaces described above. The number of interac-
tions (dialog length) was computed as the sum of the number of interactions used for
user-specified examples and the number of interactions for system-generated queries.
Since we are concerned with reducing the length of the dialog between the user and
computer, we acquired each constraint in each hypothesis space, recording the total
number of interactions required to acquire it and its depth in the hypothesis space.
Depth, in this context, is a measure of the generality of the constraint. The more gen-
eral the constraint, the deeper it is in the hypothesis space. The comparison presented
below is based on averages over 50 runs of each experiment. In all the graphs, the
x-axis represents the depth in the hypothesis space of the constraint being acquired.

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

nu
m

be
r 

of
 to

ta
l i

nt
er

ac
tio

ns

depth of target concept in hypothesis space

 50/50 
 Least Generalisation 

 Random 

Fig. 2. Comparison of strategies on the tree topology when the user is not being helpful.

Figure 2 illustrates the average number of interactions required to acquire con-
straints at various depths in the hypothesis space. In this scenario, the hypothesis
space is a (binary) tree and the user is not being helpful, only giving a single exam-
ple at each point that a user-specified example is sought. It can clearly be seen that
by far the best strategy to adopt is 50/50. However, the Least Generalization strategy
performs well for less general constraints.

Figure 3(a) again illustrates the average number of interactions required to ac-
quire constraints at various depths in the hypothesis space. In this scenario, the only
change over that illustrated in Figure 2 is that we have a lattice topology. Again,
from Figure 3(a), it can be seen that the best strategy across the entire version space
is 50/50. However, for constraints which are less general, the Least Generalization
strategies perform best.

Figure 3(b) presents a comparison of the the dialog lengths of each of the strate-
gies in Figure 3(a), which shows the relative saving of the various strategies over
50/50. On this graph, all points with a value greater than 1 represent an improve-
ment over the 50/50 baseline strategy. It is clear to see that the Least Generalization
strategies perform very well for less general constraints.
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(a) Dialog Length (b) Comparison against the 50/50 strategy

Fig. 3. Comparison of strategies on the lattice topology when the user is not being helpful.

Figure 4 again illustrates the average number of interactions required to acquire
constraints at various depths in the hypothesis space for a tree topology. The user
in this scenario is more helpful than in the previous two scenarios. Here the user
presents a random set of examples. It can be seen clearly that the best strategy across
the entire hypothesis space is Least Generalization. This is a significant improve-
ment over the scenario illustrated in Figure 2. It is clear evidence that the choice of
generalization strategy can be dramatically informed by knowledge of the nature of
the interaction with the user, in particular the degree to which he is helpful.
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Fig. 4. Comparison of strategies on the tree topology when the user is being helpful.

Finally, Figure 5(a) illustrates the average number of interactions required to ac-
quire constraints at various depths in the hypothesis space for a lattice topology.
Again the user in this scenario is helpful. It can be seen clearly that while 50/50
performs consistently well across the entire hypothesis space, the best strategy is
again based on Least Generalization. The improvement that these heuristics offer
over 50/50 can be seen more clearly in Figure 5(b), which shows the relative saving
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of the various strategies over 50/50. At almost every depth, the Least Generaliza-
tion (50/50) strategies either save on interactions over the 50/50 approach, or closely
follow it. This, again, is evidence that the choice of generalization strategy can be
dramatically informed by knowledge of the nature of the interaction with the user. In
general it can be seen that strategies based on Least Generalization are more power-
ful than 50/50 on constraints which are more specific in the version space and when
the user is being helpful, perform competitively across the version space.
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Fig. 5. Comparison of strategies on the lattice topology when the user is being helpful.

In order to get an indication of the magnitude of these savings, Table 1 presents
a comparison of the average savings in the learning rates for all constraints for each
of the generalization strategies over the 50/50 baseline. It can be seen that on the
average the Random strategy never beats 50/50, regardless of the type of user from
whom we are acquiring constraints. However, the performance of the variants of the
Least Generalization strategy are interesting.

Table 1. Comparison of learning rates against baseline

Heuristic Tree Lattice Tree Lattice
One Ex. One Ex. Multiple Ex. Multiple Ex.

Least Generalization -26% -27% 21% 10%
Least Generalization + 50-50 - -22% - 12%
Least Generalization + Max Conn. - -33% - 8%
Random -11% -5% -19% 0%

While there was no benefit, on the average, from using a Least Generalization
strategy when the user is not being helpful, once the user became helpful, there was
a marked improvement in the performance of these strategies. While, on the average
we can see that the benefit is not large, we have seen above that Least Generation
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strategies are best for more specific constraints. We can also see from Table 1, that on
tree-structured hypothesis spaces, a helpful user coupled with a Least Generalisation
query strategy can give good reductions in dialog length. While acknowledging the
general purpose power of the 50/50 strategy, we have some evidence to hypothesise
that there are circumstances when it is worthwhile tailoring the query generation
strategy of the acquisition system based on the degree to which the user (teacher) is
being helpful, the topology of the hypothesis space and the generality of the target
constraint.

5 Conclusions

The work presented in this paper is concerned with interactive constraint acquisition.
In this paper, we have compared a number of different heuristics for query generation
for interactive constraint acquisition. We have demonstrated that the choice of gen-
eralization strategy is closely related to the degree to which the user is being helpful
and version space topology. Future work will address the utility of hybrid strategies
for query generation for constraint acquisition. In addition, we will focus on learn-
ing disjunctive constraints and also, more importantly, sets of constraints. While in
this paper we have compared a helpful teacher with one which is more helpful, a
further investigation focused on how the teachers ability to provide good examples
can affect the acquisition process needs to be undertaken. Such a study would more
formally study the interaction between an intelligent learner with teachers of varying
abilities and, in particular, study whether skill is more important than helpfulness.
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