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Abstract—HEAnet is Ireland’s national education and re-
search network. In this paper we address the problem of
deploying long-reach passive optical access points and core
nodes for this network. We decompose the deployment problem
into two phases. First we address the problem of locating a
number of core nodes and local exchanges to cover the pool
of HEAnet customers. Then, we compute the actual route that
the cable needs to follow to reach every customer taking into
account that there is an upper bound on the length of the
path from the core node to the customer. The first phase of
the problem is solved as a mixed integer program (MIP). We
empirically study this phase in detail. The second phase is also
solved as a mixed integer program. This phase is unlikely to be
suitable for solving with MIP when the problem size increases
as the formulation is quadratic in terms of the number of
nodes involved in the network, so we also explore an alternative
constraint programming mode, which is more compact.

I. INTRODUCTION

In this paper we study the challenge of developing a
combinatorial optimisation approach to designing a long-
reach passive optical network (LR-PON) [4] infrastructure
for Ireland’s HEAnet network, a core infrastructure for the
country’s education and research systems.1 Our approach to
solving this problem comprises two phases.

The first phase involves locating a number of metro nodes
and local-exchanges to cover the pool of HEAnet customers.
We solve this phase using mixed integer programming
(MIP). Due to the size of the problem, it is is further de-
composed into two subproblems that are solved interleavedly
until an optimal solution is found. The second phase involves
computing the actual route that the cable needs to follow
from a metro node to a customer taking into account that
there is an upper bound on the length of the path from the
core node to the customer. This phase ensures that each user
connects with an optical fibre to a local exchange, which
supports a number of other users following a tree topology.
Each local-exchange connects to two metro nodes, one for
primary service and one for backup purpose. Figure 1 shows
the location of 3906 users, 1121 local-exchanges and 59
candidate locations for metro nodes. We solve this phase also
using mixed integer programming. Solving this phase of the
problem using MIP would be impractical for big networks
because of the size of the formulation that would be required.

1http://www.heanet.ie

Therefore, for the second phase we also explore a pure
constraint programming approach using global constraints.
The overall objective is to cover every user with a PON,
using the least amount of fibre. The fibre length is calculated
considering the Euclidean distance between two points and
then multiplying by a routing factor of 1.4. In this paper
we study both phases of the problem in detail, presenting
detailed empirical result.

II. DEPLOYMENT OF METRO NODES AND EXCHANGE
SITES

Table I presents a mixed integer programming model for
the deployment of metro nodes and exchange sites. In the
model we use the following notation: C is a set of customers.
E is a set of exchange sites. M is a set of metro nodes.
dce is the maximum allowed distance between a customer
and its exchange site. dem is the maximum allowed distance
between an exchange site and a metro node (this will include
routing factor). se is the maximum number of exchange sites
that can be selected. sm is the maximum number of metro
nodes that can be selected.

We say that a customer is covered by an exchange site
if the distance between them is less than dce. We say that
an exchange site is covered by a metro node if the distance
between them is less than dem. The problem is to find a
set of exchange sites, denoted by SE , and a set of metro
nodes, denoted by SM , such that |SE | = se, |SM | = sm,
each customer i ∈ C is covered by 1 exchange site in SE ,
each exchange site j ∈ SE is covered by 2 metro nodes in
SM , and the sum of the lengths of optical fibres required
to connect each customer to its exchange site and and each
selected exchange site to its metro nodes is minimised.

In the model we also use Ec(i) to denote the set of
exchange sites that are within distance dce from a customer
i, Ce(i) to denote the set of customers that are within
distance dce from an exchange site i, Me(i) to denote the
set of metro nodes that are within distance dem from an
exchange site i, Em(i) to denote the set of exchange sites
that are within distance dem from a metro node i, M c(i) to
denote the set of metro nodes that cover a customer i (i.e.,
M c(i) =

⋃
j∈Ec(i)M

e(j)).
The model described in Table I does not scale for our

problem instance. Therefore, we decompose the original
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Figure 1. Locations of customers, exchanges and metro nodes.

