
Reformulating Positive Table Constraints
using Functional Dependencies

Hadrien Cambazard and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard|b.osullivan}@4c.ucc.ie

Abstract. Constraints that are defined by tables of allowed tuples of assignments
are common in constraint programming. In this paper we present an approach to
reformulating table constraints of large arity into a conjunction of lower arity con-
straints. Our approach exploits functional dependencies. We study the complexity
of finding reformulations that either minimize the memory size or arity of a con-
straint using a set of its functional dependencies. We also present an algorithm to
compute such reformulations. We show that our technique is complementary to
existing approaches for compressing extensional constraints.

1 Introduction

Constraint satisfaction techniques are ubiquitous in many practical problem-solving
contexts [20]. Constraints can either be defined intensionally, as expressions or global
constraints, or extensionally as tables of allowed or forbidden tuples of values. In this
paper we focus on table constraints that are defined in terms of allowed tuples, which
are often referred to as positive table constraints. Most constraint toolkits, e.g. ILOG
Solver and Choco, provide support for specifying such constraints. Table constraints
occur “naturally” in many application domains, such as product configuration where
data is available from databases, spreadsheets or catalogues [13]. Also, naive users of
constraint toolkits often find it convenient to use table constraints rather than more ap-
propriate models using global constraints and other advanced features.

While table constraints might be easy to specify, they suffer from three disadvan-
tages from a computational point of view. Firstly, table constraints are propagated with
algorithms such as GAC-SCHEMA [4] with running times that are proportional to the
number of tuples allowed by the constraint, which is exponential in its arity. Secondly,
when a set of table constraints is inconsistent, we may be interested in characterising
the inconsistency by generating an explanation [5]. A typical form of explanation is a
minimal set of conflicting constraints. Large arity table constraints do not lend them-
selves to giving compact explanations because they might involve too large a subset of
the variables of the problem. Thirdly, the amount of space required to store a table con-
straint might be excessive since there can be redundant information copied many times
in the tuples of the constraint. Therefore, there is considerable motivation for looking at
techniques to automatically reformulate table constraints by either reducing their arity,
the number of tuples that define them, or the amount of space they require.

In this paper we study such a technique that exploits functional dependencies in the
constraint. In particular, we reformulate by eliminating functional dependencies and
computing equivalent conjunctions of lower arity constraints. We study the complexity
of the problem of finding a reformulation that either minimizes memory size or arity
based on a set of functional dependencies that hold on the constraint. We also pro-
pose an algorithm for computing such a reformulation. We show that this reformulation
technique is complementary to previous approaches to compactly representing table
constraints [6, 8, 10, 12, 19] by capturing quite a different structure in their tuples.

2 Background

A constraint satisfaction problem P is a triple P def= 〈X ,D, C〉, where: X is a finite set
of variables;D is a set of domains corresponding to the possible values of each variable;
and C is a set of constraints. Each constraint ci ∈ C is defined by a scope and a relation.
The scope denoted scope(ci) is an ordered subset of X and the relation, rel(ci), is a set
of tuples over scope(ci) that satisfy the constraint. The number of variables constrained
by ci, i.e. |scope(ci)|, is known as the arity of the constraint ci. A solution to P is an
assignment of all variables to a value of their domain that satisfy all the constraints of
the problem. We will moreover denote by sol(P) the set of all solutions of P .

In order to avoid confusion between the notion of a database relation, and the re-
lation of a constraint, we define the projection operator σ in the following. Let r be
a relation over a set of variables X and t, a tuple of r. The projection onto Z ⊆ X
of t, denoted t[Z], is the restriction of t to Z. The projection of r onto Z, denoted
σZ(r), is the set {t[Z]|t ∈ r}. σZ(c) denotes the corresponding constraint with a scope
Z ⊆ scope(c) and rel(σZ(c)) = σZ(rel(c)). σZ(c) is a relaxation of c, i.e. its set of
allowed tuples is obtained by projecting the set of allowed tuples of c onto Z.

Definition 1 (Constraint Reformulation). A reformulation ∆(c) of a positive table
constraint c is a set of relaxationsR def= {c1, . . . , ck} of c such that ∀ca, cb ∈ R, a 6= b,
scope(ca) * scope(cb).

Reformulations that give rise to conjunctions of constraints that are equivalent, i.e. have
the same set of solutions, are very important. We refer to such reformulations as lossless.

Definition 2 (Lossless Reformulation). Given a CSP P def= 〈X ,D, {c}〉 involving a
single constraint c, ∆(c) is a lossless reformulation of c if the CSP P ′ def= 〈X ,D, ∆(c)〉
is such that sol(P) = sol(P ′).

In contrast with earlier work, e.g. [9], our approach to computing lossless reformula-
tions of positive table constraints exploits the concept of functional dependencies in a
relation [11]. A functional dependency in a relation rel(c) is written as F : X → y,
whereX∪{y} ⊆ scope(c). A functional dependency states that if a pair of tuples in the
relation take the same values for the variables in X , they must also take the same value
for variable y. F : X → y is minimal if y is not functionally dependent on any subset
of X . It is said to be trivial if y ∈ X . Algorithms for finding the set of all minimal and
non-trivial dependencies that hold in a given relation are known [11].

Example 1 (Functional Dependencies in Constraints). Consider the following constraint:

ca(x1, x2, x3, x4)
def= {(0, 0, 0, 4), (1, 0, 0, 2), (2, 4, 1, 3), (0, 4, 2, 4), (2, 2, 3, 2)}.

The following minimal functional dependencies (among the seven that exist) hold in
ca: F1 : {x3} → x2,F2 : {x1, x2} → x3, and F3 : {x1, x2} → x4. The values of
x2 are uniquely determined by the value of x3 and the values of x4 and x3 depend,
similarly, only on the values taken by x1 and x2. The dependency {x2} → x3 does not
hold because value 4 for x2 does not determine the value of x3 (2 or 1). N

3 Reformulation based on dependencies

For the sake of simplicity, we will denote by Si the scope Xi ∪ {yi} of a dependency
Fi : Xi → yi. Moreover, we will say that Fi ⊂ Fj if and only if Si ⊂ Sj . Finally for
a set of dependencies δ, we define δ(S) = {Fi ∈ δ | Si ⊂ S}, the restriction of δ to
a scope S, i.e all the dependencies of δ that hold on this scope. A dependency can be
used to reformulate a constraint in the following way.

Definition 3 (Constraint Reformulation using a Functional Dependency). Let c be
a positive table constraint, F : X → y a functional dependency that holds on rel(c)
such that X ∪ {y} ⊂ scope(c). The reformulation of c, denoted ∆(c,F), using F is
defined by: ∆(c,F) = {σscope(c)−{y}(c), σX∪{y}(c)}.

Informally, a functional dependency is used to split the scope of a constraint into two
scopes by eliminating the functionally dependant variable y. For the sake of simplicity,
the notion of reformulation is extended to scopes with ∆(scope(c),F) = {scope(c)−
{y}, X∪{y}} and relations,∆(rel(c),F) = {σscope(c)−{y}(rel(c)), σX∪{y}(rel(c))}.

