Computing Explanations in Problem Solving

A Review of Formal Approaches

Barry O’Sullivan' Ulrich Junker?

ICork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
b.osullivan@cs.ucc.ie

’ILOG, An IBM Company
Sophie Antipolis, France
uli.junker@free.fr

[JCAI 2009 Tutorial Programme

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Where can you get the slides?

Tutorial web-site
http://www.cs.ucc.ie/~osullb/ijcai-tutorial-2009/ J

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

http://www.cs.ucc.ie/~osullb/ijcai-tutorial-2009/

Acknowledgements

o

science foundation ireland

Science Foundation Ireland COST Action IC0602 on
Grant 05/IN/1886. Algorithmic Decision Theory.

We would also like to thank our colleagues
Industrial Collaborator: David Lesaint (British Telecom)

Colleagues at 4C: Tarik Hadzic, Deepak Mehta, Alexandre
Papadopoulos, Luis Quesada, and Nic Wilson.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Outline

Q Introduction
@ Explanations and Satisfaction
© Explanations and Optimisation

Q Case-Study: Configuring Telecoms Feature Subscriptions

e Wrap-up

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Outline

@ Introduction
@ What is the tutorial about?
@ What are Explanations?
@ Formalising an Example
@ Product Configuration
@ Knowledge Representation and Reasoning

e Explanations and Satisfaction
© Explanations and Optimisation

e Case-Study: Configuring Telecoms Feature Subscriptions

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is this tutorial about?

Example

In November 2003, a client had the problem that constraint
propagation in their configurator was failing for a system
described by 300, 000 constraints.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is this tutorial about?

Example

In November 2003, a client had the problem that constraint
propagation in their configurator was failing for a system
described by 300, 000 constraints.

How do we debug this?

There are 230%:00 possible causes, but in our example, only 8 of
the constraints were sufficient to produce the failure, but there
are still > 10*° combinations of possibilities.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is this tutorial about?

Example

In November 2003, a client had the problem that constraint
propagation in their configurator was failing for a system
described by 300, 000 constraints.

How do we debug this?

There are 230%:00 possible causes, but in our example, only 8 of
the constraints were sufficient to produce the failure, but there
are still > 10*° combinations of possibilities.

After this tutorial you will how to ...
Identify these 8 constraints after only 270 consistency checks!

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Where can | apply what | learn?

Product Configuration

Test Generation

Recommender Systems
Case-based Reasoning Systems
Knowledge-based Systems
Software Product Lines
Debugging

Can you think of any others?

00000000

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What are Explanations?

Two forms of explanation in artificial intelligence [13]

@ Explanations as part of the reasoning process — used in
the search for a diagnostic result in order to support a
particular hypothesis.

© Explanations that attempt to make the reasoning process,
its results, or the usage of the result understandable to the
user.

We will focus on the latter form of explanation.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Let’s consider an example

Pediatrics

@ A doctor needs to explain why a 12 week old baby needs to
be kept in hospital for observation because of an infection.

© The doctor has a premature baby and a 14 week old baby
with a similar infection.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Let’s consider an example

Pediatrics
@ A doctor needs to explain why a 12 week old baby needs to
be kept in hospital for observation because of an infection.

© The doctor has a premature baby and a 14 week old baby
with a similar infection.

Challenge

How can the doctor give a convincing explanation for why the
12 week old needs to be kept in hospital?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Let’s consider an example

Is this a good explanation?

“We have a premature baby with a similar condition, therefore
we think your 12 week old baby should also stay in hospital.”

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Let’s consider an example

Is this a good explanation?

“Your 12 week old baby needs to be kept in hospital because
there is a 14 week old baby (older and stronger) who has a
similar condition and is being kept in hospital.”

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

What is the principle at play here?

Explanation in decision making
@ We are explaining a decision.

@ In Al, a decision problem has a reasonably well defined
decision boundary.

@ Choosing a explanatory case that is closer to the decision

boundary that the case we have at hand makes intuitive
sense.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Formalising this Example

From Doyle et al.

Decision ECCBR-04 [4]:
bounaasy @ O = query case
. ONUN @ NN = nearest neighbour
Qee EC @ EC = explanation case
NN * @ NUC = nearest unlike
neighbour

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Similarity between experiences

@ Let’s represent an ‘experience’ as a vector of features F.

@ We can define the similarity between experience x and y as
follows:

Sim(x,y) =qef wa x or(x[f], yIf])

feFr

where wy is the weight of feature f, and oy is measure of
the similarity between values for feature f.

@ Example: 10 is more similar to 20 than 100

Barry O’Sullivan, Ulrich Junker

Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Explanation Utility [4]

0
8 -7 6 -5-4-3-2-10 12 3 45686 7 8
Difference (q-x)

Barry O’Sullivan, Ulrich Jul Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Explanations - Blood Alcohol [4]

Target Case (Q;) Nearest Neighbour Explanation Case

(NN)) (EC)

Weight (Kgs) 82 82 73

Duration (mins) 60 60 60

Gender Male Male Male

Meal Full Full Full

Units Consumed 2.9 2.6 5.2

BAC Under Under Under

Explanation Case: Select k nearest neighbours and sort by
explanation utility.

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Explanations - Blood Alcohol [4]

Target Case (Q2) Nearest Neighbour Explanation Case

(NN,) (ECy)

Weight (Kgs) 73 76 79

Duration (mins) 240 240 240

Gender Male Male Male

Meal Full Full Full

Units Consumed 12.0 12.4 9.6

BAC Over Over Over

Explanation Case: Select k nearest neighbours and sort by
explanation utility.

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Explanations and Relaxation

@ We need to reason about
the ‘direction’ to a decision

boundary.

Decision

boundary @ In the example, we say
how this could be encoded

ONUN . .
al ®ec using ad-hoc explanation
o 9 utility functions.
NN @ But we are simply

assuming a well defined
relaxation space for each
feature of our decision.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Explanations and Relaxation

D @ ...but when we have
boundary constraints, a natural
decision boundary is the
ONUN T L
. unsatisfiable-satisfiable
. boundary, and constraint
NN relaxation defines the
relaxation space.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Let’s focus on configuration [12]

A Running Example Domain

To make our examples and methods concrete, we will focus on
configuration as a domain for the rest of the tutorial.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Let’s focus on configuration [12]

A Running Example Domain

To make our examples and methods concrete, we will focus on
configuration as a domain for the rest of the tutorial.

Why configuration?

@ Almost every Al technique we know has been applied to
product configuration.

@ Richness: NP-Complete class, preferences, interactivity,
scalability.

@ Familiarity.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is Configuration?

Definition

Configuration is the task of composing a customised system
out of generic components from a catalogue, satisfying user
constraints and preferences.

Examples
@ Computer systems
@ Automobiles
@ Kitchens
@ Holidays
@ Software systems (a detailed example later)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is Configuration?

Configuration Problem

@ A catalogue which describes the generic components in
terms of their functional and technical properties and the
relationship between both.

@ User requirements and user preferences about the
functional characteristics of the desired configuration.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

What is Configuration?

\\\ bike demo é@ -

2l My Preferences A Parts

Frame Type Frame Colibri Street Bike Plus
ity Bike

Size
randma Bike L @)

ountain Bike 2\ 4
D Racer Bike 8 Gear
il:ame 'rypi / / Speeds
© Female @ male =
My Height \
Rims
Color Width
Yellow
Tires
Profile
Pedals PD M545

From Configit, Web http://www.configit.com.

Barry O’Sul i i ions in Problem Solvi

http://www.configit.com

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is Configuration?

Configuration Task

@ One or more configurations that satisfy all requirements

and that optimize the preferences if those requirements are
consistent.

@ An explanation of failure otherwise.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

What is Configuration

! . Conflict
Your new selection :
My Height = 190-200 cm
conflicts with the previous selection(s) :
Color = Yellow

Press OK to apply new selection, or Cancel to
discard it and keep old selections

OK Cancel

From Configit, Web http://www.configit.com.

ions in Problem Solvil

http://www.configit.com

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Configuration Techniques

@ Rule-based reasoning
© Model-based reasoning
e Description Logics
e Constraint Satisfaction
e Resource Models
e Multi-valued Decision Diagrams
o Satisfiability — Negation Normal Form representations

© Ontologies

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Configuration Techniques

@ Rule-based reasoning

© Model-based reasoning

Description Logics

Constraint Satisfaction

Resource Models

Multi-valued Decision Diagrams

Satisfiability — Negation Normal Form representations

© Ontologies

Gartner

Model-based, and in particular constraint-based approaches
are most successful in practice: declarative, maintainable, etc.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Configuration Techniques

Key Configurator Capabilities

@ Generation of components to carry out the functional
requirements.
© Reasoning about the interactions of multiple components.

© Detection and explanation of cases where the desired
functionality cannot be implemented.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Modelling Challenges for Configuration

Product Catalogue Integration & Integrity

Maintaining integration between product catalogues and
constraint-based configuration models.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Modelling Challenges for Configuration

Product Catalogue Integration & Integrity

Maintaining integration between product catalogues and
constraint-based configuration models.

Knowledge Representation

Constraint-based approaches need to be able to handle
taxonomic inheritance properly. How do we properly handled
unbounded configuration spaces with resource restrictions.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Modelling Challenges for Configuration

Product Catalogue Integration & Integrity

Maintaining integration between product catalogues and
constraint-based configuration models.

Knowledge Representation

Constraint-based approaches need to be able to handle
taxonomic inheritance properly. How do we properly handled
unbounded configuration spaces with resource restrictions.

Preference Models
Users have preferences, unfortunately.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Reasoning Challenges for Configuration

Top-down Refinement

Solver strategy is restricted somewhat: configure components
before subcomponents.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Reasoning Challenges for Configuration

Top-down Refinement

Solver strategy is restricted somewhat: configure components
before subcomponents.

Component Generation

Number of components can be unbounded, there can be
sharing of function, isomorphisms, etc.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Reasoning Challenges for Configuration

Top-down Refinement

Solver strategy is restricted somewhat: configure components
before subcomponents.

Component Generation

Number of components can be unbounded, there can be
sharing of function, isomorphisms, etc.