Table I
MIP MODEL FOR THE DEPLOYMENT OF METRO NODES AND EXCHANGE SITES

Variables
xej A Boolean variable that denotes whether exchange site j is selected or not.
xmj A Boolean variable that denotes whether metro node j is selected or not.
yceij A Boolean variable that denotes whether a customers i is connected to an exchange site j.
yemij A Boolean variable that denotes whether an exchange site i is connected a metro node j.

Constraints
∀i ∈ C :

∑
j∈Ec(i) y

ce
ij ≥ 1 Each customer should be connected to one exchange site.

∀j ∈ E ∀i ∈ Ce(i) : xej ≥ yceij An exchange site is selected if a customer within its reach is connected to it. Another way to impose
this constraint is ∀j ∈ E : |Ce(j)| ×xej ≥

∑
i∈Ce(j) y

ce
ij . However, the LP bound would be weaker.∑

i∈E x
e
j = se The number of selected exchange sites should be equal to se.

∀i ∈ E :
∑

j∈Me(i) y
em
ij ≥ 2× xei Each selected exchange site should be covered by 2 metro nodes.

∀j ∈M ∀i ∈ Em(j) : xmj ≥ yemij A metro node j is selected if any exchange site i within its reach is connected to it. An alternative
way that would result in a weaker LP bound would be ∀j ∈M : |Em(j)|×xmj ≥

∑
∀i∈Em(j) y

em
ij∑

i∈M xmj = sm The number of metro nodes should be equal to sm

∀i ∈ C :
∑

j∈Ec(i) x
m
j ≥ km A redundant constraint that forces each customer to be connected to km number of metro nodes can

be enforced.
Objective

min
∑

i∈C,j∈Ec(i) 1.4× dceij × yceij +∑
i∈E,j∈Me(i) 1.4× demij × yemij

Minimize the sum of the cost of connecting customers to exchange sites and exchange sites to metro
nodes

problem into two subproblems. In the following we present
two such decomposition approaches:

1) Decomposition Approach I.: Let cost denote the cost
of a solution of the original problem. Let costE be the cost
of connecting customers to their closest exchange sites in
SE , respectively. Let costM be the cost of connecting SE

exchange sites to their two closest metro nodes in SM .
The first subproblem is a decision problem where the task

is to find a feasible solution of the original problem such that
the sum of the lengths of the optical fibre required to connect

customers to their exchange sites is within bounds of cost.
The second subproblem is an optimisation problem where
the task is to find a set of sm metro nodes that connects
a given set of exchange sites SE (determined in the first
step) such that the cost of connecting exchange sites in SE

to their closest and second closest metro nodes is minimum
subject to the constraint: costM < cost− costE .

These two subproblems are solved one after another
repeatedly until an optimal solution of the original problem
is found. Let SolE be the set of sets of exchange sites



known by solving the first subproblem. While solving the
first subproblem, we ensure that the same set of exchange
sites are never found again. The search stops when the first
subproblem becomes infeasible. If the second subproblem
is not infeasible then the upper bound of cost is set to
costM + costE .

2) Decomposition Approach II.: In the first decompo-
sition approach the decision problem is to find a feasible
solution of the original problem such that the cost of
connecting customers to exchange sites is less than a given
bound, whereas here it is to find a feasible solution of the
original problem such that the cost of connecting exchange
sites to metro nodes is less than a given bound. The second
subproblem is an optimisation problem where the task is
to find a set of exchange sites such that the sum of the
lengths of optical fibres required to connect a customer to
its exchange site and an exchange site to its two metro nodes
is minimised.

The sum of the lengths of optical fibres required to
connect customers to their exchange sites is costE . The sum
of the lengths of optical fibres required to connect exchange
sites to their metro nodes is costM . If the second subproblem
is not infeasible then the upper bound of cost is updated to
costM + costE . The two subproblems are solved one after
another repeatedly until an optimal solution of the original
problem is found. While solving the first subproblem, we
ensure that a same set of metro nodes are never found
again. The search stops when the first subproblem becomes
infeasible.

