Context-Sensitive Call Control using Constraints and
Rules

David Lesaint!, Deepak Mehta?, Barry O’Sullivan?, Luis Quesada?, and Nic Wilson?

1 BT Research & Technology, BT, UK
dvdlsnt@gmail.com
2 Cork Constraint Computation Centre, University College Cork, Ireland
{d.mehta,b.osullivan,l.quesada,n.wilson}@4c.ucc.ie

Abstract. Personalisation and context-awareness are fundamental concerns in
Telephony. This paper introduces a rule-based system - 4CRULES - which en-
ables context-sensitive call control by the means of feature configuration rules.
4CRULES is interoperable with standard context services and compositional fea-
ture architectures. It has been designed to resolve feature interactions, manage
conflicting preferences, and mitigate the uncertainty affecting context data. This
is achieved through a constraint optimisation model that maximises adherence
to user requirements and domain constraints. Experiments on a suite of instances
confirm the practicality of the approach and highlight performance- and adherence-
critical factors.

1 Introduction

Telecommunications services like instant messaging or internet telephony bring in-
creased flexibility to communicate at home, in the office or on the move. Their per-
vasiveness is also a source of disruptions and intrusions. Service providers are therefore
looking for personalisation solutions allowing users to control the timing and modalities
of their communications. In the case of telephony services, personalisation solutions are
built around call control features. Technically, a feature is an increment of functionality
that modifies the basic system behaviour. Dozens of call control features have been cre-
ated to address concerns such as mobility, privacy, presentation, or billing. Features are
optional and must be configured off-line to fulfil their role. Once configured, they exe-
cute by responding to call events (e.g., Call-Divert-On-Busy) and/or user actions (e.g.,
Call-Transfer) during calls.

Key requirements that drive the design of feature-rich telephony systems are: the
ability for users to parametrise features (e.g., “Call-Divert to mobile”), address caller
and callee scenarios (e.g., “Do-Not-Disturb and Speed-Dial”), combine or sequence
features (e.g., “Call-Screen then Call-Divert”), request context-sensitive feature config-
urations (e.g., “Mute during seminars”), and express preferences or priorities (e.g., call
policies imposed on a workforce). Different approaches ranging from scripting to policy
enforcement have been proposed to meet these requirements. None, however, provides
a comprehensive personalisation solution to: resolve undesirable feature interactions
arising due to compositionality; manage conflicting preferences; and handle the uncer-
tainty inherent to context data. To address these issues this paper presents a system

for Context-sensitive Configuration of Call Control features using Rules (4CRULES).
4CRULES allows a user to describe the behaviour of the communication service through
a set of Feature Configuration Rules (FCRs). Conceptually, a FCR is weighted and as-
sociates a context condition to a feature subscription, which is defined to be a set of
features, and a set of precedence constraints prescribed by a user and the feature cata-
logue. Each time a user’s context is updated, the engine of 4CRULES infers a sequence
of features from his/her set of FCRs. This sequence is free of undesirable feature inter-
actions and it is applied to all calls involving the user until his context changes again.

A set of FCRs that are applicable for a given current context of a user could be in-
consistent due to a variety of reasons as explained in the later sections. The 4CRULES
engine computes a maximal subset of the applicable FCRs that is consistent and optimal
in some sense. The optimality is based on a strict weak ordering over FCRs, which is
obtained by evaluating a value for each FCR by combining priority of the FCR, concrete-
ness of the context condition of the FCR, and probability of applicability of the FCR. The
principle of the presented approach is to view FCRs processing as a constraint optimi-
sation task. Overall, the method ensures maximum adherence to user requirements and
interaction constraints. Experiments on a suite of instances confirm its practicality in
terms of response time and highlight performance- and adherence-critical factors.

The next section provides background and reviews prior art on the call feature con-
figuration. The architecture of 4CRULES and the principles of its implementation are
then introduced. This is followed by a description of the FCRs language and processing
method. The paper concludes with experiments using the existing implementation.

2 Related Work

From a user perspective, telephony systems that provide personalisation solutions must
provide support for:

— parameterisation: some features use operational data supplied by users;

— role-based selection: some features apply to outgoing calls, some to incoming calls
and others indistinctly (e.g., Call-Waiting);

— composition: features provide distinct functionalities and users need the flexibility
to combine them and, in some cases, prioritise their execution;

— contextualisation: call handling requirements often depend on context, i.e., on ex-
trinsic call characteristics such as user activity or location, and call service be-
haviour must be adapted accordingly;

— preferences and priorities: requirements may be weighted to enforce pre-emptive
rights when call control is shared or to help resolve conflicts; and

— uncertainty management: information on context may be imprecise (e.g., coarse-
grain localisation), incomplete (e.g., unclassified activity in a calendar service) or
unavailable (e.g., off-line presence service).

Another critical requirement is the ability to manage feature interactions [1]. A fea-
ture interaction is “some way in which a feature modifies or influences the behaviour of
another feature in generating the system’s overall behaviour” [2]. Some interactions are

desirable and must be enabled to achieve proper system behaviour, e.g., when the mod-
ules of a feature must interact. Other interactions are undesirable and must be avoided.
For instance, Call-Waiting-On-Busy and Call-Divert-On-Busy are triggered by the same
event but take conflicting actions, i.e., put the caller on hold or divert his call.