Example 2 (Constraint Reformulation using a Functional Dependency). Consider again
the constraint ca presented in Example 1. The original scope of ca is (x1, x2, x3, x4).
If we apply F3 : {x1, x2} → x4, this scope is split into (x1, x2, x3) and (x1, x2, x4),
in accordance with the procedure above. If we apply F1 : {x3} → x2 on the scope
(x1, x2, x3) we can split it into (x1, x3), (x2, x3), giving the lossless reformulation:
∆(ca, 〈F3,F1〉) = {{x3, x2}, {x1, x3}, {x1, x2, x4}}. N

Our reformulation strategy is related to decomposing database relations into Boyce-
Codd Normal Form (BCNF). However, we can often decompose relations further. Specif-
ically, we focus on minimal reformulations.

Definition 4 (Minimal Reformulation). Given a constraint c, the reformulation∆(c, δ)
obtained from a set of dependencies δ holding on rel(c) is said to be minimal if there
does not exist a set δ′ ⊂ δ such that the reformulation∆′(c, δ′) ⊂ ∆(c, δ) and∆′(c, δ′)
is lossless.

Example 3 (Minimal Reformulation). Consider the constraint scope c(x1, x2, x3, x4)
on which F1 : {x1, x4} → x3, F2 : {x1} → x2 and F3 : {x3} → x1 hold. The
following sequence of reformulations is produced by F1, F2, F3:

– ∆1(c,F1) = {{x1, x4, x3}, {x1, x2, x4}};
– ∆2(c, 〈F1,F2〉) = {{x1, x4, x3}, {x1, x2}, {x1, x4}};
– ∆3(c, 〈F1,F2,F3〉) = {{x1, x3}, {x3, x4}, {x1, x2}, {x1, x4}}.

The final reformulation, ∆3(c, 〈F1,F2,F3〉) is not minimal. In ∆2(c, 〈F1,F2〉), the
scope {x1, x4, x3} contains the scope {x1, x4} (the first constraint implies the other),
therefore the latter can be removed while still ensuring that the resultant reformulation
is lossless. In fact, the decomposition of {x1, x4, x3} that follows is itself lossless. A
minimal decomposition would, therefore, be {{x1, x3}, {x3, x4}, {x1, x2}}. N

While it is of paramount importance that decomposing a constraint into a conjunc-
tion of lower arity constraints does not unsoundly relax the problem, we may also be
concerned with how constraint propagation is affected. Unfortunately, achieving gen-
eralised arc consistency (GAC) [4, 15, 16] on the reformulation is not equivalent to
achieving GAC on the original constraint. Arc-consistency is preserved only in the case
of dependencies between pairs of variables.

Theorem 1 (Constraint Propagation on the Reformulation). Let ∆(c,F) be a re-
formulation of a constraint c using the functional dependency F : {x} → y holding on
rel(c). Achieving GAC on each ci ∈ ∆(c,F) is equivalent to achieving GAC on c.

The previous theorem holds because it lead to a Berge-acyclic reformulation. It does
not hold in the general case as shown on the following example :

Example 4 (Counter example). Constraint c1 of table 1 is split into c2 and c3 using

Table 1.

c1 c2 c3

x1 x2 x3 x4 x2 x3 x4 x1 x2 x3

0 0 0 2 0 0 2 0 0 0
2 0 1 1 0 1 1 2 0 1
3 1 0 0 1 0 0 3 1 0
1 1 1 3 1 1 3 1 1 1

{x1, x2} → x3. At this stage, because of losslessness, a support for any pair of (vari-
able,value) in c1 can be built from supports in c2 and c3. This is however only true
when no pruning has taken place. Imagine that values 2 and 3 are pruned from x1 and
x3, there still exist supports in c2 and c3 for values 0 and 1 whereas c1 is inconsistent.
N

The presence of cycles also allows to build lossless decomposition beyond the use
of dependencies such as the decomposition of the ALLDIFFERENT global constraint
into a network of binary differences.

Example 5 (Lossless Reformulation beyond functional dependencies).

Table 2.

c4 c5 c6 c7

x1 x2 x3 x4 x3 x2 x1 x3 x1 x2 x4

0 0 0 4 0 0 0 0 0 0 4
1 0 0 2 1 4 1 0 1 0 2
2 4 1 3 2 4 2 1 2 4 3
0 4 2 4 3 2 0 2 0 4 4
2 2 3 2 2 3 2 2 2

Consider constraint c4 of table 2. Applying F3 : {x1, x2} → x4 and F1 : {x3} →
x2 gives the lossless reformulation:

∆(c1, 〈F3,F1〉) = {{x3, x2}, {x1, x3}, {x1, x2, x4}}.

By splitting c7 into c8 and c9 respectively on scopes {x1, x4} and {x2, x4}, we can
obtain another lossless reformulation of c1 :

∆(c1) = {{x3, x2}, {x1, x3}, {x1, x4}, {x2, x4}}.

The reformulation of c7 into c8 and c9 is not lossless itself as it allows the tuples (2, 0, 2)
and (1, 2, 2) on (x1, x2, x4). However, those tuples can not be extended on x3 due to c2
and c3 and the overall reformulation of c1 remains lossless. For example, the first tuple
(2,0,2) assigned value 2 to x1 and 0 to x2 and the values of x3 supporting them in c2
and c3 are disjoint (namely {1, 3} in c3 and {0} in c2). This refers to join-dependencies
in database.

4 Characterizing a Good Reformulation

For a relation r over a set X of variables, the size of r is computed as the number of
values in the table (the memory size) i.e. |r| ∗ |scope(r)|. A reformulation ∆(r, δ) is a
conjunction of constraints that can be characterized by:

1. its maximum arity a∆(r,δ) = maxri∈∆(r,δ)|scope(ri)|;
2. its maximum number of tuples l∆(r,δ) = maxri∈∆(r,δ)|ri|;
3. its overall memory size s∆(r,δ) =

∑
ri∈∆(r,δ) |ri| ∗ |scope(ri)|.

The complexity of GAC is determined by the maximum number of tuples involved in
any constraint relation, l∆(r,δ), or the maximum arity, a∆(r,δ), depending on the GAC
scheme used [4, 16]. However it is easy to see that l∆(r,δ) is always equal to |rel(c)|
in what remains of the initial relation. The maximal number of tuples in the reformula-
tion cannot be decreased. By using a dependency, a small table can be extracted but the
number of tuples of the relation from which the variable is removed remains unchanged.
Consider Xi → yi holding on S, once yi has been removed from S, no pair of tuples
can be identical in the resulting table, otherwise they would be identical on Xi and,

therefore, would have been identical on yi as well, by definition of a functional depen-
dency. This does not mean that the reformulation cannot be more compact. Specifically
s∆(r,δ) can be smaller than |rel(c)|× |scope(c)|; arity and memory size, therefore, pro-
vide a basis to characterise a good reformulation and we will focus our study on those
two parameters. Notice however that if the size can be reduced, no exponential gain is
possible.

5 Finding Optimal Reformulations

A reformulation is obtained by applying a sequence of functional dependencies. How-
ever, as dependencies are applied, others may no longer be applicable to the refor-
mulation we obtain and this implies compatibilities between dependencies and valid
orderings to compute the reformulation.

Theorem 2 (Valid Ordering of Functional Dependencies [5]). Given a constraint c,
let Fi : Xi → yi and Fj : Xj → yj be two minimal functional dependencies that hold
in rel(c) such that yj ∈ Si and Fi 6⊂ Fj . Then, when Fi and Fj are applied on the
same scope, Fi can only be applied before Fj , which we denote as Fi ≺ Fj .