Scalability and Explanability

Solve many similar problems, response times, etc. We need to
generate explanations of conflicts. Preferences are also
important.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning

Our Working Assumptions

We will assume a constraint-based representation of our
decision problem, over which we assume an efficient
propagation method to reason about our decision boundary.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning

Our Working Assumptions

We will assume a constraint-based representation of our
decision problem, over which we assume an efficient
propagation method to reason about our decision boundary.

Constraint Satisfaction Problem
A CSP is a defined by a triple (X, D, C):
@ X = {x;,...,x,} variables
@ D={D,...,D,} domains
@ C={ci,...,cn} constraints
@ Sol solution space, all valid configurations

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Efficient Reasoning through Compilation

Compiling Sol

Compiled representations of Sol useful since they guarantee
the efficient execution of queries that support explanation
generation in domains such as product configuration.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Efficient Reasoning through Compilation

Compiling Sol

Compiled representations of Sol useful since they guarantee
the efficient execution of queries that support explanation
generation in domains such as product configuration.

Compilation Target

A class of DAGs often used: deterministic finite-state automata
(DFAs), multi-valued decision diagrams (MDDs), and binary
decision diagrams (BDDs)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

T-Shirt MDD

Example
@ Variables: X = {x;,x2,x3} for
color, size, print

@ Domains:
® D; = {black, white, red, blue},
o D, = {small, medium, large},
o Dy = {MIB,STW}.

@ Constraints:
@ fi: (x3 = MIB) = (x| = black)
0 fr:(x3=STW) = (xp # small)

Figure: (Reduced Ordered) MDD

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Decision Diagrams

Definition (Decision Diagram)

A decision diagram is a rooted directed acyclic graph

G = (V,E) where every node u is labeled with a variable x; and
every edge e, originating from a node labeled x;, is labeled with
a value g; € D;. No node may have more than one outgoing
edge with the same label. The decision diagram contains a
special terminal node 1, that has no outgoing edges. The
terminal node has to be reachable by every other node in V.

If all domains D; are binary, i.e. D; = ... =D, = {0, 1}, then we
have a binary decision diagram (BDD), otherwise we have a
multi-valued decision diagram (MDD).

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Exploiting Isomorphism

Figure: T-Shirt Decision Tree

Barry O’Sullivan, Ulrich Junl

tions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Isomorphism

Figure: Merging Isomorphic Nodes

Barry O’Sullivan, Ulrich Junl

tions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Isomorphism

Figure: Merging Isomorphic Nodes

Barry O’Sullivan, Ulrich Junl

tions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Isomorphism

Figure: Merging Isomorphic Nodes

Barry O’Sul

ions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Isomorphism

Figure: Merging Isomorphic Nodes

Barry O’Sul

ions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Merged MDD

Figure: Merged MDD

Barry O’Sul

ions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

Reduced MDD

Figure: Reduced MDD

Barry O’Sul

ions in Problem Solvi

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Exploiting a Boolean Encoding

@ ForaCSP (X,D,F)
@ Foreachx; € X
o Xj={x|j=1... .k}
e x; Boolean variables
e enci(a) = (ai,...,a) € {0,1}%, injective
@ The log encoding:
o k; = [log|D;|]
oxi=aox=ala= ijzl 2 lg;
@ The direct encoding:
® ki = |Dj
o x;=asx =a:x;=1forj=aandx; =0for;j#a.

llivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration
Knowledge Representation and Reasoning

T-Shirt log-BDD

GO
Example

@ Variables: X = {x|,x2,x3} for G
color, size, print

@ Domains: °

o D, = {black,white, red, blue}, ° @ ° °
o D, = {small, medium, large}, '
o D; = {MIB,STW}. @

@ Constraints:
@ fi: (x3 = MIB) = (x; = black) L]
o fr: (x3 = STW) = (x, # small)

Figure: BDD with log encoding

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Introduction

T-Shirt direct-BDD

What is the tutorial about?

What are Explanations?

Formalising an Example

Product Configuration

Knowledge Representation and Reasoning

Example

@ Variables: X = {x;,xp,x3} for
color, size, print

@ Domains:
o D; = {black, white, red, blue},
@ D, = {small, medium, large},
o Ds = {MIB,STW}.

@ Constraints:
@ fi: (x3 = MIB) = (x| = black)
0 for:(x3=STW) = (x2 # small)

0
oroos

0}

E O G U

o

Figure: BDD with direct encoding

Barry O’Sullivan, Ulrich Junker

Computing Explanations in Problem Solving

Introduction What is the tutorial about?
What are Explanations?
Formalising an Example
Product Configuration

Knowledge Representation and Reasoning

Scalability from Compilation in Configuration

Virtual Table Avg. RT (sec) Wst. RT (sec)
Benchmark | 1o (sec) | Size(KB) | #Sol | Configit | ILOG | Configit | ILOG
Renault 460.00 1292 2.8x10™ | 0.1273 | 489.29% 0.240 | 489.29*%
Bike 0.45 22 1.3x10 0.0005 1.855 0.010 882.68
PC 0.89 24 1.1x10° | 0.0007 1.302 0.010 2.12
PSR 0.38 37 7.7x10° | 0.0014 2.398 0.010 486.12
Parity32-13 30.00 1219 2.0x10% 0.0960 0.061 0.416 0.24
Big-PC 14.82 76 6.2x10" | 0.0012 0.010
vl 5.67" 253 8.2x10'%% | 0.1620 0.320
wl 56.52 1347 1.0x10% 0.0680 0.160
ESVS 0.25 6.7 3.5x10° | 0.0004 0.059 0.010 0.14
FS 0.25 5.8 2.4x107 | 0.0003 0.036 0.010 0.21
FX 0.22 5.3 1.2x10° 0.0003 0.029 0.010 0.10
Machine 0.14 6.7 4.7x10° | 0.0004 0.009 0.010 0.03
C169 FV 2.30 (144) 287 3.2x10" | 0.0134 0.195 0.010 28.77
C211.FS 6.93 (957) 370 1.4x10°7 | 0.0219 0.314 0.020 67.09
C250_.FW 3.22 (111) 308 1.2x10%7 | 0.0148 0.203 0.010 38.98
C638_FVK | 16.53 (1980) 534 8.8x10'** | 0.0385 0.608 0.050 72.62

*For finding one solution only (i.e., not complete).
"The variable order file has been provided by Configit Software.

Barry O’Sullivan, Ulrich Jul Computing Explanations in Problem Solvil

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Outline

e Introduction

@ Explanations and Satisfaction
Standard Concepts

Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

© Explanations and Optimisation

e Case-Study: Configuring Telecoms Feature Subscriptions

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Classic Setting

Two Categories of Constraints

@ background constraints expressing the connections

between the components of the “product”, that cannot be
removed

@ user constraints interactively stated by the user when
deciding on options (= a query)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Classic Setting

Two Categories of Constraints

@ background constraints expressing the connections

between the components of the “product”, that cannot be
removed

@ user constraints interactively stated by the user when
deciding on options (= a query)

Consistency
@ A set of constraints is consistent if it admits a solution.
@ The background constraints are assumed to be consistent.

@ The “solubility” of a set of constraints refers to the number
of solutions it is consistent with.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Terminology

Explanations

@ Conflict: an inconsistent subset of U: show one cause of
inconsistency.

@ Relaxation: a consistent subset of U: show one possible
way of recovering from it

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Terminology

Explanations

@ Conflict: an inconsistent subset of U: show one cause of
inconsistency.

@ Relaxation: a consistent subset of U: show one possible
way of recovering from it

Optimality — sort of

@ A relaxation is maximal when no constraint can added
while remaining consistent.

@ A conflict is minimal when no constraint can be removed
while remaining inconsistent.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Example explanation tasks

Configuration as a CSP

@ A “product” is fully
specified by some
constraints

@ Several options are
available to the user

@ The user expresses his

preferences as
constraints

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Example explanation tasks

Configuration as a CSP Explanations

@ A “product” is fully When preferences conflict:
specified by some Conflict show a set of
constraints conflicting

@ Several options are preferences
available to the user Relaxation show a set of

@ The user expresses his feasible
preferences as preferences
constraints

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Example explanation tasks

Debugging a Constraint
Programme

@ A model represents a
reality using some
constraints

@ The programmer
“proposes” a model

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Example explanation tasks

Debugging a Constraint Explanations
Programme When the model/reality
@ A model represents a conflict:
reality using some Conflict show a set of
constraints conflicts
@ The programmer between the
“proposes” a model model and
reality
Relaxation show a set of
feasible
constraints

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Conflicts, Arguments, and Counterarguments (I)

Assumption

The propagation capability of a constraints solver can be
described by operator IT mapping a set of given constraints to a
set of deduced constraints. (e.g. arc consistency deduces
constraints of form x = v)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations
Representative Explanations
Explanations and Solubility

Conflicts, Arguments, and Counter-arguments ()

Conflict
For given set of constraints &' + background B:

@ II-conflict: subset X of X’ such that TI(B U X) contains an
inconsistency.

@ minimal II-conflict: no proper subset is a conflict

@ preferred TI-conflict: culprits are chosen according to a
total order

@ global conflict: I is complete (i.e. achieves global
consistency)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations

Explanations and Solubility

Conflicts, Arguments, and Counter-arguments ()

Conflict
For given set of constraints &' + background B:

@ II-conflict: subset X of X’ such that TI(B U X) contains an
inconsistency.

@ minimal II-conflict: no proper subset is a conflict

@ preferred TI-conflict: culprits are chosen according to a
total order

@ global conflict: I is complete (i.e. achieves global
consistency)

Arguments and Counter-Arguments
(counter-)argument for ¢: add —¢ (¢) to B + find conflict

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Which Explanations?

Example
A customer wants station-wagon with options:
@ requirement r;: roof racks ($500)
@ requirement r,: CD-player ($500)
© requirement r3: extra seat ($800)
©Q requirement r4: metal color ($500)
@ requirement rs: luxury version ($2600)
Total budget for options is $3000

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Which Explanations?

