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Abstract

Establishing network security is based not just on the security of its component
systems but also on how they are configured to interoperate. In this paper we
consider how soft constraints provide an approach to detecting the cascade vul-
nerability problem: whether system interoperation provides circuitous or cascading
routes across the network that increase the risk of violation of multilevel security.
Taking the constraints approach means that we are building on techniques that
have proven success in solving large-scale problems from other domains.

Key words: Constraints, Soft Constraints, Security, Multilevel
Security.

1 Introduction

In its most general case, determining the security (that is, the safety problem)
of a system is undecidable [18]. This has led to the design of a wide range
of decidable security mechanisms that are based on more restrictive forms of
security, for example, [3,6]. These mechanisms decide whether an access by
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a subject is authorised according to the rules set out in a security policy. A
system is secure (upholds its security policy) if it is not possible for a subject
to gain unauthorised access.

The composition of secure systems is not necessarily secure. A user may
be able to gain unauthorised access to an object by taking a circuitous ac-
cess route across individually secure but interoperating systems [16,15] 5 . De-
termining security is based not just on the individual system authorisation
mechanisms but also on how the systems are configured to interoperate. For
example, if Alice is permitted to have access to Bob’s files on the Administra-
tion system, and Clare is permitted access Alice’s files on the Sales system,
then is it safe to support file sharing between these systems? The extent of
system inter-operation must be limited if the administration security policy
states that Clare is not permitted access to Bob’s (administration) files.

The cascade vulnerability problem [2,21] is also concerned with secure inter-
operation, and considers the assurance risk of composing multilevel secure
systems that are evaluated to different levels of assurance according to the
criteria [2]. The transitivity of the multilevel security policy upheld across all
secure systems ensures that their multilevel composition is secure; however,
interoperability and data sharing between systems may increase the risk of
compromise beyond that accepted by the assurance level. For example, it may
be an acceptable risk to store only secret and top-secret data on a medium
assurance system, and only classified and secret data on another medium
assurance system: classified and top-secret data may be stored simultaneously
only on ‘high’ assurance systems. However, if these medium assurance systems
interoperate at classification secret, then the acceptable risk of compromise is
no longer adequate as there is an unacceptable cascading risk from topsecret
across the network to classified.

Existing research has considered schemes for detecting these security vul-
nerabilities and for correcting them by re-configuring system inter-operation.
While detection of some security vulnerability [21,19,14,16] can be easily
achieved, their optimal correction is NP-complete [19,17,16] and simulated
annealing and integer linear programming are suggested for possible practical
approximations.

We are investigating the potential of using constraints [9,22] for modelling
secure inter-operation. Constraint Solving is an emerging software technology
for declarative description and effective solving of large problems. The con-
straint programming process consists of the generation of requirements (con-
straints) and solution of these requirements, by specialised constraint solvers.
The advantages of expressing secure inter-operation as a constraint satisfaction
problem is that there exists a wide body of existing research results on solving
this problem for large systems of constraints in a fully mechanised manner

5 McCullough [20] demonstrates that a form of process composition does not necessarily
preserve the noninterference (security) property. This paper takes the more abstract view-
point and assumes that the underlying security properties of the systems are composable.
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[12,24,4]. Constraints have been used in many practical analysis tools, such
as Concurrent Engineering and Computer Aided Verification [10,11]. Thus,
the results in this paper provide a direction for the development of practical
configuration analysis tools for secure inter-operation.

In this paper we describe how the cascade vulnerability problem can be
modelled using soft constraints [9], and consider their potential for detecting
cascades. These results are applicable to secure inter-operation in general. The
paper is organised as follows. Section 2 provides background on the cascade
problem and soft constraints. Section 2.1 describes our general model of the
cascade problem and this is modelled using soft constraints in Section 3.