III. RESULTS FOR THE DEPLOYMENT OF METRO NODES
AND EXCHANGE SITES

In this section we present empirical results and analysis.
We used CPLEX (version 12.2) to solve all the integer
linear programming formulations. All algorithms were im-
plemented using Java. All the experiments were run on
Linux 2.6.25 x64 on Dual Quad Core Xeon CPU with overall
11.76 GB of RAM and processor speed of 2.66GHz. For
each pair of combination of the number of metro nodes,
sm ∈ {12, 14, 16}, and the number of exchange sites,
se ∈ {135, 145, 155}, we tried all the three approaches. The
rationale is that the operator might want to minimize the
number of local-exchanges and metro nodes providing the
LR-PON services.

The approach based on the MIP model presented in
Section II could not scale because of its space requirements.
The lower bounds were computed by relaxing the integrality
constraint of all the variables of the full sized MIP model
except the Boolean variables associated with the selection of
the metro nodes. The lower bounds are shown in the column
labelled as LB in Table II. These bounds were then used for
both decompositions approaches. For the two decomposition
approaches the time-limit was set to 4 hours. We observed
that finding a feasible solution for the first subproblem of the

first decomposition approach was harder for CPLEX than
finding a feasible solution for the first subproblem of the
second decomposition approach. While both decomposition
approaches were able to find solution for all the instances, in
Decomposition II, we were able to carry out more iterations
thus leading to better results.

Table II
COST RESULTS IN KMS.

se sm LB Decomposition I Decomposition II
155 16 46125 60574 50421
145 16 46837 61147 50973
135 16 47513 62720 51788
155 14 47618 60370 51355
145 14 48437 63489 51842
135 14 49070 61549 52626
155 12 48969 63109 52449
145 12 49808 63941 53063
135 12 50216 65069 53652

Figure 2(a) shows the distribution of distances between
customers and their closest local exchange. It can be
seen that most customers are within 10Km of their local-
exchanges. Figure 2(b) shows the fibre length required for
each customer to reach their local-exchanges when the max-
imum number of local exchanges is 145. This also implied
that the distances are longer than those in Figure 2(a), where
each customer was connected to its closest local exchange.
Figure 2(c) shows the fibre length required for each local-
exchange to connect to a metro node when the number
of metro nodes is restricted to 14. We observed that the
lower the number of metro nodes, the longer the overall
distance, so there is a trade-off between cost of fibre distance
versus number of metro nodes (thus overall cost of fitting
equipment in metro nodes). Figure 2(d) shows the fibre
length required for each local-exchange to connect to a
secondary metro node for protection purpose.

Finally we show the distribution of users per local-
exchange, and per metro node. Figure 2(e) shows the number
of users for each local-exchange when the number of local-
exchanges is set to 145 and the number of metro nodes is
fixed to 14. There are 6 local exchanges that have less than
10 customers each, most exchanges have between 20 and 40
customers, and only 3 have more than 100 customers.

Similarly Figure 2(f) shows the number of users per metro
node, respectively for primary service and backup service,
both calculated for 145 local exchanges and 14 core nodes.
The minimum number of users per metro node is close to
100, most are between 150 and 400, and one has almost
900 customers. Although most of the customers are within
100KMs from their metro node, 140 (3.5 %) require an
overall primary link longer than 100Km. In addition 931
customers (23.8 %) require protection paths that are longer
than 100Km.
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Figure 2. (a) Closest exchange site for each customer. (b) Distribution of fibre lengths required to connect customers to their closest exchange sites when
the number of metro nodes is fixed to 14 and the number of exchange sites is fixed to 145. (c) Distribution of fibre lengths required to connect exchange
sites to their primary metro nodes when the number of exchange sites is fixed to 145. (d) Distribution of fibre lengths required to connect exchange sites
to their secondary metro nodes when the number of exchange sites is fixed to 145. (e) Distribution of number of customers over number of exchange sites
when the number of exchange sites is 145 and the number of metro nodes is 14. (f) Distribution of number of customers over primary and secondary
metro nodes when the number of exchange sites is 145 and the number of metro nodes is 14.