Example 6 (Valid Ordering Dependencies). Consider F1 : {x1, x2} → x3 and F2 :
{x1, x3} → x4. F2 can only be applied before F1 (F2 ≺ F1) because the use of F1

would remove x3 from the scope and thus prevents F2 from applying on this scope. N

A set of dependencies that can be used together to reformulate a scope is called a
valid set:

Definition 5 (Valid set of dependencies). A set of dependencies δ holding on a scope S
is said to be valid if all the depencencies of δ can be applied in a sequence to reformulate
S.

Given a set of dependencies δ, we denote by Gδ the directed graph of precedences
between the dependencies in δ. The nodes of Gδ are the dependencies in δ. An edge
(Fi,Fj) is added if Fi ≺ Fj , i.e. Fi can only be applied before Fj . To fully character-
ize a set of dependencies that can be used to give rise to a reformulation, we define the
root of a set δ and a scope S as root(δ, S) = {Fi ∈ δ(S) | ∀Fj ∈ δ(S) : Fi 6⊂ Fj}, i.e.
the subset of δ that applies to scope S and where no dependency is included in another.
A root set on S corresponds to the dependencies that will be used to remove variables
from S. The precedence graph of such a set, therefore, needs to be acyclic and valid
sets of dependencies are characterized as follows:

Theorem 3 (A Condition for Valid Set of Dependencies). A set of functional depen-
dencies δ∗ ⊆ δ holding on a scope S is valid if and only if Groot(δ∗,S) is acyclic and
∀Fi ∈ δ∗, Groot(δ∗,Si) is acyclic.

Example 7 (Valid Set of Dependencies). Consider δ = {F1,F2,F3,F4}, and their cor-
responding precedence graph presented in Figure 1. This is a valid set, even if Gδ is
cyclic, since it can be verified that all roots correspond to acyclic subgraphs of Gδ

Algorithm 1 : REFORMULATE(δ = {F1, . . .Fn}, S = {x1, . . . xr})
1. DS ← {S};
2. While δ 6= ∅ Do
3. For each Scopek ∈ DS Do
4. δ∗ ← root(δ, Scopek);
5. If δ∗ 6= ∅
6. DS ← DS − Scopek; c← |δ∗|;
7. For each Fi ∈ δ∗ Do
8. DS ← DS ∪ Si;
9. If @P ∈ DS, {Scopek − {y1, . . . , yc}} ⊆ P;
10. DS ← DS ∪ {Scopek − {y1, . . . , yc}};
11. δ ← δ − δ∗;
12. Return DS;

: root(δ, S) = {F1,F4}, root(δ, {x1, x2, x3}) = {F3}, root(δ, {x1, x3, x5, x4}) =
{F2}, root(δ, {x3, x2}) = ∅ and root(δ, {x3, x4, x1}) = ∅. So, first of all x3, x4 will
both be removed from S using F1,F4. Secondly, F3 and F2 will be used on the two
independent subscopes produced by F1,F4. N

F4

F2

F3 : {x3} → x2F1

F2 : {x3 x4} → x1

F1 : {x1 x2} → x3

F4 : {x1 x3 x5} → x4

F3

Fig. 1. An example of a graph of precedences.

All dependencies in a valid set δ can be used to decompose the original scope by
applying them root by root in an order compatible with the precedences of each root.
Moreover, the reformulation associated with the valid sequence of δ, using all elements
of δ, is unique. This result relies on the following observation that we will use later.

Lemma 1. Let Fi, Fj be two minimal dependencies s.t Fi ⊆ Fj , then yj ∈ Xi ∪{yi}.

Lemma 1 can be used to show that the reformulation using a valid set is unique
and the dependencies can only be used once in the process because they are partitioned
between the scopes as the scopes are broken.

Theorem 4 (Uniqueness of the Reformulation). The reformulation obtained after ap-
plying a valid set of minimal functional dependencies δ on a scope S is unique and the
dependencies of δ can be used only once.

Thus, the reformulation of a valid set can be quickly computed because any order
of the dependencies that respects the precedence graph of each root produces the same
result. Algorithm 1 computes the reformulation (as a set of scopes) obtained from a
valid set δ applying on S. Notice that the resulting reformulation is not necessarily
minimal.

Algorithm 2 : SIMPLIFYREFORMULATION(∆ = {S1, . . . Sp}, r)
1. DS ← ∆;
2. For each Sk ∈ ∆ Do
3. If onSi 6=Sk∈∆ (σSi (r)) = r
4. DS ← DS − Sk;
5. Return DS;

Example 8 (Uniqueness of Reformulation). Consider the set of four dependencies δ of
Figure 1. After applying F4 on S, F2 can only be applied on the scope x1, x3, x5, x4

produced by F4 because, as we have F2 ⊂ F4, it necessarily involves x4 (Lemma 1) in
its left hand side and x4 does not appear in the remainder of S. N

The uniqueness of the reformulation for a valid set underpins our claim that when
finding an optimal reformulation one can search for valid sets amongst the subsets of the
original dependencies (O(2n) complexity) rather than consider all possible sequences,
which would give anO(n!) complexity. Once an optimal reformulation has been found
it can be rendered minimal easily by checking if each sub-scope is necessary for loss-
lessness in a greedy manner. Algorithm 2 takes as input a reformulation and a relation
to check that each subscope Sk of the reformulation is mandatory to have a lossless re-
formulation by performing the join (denoted on) of all the projections of the relation on
each other subscope. It returns a subset of ∆ which is a minimal reformulation. Notice
that many minimal reformulation can exist and this process only returns one of them
arbitrarily.

6 Complexity

Given a set of functional dependencies holding on a scope, we consider the complexity
of finding a reformulation of minimum size or a reformulation in which the maximum
arity of the constraints is minimized. Both problems can be shown to be NP-Hard, since
their corresponding decision problems can be used to solve the Weighted Feedback
Vertex Set (WFVS) problem, which is known to be NP-Complete.

6.1 Complexity of Arity-Bounded Reformulation

We define the basic decision problem as follows.

BOUNDED MAX-ARITY REFORMULATION (BAR)
Instance: A set δ of minimal functional dependencies holding on a scope S =
(x1, . . . , xm), and an integer 1 ≤ b ≤ m.
Question: Does there exist a subset δb ⊆ δ with a∆(S,δb) ≤ bwhere a∆(S,δb) =
maxSi∈∆(S,δb)|Si| is the maximum arity of the scopes in the reformulation
obtained using δb?

Notice that the BAR problem assumes that the set of functional dependencies is
given explicitly in advance. The reason is that finding the dependencies from the relation

is itself an NP-Complete problem. However, given a set of functional dependencies
δ, it can be shown that there always exists a relation on which only those functional
dependencies hold; such relations are known as Armstrong relations [3].

Our complexity proof is based on a reduction from the FEEDBACK VERTEX SET,
which is known to be NP-Complete [7].

FEEDBACK VERTEX SET (FVS)
Instance: A directed graph G = (V,E) and a positive integer k.
Question: Does there exist an X ⊂ V with |X| ≤ k such that G with the
vertices from X removed is acyclic?

Theorem 5. BOUNDED MAX-ARITY REFORMULATION problem is NP-Complete.

Proof. Clearly this problem is in NP. Given a valid set of functional dependencies, the
maximum arity of the resultant unique reformulation can be computed in polynomial
time (Theorem 4).