Modern telephony systems, notably those based on the Session Initiation Protocol
(SIP), rest upon compositional application architectures that are opened to personali-
sation and feature interaction management [3]. SIP is an application layer signalling
protocol used to establish, modify and terminate multimedia sessions [4, 5]. Various ap-
plication programming interfaces (APIs) and domain-specific languages (DSLs) have
been proposed to develop SIP services. These capabilities hide away low-level SIP stack
operations to facilitate programmatic control over the call logic.

Scripting and policy languages are the main form of DSLs for SIP services. CPL [6]
and LESS [7], for instance, provide primitive events and actions to specify fine-grained
call control scripts. Scripts are uploaded to devices or application servers and interpreted
by scripting engines at runtime. Policy enforcement systems allow for more declarativ-
ity and expressiveness. Policies are well suited to capture trigger-response patterns that
commonly define feature behaviour. APPEL, for instance, supports an event-condition-
action syntax to guard call primitives with call events subject to context conditions [8,
9]. APPEL also supports conflict resolution policies [10]. Conflicts may occur when
different policies are triggered and alternative actions may be taken to process a call.
It is for the user to define which actions conflict and, if so, which resolution policy to
apply (e.g., discard or replace actions).

These solutions mostly rely on prioritisation to handle conflicts. In addition, they
provide limited support to capture constraints relating to application compositionality
and they do not handle context uncertainty. Constraint-based systems offer an alter-
native. Distributed Feature Compositions (DFC), for instance, is an abstract network
architecture designed to manage interactions through feature sequencing and exclusion
constraints [11-13]. Constraints are elicited by analysing pairs of features and identify-
ing those which are interaction-prone. This is achieved manually, formally or through
simulation and testing [14—17].

Features and constraints are recorded in a catalogue and users configure their sub-
scription by selecting and sequencing features accordingly. DFC routers then access
user subscriptions to activate features sequentially when calls are set up. [18] propose
a constraint optimisation approach to configure (context-agnostic) DFC feature sub-
scriptions based on user preferences. 4CRULES builds upon this method to compute
context-sensitive subscriptions.

3 Architecture and Principles of 4CRULES

4CRULES is a prototype designed to compute feature subscriptions of a user based
on his/her real-time context information and feature configuration rules. It assumes a
DFC-compliant telephony system that exposes a feature catalogue and accepts user
subscriptions. It also assumes a context acquisition system that delivers user context in-
formation collected from different sources. Its logical architecture comprises a registrar,

X X

|
add/delete

registration FCR(registration)

da/delot Registrar Rules Editor add/delete

add/delete

| user I:l address |

Registrations

£ e .

H gistration added ’

] registration delete FCRregistration)

2 J« o

@ o

< 3

:g Context Log Rules Store S

8 Catalogue g

3 <

g ‘ Context Records ‘ ‘ Rulesets ‘ »
<

< @

%)

K registrations(user) context log(user) ruleset(registration) 3

c

o

o

context . subscription
[~ record(user) Rules Engine (address) —|

Fig. 1. The architecture of 4 CRULES.

a rules-editor, a rules-store, a rules-engine, a context-log, and interfaces to the context
acquisition and telephony systems - see Figure 1.

The registrar associates users of the context acquisition system with addresses reg-
istered in the telephony system. The mapping between users and addresses is generally
one-to-many. For simplicity, we identify users with addresses. 4CRULES associates a
set of FCRs with each user. The rules-store maintains the rule-sets and the feature cata-
logue. The rules editor is the user interface to create, delete and update rule-sets.

The context acquisition system is responsible for tracking the context of users. It
notifies the rules-engine when the context of a user changes and passes a record of
the context of the user (context-record) which is also stored in the context-log. The
engine retrieves the associated set of FCRs from the rules-store and computes a context-
sensitive feature subscription. It then communicates the feature subscription to the tele-
phony system. This feature subscription will prevail in all calls involving the user until
a new context-record is received.

4CRULES shares a common meta-model with the context acquisition and telephony
systems. The context meta-model is simple enough to achieve interoperability with a
variety of services (e.g., GPS devices, calendar services, presence servers). It prescribes
a finite domain representation for each context dimension (e.g., location) which is as-
sumed to be exhaustive (i.e., no state omitted) and unambiguous (i.e., domain values
denote distinct states). The granularity of context domains is unconstrained (e.g., days
or quarters). Table 1 provides an example of a context model.

The (concrete) context of a user may thus be described with a single value from
each domain of each dimension at any time. However, it is not always feasible to ac-
quire concrete information about context dimensions. For this reason, 4CRULES ac-

Table 1. A context model.

Dimension DAY HOURS ACTIVITY LOCATION PRESENCE

Domain Monday AM journey home appearOffline
Tuesday PM lunch office away
Wednesday standBy anyOther beRightBack
Thursday visit busy
Friday anyOther doNotDisturb
Saturday offline
Sunday online

cepts abstract contexts as input. Specifically, the context-records communicated by the
acquisition system may include alternative values for each dimension to denote mul-
tiple states. For instance, the abstract context “Friday, PM, lunch or visit” denoted
(D:{Friday}, H:{PM}, A:{lunch, visit})?is a valid record in reference to the model
of Table 1. Notice that no assumption is made about the frequency of communications.
It is for the acquisition system to decide which record to communicate and when.