IV. ROUTING A BRANCH OF THE LR-PON

In this section we consider the task of routing and
branching the cables in the context of an already existing
association of exchange sites with customers and metro
nodes with exchange sites. That is, for every customer there
is already an exchange site associated with it. Similarly,
every exchange site has been already assigned its two metro
nodes. The remaining task is then to find the route for the
cables.

The problem of routing cable from the metro nodes to its
exchange sites is different from the problem of routing cable
from the local exchanges to the customer (i.e. the optical
distribution network (ODN) side). In the ODN in fact the
fibres are distributed to the users through a tree distribution
network based on optical power splitters. At each split the
optical power is reduced by 10logN + α dB, where N is
the number of splits at each splitter and α is a constant
that considers additional loss due to the non-ideality of the
splitter. Thus the ODN problem also requires to introduce
physical layers constraints due to the optical power loss.

In this paper we focus on the problem of routing the cable
from the metro nodes to the local exchanges only. As an
association between a metro node and its exchange sites is
already given, we can treat each one-to-many relation (i.e.,
tree) independently. That is, we can focus on one single
metro node and find the paths from that metro node to all
the local exchanges that it covers.

In Figure 3 we show two ways of connecting a given
set of local exchanges to a metro node. In the first case
(Figure3(a)), we are simply connecting each local exchange
directly. In the second case (Figrue 3(b)), we are computing
a minimum spanning tree rooted at the metro node. Certainly
the option of connecting each local exchange directly to the
metro node leads to shorter connection paths (as shown in
Figure 4). However, the drawback of connecting each local
exchange directly is the total amount of cable used (as shown
in Figure 5, where a point (x, y) means that y units of cable
are used to cover x local exchanges) 2.

We are interested in both restricting the length of the
paths and the total amount of cable used. Keeping both
requirements is known to be a hard problem [3]. There
has been a lot of work on this bounded version of the
spanning tree problem (see [5] for a short summary of the
most relevant approaches). It has also been suggested CP
for tackling this problem ([5], [2]). We assume that a cost
function is given. This cost function associates each arc and
capacity with a cost. The objective is then to minimize the
cost of the used arcs taking into account the paths going

2In the path length comparison, local exchanges are sorted by the length
of the path from the local exchange to the metro node. In the coverage
comparison, the links of the tree are sorted with respect to their length,
where a point (x, y) represents that there are x local exchanges connected
by the k shortest links and the cumulative length of those k links is y.

(a) Trivial tree. Each local exchange is directly connected to the metro
node assuming that the branching capacity of the metro node is not
limited.

(b) Minimum spanning tree. Local exchanges are connected to the
metro node through a spanning tree routed at the metro node

Figure 3. Two ways of connecting the local exchanges to a given metro
node

through them3. What we are trying to model is a cable
layout where no trenching cost is required, as the network
reuses existing ducts. The costs to be considered are: those
resulting from laying new fibre on an existing duct and those
resulting from the capacity of the cable (which are a step-
wise function of the number of fibres in the duct). These
two costs generate a trade-off, as while reducing the overall
amount of fibre reduces the cost of laying fibre in the duct,
it also increase the size of cables on the used ducts.

A. A Mixed Integer Programming Model

Let xij be a Boolean variable that denotes whether there
is a cable-link between nodes i and j. Let yij be an integer
variable that denotes the number of optical fibres passing

3In the experiment that we have carried out we have ignored the
dependency of the cost with the capacity, i.e., the cost of a link only depends
on the cable distance.