2 Background

2.1 The Cascade Problem

Figure 1 gives an example of a MLS network configuration with a cascade
vulnerability problem [14]. The network is comprised of multilevel secure

Fig. 1. Network configuration with a potential cascade problem.

systems Sys.A, Sys.B, Sys.C and Sys.D storing classified (C), secret (S) and
top-secret (T ) information as depicted in Figure 1. Each system is accredited
according to levels of assurance C2<B1<B2<B3 from [2,1]. For example,
Sys.B is used to simultaneously store C, S and T information and, therefore,
(according to [2,1]) must be evaluated at level B3 or higher, reflecting the
high level of confidence that must be placed in the secure operation of the
system. This is to counter the risk of an attacker compromising the system
and copying T information to C. Sys.D, on the other hand, has been evaluated
at the lowest level of assurance C2 and, therefore, may be used only to store
single level data.

However, the security-level interoperability defined by the system connec-
tions in Figure 1 results in a cascade vulnerability across the network. There
is a risk that an attacker who has the ability to compromise security on B2 or
lower assured systems can copy T to S on Sys.A, to S on Sys.D to S to C on
Sys.C. This is contrary to the criteria requirement that the level of assurance
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that T cannot be copied to C should be B3 or higher. This requirement is
met by the individual systems but not as a result of their interoperation.

A generalised form of the cascade problem is defined as follows.

2.1.1 MLS

A multilevel secure system enforces a lattice based security policy L of security
levels that has ordering relation ≤. Given x, y : L then x ≤ y means that
information may flow from level x to level y, for example, C ≤ S ≤ T .

2.1.2 Assurance Levels

A security criteria defines a lattice 6 A of assurance levels with ordering ≤.
Given x, y : A, then x ≤ y means that a system evaluated at y is no less
secure than a system evaluated at x, or alternatively, that an attacker than
can compromise a system evaluated at y can compromise a system evaluated
at x. Let S define the set of all system names. Define accred : S → A where
accred(s) gives the assurance level of system s : S, and is taken to represent
the minimum effort required by an attacker to compromise system s.

2.1.3 Acceptable Risk

Security evaluation criteria also define an acceptable risk function risk : L×
L → A, such that given l, l′ : L then risk(l, l′) defines the minimum acceptable
risk of compromise from l to l′; it represents the minimum acceptable effort
required to ‘compromise security’ and copy/downgrade information from level
l to level l′. Without any loss of generalisation we assume that there is no
security enforcement at the lowest assurance level 0, and thus, if l ≤ l′ then
risk(l, l′) = 0. For example, function risk encodes the assurance matrix (for B
levels) from [2,1] as risk(C, S) = risk(C, T ) = risk(S, T ) = 0, risk(S, C) = 1,
risk(T, S) = 2, and risk(T, C) = 3, and so forth.

2.1.4 Evaluated Systems

Individual systems must be assured higher than the minimum acceptable risk
to compromise the data they store. If a system s can hold information at
levels l and l′ then

risk(l, l′) <= accred(s).

2.1.5 Network Model

A node is a pair (s, l) and represents the fact that system s can hold infor-
mation at level l. A system is a collection of nodes that represent the data
it holds. For example, in Figure 1, Sys.A is represented by nodes (Sys.A, S)
and (Sys.A, T ). A network of systems is a weighted graph of these nodes
according to how they are connected. An w-weighted arc from (s, l) to (s′, l′)

6 This generalises the total ordering of assurance levels defined in [2,1].
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means that it requires minimum w effort to directly copy information at level
l held on system s to level l′ on system s′.

2.1.6 Cascading Risks

Arcs are used to represent direct flows within a system and interoperation links
between systems. A flow l ≤ l′ that is permitted on system s is represented
as a (assurance) 0-weighted arc from (s, l) to (s, l′); if a flow is not permitted
between levels l and l′ that are held on system s then it is represented as an
arc weighted as accred(s) from (s, l) to (s, l′).

A link from system s to s′ that connects l-level information is represented
as a 0-weighted arc from (s, l) to (s′, l)—all other pairs (s, l) to (s′, l) not
related in this way are either represented as having no arc, or an arc with the
maximum assurance value 1.

Given pairs (s, l) and (s, l′) we then define

effort((s, l), (s′, l′))

as the minimum effort required to compromise the network and copy/downgrade
level l information held on system s to level l′ information on system s′. As
an example, in Figure 1, effort((Sys.A, T ), (Sys.C, C)) = B2 via the path
through Sys.D.