As far as the telephony system is concerned, the meta-models for feature catalogue
and feature subscription subsume that of DFC. A catalogue is a set of features and
precedence constraints, and the induced relation may be cyclic (i.e., some features may
be incompatible) and non-transitive. A feature subscription is a set of features, user-
defined precedence constraints, and a set of catalogue precedence constraints defined
on the selected features. It is consistent if the induced relation is acyclic. Catalogue and
subscription meta-models also accommodate parameter signatures for features.

The feature configuration rule language is built upon the context and the feature
catalogue meta-models. The antecedent of a FCR specifies an abstract context which
has Cartesian product semantics similarly to that of context-records. The consequent of
a FCR is a feature subscription augmented with feature exclusion constraints. Basically,
the user can express inclusion and exclusion constraints over individual features and
precedence constraints over the included features. The priority of a FCR is selected by
the user from a total order (e.g., low < medium < high). The region of a FCR is
target (resp., source) if the user is callee (resp., caller).

Figure 2 illustrates a set of FCRs. The identifier of the first FCR is 1, its priority is
high, its region target, and it prescribes the activation of feature divert with param-
eter value addr1 if the activity recorded for the user is journey or visit. This means
that all incoming calls received during journeys or visits should be forwarded to address
addrl. The second rule prescribes the activation of feature tScreen before feature
divert as indicated by keyword BEFORE. The third rule excludes feature divert as
indicated by keyword DONT. In other words, this rule cannot be composed with a rule
that requires divert. The next rule restricts the two dimensions Day and Hour. The
last rule handles outgoing calls and is labelled with source instead of target.

Given an abstract context recorded for a user, and a set of FCRs provided by the user
the rules-engine proceeds in two steps. It first identifies the set of FCRs that are applica-
ble, i.e., whose antecedents intersect with the recorded abstract context. Notice that an
applicable FCR does not necessarily subsume the concrete context of the user. For this

3 We represent an abstract context by abbreviating dimensions with their initials (e.g., D for
DAY) and omitting those that are not restricted (LOCATION and PRESENCE in this example).

[1,high, target] A:{journey,visit} — divert (addrl)

[2,high, target] L:{home} — tScreen(listl) BEFORE divert (addrl)
[3,1low,target] A:{lunch} — play (away.mp3) DONT (divert)
[4,1low,target] D:{Monday,Friday} AND H:{PM} — divertNoAnswer (addr2)
[5,1low,target] L:{anyOther} — play (welcome.mp3)

[6,high, source] L:{anyOther} — oScreen (list2)

Fig. 2. A set of feature configuration rules.

reason, the engine computes a probability of applicability for each FCR as described
in Section 6. The second step computes an interaction-free sequence of features that
is obtained by composing the consequents of applicable FCRs. Since applicable rules
may not be consistent as described in Section 5, the engine determines a consistent
relaxation, i.e., a subset of rules that are consistent. Since there may be many such re-
laxations, the engine computes an optimal relaxation using a lexicographic order based
on rule priority, concreteness and probability of applicability. The engine solves this
combinatorial optimisation problem using a constraint programming model.

The next sections present the notations and definitions related to the context and
catalogue meta-models, the rules language, the notions of probability of applicability
and relaxation, and the constraint programming formulation of the relaxation problem.

4 Context and Catalogue Meta-models

In this section we describe the context and catalogue meta-models.

4.1 Context Dimensions and Records

A context model is a tuple of context dimensions. A context dimension is represented
by a finite domain of values called context domain. Let M denote a context model, m
the number of context dimensions of M, D;, 1 < ¢ < m, the domain associated with
the i*" dimension of M, and d the size of the largest domain in M. Without loss of
generality we assume that each context domain is totally ordered.

An abstract context a = (a1, az, ..., an) over M is a tuple consisting of a (non-
empty) set of values per context domain. If all sets in a are singleton, a is said to
be concrete. For instance, (D: {Monday, Tuesday}, A: {lunch, visit}) is an abstract
context while (D:{Monday}, H:{PM}, A:{lunch}, L:{office},P:{offline}) is a
concrete context wrt. Figure 1. Whenever a dimension is not specified (e.g., L in the
previous abstract context) the full domain is assumed. A context-record is an abstract
context over M.

Leta = (a1, as,...,a,) be an abstract context over M. [a] denotes the Cartesian
product a; X ag X - -+ X am,. Leta; = (aiy, ..., a4,) and a; = {(a;,,...,a;,) be two
abstract contexts over M. We say that a; subsumes a;, denoted by a; C a; if and only
if (aj, Ca;) A+ A(aj,, € ai,,). The intersection of a; and a;, denoted by a; N a;,
is ((a;, Naj,),...,(ai, Naj,)). The complexity of context intersection is linear in the
number of dimensions and linear in the maximum domain size. The maximal abstract
context over M for subsumption is denoted D, i.e., D = (D1, ..., Dy,).

4.2 Feature Catalogues and Subscriptions

A feature catalogue is a pair (F, H), where F is a set of features and H is a set of hard
precedence constraints on F. A precedence constraint, ¢ < j € H, means that if the
features ¢ and j are part of a subscription then 7 must precede j in that subscription.
Two features ¢ and j are mutually exclusive if they can never appear together in any
subscription. This is expressed by a pair of precedence constraints ¢ < j and j < <.