Example
A customer wants station-wagon with options:
@ requirement r;: roof racks ($500)
@ requirement r,: CD-player ($500)
© requirement r3: extra seat ($800)
©Q requirement r4: metal color ($500)
@ requirement rs: luxury version ($2600)
Total budget for options is $3000

User requirements cannot be satisfied
Which requirements are in conflict?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

An Arbitary Explanation

Maintain explanations during propagation

ri roof racks c>500 {r}

r, CD-player c>1000 {ri,n}

r3 extra seat c>1800 {ri,r,r}

r4 metal color c>2300 {ri,ra,r3,ra}

rs luxury version ¢ >4900 {r,r,r3, 14,75}
b total budget c <3000 {b}
failure {ri,r,r3,r4,r5,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

An Arbitary Explanation

Maintain explanations during propagation

ri roof racks c>500 {r}

r, CD-player c>1000 {ri,n}

r3 extra seat c>1800 {ri,r,r}

r4 metal color c>2300 {ri,ra,r3,ra}

rs luxury version ¢ >4900 {r,r,r3, 14,75}
b total budget c <3000 {b}
failure {ri,r,r3,r4,r5,b}

explanation: {ry, r,r3,r4,rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

An Arbitary Explanation

Maintain explanations during propagation

ri roof racks c>500 {r}

r, CD-player c>1000 {ri,n}

r3 extra seat c>1800 {ri,r,r}

r4 metal color c>2300 {ri,ra,r3,ra}

rs luxury version ¢ >4900 {r,r,r3, 14,75}
b total budget c <3000 {b}
failure {ri,r,r3,r4,r5,b}

explanation: {ry, r,r3,r4,rs,b}

This explanation is not minimal (irreducible)!

The user may retract constraints unnecessarily.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Minimal Explanation

Some other propagation order

r4 metal color c>500 {rs}

rs luxury version ¢ >3100 {r4,rs}

b total budget c <3000 {b}
failure {ra,rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Minimal Explanation

Some other propagation order

r4 metal color c>500 {rs}

rs luxury version ¢ >3100 {r4,rs}

b total budget c <3000 {b}
failure {ra,rs,b}

explanation: {r4,rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Minimal Explanation

Some other propagation order

r4 metal color c>500 {rs}

rs luxury version ¢ >3100 {r4,rs}

b total budget c <3000 {b}
failure {ra,rs,b}

explanation: {r4,rs,b}

Minimal - Good!

The explanation is minimal, since any proper subset is
consistent.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Finding a Minimal Conflict

Example
Step | Activated constraints | Result | Partial conflict
1. P no fail | {}
2. Pl P no fail | {}
3. Pl P2 P3 no fail | {}
4. Pl P2 P3 P4 no fail | {}
5. pi p2 p3 ps ps | fail {ps}
6. Ps no fail | {ps}
7. | ps pi fail {p1,ps5}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

rePlayXplain: Detect culprit and replay

Modified example

Requested options 1,2,3,4,7 cost 100$ each; requested options
5,6,8 cost 800$ each; budget is 2200.

1. 2. 3 4 5 6. 7. 8 9 10, 11. 12, 13. 14. 15. 16. 17. 18 19. 20. 21. 22.
Ry R, R, Ry Ry R, Ry Ry Ry Re Ry Ry R« Ry Re Ry Rs Ry Ry R« Ry R
Ry R: Ry Ry Ry Ry Ry Ry Ry Ri R R Ry Re Ry Rs R Rs Rs Ry
Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ri Ri Rl R;

Ry Ry Ry R: R: Ry Ry Rs Ry Ry Ry Ry Ry

R; R; R; R R: Ry R Rs Ry R3

Rs R Rg R; R; R Ry

R; R; Ry R;

Ry

F F F F

Rg Rg R;

Add available constraints to CP Solver one after the other;
when failure (F) occurs new culprit is detected;
backtrack to initial state + add culprit there

QuickXplain: Detect culprit and divide

1. 2. 3 4. 5 6. 7. & |9 10. 11. 12. 13. 14. 15 16.
Ry Ry Ry Ry Ry Ry R, R Ry, Ri, Rif R, R, | Ry Ry Ry
Ry By Ry iy Ry Ry Ry Ry Ry Ry Ry Ry Rs R
Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry Ry R;

R. R. R, R, R R R Ry R R,

Go To Next Page
rsol; R; R; Rs Rs Rs Rs Ry
Rs Rs Rs R; Rs Rs R

Ry R; R R;
Ry
F F F F
Ry Rs Rs

Divide conflict detection problem into 2 subproblems when
culprit is detected:
@ keep all constraint of first subproblem when solving second
subproblem;

© add culprits of second subproblem when solving first
subproblem.

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution

Barry O’Sulli

Computing Explanations in Problem Solvi

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution
@ user submits requirements ry,...,rs + b
© response: failure due to {r4,rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution

@ user submits requirements ry,...,rs + b

@ response: failure due to {r4,rs, b}

© user prefers luxury (rs) to metal color (r4), SO removes r

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution
@ user submits requirements ry,...,rs + b
© response: failure due to {r4,rs,b}
© user prefers luxury (rs) to metal color (r4), SO removes r
© response: failure due to {r3, rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution

00000

user submits requirements ry,...,rs + b

response: failure due to {r4,rs,b}

user prefers luxury (rs) to metal color (r4), SO removes ry
response: failure due to {r3,rs, b}

user prefers extra seats (r3) to luxury (rs), SO removes rs

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution

000000

user submits requirements ry,...,rs + b

response: failure due to {r4,rs,b}

user prefers luxury (rs) to metal color (r4), SO removes ry
response: failure due to {r3,rs, b}

user prefers extra seats (r3) to luxury (rs), SO removes rs
response: success

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Unnecessary Retractions

Use explanation for finding a solution

user submits requirements ry,...,rs + b

response: failure due to {r4,rs,b}

user prefers luxury (rs) to metal color (r4), SO removes ry
response: failure due to {r3,rs, b}

user prefers extra seats (r3) to luxury (rs), SO removes rs
response: success

000000

The retraction of r4 is no longer justified.
Can we avoid unnecessary retractions?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Preferred Explanation

Again another propagation order

r3 metal color c>800 {r3}

rs luxury version ¢ > 3300 {r3,rs}

b total budget c <3000 {b}
failure {r3,rs,b}

explanation: {rs,rs,b}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Preferred Explanation

Again another propagation order

r3 metal color c>800 {r3}

rs luxury version ¢ > 3300 {r3,rs}

b total budget c <3000 {b}
failure {r3,rs,b}

explanation: {rs,rs,b}

Explanation is preferred
Its worst element rs can safely be retracted

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Preferences between Constraints [7]

Intuitive statements with simple semantics
@ preferences between constraints
prefer (luxury version, metal color)
prefer (extra seat, luxury version)

@ groups of constraints

@ equipment contains requirements for roof racks, extra seat
@ look contains requirements for metal color, seat material

@ preferences between groups

prefer (equipment, look)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

The Tasks

Overconstrained problem with preferences
@ background B
@ constraints C := {cy,...,cn}
@ preferences P between the ¢;’'s

such that BU C is inconsistent

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

The Tasks

Overconstrained problem with preferences
@ background B
@ constraints C := {cy,...,cn}
@ preferences P between the ¢;’'s

such that BU C is inconsistent

The tasks
@ preferred relaxations
@ preferred explanations

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Intuition behind the Approach

Preferred Conflicts

We use a preference-guided algorithm that successively adds
most preferred constraints until they fail. It then backtracks and
removes the least preferred constraints if this preserves the
failure.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Intuition behind the Approach

Preferred Conflicts

We use a preference-guided algorithm that successively adds
most preferred constraints until they fail. It then backtracks and
removes the least preferred constraints if this preserves the
failure.

Preferred Relaxations

We remove the least preferred constraints from an inconsistent
set until it is consistent.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Intuition behind the Approach

Preferred Conflicts

We use a preference-guided algorithm that successively adds
most preferred constraints until they fail. It then backtracks and
removes the least preferred constraints if this preserves the
failure.

Preferred Relaxations

We remove the least preferred constraints from an inconsistent
set until it is consistent.

Duality

Preferred conflicts explain why best elements cannot be added
to preferred relaxations.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Preferred Relaxations [5]

Simple lexicographic semantics
@ relaxation: subset of C that is consistent w.r.t. B

@ relaxation of ranking =: LexRelax(cx,, . - .,cx,)(B) is best
relaxation w.r.t lexicographical order <,,, that maximizes
selection of more important constraints ¢, (those with
smaller indices i)

@ preferred relaxation: relaxation of a ranking = that respects
the preferences

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Preferred Conflicts [5]

Do it in a similar way...
@ conflict: subset of C that is inconsistent w.r.t. B

@ conflict of ranking 7:
LexXplain(cy,, . .., cx,)(B) is best conflict w.r.t
lexicographical order < . that minimizes selection of
less important constraints ¢, (those with larger indices i)

@ preferred conflict: conflict of a ranking = that respects the
preferences

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Algorithm QUICKXPLAIN [5]

Recursive decomposition a la QUICKSORT
@ [f Bis inconsistent then: LexXplain(cy,, .. .,cr,)(B) =0

© If Bis consistent and C is a singleton then:
LexXplain(cy,, .. .,cr,)(B) = C
© If Bis consistent and C has more than one element then
split at &
Q letCr:={crs---,¢n}
@ let E; be LexXplain(cy,. ..., cx,)(BU Cy)
@ let E, be LexXplain(cy,,. . .,cx)(BUE,)
Q@ LexXplain(cr,,...,cr,)(B) = El UE,

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Where to Split?