2.1.7 Cascade Freedom

We require that for any systems s,s′ and levels l,l′ then

risk(l, l′) <= effort((s, l), (s′, l′))

Given a path in the network from (s, l) to (s′, l′), then its cascade weighting
is the maximum weight that directly connects any two nodes on the path.
This reflects the minimum effort that will be required by an attacker to copy
information from (s, l) to (s′, l′) by using this path. effort((s, l), (s′, l′)) is the
minimum of the cascade weightings for all paths that connect (s, l) to (s′, l′).

2.2 Soft Constraints

Several formalisations of the concept of soft constraints are currently available.
In the following, we refer to the one based on c-semirings [9] which can be
shown to generalise and express many of the others [7].

Soft constraints associate a qualitative or quantitative value either to the
entire constraint or to each assignment of its variables. More precisely, they
are based on a semiring structure S = 〈A, +,×,0,1〉 and a set of variables V
with domain D. In particular the semiring operation × is used to combine
constraints together, and the + operator for projection.

Technically, a constraint is a function which, given an assignment η : V →
D of the variables, returns a value of the semiring. So C = η → A is the set of
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all possible constraints that can be built starting from S, D and V (values in
A are interpreted as level of preference or importance or cost). Using the the
levels, we can order constraints: to say that c1 is better then c2 we will write
c1 w c2.

When using soft constraints it is necessary to specify, via suitable combina-
tion operators, how the level of preference of a global solution is obtained from
the preferences in the constraints. The combined weight of a set of constraints
is computed using the operator ⊗ : C×C → C defined as (c1⊗c2)η = c1η×Sc2η.
Moreover, given a constraint c ∈ C and a variable v ∈ V , the projection of c
over V −{v}, written c ⇓(V −{v}) is the constraint c′ s.t. c′η =

∑
d∈D cη[v := d].

3 Modelling MLS Networks

Consider a network N = {A, B, C, . . .} of a finite arbitrary number n of sys-
tems. In our constraint model, this network of n nodes is represented us-
ing 2 × n system-node variables. Each system-node variable Ss

i and Sd
i , for

i := 1 . . . n can be instantiated to be one system of the network. Each of the
possible flows of information among the systems of the network are represented
by a specific instantiation of the variables Ss

1,S
d
1 ,S

s
2,S

d
2 ,. . . ,S

s
n,Sd

n. In particu-
lar, the instantiation of the pair of nodes Ss

i and Sd
i , for i := 1 . . . n, represents

the flow from the source Ss
i to the destination Sd

i inside the i-th System in
the specific path. Similarly, instantiation of Sd

i and Ss
i+1, for i := 1 . . . n − 1

represents the flow among the the i-th and the i + 1-th System in the specific
instantiated path.

Consider for instance the network N = {A, B} represented in Figure 2
involving two systems, A and B, with system A handling information at level
Top-Secret (T ) and Secret (S), and system B handling information at level
Secret (S) and Confidential (C). We can capture this instance by using 4
system-node variables: Ss

1,S
d
1 ,S

s
2,S

d
2 .

Fig. 2. A simple network.

3.1 System-Node Variable Domains

The domain of each system-node variable contains pieces of information de-
scribing the possible security levels available on each system. In particular,
each source variable Ss

i contains domain elements marked with s, and each
destination variable Sd

i contains domain elements marked with d.
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The network in Figure 2 has in our model 4 variables Ss
1, S

d
1 , S

s
2, S

d
2 with do-

main D(Ss
i ) = {T s

A, Ss
A, Ss

B, Cs
B}, with i := 1, 2, and D(Sd

i ) = {T d
A, Sd

A, Sd
B, Cd

B},
with i := 1, 2.

In general, when the network contains n > 2 systems, we also need to
be able to deal with paths of length k < n. To do this, we need to extend
the domain of each system-node variable, S?

i (where ? stands alternatively for
s and d), for any i > 2, with some artificial elements. More precisely, we
extended the domain D(S?

i )
′ = D(S?

i )∪{∗?
1, ∗?