The name of a feature together with the name and type of its parameters define
the signature of a feature. For instance, feature play in Figure 2 is parameterised with
the name of a media file whereas tScreen is parameterised with a list of addresses.
For each feature f € F, sy denotes the signature of f. S denotes the set of feature
signatures, i.e., S = {sf|f € F}, and s the largest number of parameters for a feature.

Formally, a feature subscription for a catalogue (F,H) is a tuple (F,V, H U P),
where F' C F, V is a set of feature parameter assignments complying with signa-
ture sy € S for each f € F, H is the projection of H on F, ie., H |p= {(i <
j) € H :i,j € F}, and P is a set of user-defined precedence constraints on F'.
A feature subscription (F,V, H U P) is defined to be consistent if and only if the di-
rected graph (F, HU P) is acyclic. For instance, a subscription ({tScreen, divert},
{tScreen:list=11,divert:addr=al}, {tScreen < divert})isacyclic and hence
it is consistent.

Let Uy = (F1, Vi, Hy U Py) and Uy = (Fy, Va, Ho U Py) be two feature subscrip-
tions. Let vy, € V; denote the parameter assignment for f € F;inU;, 1 <1 < 2. We say
that Uy and U are unifiable if and only if for all f € Fy N Fy, vy, = vy,. For instance,
<{divert}, {divert : addr:al}7 (Z)> and <{tScreen, divert}, {tScreen :1list=11,
divert:addr=al}, {tScreen<divert}) are unifiable subscriptions since feature
divert has the same parameter assignment in each subscription. The composition of n
subscriptions (F;, V;, H; U P;), 1 < i < n, is the subscription (F,., V., H. U P.), where
F.=FRU---UF,V.=VU---UV,,H.=H |p.,and P, = P,U---U P,. For in-
stance, the composition of the two subscriptions ({divert}, {divert:addr=a1},)
and ({divertNoAnswer}, {divertNoAnswer:addr=a2}, () is the subscription ({di
vert, divertNoAnswer}, {divert raddr=al,divertNoAnswer: addr=a2},{div
ertNoAnswer < divert,divert < divertNoAnswer}) if we assume that divert
and divertNoAnswer are mutually exclusive in the catalogue.

5 Feature Configuration Rules

A feature configuration rule (FCR) associates an abstract context to a consistent fea-
ture subscription. Let r be a FCR. a, = {a;,,...,a,,) denotes the abstract context
of r where Vi,1 < ¢ < m, ar, # 0. s, = (F.,V,,H. U P,) denotes the consis-
tent feature subscription of . We say that a FCR 7 is applicable to a given context-
record ¢ if and only if a, and ¢ have a common intersection, i.e., [a, N] # 0. For
instance, FCR 1 in Figure 2 is applicable to (A:{journey, standBy}) but FCR 3 is
not. Let R be a set of FCRs. We say that R is applicable to an abstract context ¢ if
and only if ¢ intersects with each antecedent, i.e., Vr € R, [a, Ns]] # 0. We say that
the FCRs in R are mutually applicable to ¢ if and only if their antecedents and ¢ have

a common intersection, i.e., [[),cpar N <] # (). For instance, the FCRs of Figure 2
are individually applicable but they are not mutually applicable to the abstract context
(a:{j0ourney, lunch}, L:{home, anyOther}).

We want to allow the possibility of expressing that some feature cannot be part of the
final subscription should the FCR be applied and composed with other FCRs. In order to
allow that, for each feature f € F, a dummy feature f and two precedence constraints
f < fand f = f are added to the catalogue to enforce mutual exclusion. The dummy
feature f can then be included in the subscription to specify the exclusion of f should
the rule be applied. This ensures that a FCR excluding f will be incompatible with a
rule requesting f. We say that R is compatible with the catalogue if and only if the
composition of the subscriptions prescribed by the rules of R denoted (Fr, Vg, Hr U
Pg) is consistent. For instance, the rule-set {1, 2} is compatible but {1, 3} is not due
to the mutual exclusion constraint between divert and divert in the catalogue. In
the following we shall also assume that features divert and divertNoAnswer are
mutually exclusive in the catalogue and that no other catalogue constraint applies to the
features used in the rule-set in Figure 2. Therefore, the rule-set {1,4} is not compatible
with the catalogue.

We say that R is unifiable if and only if the feature subscriptions prescribed by
FCRs of R are pairwise unifiable. For instance, the rule-set in Figure 2 is not unifiable
due to the assignment of feature play in rule 3 and 5. Figure 3 shows the pairs of
rules in Figure 2 that are not compatible, not unifiable or not mutually applicable to
the abstract context ¢; = (D:{Friday}, H:{PM}, A:{journey, lunch}, L:{home,
anyOther},P:{office}).

AR

1 a 6

=

3 a 5
Fig. 3. Graph of inconsistent pairs of rules in Table 2 wrt. abstract context ¢;. Nodes represent

rules and edges labelled with ¢ (respectively, u, a) connect rules that are not compatible (resp.,
unifiable, mutually applicable to ¢1).