Effect

If a subproblem does not contain an element of the conflict then
it can be solved by a single consistency check, namely B U Cj,
orBUE,

Strategy

Choose subproblems of same size to exploit this effect in a best
way

#Consistency Checks
Between log, 1 + 2k and 2k - log, 7 + 2k (for conflicts of size k)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts

Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Explanations and Satisfaction

Call Graph for QUICKXPLAIN

constraints ¢y, . .., c1¢ + background B.

we compute LexXplain(cy, ..., c16)(B)

Barry O’Sullivan, Ulrich Jul

ions in Problem Solvil

Standard Concepts
Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Call Graph for QUICKXPLAIN

Explanations and Satisfaction

checking B

g)
7 70 7 7 75 C\) 75 70
7N 77N 7N 7 s e 77N 7
, SN , . FN . SN SN
LN LN LN SN P SN LN SN
AN o R . R M R P S » R . R
)) G TG NG NG B B R SR G G B

Computing Explanations in Problem Solvi

Standard Concepts
Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Call Graph for QUICKXPLAIN

Explanations and Satisfaction

checking B+ 1..8

Computing Explanations in Problem Solvi

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Call Graph for QUICKXPLAIN

checkingB+1,...,12

Computing Explanations in Problem Solvi

Standard Concepts

Finding Preferred Explanations
Finding All Explanations
Representative Explanations

Explanations and Satisfaction

Explanations and Solubility

Call Graph for QUICKXPLAIN

checking B + 1..87

Oy
P v
o o o
7N 7N 7N
, SN SN
AN LN AN
< - < N < N -
S S S S S

none of 13..16 added to background =- already checked

Barry O’Sullivan, Ulrich Jul

Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Call Graph for QUICKXPLAIN

checking B+ 1..10

Standard Concepts
Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Call Graph for QUICKXPLAIN

Explanations and Satisfaction

checking B+ 1..11

L B+1..11

success = 12 is needed to fail

Computing Explanations in Problem Solvi

Barry O’Sulli

Standard Concepts
Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Call Graph for QUICKXPLAIN

Explanations and Satisfaction

checking B, 12 + 1..10

. B,12+1..10

failure = 11 is not needed to fail

Computing Explanations in Problem Solvi

Barry O’Sulli

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Call Graph for QUICKXPLAIN

checking B, 12 + 1..8

Standard Concepts
Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Call Graph for QUICKXPLAIN

Explanations and Satisfaction

checking B, 12 + 1..9

-~ o~ - 2 S 2N g) %

B,12+1..9
success = 10 is needed to fail

Computing Explanations in Problem Solvi

Barry O’Sulli

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Call Graph for QUICKXPLAIN

checking B, 11,12 +1..8

B,11,12+41.8 -

success = 9 is needed to fail

Barry O’Sulli i Computing Explanations in Problem Solvil

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Call Graph for QUICKXPLAIN

checking B, 9, 10, 12

B,9,10,12

failure = none of 1..8 needed to fail
preferred explanation: 9,10, 12

llivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Consistency Checking

The cost of consistency checking

QuICKXPLAIN does multiple consistency checks that are
NP-hard in general, but

@ complexity is polynomial for tree-like CSPs
@ approximations possible: trade time and optimality

@ keep witnesses for success (= solution) and try them when
adding constraints

@ keep witnesses for failure (= critical search decisions) and
try them when removing constraints

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Consistency Checking

The cost of consistency checking

QuICKXPLAIN does multiple consistency checks that are
NP-hard in general, but

@ complexity is polynomial for tree-like CSPs
@ approximations possible: trade time and optimality

@ keep witnesses for success (= solution) and try them when
adding constraints

@ keep witnesses for failure (= critical search decisions) and
try them when removing constraints

Compilation helps in practice

Most problems in practice give small compiled forms.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

How to use QuickXplain

@ Background: effort is reduced by putting as many
constraints as possible in the initial background

llivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

How to use QuickXplain

@ Background: effort is reduced by putting as many
constraints as possible in the initial background

@ Preference order: order of constraint uniquely
characterizes the conflict found

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

How to use QuickXplain

@ Background: effort is reduced by putting as many
constraints as possible in the initial background

@ Preference order: order of constraint uniquely
characterizes the conflict found

@ Consistency checker: time can be traded against
minimality by an incomplete consistency checker, giving
“anytime” behaviour

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

@ Constraint model debugging isolate failing parts of the
constraint model.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

@ Constraint model debugging isolate failing parts of the
constraint model.

@ Rule verification find tests that make a rule never
applicable.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

@ Constraint model debugging isolate failing parts of the
constraint model.

@ Rule verification find tests that make a rule never
applicable.

@ Benders decomposition.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Applications of QuickXplain

@ Configuration: B2B, B2C find conflicts between user
requests.

@ Constraint model debugging isolate failing parts of the
constraint model.

@ Rule verification find tests that make a rule never
applicable.

@ Benders decomposition.
@ Diagnosis of ontologies.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Enumerating all Maximal Relaxations

Problem

As an example, we consider a problem with the following
explanations and conflicts. Here we will regard an explanation
as a pair comprising a (maximal) relaxation and its
complement, which we refer to as an exclusion set

Explanations: (12,34) (13,24) (4, 123)
Conflicts: 14,23,24, 34

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations Conflicts
(1234, 0) 14,23,24,34

Do—

Steps J

(0, 1234)

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations Conflicts
(1234, 0) 14,23,24,34 J
Steps
(123, 4) (124, 3) (134,2) (234,1) J

(12@4) (13&4) (14,23) (23, 14) (24, 13) (34, 12)

(0, 1234)

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations

/4
(124) 0 0 (34, 12)

(0, 1234)

Conflicts
14,23,24,34

Steps

Find one maximal
relaxation.

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations

(1234, 0)

(123, 4) (124, 3) (134,2) (234,1)

&
12,34
(12.34)

(13&4) (14,23) (23, 14) (24, 13) (34, 12)

~7
(1,234) (z,\1\34) (3,124) (4,123)
\
\

(0,1234)

Conflicts
14,23,24,34

Steps

Find one maximal
relaxation.

= All subsets of it are
“forbidden”.

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations Conflicts

(1234, 0) 14,23,24,34 |

Steps

Compute all the
minimal hitting sets of
the exclusion sets
found so far.

- They are minimal
sets incomparable
with any relaxation
(2,134) (3,124) v (4\/,{23) v found so far.

(123, 4) (124,3) (134,2) (234, 1)

&
12,34
(12.34)

(13&4) (14,23) (23, 14)

(24, 13) (34, 12)

(1,234)

New entry points

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations

Conflicts
14,23,24,34

Steps

Pick a consistent one,
and extend it to a
maximal relaxation.
- |t will be different
from any maximal
relaxation found so
far.

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations

Conflicts
14,23,24,34

Steps

23 is not consistent: it
is a minimal conflict.
- Pick 4 (the only
consistent minimal
hitting set).

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations

Conflicts
14,23,24,34

Steps

It is already a
maximal relaxation.

Dualize and Advance (Bailey and Stuckey, 2005) [2]

Explanations Conflicts
14,23,24,34

Steps

All the minimal hitting
sets are inconsistent:
they’re all the minimal
conflicts.

- The algorithm
ends.

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Representative Explanations [10]

Observations
@ Conflict: doesn’t guide the user to solving the problem

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Representative Explanations [10]

Observations

@ Conflict: doesn’t guide the user to solving the problem
@ Single relaxation: may not satisfy the user desires

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Representative Explanations [10]

Observations
@ Conflict: doesn’t guide the user to solving the problem
@ Single relaxation: may not satisfy the user desires
© All relaxations: can theoretically be too large

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Representative Explanations [10]

Observations
@ Conflict: doesn’t guide the user to solving the problem
@ Single relaxation: may not satisfy the user desires
© All relaxations: can theoretically be too large

w An Alternative Approach
@ show a set of relaxations
@ that must be representative of all possible relaxations

as a trade-off between compactness and comprehensiveness

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Car configuration

Option Cost

Roof rack 500 .

Samvarile 500 w» Convertible cars cannot
CD Player 500 have roof racks.

Leather Seats 2600

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Car configuration

Option Cost

Roof rack 500 .

Samvarile 500 w» Convertible cars cannot
CD Player 500 have roof racks.

Leather Seats 2600

User constraints
c1 Total cost < 3000

¢, Roof rack

c3 Convertible

¢4 CD Player

cs Leather Seats

Relaxations: {cc;}, {cics} are
consistent

Maximality: {cicyca} is still
consistent, but no more constraint
can be added to {c;cs}.

R RR 4
Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Showing many Explanations

Representative set of explanations

@ Every constraint that can be
kept is kept at least once

@ Every constraint that can be
relaxed is relaxed at least
once

@ Minimal (setwise)
representative set of
explanations

NN N X %x|©
> N % \ %3
>x X N\ X% |8
EIANA N NN
N X X N N\&

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Complexity

Decision problems
@ Does a maximal relaxation contain a given constraint?
w Polynomial (in terms of number of calls to the
consistency checker)
@ Does a minimal exclusion set contain a given constraint?
w NP-Complete (with an oracle for the consistency
checker)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice
@ Which new entry point to choose?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

@ Which new entry point to choose?
© Which parent to choose?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

@ Which new entry point to choose?
© Which parent to choose?

Heuristics

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

@ Which new entry point to choose?
© Which parent to choose?

Heuristics

@ Choose a consistent set that becomes a conflict with an
uncovered constraint

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Generating Representative Explanations

Goal

Speed up the convergence of the complete method to a
representative set of explanations

Two points of choice

@ Which new entry point to choose?
© Which parent to choose?