2, . . . , ∗?
i−2}. This ∗ elements are

added to deal with paths shorter than n. This is necessary because solving
SCSP requires giving an assignment to all the variable of the SCSP when we
want to represent path shorter than the number of nodes of the network.

3.2 Modelling each System

The constraint on each system defines three classes of system flows.

• Flowpermitted represents the flows permitted by the policy in each node;

• Flowrisk : represents the flows that are not permitted by the policy, but
for which there is a risk of flow if the system became compromised;

• Flowinvalid : represent all the remaining flows and are not valid.

Between each pair of system-node variables Ss
i and Sd

i for each system
i, we define a soft constraint, c(Ss

i ,Sd
i ), that gives a weight to each possible

(permitted or risk) flow within system i. Various semirings could be used to
represent the network and the associated policy. We use the following semiring
in the paper, although our results are general and are are not limited to this
particular semiring.

Scascade = 〈IN,min, max, +∞, 0〉.

Given this semiring, the constraint c(Ss
i ,Sd

i ) representing the flow inside system
i is defined as follows:

c(Ss
i ,Sd

i )(s, d) =



accred(Si) when(s, d) ∈ Flowrisk

(risk flows)

0 when(s, d) ∈ Flowpermitted

(permitted flows)

+∞ otherwise.

(invalid flows)
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Recall that accred(Si) is the accreditation value of System i. For example,
given the MLS policy ordering C ≤ S ≤ T , then we have

Flowpermitted ={(T s
A, T d

A), (Ss
A, Sd

A), (Ss
A, T d

A), (Ss
B, Sd

B), (Cs
B, Cd

B),

(Cs
B, Sd

B)}
Flowrisk ={(T s

A, Sd
A), (Ss

B, Cd
B)}

and Flowinvalid set contains all the remaining tuples.

Since the domain of the variables S?
i (where ? stands for s and d) has

been extended with the elements {∗?
1, ∗?

2, . . . , ∗?
i−2}, we have also to take care

of these artificial elements. In particular, we extend the definition of each
constraint c(Ss

i ,Sd
i ) as follows:

c(Ss
i ,Sd

i )(s, d) =


0 when(s, d) ∈ {(∗s

1, ∗d
1), . . . , (∗s

i−2, ∗d
i−2)}

(Artificial permitted flows)

+∞ otherwise

(Artificial invalid flows)

3.3 Modelling the Network

Flow constraints between systems result in two classes of network flows.

• Networkpermitted represents flows permitted by the connection policy be-
tween each system and represents direct synchronisation flows between
systems.

• Networkinvalid : this represents the absence of direct connection between
the systems.

Between each pair of systems, Si and Si+1, we define a soft constraint,
c(Sd

i ,Ss
i+1), that defines the possible synchronisation between systems i and i+1.

Note that these constraints are defined between the destination system-node
variable of the first system, Sd

i , and the source system-node variable of the
second system, Ss

i+1. The constraint c(Sd
i ,Ss

i+1) representing the synchronization

flows between system i and i + 1 can be defined as follows:

c(Sd
i ,Ss

i+1)(d, s) =


0 when(d, s) ∈ Networkpermitted

(Policy permitted synchronization)

+∞ otherwise.

(invalid synchronization)

For example, constraint Networkpermitted for Figure 2 is defined as follows (note
that Networkimpossible contains the remaining tuples).

Networkpermitted ={(Sd
A, Ss

B), (Sd
B, Ss

A)}
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Note that the proposed model does not consider assurance risks for connec-
tions: this can be achieved, if desired, by explicitly modelling the connections
by their components (for example, a link encryption device) and corresponding
assurance levels.

When connecting systems Sd
i and Ss

i+1 it is also necessary to consider
the constraints imposed by the artificial elements ∗?

i . The definition of each
constraint c(Sd

i ,Ss
i+1) is extended as follows:

c(Sd
i ,Ss

i+1)(d, s) =



0 when(d, s) ∈ {(∗d
1, ∗s

2), . . . , (∗d
i−3, ∗s

i−2)}
∪ {(], ∗s

1)s.t. ] ∈ D(Sd
i )}

(Artificial permitted synchronization)

+∞ otherwise

(Artificial invalid synchronization)

The extension of this constraint is slightly different to the previous system-
level constraints. In particular, it enables us to model the connection between
the last real domain element in the path and the first ∗s

1-element.