To prove completeness we show a reduction from the FEEDBACK VERTEX SET to
the BAR problem. Consider an instance of the FVS on a graph G = (V,E) with |V | =
n. We construct an instance of the BAR problem in the following way. A functional
dependency Fk : {. . .} → vk is associated with each node of V . Then each vk is
instantiated to xk and added to the left side of all dependencies corresponding to the
predecessors of vk inG. Moreover, we add n new variables from {xn+1, . . . , x2n}, one
to each left side all functional dependencies. Figure 2 shows the construction resulting
from the two previous steps on an example graph G. The size of these dependencies is
at most n+ 1 (a complete graph), they respect the precedences of G, they are minimal
and can only apply on the main scope, i.e. they are not included in one another. Let δ
be such a set of dependencies.

We then introduce as many variables as needed to ensure that the largest arity
is always found on the main scope of any reformulation; this way, the two objec-
tive functions match perfectly and removing the fewest number of nodes to achieve
acyclicity gives rise to the reformulation with the smallest maximum arity. The set of
variables becomes {x1, . . . , x2n, . . . x2n+2}, so that m = 2n + 2. Finally we choose
b = m− (n− k).

1

5

2

3

4

2 7→ 4

4→ 5

2→ 4

→ 1

1 3 5→ 2

1 2→ 3

4 6→ 5

9→ 1

1 3 5 8→ 2

1 2 10→ 3

Fig. 2. An example set of dependencies built from a given graph.

The FVS has a solution by removing k nodes if and only if there is a reformulation
whose maximum arity is less than b:

⇒ Let’s assume that we have a solution of the FEEDBACK VERTEX SET with |X| ≤ k.
Then the remaining n− k nodes define a set of dependencies without cycles. n− k
variables are removed from the main scope {x1, . . . , x2n, . . . x2n+2} leading to an
arity of 2n+ 2− (n− k) = n+ 2 + k = b. In the best case (k = 0) the arity is of
size n+ 2 which proves that it is the maximum arity because the dependencies are
of size at most n+ 1 and thus a∆(S,V−X) ≤ b.

⇐ A solution of BOUNDED MAX-ARITY REFORMULATION is an acyclic subset, δb of
δ such that a∆(S,δb) ≤ b. It follows that at least m− b variables have been removed
from the main scope which means that at most n − (m − b) corresponding nodes
X have been removed from the graph and |X| ≤ n− (m− b) = k. �

We recall, finally, that for any set of minimal functional dependencies there always
exists a relation in which only these dependencies hold (as well as all dependencies
logically implied by them). Such relations are called Armstrong relations, and a proof
of their existence can be found in [?]. The time complexity to generate an Armstrong
relation is exponential in the number of functional dependencies required to hold in it.
Fortunately, we do not need to build this relation. Our only assumption is that the set of
functional dependencies is given, since the problem of finding all minimal functional
dependencies is itself NP-Hard.

6.2 Complexity of Size-Bounded Reformulation

We start first by rewriting the size of a reformulation in∆(r, δ) only in terms of |σSj (r)|
of each dependency Fj of δ. Notice that each relation ri of ∆(r, δ) is initially derived
from a dependency Fj that produces a relation of scope Sj (with the exception of r0
denoting here the remainder of the initial scope S). Then pi variables might have been
eventually removed from Sj by other dependencies to reach scope(ri) (pi is null for at
least one relation of ∆(r, δ)). The pair (Sj , pi) is known for each ri 6= r0 and r0 can be
associated with the pair (S, p0). The size of a reformulation can be written as:

s∆(r,δ) =
∑

ri:(Sj ,pi)∈∆(r,δ)

(|Sj | − pi)× |σSj (r)|.

The size can, therefore, be computed from the details of each dependency Fi, in par-
ticular the cardinality of its projection onto scope Si, i.e. |σSi(r)|. We define the basic
decision problem as follows:

BOUNDED SIZE REFORMULATION (BSR)
Instance: A set δ of minimal functional dependencies holding on a scope S = (x1, . . . , xm).
A set H = {h0} ∪ {hi|Fi ∈ δ} of positive integers denoting the number of tuples, h0,
of a relation on S and the number of tuples of the relations obtained from S with each
dependency of δ. A positive integer b.

Question: Does there exist a subset δb ⊆ δ with s∆(S,δb) ≤ b, where s∆(S,δb) =∑
ri:(Sj ,pi)∈∆(S,δb)

(|Sj | − pi)× hj is the size of the reformulation obtained using δb?

While constructing an Armstrong relation is exponential in the size of δ, upper and
lower bounds on the minimal number of tuples in the relation are known [3]. The BSR
problem contrary to BAR refers to a set of dependencies with the specific number of
tuples in each projection of the relation on the scope of each dependency of δ. We show
here that such a relation always exists for some specific set of dependencies and use it
to prove theorem 6.

Lemma 2. Let δ be a minimal set of dependencies defined on scope S such that one
variable x ∈ S does not appear in the scope of any dependency of δ. Assume that each
Fi ∈ δ has at least one element ei ∈ Xi that does not appear in the scope of any
other dependency. Let hα be an upper bound on the minimum number of tuples in an
Armstrong relation for δ. Consider also a set of integers hi ≥ hα for all 1 ≤ i ≤ |δ|.
There is an Armstrong relation r for δ such that |r| ≥

∑
i hi+hα and ∀i, hi = |σSi(r)|.

Proof. Consider the minimum Armstrong relation Λ for δ with at most hα tuples and
vα different values (in the range [1, vα]). We show here how to add tuples to Λ without
breaking any dependency in δ (no dependencies can be introduced by adding tuples) to
achieve the proper size of each projection. For each dependency Fi of δ we add a set
T = {tj |1 ≤ j ≤ hi − |σSi(Λ)|} of tuples to Λ. Let t be an arbitrary tuple of Λ. Each
tj of T is identical to t except that tj [ei] = vα + i + j. It can be easily verified that
T appears only in σSi and in none of the σSj for i 6= j. In addition, the only violated
dependencies by the addition of T are of the form V → ei that cannot be in δ. Finally
|r| can be made greater than

∑
i hi + hα by adding tuples equal to a tuple of Λ except

on x where t[x] is constructed using a new value for each tuple. �
Our complexity proof is based on a reduction from the WEIGHTED FEEDBACK

VERTEX SET, which is known to be NP-Complete [7].

WEIGHTED FEEDBACK VERTEX SET (WFVS)
Instance: A positive integer k and a weighted directed graph G = (V,W,E)
where wv ∈W denotes a positive integer associated with each node v ∈ V .
Question: Does there exist an X ⊆ V with

∑
x∈X wx ≤ k such that G with

the vertices from X removed is acyclic?

Theorem 6. The BOUNDED SIZE REFORMULATION problem is NP-Complete.

Proof. Clearly, this problem is in NP. To prove completeness we show a reduction from
the WFVS problem. Consider an instance of the WFVS on a graph G = (V,W,E)
with |V | = n. We construct an instance of the BSR problem in the following way. A
functional dependency Fk : {. . .} → vk is associated with each node of V . Then each
vk is instantiated to xk and added to the left-hand side of all dependencies correspond-
ing to the predecessors of vk in G. Moreover, we add n different new variables to each
left side of all functional dependencies and one more variable that does not appear in
any dependency. The resulting scope S is equal to {x1, . . . , xn2+n+1}. Figure 3 shows
the construction resulting from the two previous steps on an example graph G. These
dependencies respect the precedences of G, they are minimal and can only apply on the
main scope, i.e. they are not included in one another.