Given a set of FCRs R which is applicable to an abstract context ¢, we say that R is
consistent with ¢ if and only if the FCRs of R are mutually applicable to ¢, R is unifi-
able, and R is compatible with the catalogue. For instance, the set of rules {3,4, 6} in
Figure 2 is consistent with the abstract context ¢; and corresponds to one of the inde-
pendent sets in the inconsistency graph shown in Figure 3. Note that independence in
the inconsistency graph is necessary but insufficient in the general case to ensure con-
sistency since the rules of an inconsistent set of rules may be pairwise consistent. Each
FCR 7 is associated with a weight that includes a user-defined priority, a concreteness
measure, and a probability of applicability. The concreteness of a rule is fixed and rep-

resents the cardinality of its abstract context whereas its probability of applicability is
relative to the context-record being considered.

Proposition 1. Letr R be a set of FCRs applicable to an abstract context s. The time
complexity of checking the consistency of R with s is O(|R|(|Fr| s+m d)+|HrUPr|).

Proof. The time complexity of checking the applicability of R is O(|R| m d), where m
is the number of context dimensions and d is the maximum domain size of the context
dimensions. This is because the time-complexity of computing the intersection of two
abstract contexts is O(m d) and | R| such intersections are required. The complexity of
checking the compatibility of R is equivalent to checking the consistency of the feature
subscription (Fr, Vg, Pr U Hg), which is O(|Fg| + |Pr U Hg|). The complexity of
checking the unifiability of FCRs is O(|Fg| |R| s). This is because verifying whether a
feature has the set of parameter values in different rules is O(|R| s) and checking this
for all features is O(| Fr||R| s). Thus, the overall time complexity is O(|R|(|Fr| s +
md) + |Hgr U Pgl).

6 Probability of Applicability of a FCR

4CRULES assumes that any context-record, ¢, sent by the context acquisition system
for a user includes his/her current context, i.e., the concrete context denoting his state.
Consistently with this assumption, the rules-engine discards rules that are not applica-
ble, i.e, rules whose antecedents do not intersect with ¢. Since their antecedents cannot
include the current context, it is safe not to apply them. The method, however, considers
any other rule as applicable. While this is safe for rules whose antecedents subsume the
context-record, and therefore includes the current context, this is not necessarily safe
for those rules whose antecedents do not subsume the context-record. For such rules,
it cannot be exactly ascertained whether the antecedent includes the current context or
not.

For this reason, the rules-engine computes a probability of applicability for each
rule with respect to the context-record. This probability is based on a probability dis-
tribution over the space of concrete contexts that is specific to the user. Given a user
u, the associated probability distribution, a context-record ¢, and the antecedent a, of
a rule r associated with wu, the probability that r is applicable to ¢ is the sum of the
probabilities of the concrete contexts that are common to a, and ¢. By default, the
distribution may be assumed uniform, i.e., each concrete context is equally likely to
occur. In this case, the probability of applicability of a rule r to a context-record ¢,
denoted Pu(a.|s), is defined by Pu(a.|s) = |[ar A <]|/|[s]|- For example, if ¢ =
(L:{anyOther, office}, A:{lunch}), then Pu(ag|s) = 1/2. Here ag denotes the ab-
stract context (L : {anyOther}) associated with FCR 6 in Figure 2. Notice that ag A g
and ¢ differ only in the dimension Location: the former has only one value for the di-
mension Location while the latter has two values.

Alternatively, a frequency distribution may be used if the context-records produced
by the acquisition system are logged. The context-log of a user is a list of pairs (a, f(a))
where a is an abstract context and f(a) its frequency. The log is initialised with the pair
(D, 1) corresponding to the maximal abstract context D. When the acquisition system

Algorithm 1 MCS(L¢, R, k)
Require: L: context-log of a given user, ¢: context-record of the user, R: set of FCRs of the user
applicable to context ¢, and k: number of trials.

Ensure: Pf, is an approximation of Pf{a|s).

I: for1 <r < |R| do

2: Sr+—0,t- <—0

3:for1 <¢g<kdo

4: randomly select an abstract context a from £ such that a As # @) favouring those contexts

with higher frequency.

5 forall r=1...|R| do

6: Sr— Sr + |[a A s Aar]]
7: ty — tr + |[a AS]|
8 forr=1...|R| do
9: Pf, — s, [t,

produces an abstract context a for the user, his/her context-log is extended with a new
pair (a, 1) if there is no pair whose first element is a or else the frequency of a is
incremented by 1 in the existing pair (a, f(a)). Given a log of context-records £, the
probability of applicability of a rule r to a context-record ¢, denoted Pf(a,|s), is

Z(a fla)ec [fa As Aar]| x fla)
Pfla, = . 1
Rarl) = s mee T ASIT X F(0) M

The denominator is the total count of the concrete contexts covered by the abstract
contexts subsumed by ¢ according to £, and the numerator is the number of times a user
has been in one of the concrete contexts subsumed both by ¢ and a,. Let size(L) =
> acr f(a) be the size of a log L. The exact computation of Pf{a,|s) is linear with
respect to size(L). If size(L) is large, a Monte-Carlo method such as Algorithm 1
can be used for generating a close approximation. Given a context-log £ for a user
u, a context-record ¢, a set of rules R applicable to ¢, and an integer k£, Algorithm 1
randomly selects k abstract contexts from the log favouring those contexts with higher
frequency and it updates two counters s, and ¢, for each rule r. Here ¢,. denotes the
total count of the concrete contexts covered by k abstract contexts selected from the log
that are subsumed by ¢, and s,- denotes the portion of ¢, that is consistent with a,.. The
algorithm returns the ratio of s, and ¢, which approximates Pf(a.|s). When size(L)
is small, it is reasonable to use Pu(a,|s) for computing the probability of applicability.
As size(L) increases, it is desirable to gradually switch to pf{a,|s). In order to achieve
that, a weighted average of Pu(a,|s) and Pf(a,|s), denoted Pa(a.|s), may be used.