Table III
MODEL USING ELEMENT AND ELEMENT2

Variables
si ∈ N an integer variable denoting the successor of the i-th node.
li ∈ N an integer variable denoting the length of the path associated with the i-th

node.
ya ∈ N an integer variable denoting the capacity associated with arc a ∈ A.
qij ∈ N an integer variable denoting the successor at level j of the i-th node.

Constraints
sm = m e is the only root
∀i ∈ C : i 6∈ dom(si) All customers need to be covered
si = qi1 The successor at level 1 of node i is its immediate successor
ELEMENT(qij , s, qi(j+1)) The successor at level j of node i is the successor of its successor at level

j − 1
qi(n−1) = qin As node i has at most n−1 successors, the successor of its n−1-th successor

is bound to be equal to the latter
li = ELEMENT2(i, si, F )+∑

1≤i≤n−2 ELEMENT2(qij , qi(j+1), F ) The length of the path of node i is the sum of the costs of the arcs linking
its successors

li ≤ λ The length of the path of node i is bounded by λ
Objective

min
∑

i∈N ELEMENT2(i, si, F ) To minimize the sum of the cost of the arcs of the tree
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Figure 4. Comparing path length distributions

through the cable-link between nodes i and j, where i ∈
{0, . . . , N} and j ∈ {1, . . . , N}. We assume that Node 0 is
a metro node. Let li be the upper bound on the length of the
path of the optical fibre from the metro node to exchange
site i. The number of fibres emanating from the metro node
is equal to N :

N∑
i=i

y0i = N

Each exchange site i ∈ {1, . . . N} has only one incoming
cable:

∑N
j=0 xji = 1. There exists an optical fibre that

(in)directly connects each exchange site i ∈ {1, . . . n} to
the metro node:

N∑
j=0

yji −
N∑
j=1

yij = 1
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Figure 6. Unbounded MST.



Figure 7. Bounded MST.
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Figure 8. Performance in the computation of the optimal solution of the
case in Figure7

If there is no cable-link between nodes i and j then there is
no optical fibre that connects nodes i and j directly:

xij = 0⇒ yij = 0

If there is a cable-link between exchange sites i and j then
the length of the optical fibre required to connect j to the
metro node is greater than or equal to the sum of the length
of the optical fibres required to connect exchange site i to
its metro node plus and exchange site i to exchange site j:

xij = 1⇒ lj ≥ li + dij

The length of the optical fibre required to connect each
exchange site i to the metro node is less than or equal to a
given constant λ: lj ≤ λ. The objective is to minimize the
total length of cables:

min
∑

i∈{0,...,N}∧j∈{1 ...,N}

dij · xij

Table IV
COST RESULTS IN KMS.

se sm No sharing Sharing
155 16 17067 5776
145 16 16030 5630
135 16 14945 5435
155 14 17822 5749
145 14 16867 5680
135 14 15819 5528
155 12 18734 5881
145 12 17821 5640
135 12 16813 5546

We used this MIP approach for computing the last column
of Table IV (Sharing), which presents the amount of cable
spent if cable is shared for connecting metro nodes to
local exchanges. In these experiments, we used 120Km as
the value for λ. These values are compared with the ones
obtained when cable is not shared (No Sharing). Consistent
with the situation that we observed in Figure 5, we also see
here a significant difference with respect to the case where
the cable is not shared. Solving each branching instance took
less that one second.

B. Constraitnt Programming Models

We model this routing problem in two different ways. In
the models, N denotes the set of nodes, which is equal to
{m}∪E, where m is the metro node whose local exchanges
we are linking and E is the set of local exchanges associated
with m. We assume full connectivity of the network, so A
(the set of arcs) is equal to N2. We use F to associate arcs
with costs. There is also a global upper bound on the length
of the paths associated with the nodes. We use λ to refer to
that upper bound.

1) Decomposing the Tree constraint using the Element
constraint: This model is based on the decomposition of
the Tree constraint presented in Page 20 of [1]. The model
relies on the following concepts:
• ELEMENT(i, x, y) states that the i-th element in x is
y (i.e., xi = y).