Let δ be such a set of dependencies and m = n2 + n + 1. We denote by L, the
least common multiple of all |Si| and w

′

i = (h0
hαL
− wi). We set hi with 0 < i ≤ n,

1

5

2

3

4

2 11 . . . 15→ 4

4→ 5

2→ 4

→ 1

1 3 5→ 2

1 2→ 3

4 6 . . . 10→ 5

21 . . . 25→ 1

1 3 5 16 . . . 20→ 2

1 2 26 . . . 30→ 3

Fig. 3. An example set of dependencies built from a given graph.

b and h0 to the following values: h0 = L × maxi(wi) × hα, hi = w
′

i × hαL
|Si| and

b = hαL(
∑
i∈V w

′

i + k) + h0 × (n2 + 1), where hα is an upper bound on the size
of the minimum Armstrong relation for δ (computable in polynomial time). It can be
verified that they are all positive integers, that hi ≥ hα and that h0 ≥

∑n
i=1 hi + hα

because
∑n
i=1 hi+hα =

∑n
i=1

h0−haLwi
|Si| +hα = h0

∑n
i=1

1
|Si| −ha(

∑n
i=1

Lwi
|Si| − 1)

and that
∑n
i=1

1
|Si| ≤ 1 and

∑n
i=1

Lwi
|Si| > 1. Indeed, all wi are positive and for all i,

|Si| > n. This transformation is polynomial and such an Armstrong relation with the
corresponding properties exists according to Lemma 2.

We show that G has a feedback vertex set of weight at most k if and only if S
has a reformulation of size at most b. Assume that we have a solution to BSR with
s∆(S,δb) ≤ b and denote by X the set of nodes corresponding to the complement of δb
in V so that δb = V − X . There is a one-to-one correspondence between the nodes
of G and dependencies of δ by construction. It can be verified that

∑
i∈X wi ≤ k, in

the following way starting from s∆(S,δb) ≤ b; notice that all the pi are null except p0

because all dependencies apply on the main scope and thus :∑
i∈δb

|Si| × hi + h0(|S| − |δb|) ≤ b

hαL
∑
i∈δb

w
′

i + h0(n2 + n+ 1− (n− |X|)) ≤ b

∑
i∈δb

w
′

i +
h0

hαL
|X| ≤

∑
i∈V

w
′

i + k ⇒ −
∑
i∈X

w
′

i +
h0

hαL
|X| ≤ k ⇒

∑
i∈X

wi ≤ k.

Conversely, it can be easily seen, using the same computation, that any solution X to
the WFVS having a weight at most k gives a set of dependencies δb (the complement
of X in V) that provides a reformulation of size at most b. �

7 An Algorithm for Optimal Reformulation

We propose a complete algorithm to find optimal reformulations. We observe that many
independent subproblems occur when trying to compute the optimal reformulation in
terms of arity or size.

The rationale behind the algorithm is that once a dependency Fi is chosen, δ(Si)
can only apply on Si and, therefore, two independent subproblems appear: the optimal
reformulation of Si using δ(Si) on one side and the optimal reformulation of S − {yi}
on the other. δ(Si) can only apply on scope Si because all the dependencies of δ(Si)
involve yi according to Lemma 1, and yi only appears in Si.

Consider, for example, the minimal dependency F : {x1, x2, x3} → y, the only
way to further decompose the scope obtained after applying this dependency is with a
functional dependency of the form {y} → x1 or {x2, y} → x3, but y is mandatory
on the left-hand side. This suggests that the optimal reformulation of the scope of each
dependency can be computed first to avoid their redundant computations. We simply
show here that all optimal solutions can be indeed mapped to optimal solutions based
only on optimal reformulation of the scope of each dependency.

Theorem 7 (Independence of subproblems). Let δ be a set of dependencies holding
on S and δ′ ⊆ δ an optimal solution to the reformulation problem. Let’s denote by
δ∗Fi the optimal solution to the reformulation problem of Si using δ(Si). Then the set
δ′′ = ∪Fi∈root(δ′,S)δ

∗
Fi is also optimal.

This result simply relies on the observation that all subproblems on each Si are
independent and can be expressed by the following lemma first:

Lemma 3. For any two minimal compatible dependencies Fi and Fj , i.e such that
Fi ≺ Fj and Fj ≺ Fi do not hold, then δ∗Fi ∩ δ

∗
Fj = ∅.

The reformulation algorithm is presented as Algorithm 3 and can be see as a dy-
namic programming algorithm.

Algorithm 3 OPTIMALREFORMULATION(δ = {F1, . . . ,Fn}, S)
1. sort δ by increasing size of scopes;
2. For each Fi ∈ δ do
3. (a∗/s∗Fi

, δ∗Fi
)← FINDREDUCEDOR(δ(Si), ∅, Si);

4. FINDREDUCEDOR(δ, ∅, S);

The arity/size of the optimal reformulation obtained by each Fi of δ(Si) is known
when calling Algorithm 4, i.e. FINDREDUCEDOR (line 3), as all such subproblems
have been solved independently before due to the sorting of line 1. Their optimal value
is denoted a∗Fi or s∗Fi and the set of corresponding dependencies by δ∗Fi .

Example 9 (An Optimal Reformulation Problem). Figure 4 gives an example of a re-
formulation problem where the dependencies have been organized into independent
subproblems. The arity of the initial scope is eight and the circled dependencies denote
an optimal solution to get a reformulation of arity three. The optimal value of the sub-
problem associated to each dependency is indicated in parentheses. 1 4 6 8 → 7 leads,
for example, to a subscope that can be reformulated with a maximum arity of three by
using 7 1 4 → 6, 7 6 → 4 and 7 1 → 8. It can also be seen that 7 6 → 4, which is

7 6 −> 4 (3)

1 2 7 −> 6 (4)

1 2 3 4 5 6 7 8

1 2 −> 8 (3) 1 2 −> 4 (3) 1 2 −> 3 (3) 1 3 5 −> 6 (3) 1 4 6 8 −> 7 (3)

6 5 −> 3 (3) 8 7 −> 1 (3)6 3 −> 1 (3) 7 1 4 −> 6 (3) 7 1 −> 8 (3)

Fig. 4. An example of a hierarchy of subproblems.

included in 1 4 6 8 → 7 and 7 1 4 → 6, therefore, uses 7 and 6 in its left-hand side as
stated by Lemma 1. Algorithm 3 will solve the subproblems from the leaves to the root
of this tree by calling Algorithm 4 for each subproblem. N

Algorithm 4 FINDREDUCEDOR(CD = {Fi, . . .Fn} , PD, S)
// a∗Fi

/s∗Fi
and δ∗Fi

are assumed to be known for all Fi ∈ CD
1. If CD = ∅
2. REFORMULATE(PD ∪ {δ∗Fi |Fi ∈ PD}, S);

3. If an improving solution has been found
4. store it and update the upper bound
6. Else
7. CD ← CD − {Fi}; // Fi is chosen for branching
8. FD ← PRUNING(CD,PD ∪ {Fi}) ∪ δ(Si) ∪ {Fk ∈ CD|Si ⊆ Sk};
9. If BOUND(CD − FD, PD ∪ {Fi}, S) < upperBound
10. FINDREDUCEDOR(CD − FD, PD ∪ {Fi}, S);
11. If BOUND(CD, PD, S) < upperBound
12. FINDREDUCEDOR(CD, PD, S);

Algorithm 4 assumes that each dependency is labeled with its corresponding a∗/s∗Fi
and δ∗Fi . It computes the optimal reformulation of S using such dependencies. It is, basi-
cally, a branch and bound over the subsets of subproblems defined by each dependency
of δ. At each node it considers the current set of subproblems (called PD) chosen to
reformulate S and the set of current candidate subproblems (called CD) to be included
(or not) in PD. PD and CD are maintained as sets of dependencies and PD can be seen
as the root set of S: root(δ, S). The algorithm proceeds as follows:

– IfCD is empty, the reformulation is computed with Algorithm 1 and the best known
solution is updated if needed. Notice that PD ∪ {δ∗Fi |Fi ∈ PD} is a valid set.