7 Optimal Relaxation of a Set of FCRs

Given a context-record ¢ and a set of FCRs R, the engine searches for a consistent set
of rules amongst R. Let R C R be the set of rules applicable to . If the rules in R
are mutually not applicable to ¢, or R is non-unifiable, or it is incompatible with the
catalogue then R is inconsistent, in which case the task is to find a relaxation of R that

Algorithm 2 \(r;,7;) : Boolean

: If Pa(ar, /s) > Pa(ar; /<) then return t rue

: elseif Pa(a,, /<) < Pa(ar; /<) then return false
. elseif x(r;) > k(r;) then return true

: elseif x(r;) < k(r;) then return false

. elseif y(r;) < v(r;) then return t rue

: else return false

AN LA =

is consistent. From now on, by relaxation we mean consistent relaxation. A consistent
relaxation R’ of R is maximal if there does not exist any relaxation R” verifying R’ C
R”. Since there may be many maximal relaxations, the engine searches for a maximal
relaxation that is optimal in some sense. The notion of optimality is defined using a
lexicographic order over sets of FCRs. A lexicographic order over maximal relaxations
can be derived from a strict weak ordering over rules.

A strict weak ordering is a binary relation on a set that is a strict partial order in
which the relation “neither a is related to b nor b is related to a” is transitive. Given a
rule r; € R, Pa(a;|s) denotes the probability that the rule is applicable to g, x(r;) de-
notes the priority of the rule, and y(r;) denotes the concreteness of the rule. Algorithm 2
introduces a strict weak ordering A which compares rules based on their probability of
applicability, priority, and concreteness. Given two rules, A first compares their prob-
abilities of applicability. If the probabilities are equal then A compares their priorities.
If the priorities are equal then A compares their concreteness. If their concreteness are
also identical then the two rules are A-incomparable, i.e., equally important with re-
spect to A. Another variant of the described ordering could be obtained by defining
equivalence classes of the probabitlies and using them to compare the rules instead of
their precise probabilities. An alternative strict weak ordering can be obtained by com-
bining priority and probability of applicability, i.e., r; is preferred to r; if and only if
Pa(a,, /<) X k(r;) > Pa(ar,; /<) X K(r;).

Given a strict weak ordering A\, ©(R) denotes the total ordering of R obtained by
ordering its elements using A and breaking the ties between A-incomparable rules using
their identifiers. Let R’ and R" be two consistent sets of rules such that ©5(R’) =
(ris- .. rp)and OA(R") = (r{,...,ry). R’ is lexicographically better than R" for),
denoted O (R') <je: Ox(R") if and only if

- p > qgandforall 4, i < g, neither A(r}, ") nor A(},r}) holds, or
— there exists ¢ < min(p, q) such that A(r},r}) holds and for all [< 4, neither
A(ry, ") nor A(r],]) holds.

In words, R’ is better than R” if there exists r; € Ox(R’) and r; € O, (R') such that
7} is more important than r; with respect to A and for all 7] and 7} occurring before
and 7/, ; and 7}’ are equally important. This assumes that R’ and R” have the same
number of rules. If not, the smaller one is padded with “blank rules”, where a blank rule
is treated as a least important rule with respect to A.

A relaxation R’ of R is optimal if and only if there does not exist any relaxation
R” of R such that ©(R") <je. OA(R’). By definition of <., an optimal relaxation
is necessarily maximal with respect to set inclusion. If \ generates a total order on R

then <., is itself a total order and finding an optimal relaxation of R is polynomial.
However, if) is a strict weak order on R, then <., is also a strict weak ordering and
finding an optimal relaxation of R is NP-hard. This can be proven by reducing the max-
imum independent set problem to the problem of finding a lexicographically optimal
relaxation of a set of rules. Given a graph, a node can be associated with a rule and an
edge between two nodes can be associated with an incompatibility between two rules.
As finding a maximum independent set is NP-hard, finding a lexicographically optimal
relaxation is also NP-hard. Notice that two rules can be incompatible: (1) when they are
mutually not applicable, i.e., when their abstract contexts do not intersect, (2) when they
are non-unifiable, i.e., when a common feature is assigned different parameter values,
or (3) when the composition of their configurations is inconsistent.