Heuristics

@ Choose a consistent set that becomes a conflict with an
uncovered constraint

@ Add covered constraints first

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Empirical Analysis

Random problems
@ 15 variables,
@ One background table constraint, with varying tightness
@ Random assignments on the variables

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Empirical Analysis

Random problems
@ 15 variables,
@ One background table constraint, with varying tightness
@ Random assignments on the variables

Renault
@ Real-world problem
@ 99 variables
@ 2.8 x 10'? solutions
@ 30 variables randomly assigned

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Behaviour

100

D&A
90 - Representative —s— —
80 -
70 +
60
50 -
40 +

30

number of explanations

20

0

0.45

0.50 +
0.55
0.60
0.65
0.70 -
0.75
0.80 +
0.85
0.90 -
0.95

| I [N (Y S B
S 1 O 1w O W 9 W Q
€ © 9 4 4 N o 0o 3

SO © o ©o o ©o © o

satisfiability

Figure: Number of explanations

ions in Problem Solvil

Explanations and Satisfaction

Behaviour

Standard Concepts

Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

c 06

i)

£

o

Q

o

<]

S 04
0.2
0 Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il Il
cC N O ;NN O LW O ’»u O 1w O 1w O 1w O 1L O v O W
E 9 9 4 8 84§ ®»w I I HBHOE O KN B SO

O O O O O O O 0O 0O O O O 0o 0O o o o o o
satisfiability

Figure: Proportion of “true instances”

Barry O’Sul

ions in Problem Solvi

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations

Explanations and Solubility

Empirical Analysis

5000

1000

100

-seconds (logscale)

Bailey & Stuckey
Representative —«—
Representative (last explanation) —s=—
RS TR

min
0.05 -
0.10 |
0.15 -
0.20 -
0.25
0.30 -
0.35 -
0.40 -
0.45 -
0.50
0.55
0.60
0.65 -

.
o wn (=] n (=3 o]
NN @ 9 8 9
o o o o o (=]
satisfiability

Figure: Running times

ions in Problem Solvin

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations
Finding All Explanations
Representative Explanations
Explanations and Solubility

Empirical Analysis

Renault instance

Baseline REPRESENTATIVEXPLAIN
Instance time #exps | time last time all #exps
renault 10° | 474.76 17 318.87 618.76 3
renault 107 | 263.95 11 125.51 324.71 3
renault 103 | 205.82 8 97.98 232.32 3
renault 10° | 293.00 12 139.67 350.51 3

Table: Running times for the Renault instances

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Explanations and Solubility [11]

Principle — Automaton representation
Common approach [1]:

@ compile constraint satisfaction problems

@ allowing more operations to be tractable in practice.
Representation:

@ Only the background constraints are compiled (they do not
change)

@ The user constraints are implicit (they change), information
is associated with states and transitions

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (problem representation)

This represents a problem that has:
@ three variables X, X», X3 on {a, b, ¢}
@ 13 solutions, including 001, 002, 103, etc.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (user constraints)

@ User constraints: for every i, X; =0

llivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (user constraints)

@ User constraints: for every i, X; =0
@ For a transition ¢, we associate a cost c(¢).
@ ¢(r) = 0 on valid transitions, c¢(z) > 0 on invalid transitions.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (relaxations)

@ A path is associated with a relaxation (e.g. {1,2}).

llivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (relaxations)

@ A path is associated with a relaxation (e.g. {1,2}).
@ Several paths per relaxation (e.g. 3 paths recognise {1,2})

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (relaxations)

@ A path is associated with a relaxation (e.g. {1,2}).

@ Several paths per relaxation (e.g. 3 paths recognise {1,2})

@ Their cost corresponds to the cardinality of the
corresponding exclusion set (here 1).

@ A shortest path corresponds to a max cardinality
relaxation.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton representation

Example (number of solutions)

@ The number of solutions of a state is the sum of the
number of solutions of its successors.

@ The number of solutions of a relaxation is the number of
paths that recognise it (e.g. {1,2} is compatible with 3
solutions).

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton-based Explanation Algorithms

Two exact algorithms

@ Find the most/least soluble longest relaxation
w |inear in the size of the automaton.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Standard Concepts
Explanations and Satisfaction Finding Preferred Explanations

Finding All Explanations

Representative Explanations

Explanations and Solubility

Automaton-based Explanation Algorithms

Two exact algorithms

@ Find the most/least soluble longest relaxation
w |inear in the size of the automaton.

@ Find the most/least soluble maximal relaxation
w |inear in the size of the automaton x the number of
maximal relaxations.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Shortest path

Example

@ For a state ¢, let ¢(gq) be the size of a shortest path from ¢
to F.

® c(g) = min(c(r) +c(q'))

Shortest path

Example

@ For a state ¢, let ¢(g) be the size of a shortest path from ¢
to F.

® c(g) = min(c(r) +c(q'))

Shortest path

Example

@ For a state ¢, let ¢(g) be the size of a shortest path from ¢
to F.

® c(g) = min(c(r) +c(q'))

Shortest path

Example

@ For a state ¢, let ¢(g) be the size of a shortest path from ¢
to F.

® c(g) = min(c(r) +c(q'))

Longest relaxation

Example

@ For a state ¢, we associate instead the relaxation
corresponding to a shortest path.

Longest relaxation

Example

@ For a state ¢, we associate instead the relaxation
corresponding to a shortest path.

Longest relaxation

Example

@ For a state ¢, we associate instead the relaxation
corresponding to a shortest path.

@ Several maximal cardinality relaxations can correspond to
a state (choose arbitrarily)

Longest relaxation

Example

@ For a state ¢, we associate instead the relaxation
corresponding to a shortest path.

@ Several maximal cardinality relaxations can correspond to
a state (choose arbitrarily)

@ The relaxation associated with 7 is a maximal cardinality
relaxation.

Most soluble longest relaxation

Example

@ We can also keep track of the number of paths supporting
the relaxation of each state.

Most soluble longest relaxation

Example

@ We can also keep track of the number of paths supporting
the relaxation of each state.

@ Choose maximal cardinality relaxation with the highest
number of solutions

Most soluble longest relaxation

Example

@ We can also keep track of the number of paths supporting
the relaxation of each state.

@ Choose maximal cardinality relaxation with the highest
number of solutions

@ The relaxation {1,2} is compatible with 3 solutions.

Enumerating maximal relaxations

Example

{2}

@ Keep track at each state of all the relaxations.

Enumerating maximal relaxations

Example

{2}

@ Keep track at each state of all the relaxations.
@ Filter out subsumed sets.

Enumerating most soluble maximal relaxations

Example

{3}, 4 2).3 0,3
T ey, By e

{2}.3

@ Add in the corresponding number of solutions

@ No relaxation can be filtered based on its number of
solutions

@ {3} is the most soluble maximal relaxation.

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Outline

e Introduction
@ Explanations and Satisfaction

© Explanations and Optimisation

@ Decision Making with Preferences
Explaining Rational Decisions
Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

e Case-Study: Configuring Telecoms Feature Subscriptions

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

The Importance of Preferences [6]

@ Explaining the decision in rational decision making

@ Explanations are crucial for interactive decision making:
"Accept or critique"

@ Different decision making problems lead to different
explanation problems

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Decision Making with Preferences

Example
Problem Choose the ADT-2009 location:
@ An agent can choose one @ Actions: ask Jose Figueira,
of several actions. ask Francesca Rossi, ask
@ Each action leads to an Alexis Tsoukias, ask Barry
outcome. O’Sullivan.
@ The agent prefers certain @ Outcomes: Coimbra,
outcomes to others. Venice, Paris, Cork.
@ Preferences: please tell me.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Assumptions of the Basic Model

@ There is a single agent.

@ The set of actions is known.

@ The outcome of an action is certain and known.

@ The preferences between outcomes are partially known.

llivan, Ulrich Junker Computing Explanations in Problem Solving

Explanations and Optimisation

Decision Making with Preferences
Explaining Rational Decisions
Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Preference Modeling

Concept

@ The agent prefers some
outcomes as least as much
as other outcomes.

@ This is modeled by a binary
relation over outcomes.

@ This relation is reflexive and
transitive, i.e. it is a preorder.

@ The relation may be
complete, but this need not
to be so.

Barry O’Sullivan, Ulrich Junker

Example

@ Weak preferences:
Venice 77, Coimbra
Venice = Cork
Coimbra - Cork
Cork = Coimbra
x 77 x for all x

@ Incomparable outcomes:
Paris and Venice
Paris and Cork
Paris and Coimbra

Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Strict Preferences and Indifference

Concept

@ An agent is indifferent between
A and B iff she prefers A at
s 2B | o con

’ Coimbra - Cork

@ An agent strictly prefers A to B Cork > Coimbra
iff she prefers A at least as N
much as B, but does not prefer
B as least as much as A.

@ We split the preorder - into
strict preferences - and
indifference ~.

Example

@ Weak preferences:
Venice 7~ Coimbra

@ Indifference:
Cork ~ Coimbra

@ Strict preferences:
Venice - Coimbra
Venice = Cork

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions

Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Rational Decision Making

Problem
Given
@ a set of actions A,
@ a set of outcomes (2,

@ an outcome of actions
7:A— QQ,
@ a preference preorder
2 on ©,
make a decision by
choosing an action from A.

Rational Decision

@ An outcome w* is optimal (most
preferred) iff no other outcome
is strictly preferred to w*.

@ Rational decisions are the
actions that have an optimal
outcome.

@ There may be multiple optimal

outcomes and multiple rational
decisions.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Explanations and Optimisation

Decision Making with Preferences
Explaining Rational Decisions
Explaining Optimal Solutions
Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Decision Making under Constraints

Problem

@ An agent needs to make a
decision in different
situations.

@ The agent’s preferences
usually do not change.

@ However, the actions may
differ from one situation to
the other.

@ Constraints describe which
actions are possible
(feasible) in a situation.

Barry O’Sullivan, Ulrich Junker

Example

@ Choose the ADT location
in several years.

@ Constraint: Alexis
Tsoukias does not want to
organize ADT in 2009

@ Your preferences should
not change in different
years.

Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions

Explanations and Optimisation Explaining Optimal Solutions

Problem
Given

a set of actions A,

a subset of feasible
actions F C A,

a set of outcomes €,

an outcome of actions
7:A— QQ,

a preference preorder
2 on ©,

make a decision.

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Rational Decision Making under Constraints

Rational Decision

@ An outcome w* is feasible iff
some feasible action in F leads
to w*.

@ A feasible outcome w* is optimal
iff no other feasible outcome is
strictly preferred to w*.

@ Rational decisions are the
actions with optimal outcomes.

@ There may be multiple optimal
outcomes and rational
decisions.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Does the agent respect her preferences?

Rational Decision Making
@ The decisions made by the agent are consistent w.r.t. her
preferences:

o If the agent prefers A to B and A is possible (feasible), then
she will not choose B.

e If the agent prefers A to B, but chooses B then A is not
possible (feasible).

@ Hence the decision can be explained in terms of the
preferences and the infeasibility of actions.

Non-rational Decision Making

@ The agent’s decision is not the best possible and cannot be
explained in terms of her preferences.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

How to explain a decision?

Why this decision?
@ Why not an action with a better outcome?
@ Why not an action with another optimal outcome?