In addition to ensuring that systems are configured in a valid way, we also
need to ensure that no two pairs of system-node variables represent the same
system. This ensures that our model does not capture cyclic paths. Therefore,
we need to post an alldifferent [25] constraint among all the variables of the
model. An alldifferent constraint ensures that all variables over which it is
defined take on different values.

The solution of the defined Soft CSP (let us call this E), that is all the
solution with level lower than +∞, returns all the possible cascade path of
the system. The level associated to each path gives a measure of the effort
required to compromise the network for that specific path.

3.4 Detecting Cascade Vulnerabilities

To determine whether or not there exists a cascade vulnerability problem, we
need to compare the effort required to compromise the network with the risk
of compromising the system as a whole. Therefore, we introduce a set of risk
constraints, R = {r(Ss

1 ,Sd
i )|i ∈ {2, . . . , n}}. The weight of each instance of

r(Ss
1 ,Sd

i ) represents the risk associated with the path from Ss
1 to Sd

i . The cost
of each tuple in these constraints is defined as follows:

r(Ss
1 ,Sd

i )(s, d) =

{
0 if d = ∗d

i ,

risk(s, d) otherwise.

The set of solutions of the soft CSP E (that is the cascade-CSP defined in
Sections 3.1, 3.2, 3.3)whose associated semiring level is lower than +∞ pro-
vides the set of possible paths of the network. Each solution-path of E gives
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the minimum effort required to compromise the network, while the combina-
tion of the constraints in R (the Risk-CSP), gives the risk for all the paths.
Therefore, a cascading path can be identified as any path η where the risk
associated with the path exceeds the effort to compromise it, i.e. where the
following constraint is satisfied:⊗

Rη >
⊗

Eη

Therefore, by adding the above constraint to our constraint model, the exis-
tence of a solution to that model indicates that here exists a cascading path.
Furthermore, the set of solutions provides the set of cascading paths. This
provides us with a basis upon which we can set about removing the cascade
vulnerability problem from the network by eliminating all solutions from the
model.

4 Conclusion

In this paper we have presented a new approach to detecting the cascade
vulnerability problem in multilevel secure systems based on soft constraints.
Soft constraints have been successfully applied to other problems in com-
puter security. The Role-Based Access Control policy model described in [26]
uses soft-constraints to define authorisation but does not consider issue of se-
cure/cascading authorization . [8,23] considers how soft constraints might be
used to specify noninterference-style security properties for systems. In [5] soft
constraints are used to represent confidentiality and authentication properties
of security protocols. These results, and the results in this paper, demon-
strate the usefulness of constraints as a general purpose modelling technique
for security.

While constraint solving is NP-complete in general, this has not detracted
from the uptake of constraint processing as a practical approach to solving
many real-world problems [27], and should not be regarded as a fatal dis-
advantage – on the contrary, constraint solving is becoming the paradigm
of choice in many large-scale optimisation problems. Many tractable classes
of constraint satisfaction problem have been identified, and there are also a
number of powerful “global constraints” which have polynomial-time inference
algorithms associated with them. For example, particular constraints which
is of relevance here are the shortest path constraint [13] and the “all different”
constraint [25].

The approach we present in this paper represents a paradigm shift in the
modelling and detection of the cascade problem. In particular, our constraint
model provides a natural and declarative description of an arbitrary multilevel
secure system. Any solution to the model represents a cascading path, which
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provides significantly more information regarding the vulnerabilities in the
network than the existing approaches. The set of solutions to the proposed
constraint model provides a basis for removing the cascade vulnerability prob-
lem. Previous approaches [14,19] detect a single cascading path in polynomial
time, but correcting the cascade in an optimal way is NP-complete. As dis-
cussed above, detecting all paths in the constraint model is NP-complete,
however we conjecture that the correction of the cascade problem, in this
model, will be polynomial; this will be a focus of our future work. We also
plan to implement a software tool to apply the theoretical results of the paper.
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