Let us consider an example to demonstrate the concepts of maximal relaxation and
optimal relaxation. Let ¢; = (D:{Friday}, H: {PM}, A: {journey, lunch}, L: {home,
anyOther}, P:{office}) be an abstract context. All the rules in Figure 2 are appli-
cable, since the intersection of ¢; with each of them is non-empty. The probability of
applicability of FCR 4 is 100%, while for others is 50%. The concreteness of FCR 4 is
210, that of FCR 3 is 294, that of FCRs 2, 5 and 6 is 490 and that of FCR 1 is 588. The
strict weak ordering on the rule-set with respect to A is 4 < {2,6} < 1 < 3 < 5. This
rule-set is not consistent with ¢; as shown in Figure 3. It has 4 maximal relaxations
which are A = {2,1}, B = {1,6,5}, C = {4,6,3} and D = {4,6,5}. The lexico-
graphic ordering over maximal relaxations with respect to <., is a strict total order
equal to C' < D < B < A. C'is therefore the optimal relaxation.

8 A Constraint Optimisation Formulation

This section formulates the problem of finding a lexicographically optimal relaxation
of an inconsistent set of FCRs as a constraint optimisation problem (COP). The COP
is defined in terms of finite domain variables, constraints restricting the assignments of
values to the variables, and an objective function. The variables model the inclusion
of rules in the computed relaxation, the inclusion and positioning of features in the
computed subscription, and the satisfaction of user precedences. The constraints model
all the requirements —mutual applicability, unifiability and compatibility of the rule-
set— whereas the objective function models the lexicographic order over rule-sets.

Variables and Domains. A Boolean variable br; is associated with each rule r; € R,
which is instantiated to 1 or O depending on whether r; is included in the computed
relaxation or not, respectively. Each f; € F'r is associated with two variables: a Boolean
variable bf; and an integer variable pf;. A variable bf; is instantiated to 1 or 0 depending
on whether f; is included in the computed subscription or not, respectively. The domain
of each variable pf; is {1,...,|Fg|}. If f; is included then pf; denotes the position of
fi in a sequence. Each user precedence constraint p;; = (f; < f;) € Pg is associated
with a Boolean variable bp,;, which is instantiated to 1 or 0 depending on whether p;;
is respected in the computed subscription or not, respectively.

Constraints. A catalogue precedence constraint (i < j) € Hp can be expressed
as bf; N bf; = (pf; < pf;), which is trivially satisfied when either bf; or bf; is

instantiated to 0. A user precedence constraint (i < j) € Pg can be expressed as
bp;; = (bf; Nbf; A (pf; < pfy)). If it holds then f; and f; are included in the
subscription and f; is placed before f; in the sequence. For each f € Fg, if f €
(Fy, N Fy;) and vy, # vy, then the rules r; and r; are non-unifiable. In order to
ensure unifiability the constraint —br; V —br; is added. The computed relaxation is a
mutually applicable set of rules which is expressed by [A,. cppr,—1 @i A <] # 0.
If r; is included in the computed relaxation then its subscription is included in the
computed subscription (i.e., the subscription induced by the computed relaxation). This
is expressed by the constraint br; = Ay cp, bf; NN\, cp, bPri-

A feature f; (respectively, a user precedence py;) can only be included in the com-
puted subscription if it belongs to the subscription of a rule that is included in the
computed subscription. For each feature f; € F'g and each user precedence py; € Pr,
we add the constraints bf; = /(¢ c p)n(ricr) Ti a0d bpry = V(e p)a(ricr) DTi-

Objective Function. A solution of the COP model is a subscription induced from the
set of the rules that are included. Let I be a subset of rules of R that are included, i.e.,
{rilri € R A br; = 1}. The value of the solution is ©(I), which is an ordered set of
rules based on the comparator A. The objective is to find an ordered set of rules, © (1),
that is consistent and lexicographically optimal.

9 Empirical Evaluation

The purpose of our experiments was to get an insight into the behaviour of 4CRULES
and assess the feasibility of the optimisation approach for rules processing. Experiments
were carried out using an implementation of 4CRULES based on Choco, version 2.1, a
Java library for constraint programming systems (http://choco.sourceforge.
net/).

We devised our experimen-
tal model based on practical knowl-
edge of feature catalogues and
context models to assess the im-
pact of input context-records on
response time and rules appli-
cability. To do so, we created
a context model, a catalogue,
a rule-set and context records.
The context model has 4 con-
text dimensions of maximum
domain size 12, which is re-
alistic for consumer applications.
The catalogue includes 25 fea-
tures and 125 precedence con-
straints and was randomly gen-
erated as specified in [18]. The generated catalogue is similar in size to those found
in academic literature [17] or used commercially [13]. The rule-set includes 50 FCR

ratio (#applied rules / #applicable rules)

abstractness of the input context

Fig.4. Behaviour of 4CRULES wrt. input context-
records.

time (in milliseconds)

which probably exceeds the number of situations a user might really want to “control”.
The rules were generated as follows: each rule antecedent was generated by randomly
selecting 2 concrete values per dimension, and each consequent was generated by ran-
domly selecting 2 features. The same priority was used for all rules. For ¢ ranging from
1 to 10, we generated a context-record containing ¢ concrete values per dimension.

We ran the rules engine with each context-record using the rule-set and the cata-
logue. The results are shown in Figure 4. The x-axis represents the abstractness of the
context-record, that is, the parameter ¢. The y-axis depicts as the ratio of the number of
applied rules to the number of applicable rules (left axis) as well as the response time
(in milliseconds) for finding an optimal set of rules (right axis). Each point in the plot
is an average of 25 instances. The graph shows that as the abstractness of the context-
record increases the response time increases while the ratio of applicability decreases.
These results confirm the practicality of the proposed model in terms of response time.