Different answers for different cases:
@ Complete preference orders: unique optimal outcome.
© Partial preference orders: multiple optimal outcome.

e Use artificial constraints to eliminate rational decisions with
other outcomes.

e Use artificial preferences to prefer the chosen outcome to
other optimal outcomes.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanations for Complete Preferences

Why not an action with a better outcome?

@ An action e dominates an action g iff its outcome is strictly
preferred to the outcome of £.

@ If the decision o has been made, then all dominating
actions are infeasible.

@ We therefore use the infeasibility of the set of dominators
Dom(a*) as explanation

Why not an action with another optimal outcome?
@ As the preorder is complete all outcomes are comparable.
@ The outcome w* of «* is the unique optimal outcome.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanations with Artificial Constraints

Why not an action with a better outcome?
@ The set of dominators Dom(a*) is infeasible.

Why not an action with another optimal outcome?

@ If the decision a* has been made, then it need to be
justified that none of the other rational decisions has been
chosen.

@ We may add artificial constraints that make exactly he
other rational decisions infeasible.

@ We use these artificial constraint as explanation.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanations with Artificial Preferences

Why not an action with a better outcome?
@ The set of dominators Dom(a*) is infeasible.

Why not an action with another optimal outcome?

@ If the decision a* has been made and its outcome is w*,
then all incomparable outcomes should be less preferred.

@ We define an extension =* of the strict preference order >

e if wis incomparable to w* then w* >* w
e ifw; = wythen w; =* wy

@ We use this extension of the preferences as explanation.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanation of Optimality: Summary

Why this decision?
@ All better decisions are infeasible.

@ All other rational decisions are eliminated by artificial
constraints or by artificial preferences.

Which is the crucial information in this explanation?
@ Optimal outcome: the outcome of the rational decision.
@ Preferences: the extended preference order.

@ Constraints: the infeasibility of the strictly better decisions
and the artificial constraints.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Benefits of Explanations

Acceptance of decisions

@ The explanation unveils the preferences and constraints
that make that the decision is the best one.

@ If a rational stakeholder accepts these preferences then
she will accept the decision.

Critique of decision
@ Critique of artificial preferences: add more preferences.

@ Critique of the feasibility of the decision: add more
constraints.

@ Critique of the exclusiveness of the decision: add more
actions.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Decision Making as Combinatorial Optimization

Combinatorial action space

@ Actions are combinations of multiple local options.

@ Each local option is chosen from a domain.

@ Background constraints describe the legal combinations.

@ Feasibility constraints describe which actions are feasible
in a given situation.

@ (Additive) criterion maps combinatorial actions to
numerical outcomes s.t. greater values are preferred.

Question
Which of the constraints are making a decision rational?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Example: Resource Allocation and Scheduling

Variables for local options
@ Assign tasks to workers.
@ Assign starting times to tasks.

Constraints for feasibility
@ A worker cannot do two tasks at the same time.

@ If a task precedes another one the second task can only
start after the first one has finished.

Expression for criterion
@ For example the sum of lateness of all tasks.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Combinatorial Problem

Problem space: X; x ... x X,

For example, for each task i =1, ..., we introduce
@ set X; of project members who can do task i;
@ set X,; of time periods for performing task i;

llivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Combinatorial Decision Space

Constraints: C C X;, x ... x X,

Local constraints of small scope {ii, ..., i}, e.g.
@ precedence constraint between tasks i, j, x;1; < x;4;.
@ resource constraint for each project member:

if x; = xj then x,.; < x4V xgj < Xigi

wherex € X; x ... x X,

Decision space: D C X X ... X X,

...such that x € D iff (x;,,...,x;) € C for all constraints with
scope {i1,..., i}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Combinatorial Outcome Space

Outcome space: Q2 X ... x Q,
Cartesian product of all outcomes.

Criteria: zj : Xj, x ... X Xj —
Global criteria of large scope {ji, ... ,ji }:
@ delivery time
@ extra hours
Local criteria of small scope {ji, . .. ,ji }:
@ task of project member [in period p for each ., p

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Incomplete & Local Preferences

Preferences are viewpoint specific

Each viewpoint is defined by one or more criteria
@ Marketing: prefer earlier delivery dates all else ignored
@ Administration: prefer less extra-hours all else ignored
@ Project member i: prefer task A over B all else ignored

rationality principles are restricted to viewpoints!

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Incomplete & Local Preferences

Preferences are viewpoint specific

Each viewpoint is defined by one or more criteria
@ Marketing: prefer earlier delivery dates all else ignored
@ Administration: prefer less extra-hours all else ignored
@ Project member i: prefer task A over B all else ignored

rationality principles are restricted to viewpoints!

Preferences may be incomplete

Project member i prefers task A over B, but has no opinion
about C.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Questions about Preferences

Modelling
How to aggregate viewpoint-specific preferences?
Which preference models can do this?

Solving
How to solve combinatorial problems under those preferences?

Explaining
How to explain the results while allowing user critics?
Can we use the original user preferences for this?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Why is there no action with a better outcome?

Why are all the dominators of the decision infeasible?

@ If o is the decision and w* its outcome then all actions
with strictly greater outcome are infeasible.

@ We want to describe this set of actions in a most general
form by using the original constraints.

@ We want to find a minimal subset of the original constraints.

Characterizing the dominators
@ [is a dominator of o* iff its outcome strictly preferred to w*
@ The dominators are exactly the solutions of z(¥) > w*

@ As the dominators are infeasible, no solution of the
constraints satisfies z(X) > w*

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Atomic Optimization Problems (I)

Preference model:
@ single criterionz: X — Q
@ total order > on Q

Barry O’Sullivan, Ulrich Jul i ions in Problem Solvil

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Atomic Optimization Problems (I)

Preference model:
@ single criterionz: X — Q
@ total order > on Q

Problem
Max,~ (D) :={x € D | Ax* € D : z(x*) > z(x)}

llivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Atomic Optimization Problems (I)

Preference model:
@ single criterionz: X — Q
@ total order > on Q

Problem
Max,~ (D) :={x € D | Ax* € D : z(x*) > z(x)}

Classic combinatorial optimization
@ represent order by utility u s.t. w; > ws iff u(w) > u(w2)
@ solve max{u(z(x)) | x € D} and let x* be a solution
@ can be solved by existing optimizers

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Atomic Optimization Problems (1)

Solved form
@ let w* be the value z(x*) of z in solution x*
@ then Max,~ (D) = {x | x € D A z(x) = w*}

Barry O’Sullivan, Ulrich Ju Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Explanation of Optimality

Optimization proble:m
Let w* be the optimal value of z under constraints C.

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Explanation of Optimality

Optimization proble:m
Let w* be the optimal value of z under constraints C.

Explanation questions
@ Why is w* optimal?
@ Why isn’'t w chosen instead?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Explanation of Optimality

Optimization proble:m
Let w* be the optimal value of z under constraints C.

Explanation questions
@ Why is w* optimal?
@ Why isn't w chosen instead?

Explanation of optimality: (>,w*, E)

where E is a simplest subproblem (minimal subset) of C s.t. w*
is the optimal value of z under E

@ w* is optimal as E defeats all better values
@ w is not chosen since w* > w or w is defeated by E

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

How to compute explanations?

Reduce to conflicts
@ find a minimal unsatisfiable subset E’ (“conflict”) of
CU{z>w*}
@ (>,w*, E'\ {z > w*}) is an explanation of optimality

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

How to compute explanations?

Reduce to conflicts
@ find a minimal unsatisfiable subset E’ (“conflict”) of
CU{z>w*}
@ (>,w*, E'\ {z > w*}) is an explanation of optimality

How to compute conflicts?
Perform a sequence of satisfiability checks — QUICKXPLAIN

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explaining the Optimality of Solutions

Explanation of optimality

@ A minimal subset X of the original constraints such that no
solution of X satisfies z(¥) > w*.

Reduction to Conflict between Constraints

@ An explanation of optimality is @ minimal subset X of the
original constraints C such that there is no solution of the
constraints X and z(x) > w*.

@ Hence, explanations of optimality are obtained as conflicts
if the original constraints are moved to the foreground and
the dominator constraint is moved into the background.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Optimize and Explain

Optimize Explain
@ Constraints: C @ Background: z(¥) > w*
@ Objective: maximize z(X) @ Foreground: C
@ Method: some optimizer @ Method: e.g. QuickXplain
@ Result: optimum w* @ Result: conflict X

Explanation of optimality
The optimum w*, the preference order >, and the conflict X.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Incomplete Preference Orders

Assumption.
@ the decision maker has given only some preferences

@ hence, the complete preference relation is a superset of
the given preferences

@ the given preferences define a space of possible complete
preference relations

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Incomplete Preference Orders

Assumption.
@ the decision maker has given only some preferences

@ hence, the complete preference relation is a superset of
the given preferences

@ the given preferences define a space of possible complete
preference relations

Preference model
@ Single criterionz: X — Q

@ space of complete orders on () that are supersets of a
given (Partial) preorder - on 2

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Alternative Optimizations

Problem
@ let 7(>) the set of complete extensions of >

@ Max,y (D) := s ¢,y Max > (D)

Optimization under Partial Orders
Max,, (D) ={x € D |Ax* € D : z(x*) > z(x)}

Solved form
@ let Q* be the optima to be found by the optimizer
@ Max,, (D) = {x[x € DAV ucq-2(x) =w"}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanations under Partial Orders

Approach
@ chooses a linear extension > of > and
@ generates the optima wy, ..., w; in decreasing >-order

llivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Explanations under Partial Orders

Explanation with dominance constraints
@ each w} has an explanation of optimality (>, w}, E;)
@ but E; contains dominance constraints z(x) A w;

Explanation without dominance constraints

@ define extension -; of - s.t. w; =; wf forj # i

@ choose a linear extension >; of >;
@ find new explanation (>;, w;, E!), namely for the optimality
of w’ w.r.t. to >;

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Decision Making as Sequential Optimization

Combinatorial outcome space

@ An action can be evaluated via multiple viewpoints.

@ Each viewpoint determines an outcome for the action.

@ Each viewpoint defines preferences on its outcome.