• ELEMENT2(i, j, x, y) states that the ((i, j)-th element
in x is y (i.e., xij = y). In the model, we will avoid
the usage of auxiliary variables by using this constraint
as a function:

ELEMENT2(i, j, x, y) ∧ R(. . . , y, . . .)
≡ R(. . . , ELEMENT2(i, j, x), . . .)

The model is presented in Table III.
2) Using the Tree Constraint: In this model, in addition

to the ELEMENT constraint, we use the Tree constraint.
TREE(s, l, η, α) holds if the integer variables in s, which
represent the successors of the nodes (i.e., si is the successor
of node i), have been assigned values in such a way that they
correspond to a forest with η trees, of which α are proper
trees (i.e., trees involving more than one node). The root of



Table V
MODEL USING TREE AND ELEMENT2

Variables
si ∈ N an integer variable denoting the successor of the i-th node.
li ∈ N an integer variable denoting the length of the path associated with the i-th

node.
Constraints

TREE(s, l, η, α) The connection of customers to the exchange site is a tree
se = e e is the only root
∀i ∈ C : i 6∈ dom(si) All customers need to be covered
∀i ∈ N : dom(li) = {v ∈ N|v ≤ λ} The length of every path should be less than the given upper bound
η = 1 There is only one tree in the forest
α = 1 The only tree in the forest is proper since it contains all the nodes

Objective
min

∑
i∈N ELEMENT2(i, si, F ) To minimize the sum of the cost of the arcs of the tree

each tree is a node whose successor is itself. The successor
of a node corresponds to the parent of the node in the forest.
l is an array of integer variables representing the length of
the paths from the nodes to their roots (i.e., li is the length
of the path from node i to the root of its tree) 4. The model
is presented in Table V.

3) Evaluation: We implemented the first CP model in
Choco 2.1.45. The second model was not implemented
because the Tree constraint was not operational at the time of
writing this paper6. While the evaluated CP approach is still
quadratic with respect to the number of constraints, it let us
anticipate the challenges to be faced in the implementation of
the second CP model, which is indeed much more compact
than the evaluated approaches.

In Figures 6 and 7, the metro node is Node 0 and the
other nodes are local exchanges. In Figure 6 local exchanges
are covered using an unbounded minimum spanning tree,
which leads to very long paths (e.g., the path to reach local
exchanges 7). In Figure 7 we limit the maximum length
of the path to the maximum direct distance from a local
exchange to the metro node. This restriction forces local
exchanges 2,6,7 to be directed connected to the metro node.

When it comes to performance, the evaluated CP approach
behaves very poorly with respect to the MIP approach (see
Figure 8). Even though the optimal solution is computed
relatively quickly (for the small cases that we tried), the
time spent in proving optimality was quite high. One the
reason for the model to behave so poorly is that no pruning
is taking place at the level of the objective function. Another
reason is that the determination of the successor variables is
not taking into account the structure of the solution.

V. CONCLUSIONS

We have presented a sophisticated combinatorial optimi-
sation approach to a large and challenging network design

4We present here a simplified version of the constraint. The full version
of the constraint can be found in [5].

5http://www.emn.fr/z-info/choco-solver/
6http://sourceforge.net/tracker/index.php?func=detail&aid=

3534214&group id=96738&atid=615736

problem from a real-world setting. Our approach comprised
two phases. The first phase seems suitable for mixed integer
programming since the number of constraints is linear with
respect to the number of nodes. The second phase seems
less suitable since the number of constraints is quadratic.
The extensive evaluation of the first stage indeed shows that
MIP is appropriate for this. For the second phase we saw
that our MIP approach comfortably handled the instances
we are currently considering. However, as the number of
constraints is quadratic with respect to the number of nodes
in the network, we felt motivated to explore a more compact
representation with CP. Our current CP results suggest that
more work needs to be done both at the level of propagation
and the level of labeling strategy.
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