10 Conclusion

We have introduced 4CRULES, a rule-based system that enables context-sensitive call
control using feature configuration rules. 4CRULES has been designed to be interoper-
able with standard context services and compositional feature architectures. 4CRULES
handles conflicting preferences and mitigates the uncertainty affecting context data. A
constraint optimization approach is used to compute configurations that meet the user
requirements to an optimum degree.

The approach adopted was to compute optimal consistent rule-sets by determining
the mutual applicability of rules to the input context, the compatibility of their config-
urations with feature interaction constraints, and their aggregate value using a lexico-
graphic ordering combining rule priority, concreteness, and probability of applicability.
Experiments on random test instances confirmed the practicality of the approach and
highlighted performance critical factors.

Future work will involve the investigation of the rules edition functionalities (e.g.,
validation, refactoring, compilation), richer ontological models for context domains and
catalogues (e.g., feature dependencies), and new application domains (e.g., smart RSS
feeds, software plug-in configurations).

Acknowledgments

This material is based upon work supported by the Science Foundation Ireland under
Grant numbers 05/IN/I886, 08/PI/11912, and Embark Post Doctoral Fellowships num-
bers CT1080049908 and CT1080049909.

References

1. Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S.: Feature Interaction: A Critical
Review and Considered Forecast. Computer Networks 41(1) (January 2003) 115-141

10.

11.

12.

13.

14.

16.

17.

18.

. Bond, G.W,, Cheung, E., Purdy, H., Zave, P., Ramming, C.: An Open Architecture for Next-

Generation Telecommunication Services. ACM Transactions on Internet Technology 4(1)
(2004) 83-123

. Lesaint, D., Papamargaritis, G.: Personalised Communications. In Voudouris, C., Owusu,

G., Dorne, R., Lesaint, D., eds.: Service Chain Management - Technology Innovation for the
Service Business. Springer (2008) 187-203

. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.B., Peterson, J., Sparks, R., Han-

dley, M., Schooler, E.M.: SIP: Session Initiation Protocol. RFC 3261, IETF (June 2002)

. Sparks, R.: SIP: Basics and Beyond. ACM Queue 5(2) (March 2007) 22-33
. Lennox, J., Wu, X., Schulzrinne, H.: Call Processing Language (CPL): A Language for User

Control of Internet Telephony Services. RFC 3880, IETF (October 2004)

. Wu, X., Schulzrinne, H.: Handling Feature Interactions in the Language for End System Ser-

vices. In: Feature Interactions in Telecommunications and Software Systems VIII (ICFI’05),
Leicester, UK, IOS Press (June 2005) 28-30

. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P, Ireland, J.: Policy

Support for Call Control. Computer Standards & Interfaces 28(6) (2006) 635-649

. Reiff-Marganiec, S., Turner, K.J., Blair, L.: APPEL: The ACCENT Project Policy Environ-

ment/Language. Technical report, University of Stirling, Scotland (December 2005)

Blair, L., Turner, K.J.: Handling Policy Conflicts in Call Control. In Reiff-Marganiec, S.,
Ryan, M., eds.: Feature Interactions in Telecommunications and Software Systems VIII,
ICFI’05, Leicester, UK, I0S Press (June 2005) 39-57

Jackson, M., Zave, P.: Distributed Feature Composition: a Virtual Architecture for Telecom-
munications Services. IEEE Transactions on Software Engineering 24(10) (October 1998)
831-847

Jackson, M., Zave, P.: The DFC Manual. AT&T. (November 2003)

Bond, G.W., Cheung, E., Goguen, H., Hanson, K.J., Henderson, D., Karam, G.M., Purdy,
K.H., Smith, T.M., Zave, P.: Experience with Component-Based Development of a Telecom-
munication Service. In: Proc. of the 8th Int. Symposium on Component-Based Software
Engineering (CBSE 2005). Volume 3489 of Lecture Notes in Computer Science., St. Louis,
MO, Springer (2005) 298-305

Zave, P.: An Experiment in Feature Engineering. In Mclver, A., Morgan, C., eds.: Program-
ming Methodology. Springer-Verlag (2003) 353-377

. Zave, P, Cheung, E.: Compositional Control of IP Media. In Diot, C., Ammar, M., da Costa,

C.S., Lopez, R., Leitao, A.R., Feamster, N., Teixtera, R., eds.: Proc. of the 2nd Conf. on Fu-
ture Networking Technologies (CoNext 06), Lisboa, Portugal, SIGCOMM (December 2006)
67-78

Zave, P.: Audio Feature Interactions in Voice-over-IP. In Bond, G.W., Schulzrinne, H.,
Sisalem, D., eds.: Proc. of the 1st Int. Conf. on Principles, Systems and Applications of IP
Telecommunications IPTComm), New York, NY, IPTComm (July 2007) 67-78

Zimmer, A.P.: Prioritizing Features Through Categorization: An Approach to Resolving
Feature Interactions. PhD thesis, University of Waterloo, Canada (September 2007)
Lesaint, D., Mehta, D., O’Sullivan, B., Quesada, L., Wilson, N.: Personalisation of Telecom-
munications Services as Combinatorial Optimisation. In: IAAI-08, AAAI Press (2008)
1693-1698