@ There is a strict importance ordering among the
viewpoints.

@ Global outcomes are obtained as combinations of
viewpoint-specific outcomes.

Question

Which of the viewpoint-specific constraints/preferences are
making a decision rational?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Lexicographic Optimization

Preference Structure
@ Multiple criteria z; map the actions to outcomes from (2;.
@ A preference order -, for each ;.
@ The criteria zy, ..., z, are ordered in increasing importance.

Aggregation
@ We define the lexicographical preference order >, on
QX ... x Q.
@ A vector (wi,...,w;,) is lexicographically preferred to
(Wi, ..., wy) iff wf is preferred to wy for the smallest index &
for which the two vectors differ.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Lexicographic Optimize and Explain

Optimize
@ Compute optimum w of z(x7) under >, and C.
@ Compute optimum wj of z(x3) under =, and C, z(x7) = wj.

© Compute optimum wj of z(x3) under >3 and
C,z(x1) = wi,z(x3) = wj; and so on.

Explain
@ Sequence (i, ..., &) of explanations & = (>;,w’, E;).
@ E; may contain constraints z;(x) = w; forj <.
@ This indicates that the optimal values of more important
criteria defeated the values of z; that are better than w;".

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Explanation Networks

Graphical representation of lexicographical explanations
@ Each ¢ = (>, w], E;) is represented by a node.
@ An edge is drawn from ¢ to ¢; if the defeaters E; of z;
contain a constraint of the form z;(x) = w;.

Example

see Preference-Based Problem Solving for Constraint
Programming in Recent Advances in Constraints, LNCS 5129
Springer 2008.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Unconstrained Importance Orders

Optimize
@ Choose a permutation 7 of the indices 1,...,m.
@ Compute lexicographical optimum (wy, ..., wsy) for
Zgs9 0 0 0 9 Bgc
Explain
@ Take an explanation (&, . .., &x,) of the lex-optimality of
(w;"rl cwr).

@ |t lists the criteria in the chosen order of importance.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Decision Making as Multi-Objective Optimization

Combinatorial outcome space
@ An action can be evaluated via multiple viewpoints.
@ Each viewpoint determines an outcome for the action.
@ Each viewpoint defines a preferences on its outcome.
@ Certain viewpoints may have the same importance.

@ Global outcomes are obtained as combinations of
viewpoint-specific outcomes.

Question

Which are the view-point specific constraints and preferences
are making a decision rational?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions
Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Pareto-Optimization

Preference Structure
@ Multiple criteria z; map the actions to outcomes from (2;.
@ A preference order -, for each ;.
@ The criteria zy, . . ., z,» have all the same importance.

Aggregation
@ We define the weak Pareto-dominance order > p, e, ON
O X ... x Q.
@ A vector (wf,...,w;,) weakly dominates (wi, ..., wn) iff w;
is weakly preferred to w; for all i.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Pareto-Optimize and Explain

Optimize
@ Outer branching uses the lexicographic order as linear
extension of the strict Pareto-dominance.
@ Dominance constraints z(x) Zparero & have the form
Vie1 5(%) >j .

Explanations with Artificial Constraints
@ Artificial preferences: lexicographical order as before.
@ Dominance constraints reduce to z;j(x) >; w;.

@ These artificial constraints can be viewed as penalization
limits, which gives a clearer explanation than an arbitrary
artificial preference order over a combinatorial space.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences
Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality
Explaining Pareto-Optimality

Lessons learned
@ Combinatorial structure impacts the form of explanations.

Open questions
@ Does uncertainty impact the form of explanations?

@ There is a relationship between reasoning about
uncertainty and quantified constraint satisfaction [3]

@ Which kind of explanations do we obtain for CP-nets?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Decision Making with Preferences

Explaining Rational Decisions
Explanations and Optimisation Explaining Optimal Solutions

Explaining Lexicographic Optimality

Explaining Pareto-Optimality

Uncertainty and Explanation

@ An action may have uncertain outcomes modeled by a
probability distribution.

@ Actions are then compared by their expected utility.

@ Preferences on outcomes can thus be transformed into
preferences on actions.

@ We can produce explanations in terms of action
preferences.

@ Question: should explanations unveil also the probabilities
and the outcome preferences?

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Outline

e Introduction
@ Explanations and Satisfaction
© Explanations and Optimisation

e Case-Study: Configuring Telecoms Feature Subscriptions
@ The Feature Subscription Problem
@ Formalisation
@ Relaxation of Feature Subscriptions
@ Implementation of Different Approaches
@ Experiences

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Call Control Features [8, 9]

@ Communication services are
pervasive and disruptive
@ personalisation solutions to
control and enrich services are
a must

@ Call control features
@ increments of the basic call
service
e primitive service configuration
options for subscribers
o 10s of features available

Feature Types

[media-/call-control
(source/target

(free/bound

[network-/user-triggered
(

(

(

parameterised/not
atomic/composite
optional/mandatory

Barry O’Sullivan, Ulrich J Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Feature-Based Personalisation

@ Service providers
implement and expose
features in catalogues

@ Service subscribers pick
n features from catalogues
to configure their
subscriptions

@ Communication
sessions are set up based
on the subscriptions of
participants

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Feature Interactions

@ “Some way in which a feature modifies or influences the
behaviour of another feature in generating the system'’s
overall behaviour”

@ Undesirable interactions must be detected and avoided
when users configure their subscriptions

retrieve
subscription of
Y

— v | can oG
source = X i | Forward Call .
target=Y | Uncond. Screen. L,

zone of y

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Feature Interactions

@ “Some way in which a feature modifies or influences the
behaviour of another feature in generating the system'’s
overall behaviour”

@ Undesirable interactions must be detected and avoided
when users configure their subscriptions

retrieve
subscription of
Y

1 v | Termin. call |: =
| | source=X Call |source = X.| Forward | :
target=Y | Screen. [target=Y ~| Uncond. | :
(0] <Y> o <Y> e

zone of y

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation
Relaxation of Feature Subscriptions

Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Configuring Subscriptions

@ Subscribers select features, and specify precedence
constraints between features

@ Configuration engine

Verification. Checking the consistency of a subscription is
linear with respect to the number of features and
precedence constraints.

Partial Completion. Computing transitive closure is cubic
with respect to the number of features.

Completion. Ordering a subscription is linear with respect
to the number of features and precedence constraints.
Filtering. Finding incompatible features is cubic with
respect to the number of features.

Revision. Finding an optimal relaxation is NP-hard since it
is a generalization of the feedback vertex problem.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Catalogue Graph

@ A catalogue is a pair £, f,
(F,H) of features and T
precedence constraints. It
can be seen as a directed
graph. f,

@ Example, F = {fi,....fs},
H = {{f1,.o), (f.15),
<f3>f4>7 <f4,f5>a <fSyf1>> <f57f2>}

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Subscription

@ A feature subscription S of catalogue (F,H) is a tuple
(F,H,P,Wp, Wp), Where
o FCUF,
H is the projection of H on F,
P is a set of (user defined) precedence constraints on F,
W : F — IN is a function that assigns weights to features
and

Wp : P — IN is a function that assigns weights to user
precedence constraints.
@ The value of S is defined by

Value(S) = 3 rcp Wr(f) + Z_<ijep Wp (=)

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Case-Study: Configuring Telecoms Feature Subscriptions

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Subscription

@ A feature subscription
(F,H,P,Wr, Wp) is
consistent if and only if the
directed graph (F,H U P) is
acyclic.

o F=1{fi,,fs}and P =10

induces a consistent
subscription.

®F= {f27f35f47f5} and P = @
induces an inconsistent
subscription.

Barry O’Sullivan, Ulrich Junker

f f,
s .
f f,
f, f.

o
N

Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Relaxation

@ A relaxation of a subscription (F,H, P, W, Wp) is a
subscription (F', H', P', Wy, W;,) such that
e F' CF,
o H =H|p,
o P - PlF’-
e Wy is Wr restricted to F/, and
e Wps is Wp restricted to P’.

@ Let S be an inconsistent feature subscription and Rg be the
set of all consistent relaxations of a feature subscription S.
We say that S; € Ry is an optimal relaxation of S if it has
maximum value among all relaxations.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Case-Study: Configuring Telecoms Feature Subscriptions

Relaxation

f f

5 a

@ A maximal relaxation S;s
induced by F\ {f5}

@ Value(Ss5) = 1+2+3+4 = 10

Barry O’Sullivan, Ulrich Jul

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Computing Explanations in Problem Solvi

Case-Study: Configuring Telecoms Feature Subscriptions

Relaxation

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

f f

5 a

@ A maximal relaxation S;s
induced by F\ {f5}

@ Value(Ss5) = 1+2+3+4 = 10

llivan, Ulrich Junker

f, f

5 a

@ A maximal relaxation S5
induced by F\ {f3}

@ Value(S3) = 14+2+4+5 =12

Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation
Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches
Experiences

Relaxation

f £ f, f

5 a
5 a

@ A maximal relaxation Ss @ A maximal relaxation Sz
induced by F\ {f5} induced by F\ {f;}
@ Value(Ss) = 1+2+3+4 = 10 @ Value(S3) = 14+2+4+5 =12

Complexity
Finding an optimal relaxation is NP-hard! J

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Case-Study: Configuring Telecoms Feature Subscriptions

Different Approaches

@ Constraint Programming
@ Partial Weighted Maximum Satisfiability
@ Integer Linear Programming

llivan, Ulrich Junker Computing Explanations in Problem Solving

Case-Study: Configuring Telecoms Feature Subscriptions

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Modeling the problem as a COP(l)

Table: Variables and Domains

Variable Type Domain Purpose

st Boolean 0/1 inclusion/exclusion of a feature f; € F

Pr, Integer 1...|F| position of a feature f; € F

Spy Boolean 0/1 inclusion/exclusion of a user precedence p;; € P

Barry O’Sullivan, Ulrich Junl

tions in Problem Solvi

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Modeling the problem as a COP(lI)

Case-Study: Configuring Telecoms Feature Subscriptions

@ Constraints

e Precedence constraints in catalogue

sp N — (pp <pp)
e Precedence constraints defined by the user (Preference)

Sp; — (sfi A Sf; A (pﬁ < pﬁ))
@ Objective Function. The objective is to maximize:

ZSfi X wfi + Zspij X Wpjj

fi€F pi€P

llivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Consistency Techniques

@ Arc Consistency (AC)

@ Mixed Consistency: different levels of consistency on
different sets of variables of a given problem.
e Singleton Arc Consistency (SAC,) on the Boolean
variables and Arc Consistency on the remaining variables.
e Restricted Singleton Arc Consistency (RSAC,) on the
Boolean variables and Arc Consistency on the remaining
variables.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Partial Weighted MaxSAT

Boolean satisfiability (SAT) is the problem of determining if
the variables of a given Boolean formula can be assigned in
such a way as to make the formula evaluate to TRUE.

r Vv -q V r) A
(g Vv wo Vv s) A
(r Vv t V. q)

Partial Weighted Maximum Boolean Satisfiability extends
SAT by including the notions of hard and soft clauses. The goal
is to find an assignment that maximizes the value.