– Otherwise, the algorithm branches by selecting which subproblem will be used to
remove a variable from the scope S. A dependency Fi is chosen and the algorithm
branches on the corresponding subproblem (line 7). FD represents the forbidden
dependencies and the method PRUNING(CD,PD ∪ {Fi}) computes all the func-
tional dependencies of CD that would create a cycle in the initial root set repre-
sented by PD; As a subproblem is selected for branching, all dependencies from
δ(Si) and the one containing Si are pruned (line 8). Branching on 7 1 4 → 6 on
the example of Figure 4 would prune 1 4 6 8 → 7, 7 6 → 4 and all dependencies
creating a cycle i.e. 1 3 5→ 6, 6 5→ 3, 6 3→ 1 and 1 2 7→ 6.

Algorithm 5 BOUNDARITY(CD, PD, S)
1. lb← maxFi∈PD a∗Fi

;

2. lbs← |S| - |PD| - (|CD| - lower bound on the min.
vertex feedback set in GCD);

3. Return max(lb, lbs);

– If the bound obtained for the new pair (CD − FD,PD ∪ {Fi}) is compatible with
the best known solution, the algorithm branches.

Finally, the reformulation computed by the algorithm is optimal but not necessarily
minimal in the case of the arity and algorithm 2 has to be applied to get a minimal
one. In the case of the size, the reformulation is necessarily minimal as it would not be
optimal otherwise.

The algorithm relies on the partitioning of functional dependencies amongst sub-
problems as outline by Lemma 3, and specifically that no dependency is added twice
(when completing PD with the dependencies of each subproblem – line 2).

The algorithm is sound because it computes only valid sets: adding δ∗Fi (line 2)
cannot introduce any cycle in any root sets because each δ∗Fi is known to be valid
already. The only root that needs to be checked is the initial one, PD, which is ensured
by the pruning of the corresponding cycles (line 9). A heuristic can be applied (at line
7). A preprocessing step can also be applied when minimizing the size by removing
all Fi such that s∗Fi > h0. Finally simple bounds are used to prune the search. The
proof of NP-Completeness showed the strong relationship between this problem and
the WFVS. The bounding procedures relate to simple bounds for the WFVS.

The minimum arity expected from a current set of functional dependencies PD and
the remaining candidates CD is simply computed here as the maximum over the min-
imal arity known for each dependency of PD and a lower bound on the arity expected
from the remain of the original scope S (see Algorithm 5). The latter is computed by
looking at the maximum number of variables that can still be removed from S without
creating a cycle. This is the quantity: (|CD| - lower bound on the min. vertex feedback
set in GCD).

All bounds known for the FVS can be used. We use a simple lower bound that in-
volves partitioning the graph into cliques P = {C1 . . . Ck}. In each clique, all nodes
except one must be removed to break all the cycles. Any partition P , therefore, gives
a lower bound as

∑
Ci∈P (|Ci| − 1). Consider the case of minimizing the size of the

reformulation (Algorithm 6). Firstly, the optimal size of the reformulation associated
with each dependency of PD is taken into account into the bound. Secondly, we con-
sider the graph GCD where a weight equal to s∗Fi − h0 is associated with each node
Fi. The weight corresponds to the reduction in size (the gain) obtained by the use Fi.
A lower bound on the minimum weighted vertex feedback set gives an upper bound on
the gain in size that we can expect due to the remaining dependencies.

A lower bound on the minimum WFVS can be based on the partition into cliques
as well, by keeping in each clique the node of minimum weight

∑
Ci∈P minFj∈Cis

∗
Fi .

Algorithm 6 BOUNDSIZE(CD, PD, S)
1. lb←

P
Fi∈PD

s∗Fi
;

2. lb← lb + h0 × (|S| − |PD|) - (
P
Fi∈CD

(s∗Fi
− h0) -

lower bound on the min. weighted vertex feedback set in GCD);
3. Return lb;

8 A Comparison with Other Compression Techniques

Several techniques have been introduced to improve the efficiency of reasoning over
table constraints [6, 8, 12, 19]. A recent approach based on table compression [12] re-
lies on a cross-product representation the tuples [10], e.g. the tuples {〈1, 1, 1〉, 〈1, 2, 1〉}
can be represented as a single tuple 〈(1)(1, 2)(1)〉. The authors of [12] state that ”The
applicability of the representation is also reduced for tables where some of the vari-
ables are functionally dependent on some others”. We believe that both techniques can
strictly benefit from each other as breaking functional dependencies can only reduce
the Hamming distance between the tuples by projecting them on sub-scopes. We show
here that the technique in [12] is complementary to our reformulation approach.

Proposition 1. The gain in size achieved by the approach presented in [12] and our
functional dependency-based approach to reformulation are incomparable.

Proof. Consider constraint c of Table 3 with 4kn tuples. For any pair of tuples in c,
the Hamming distance is at least 2, thus preventing any compression using the repre-
sentation from [12]. Notice that this table exhibits several dependencies and especially
x2 → x3 and x1 → x4 corresponding, in this example, to two equality constraints. The
reformulation∆(c) is obtained from those two dependencies and its size, 2k+2n+2kn
shows the following gain: 1 < sc

s∆(c)
< 2 if k, n > 2 (the gain would increase with

the arity). Another observation is that c3 can now be represented very efficiently by a
cross-product 〈(1, . . . , n) × (1, . . . , k)〉 whereas no dependencies hold1, showing that
both techniques are complementary. �

Other representations of the tuples have been proposed such as [8], which relies on
a “trie” data structure. A trie aims a factoring the shared prefixes of the tuples so it,
essentially, captures the same kind of structure as the cross-product, i.e. the information
stored in a redundant way in many tuples. The approach of [19] tries to achieve com-
pression of the tuples by computing a minimal automaton whereas the CASE constraint
corresponding to the table constraint in Sicstus [6] uses a DAG to get a representation
similar to the cross-product. All these approaches rely on the idea that the tuples of the
table share some information which is stored redundantly and can be compressed by
using the appropriate data structure. Dependent variables only hinder their efficiency.
Our reformulation approach is orthogonal to those techniques by capturing a very dif-
ferent kind of structure. It cannot, however, achieve by itself an exponential reduction
in size, which is possible with the previous compression approaches. The bottleneck

1 This is, in fact, a multi-valued dependency [11] as x1 and x2 are independent of each other
and could also be detected as such.

Table 3. An example of a table constraint and its reformulation.

c ∆(c)
c1 c2 c3

x1 x2 x3 x4 x2 x3 x1 x4 x1 x2
1 1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2 1
.
n 1 1 n k k n n n 1
1 2 2 1 1 2
.
n 2 2 n n 2
.
1 k k 1 1 k
.
n k k n n k

lies in the fact that the maximum number of tuples cannot be reduced using functional
dependencies alone. Typically, for a constraint of arity a with n tuples of original size
an, the reformulation always contains, in the best case, a constraint of size 2n.