(T, (@ v —q¢ V n)y A
(win, (¢ v w Vv) A
(wj, (r v t Vo —q))

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Partial Weighted MaxSAT: Model (I)

Case-Study: Configuring Telecoms Feature Subscriptions

@ Precedence constraints in the catalogue:

pij €H
(T, (s V =sp Vosp,)) € Satlnst

@ The precedence relation is transitive:

{pij,pix} CHUP
(T, (=8p; V 78p; V Sy)) € Satlnst

@ The precedence relation is antisymmetric:

pi € HUP
<T7 (_‘Spij \ _‘Spji)> € Satlnst

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Partial Weighted MaxSAT: Model (II)

Case-Study: Configuring Telecoms Feature Subscriptions

@ Each feature is associated with its weight:

fier
(wy, (s)) € Satlnst

@ Each user precedence relation is associated with its

weight:

Pij epP
(Wpy» (5p;)) € Satlnst

@ A user precedence relation is only satisfied if its features

are included:

pij €P pij €P
(T, (s V =sp,)) € Satlnst (T, (s V —sp;)) € Satlnst

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Reducing the number of variables and clauses

@ The scope of the precedence constraint variables can be
restricted to the transitive closures of H U P since two
features that are unrelated under H U P can appear in any

order. /\ T
D I B

The order between j and k is irrelevant to any
optimal relaxation of this inconsistent subscription

@ The clause whose consequence is already enforced by the
catalogue, i.e., {pji, pij, pir} N H # (), can be avoided.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem
Formalisation

Relaxation of Feature Subscriptions
Implementation of Different Approaches
Experiences

Integer Linear Programming: Formulation

Case-Study: Configuring Telecoms Feature Subscriptions

@ Maximize

Z WgSs + Z WpiSpis

fieF pii€P
@ Catalogue Precedence Constraint
P — Pf tnxsp 4+ noksy <2n-1
@ User Precedence Constraint
pr—Pft+tnxsp, <n—1
Spy — 8 <0

Spy =8 <0

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Comparison

AC RSAC,, SAC,,
{f,p) time #nodes time #nodes time #nodes
(15, 20) 92 726 34 41 42 41
(20, 10) 203 1,694 39 47 50 46
(25, 40) 14,985 88,407 595 187 678 169
(30, 20) 6,073 29,211 653 184 768 161
(35, 35) 124,220 481,364 7,431 1,279 8,379 1,093
(40, 40) 1,644,624 5,311,838 | 67,798 9,838 | 76,667 8,475

Table: Average results of maintaining AC, RSAC, and SAC,,.

Barry O’Sul i i ions in Problem Solvi

Case-Study: Configuring Telecoms Feature Subscriptions

Comparison

The Feature Subscription Problem
Formalisation
Relaxation of Feature Subscriptions

Experiences

Implementation of Different Approaches

Table: Catalogue (50,250, {<, >}).

PWMSAT CPLEX CP
{f,p) #nodes time #us #nodes time #us #nodes time
(15, 20) 721 1,039 0 51 61 0 41 34
(20, 10) 1,295 1,619 0 50 47 0 47 39
(25, 40) 5,039 4,391 0 3,482 1,945 0 187 595
(30, 20) 5,415 6,397 0 1,901 1,025 0 184 653
(35, 35) 30,135 23,955 0 35,247 22,763 0 1,279 7,431
(40, 40) 186,913 282,760 0 299,829 247,140 0 9,838 67,798
(45, 90) 6,291,957 12,638,251 8 | 5,280,594 7,690,899 2 | 104729 1,115515

Barry O’Sul

ions in Problem Solvi

The Feature Subscription Problem

Formalisation

Relaxation of Feature Subscriptions
Case-Study: Configuring Telecoms Feature Subscriptions Implementation of Different Approaches

Experiences

Review of the Case-Study

@ We presented, and evaluated, three optimisation-based
approaches to finding optimal reconfigurations of
call-control features when the user’s preferences violate
the technical constraints.

@ Our results also suggest that the cp approach, when
applied with stronger consistency, is able to scale well
compared to the other approaches.

@ Finding an optimal reconfiguration of a subscription of
reasonable size is feasible using CP.

@ It's good, in fact crucial, to focus on real-world applications!

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

Outline

Q Introduction
@ Explanations and Satisfaction
© Explanations and Optimisation

Q Case-Study: Configuring Telecoms Feature Subscriptions

e Wrap-up

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

Q Introduction
@ Explanations and Satisfaction
© Explanations and Optimisation

Q Case-Study: Configuring Telecoms Feature Subscriptions

e Wrap-up

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

Where can you get the slides?

Tutorial web-site
http://www.cs.ucc.ie/~osullb/ijcai-tutorial-2009/ J

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

http://www.cs.ucc.ie/~osullb/ijcai-tutorial-2009/

Wrap-up

[§ Jérome Amilhastre, Héléne Fargier, and Pierre Marquis.

Consistency restoration and explanations in dynamic csps
application to configuration.
Artif. Intell., 135(1-2):199-234, 2002.

James Bailey and Peter J. Stuckey.

Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization.

In Manuel V. Hermenegildo and Daniel Cabeza, editors,
PADL, volume 3350 of Lecture Notes in Computer Science,
pages 174—186. Springer, 2005.

[§ Alex Ferguson and Barry O’Sullivan.

Quantified constraint satisfaction problems: From
relaxations to explanations.
In Manuela M. Veloso, editor, IJCAI, pages 74-79, 2007.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

[3 Peter Funk and Pedro A. Gonzalez-Calero, editors.
Advances in Case-Based Reasoning, 7th European
Conference, ECCBR 2004, Madrid, Spain, August 30 -
September 2, 2004, Proceedings, volume 3155 of Lecture
Notes in Computer Science. Springer, 2004.

[Ulrich Junker.
Quickxplain: Preferred explanations and relaxations for
over-constrained problems.
In AAAI, pages 167-172, 2004.

[§ Ulrich Junker.
Preference-based problem solving for constraint
programming.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

In Francois Fages, Francesca Rossi, and Sylvain Soliman,
editors, CSCLP, volume 5129 of Lecture Notes in
Computer Science, pages 109—126. Springer, 2007.

Ulrich Junker and Daniel Mailharro.

Preference programming: Advanced problem solving for
configuration.

Al EDAM, 17(1):13-29, 2003.

David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis
Quesada, and Nic Wilson.

Personalisation of telecommunications services as
combinatorial optimisation.

In Dieter Fox and Carla P. Gomes, editors, AAAI, pages
1693—-1698. AAAI Press, 2008.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

[§ David Lesaint, Deepak Mehta, Barry O’Sullivan, Luis
Quesada, and Nic Wilson.
Solving a telecommunications feature subscription
configuration problem.
In Stuckey [14], pages 67-81.

[§ Barry O'Sullivan, Alexandre Papadopoulos, Boi Faltings,
and Pearl Pu.
Representative explanations for over-constrained problems.

In AAAI, pages 323-328. AAAI Press, 2007.

1 Alexandre Papadopoulos and Barry O’Sullivan.
Relaxations for compiled over-constrained problems.
In Stuckey [14], pages 433—447.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

[§ Carsten Sinz, Albert Haag, Nina Narodytska, Toby Walsh,
Esther Gelle, Mihaela Sabin, Ulrich Junker, Barry
O’Sullivan, Rick Rabiser, Deepak Dhungana, Paul
Grlnbacher, Klaus Lehner, Christian Federspiel, and
Daniel Naus.

Configuration.
IEEE Intelligent Systems, 22(1):78-90, 2007.

[§ Frode Sormo, Jérg Cassens, and Agnar Aamodt.
Explanation in case-based reasoning-perspectives and
goals.

Artif. Intell. Rev., 24(2):109-143, 2005.

[@ Peter J. Stuckey, editor.
Principles and Practice of Constraint Programming, 14th
International Conference, CP 2008, Sydney, Australia,

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

September 14-18, 2008. Proceedings, volume 5202 of
Lecture Notes in Computer Science. Springer, 2008.

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

Wrap-up

Computing Explanations in Problem Solving

A Review of Formal Approaches

Barry O’Sullivan' Ulrich Junker?

ICork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland
b.osullivan@cs.ucc.ie

’ILOG, An IBM Company
Sophie Antipolis, France
uli.junker@free.fr

[JCAI 2009 Tutorial Programme

Barry O’Sullivan, Ulrich Junker Computing Explanations in Problem Solving

	Introduction
	What is the tutorial about?
	What are Explanations?
	Formalising an Example
	Product Configuration
	Knowledge Representation and Reasoning

	Explanations and Satisfaction
	Standard Concepts
	Finding Preferred Explanations
	Finding All Explanations
	Representative Explanations
	Explanations and Solubility

	Explanations and Optimisation
	Decision Making with Preferences
	Explaining Rational Decisions
	Explaining Optimal Solutions
	Explaining Lexicographic Optimality
	Explaining Pareto-Optimality

	Case-Study: Configuring Telecoms Feature Subscriptions
	The Feature Subscription Problem
	Formalisation
	Relaxation of Feature Subscriptions
	Implementation of Different Approaches
	Experiences

	Wrap-up