9 Experimental Results

The objective of our experimental evaluation was to study how effectively our func-
tional dependency-based approach to reformulation could reduce the worst-case (max-
imum) arity of constraints in our reformulation as well as its total memory size2 . We
considered two cases with respect to size: measuring the sum of the sizes of each table
constraint in the reformulation, as well as the sum of the sizes of a REGULAR-based
compilation of each table. We considered positive table constraints from the following
five datasets: the Renault Megane Car Configuration Problem (we used the two largest
table constraints, R80 and R140) [2]; a dataset of digital cameras [18]; a dataset of
laptops [18]; the AI-CBR travel case-base [14]; and a dataset based on the crossword
puzzle CSP benchmark [1]. We used a well-known library, called TANE [11], to com-
pute the set of minimal functional dependencies for each table.

Table 4. Results on minimizing arity and memory size (time given in seconds).

Instance Details Minimize Maximum Arity Minimize Memory Size Minimize DFA
Complete Greedy Complete Greedy Complete

name nbt arity size ndep time max gain size time arity time size gain time size time orig refor gain
camera 112 8 896 41 0.21 5 1.6 2220 0.07 5 0.05 896 1.0 0.02 896 0.01 421 421 1.0
laptop 403 10 4030 54 0.12 6 1.67 14393 0.03 7 0.0 4030 1.0 0.05 4030 0.05 1452 1423 1.02
rn R80 342 10 3420 2 0.25 8 1.25 2836 0.0 8 0.0 2836 1.21 0.0 2836 0.0 209 137 1.53
rn R104 164 9 1476 11 0.06 4 2.25 1026 0.0 5 0.0 836 1.77 0.01 1140 0.0 183 100 1.83
travel 1470 9 13230 7 0.14 6 1.5 27535 0.0 6 0.0 13230 1.0 0.01 13230 0.01 3693 3021 1.22
cw R10 1881 12 22572 26 0.63 10 1.2 60114 0.0 10 0.0 22572 1.0 0.06 22572 0.06 5138 5138 1.0
cw R11 1136 13 14768 128 0.65 9 1.44 45690 0.84 9 0.0 14768 1.0 0.13 14768 0.13 5426 4773 1.14
cw R12 545 14 7630 1211 0.62 7 2.0 33546 109.1 8 0.02 7630 1.0 0.56 7630 0.51 3585 3503 1.02
cw R13 278 15 4170 2243 0.41 6 2.5 14645 - 7 0.15 4170 1.0 0.83 4170 0.51 2095 2046 1.02
cw R14 103 16 1648 4268 0.45 5 3.2 5061 - 6 0.74 1648 1.0 1.65 1648 0.4 970 942 1.03
cw R15 57 17 969 5057 0.37 4 4.25 2611 10.78 5 1.13 969 1.0 2.04 969 0.29 674 627 1.07
cw R16 23 18 414 3514 0.4 3 6.0 945 1.77 4 0.32 409 1.01 1.58 414 0.12 287 284 1.01

2 These experiments were run on a MacBook 2 GHz Intel Core Duo, 2 GB 667 Mhz DDR2.

Table 4 presents the results and is divided into four parts. Firstly, we present some
information on the original tables including their number of tuples, arity, size, num-
ber of minimal functional dependencies and the time needed by Tane to extract them.
Secondly, we show the results associated with finding the optimal reformulation that
minimizes the maximum arity. Thirdly, we present similar results focused on minimiz-
ing memory size. Finally, we show results associated with minimizing the size of the
automata used by a REGULAR-based reformulation. A time limit was put at 120 sec-
onds and a ‘-’ indicates that the time-out was reached while bold indicates when the
result has been proven optimal. The columns “gain” present the ratios of the original
measure divided by the measure from the reformulation. We also present the results for
a simple greedy algorithm selecting first the dependency of smallest scope. We observe
that we can always find a reformulation in which the maximum arity is reduced: the
gains range from 1.2 to 6. When we focus on minimizing memory size, the results are
less successful and only the two Renault configuration benchmark tables are reduced.
The optimal reformulation algorithm is very efficient when there are fewer than 1000
dependencies, but the more practical greedy algorithm achieves excellent performance
even if the optimal solution is not always found.

Compression techniques can also be used to further reduce the size of our reformu-
lation. In the final three columns of Table 4 we present the size of the automaton of
a REGULAR [17, 19] constraint for the original table, the sum of the sizes of each au-
tomata for the reformulation, and the corresponding gain in space we achieve through
reformulation. The heuristic used to order the variables in the automaton is simply to
put first the variable of minimum domain. We find that using a compilation of our re-
formulation, we reduce space in almost every case, and particularly so for the laptop,
Renault, and travel datasets confirming the complementarity of the techniques.

10 Conclusion

Constraints that are defined by tables of allowed tuples of assignments are common
in constraint programming. They are a very natural modeling tool for beginners in CP
who often tend to enumerate the allowed tuples of a logical relation that does not fit
perfectly into any of the intentional constraints provided by a constraint toolkit. In this
paper we present an approach to reformulating table constraints of large arity into a con-
junction of lower arity constraints. Our approach exploits functional dependencies that
might hold on the relation. We summarized many issues on dependencies in the context
of reformulation, presented the complexity of the reformulation problem, a dynamic
programming algorithm for optimal reformulation, and evaluated it on real-world and
academic datasets. The experiments show that the gain of size is not large enough for
an improvement in performance during search on those benchmark but open many op-
portunities when combined with compression techniques which deserve further studies.
The experiments stand here as a proof of concept, as this technique is intending as an
automatic way to deal with naive models made of large arity constraints, thus making
CP easier to use.

The future work on this topic would be to extend the reformulation schema to be
able to remove several variables at the same time when functional dependencies can be

gathered to have the form X → Y (where Y is a set of variables). This can not improve
the quality of the reformulation found when minimizing the max-arity but could even-
tually lead to better reformulations in size. However as functional dependencies can not
bring an exponential gain in size, it seems more interesting to directly extend this work
to multi-valued dependencies.

Acknowledgement

This work was supported by Science Foundation Ireland (Grant number 05/IN/5806).

References

1. J. Sillito A. Beacham, X. Chen and P. van Beek. Constraint programming lessons learned
from crossword puzzles. In 14th Canadian Conference on Artificial Intelligence, pages 78–
87, 2001.

2. Jérôme Amilhastre, Hélène Fargier, and Pierre Marguis. Consistency restoration and expla-
nations in dynamic CSPs – application to configuration. Artif. Intell., 135:199–234, 2002.

3. Catriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. On the structure of arm-
strong relations for functional dependencies. J. ACM, 31(1):30–46, 1984.

4. Christian Bessière and Jean-Charles Régin. Arc consistency for general constraint networks:
Preliminary results. In IJCAI (1), pages 398–404, 1997.

5. Hadrien Cambazard and Barry O’Sullivan. Reformulating table constraints using functional
dependencies - an application to explanation generation. Constraints, 13, 2008.

6. Mat Carlsson. Filtering for the case constraint. In Talk given at the Advanced School on
Global Constraints, Samos, Greece, 2006.

7. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Series of Books in the Mathematical Sciences. W.H.Freeman, 1979.

8. Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightingale. Data structures for
generalised arc consistency for extensional constraints. In AAAI, pages 191–197, 2007.

9. Marc Gyssens, Peter Jeavons, and David A. Cohen. Decomposing constraint satisfaction
problems using database techniques. Artif. Intell., 66(1):57–89, 1994.

10. Paul D. Hubbe and Eugene C. Freuder. An efficient cross product representation of the
constraint satisfaction problem search space. In AAAI, pages 421–427, 1992.

11. Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient algo-
rithm for discovering functional and approximate dependencies. Comput. J., 42(2):100–111,
1999.

12. George Katsirelos and Toby Walsh. A compression algorithm for large arity extensional
constraints. In CP, pages 379–393, 2007.

13. François Laburthe and Yves Caseau. Using constraints for exploring catalogs. In CP, pages
883–888, 2003.

14. David B. Leake and Raja Sooriamurthi. When two case bases are better than one: Exploiting
multiple case bases. In David W. Aha and Ian Watson, editors, ICCBR, volume 2080 of
Lecture Notes in Computer Science, pages 321–335. Springer, 2001.

15. Christophe Lecoutre and Radoslaw Szymanek. Generalized arc consistency for positive table
constraints. In Frédéric Benhamou, editor, CP, volume 4204 of Lecture Notes in Computer
Science, pages 284–298. Springer, 2006.

16. Olivier Lhomme and Jean-Charles Régin. A fast arc consistency algorithm for n-ary con-
straints. In Manuela M. Veloso and Subbarao Kambhampati, editors, AAAI, pages 405–410.
AAAI Press / The MIT Press, 2005.

17. G. Pesant. A regular language membership constraint for finite sequences of variables. In
LNCS Springer, editor, Tenth International Conference on Principles and Practice of Con-
straint Programming (CP’04), volume 3258, 2004.

18. James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and Barry Smyth. Evaluating
compound critiquing recommenders: a real-user study. In ACM Conference on Electronic
Commerce, pages 114–123, 2007.

19. Guillaume Richaud, Hadrien Cambazard, Barry O’Sullivan, and Narendra Jussien. Automata
for nogood recording in constraint satisfaction problems. In CP06 Workshop on the Integra-
tion of SAT and CP techniques, Nantes, France, 2006.

20. Mark Wallace. Practical applications of constraint programming. Constraints, 1(1/2):139–
168, 1996.

Appendix

Proof of theorem 1.

Proof. The reformulation ∆(c,F) of constraint c is lossless since it relies on a func-
tional dependency. Moreover, the left hand side ofF is restricted to a single variable and
the resulting constraint network is Berge-acyclic : ∆(c,F) = {{x, y}, {x, scope(c) −
y}}. Arc-consistency for a Berge-acyclic constraint network is achieved by making
each constraint of the corresponding network arc-consistent. �

Proof of theorem 2.

Proof. Applying the functional dependency Fj would give rise to two new constraints
with the scopesXj∪{yj} and scope(c)−{yj} (by Definition 3).Xi∪{yi} can neither be
part of scope(ci)−{yj} if yj ∈ Xi∪{yi} nor ofXj∪{yj} sinceXi∪{yi} 6⊂ Xj∪{yj}.
Therefore, Fi can no longer apply. �

Proof of theorem 3.

Proof. Consider first a set of dependencies not included in each other and applied on
the same scope S. We first show that this set is a valid set for S if and only if the prece-
dence graph associated to this set is acyclic. If the set is valid, then there is an order
of the dependencies < F1, . . . ,Fi, . . . ,Fk > such that the Fi do not contain one the
variables removed by F1, . . . ,Fi−1. In other words, (as no dependencies is included
in another one) there is no p < i such that Fi ≺ Fp and thus the precedence graph is
acyclic. Now if the precedence graph is acyclic, any order satisfying the precedences
can be used as a sequence (following a topological order). The general case is now as
follow:
⇒ Assume δ∗ is valid. For a sequence to exist, all dependencies removing variables
from the same scope must define an acyclic graph as shown above. Thus all roots must
be acyclic. A root is by definition a set of dependencies applying on the same scope.
⇐ If all the roots are acyclic, then the following sequence of dependencies can be
used to reformulate S: Add first the dependencies of root(δ∗, S) ordered to respect
the precedences of Groot(δ∗,S), then for each of the scope generated Si, extend the se-
quence by adding the dependencies of root(δ∗, Si) ordered to respect the precedences

of Groot(δ∗,Si) and so on as long as root(δ∗, Si) is not empty. �

Proof of Lemma 1.

Proof. If yj /∈ Xi ∪ {yi} it means that Xi ∪ {yi} ⊆ Xj and, therefore, that Fj is not
minimal because another dependency, namely Fi, is contained in its left-hand side. �

Proof of theorem 4.

Proof. Let δ0 = root(δ, S) be the root set of δ. Let k = |δ0|, the number functional
dependencies in δ0. The reformulation obtained by δ0 is unique. Because δ0 is a valid
set of dependencies (being a subset of δ), the set of all yi variables of the dependencies
Fi : Xi → yi of δ0 are different; if Fi and Fj are such that yi = yj then we would
have both Fi ≺ Fj and Fj ≺ Fi (having yi ∈ Xj ∪ yj and yj ∈ Xi ∪ yi in theorem 2)
and δ0 would not be valid. All {y1, . . . , yk} are different, therefore, each Fi can only
be applied on the main scope S. The reformulation obtained by applying dependencies
of δ0 in an order respecting their precedences is made of k + 1 scopes:

S0 = S − {y1, . . . , yk}
S1 = X1 ∪ {y1}
. . .
Sk = Xk ∪ {yk}

Let’s now consider a dependency Fa ∈ δ − δ0 and show that it holds on a single scope
of the previous reformulation. Fa was contained in one of the dependencies of δ0 and
therefore holds on at least one of the scope, Si, of the previous reformulation. Assume
that it also holds on Sj then by lemma 1 yi and yj are in Sa and therefore yj ∈ Si and
yi ∈ Sj which would mean Fi ≺ Fj and Fj ≺ Fi. This is impossible as δ is assumed
to be valid. Thus, Fa is contained in exactly one scope of the previous reformulation.

The remaining dependencies are, therefore, partitioned amongst the previous scopes
and this partition is also unique. This will result in potentially k new unique reformula-
tions, by the same reasoning, showing that the overall reformulation of S by δ is unique
and that every dependency can be used only once in the process. �

Proof of Lemma 3.

Proof. We cannot have both Fi ≺ Fj and Fj ≺ Fi. Fi and Fj must, therefore, have a
different right hand side so xi 6= xj(we assume that Fi and Fj are not equal). Assume
there is a dependency Fk : Xk → xk in both δ∗Fi and δ∗Fj then xi and xj are in Xk

(by Lemma 1). That means that xi is also in Xj (because we assumed Fk ∈ δ∗Fj) and
similarly xj is in Xi. In that case we have Fi ≺ Fj and Fj ≺ Fi which gives a contra-
diction. �

Proof of theorem 7.

Proof. For any two dependencies Fi and Fj of δ′ we have δ∗Fi ∩ δ
∗
Fj = ∅ by Lemma

3. Fi ≺ Fj and Fj ≺ Fi cannot both hold as δ′ is a valid set. We can therefore replace
each δ′(Si) by δ∗Fi and the objective can not be degraded in the process. Thus δ′′ is also
a valid and optimal reformulation. �

