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Abstract. Propositional Satisfiability (SAT) solvers have been the sub-
ject of remarkable improvements in the last few years. Currently, the
most successful SAT solvers share a number of similarities, being based
on backtrack search, applying unit propagation, and incorporating a
number of additional search reduction techniques. Most, if not all, of the
search reduction techniques used by state-of-the-art SAT solvers have
been imported from the Constraint Satisfaction Problem (CSP) domain
and, most significantly, include forms of backjumping and of nogood
recording. This paper proposes to investigate the actual usefulness of
these CSP techniques in SAT solvers, with the objective of evaluating
the actual role played by each individual technique.

1 Introduction

The areas of Constraint Satisfaction Problem (CSP) and Propositional Satisfi-
ability (SAT) have been the subject of intensive research in recent years, with
significant theoretical and practical contributions. In the area of SAT, several
highly optimized solvers have been developed [12, 2, 21, 13, 10]. These state-of-
the-art SAT solvers can now very easily solve very large, very hard real-world
problem instances, which more traditional SAT solvers are totally incapable of.
All of these highly effective SAT solvers are based on improvements made to the
original Davis-Putnam-Logemann-Loveland (DPLL) backtrack search SAT al-
gorithm [5]. Such improvements range from new search strategies, to new search
pruning and reasoning techniques, and to new fast implementations.

Interestingly, the relationship between SAT and CSP has become closer due
to an increasing number of mappings between SAT and CSP that have recently
been proposed [19, 9]. These different encodings, jointly with the current very
efficient SAT solvers, motivate a better understanding of the actual usefulness
of the CSP techniques that have been utilized in successful SAT solvers.

Regarding different algorithmic solutions for SAT, and despite the potential
theoretical and practical interest of all of them, we believe backtrack search to
be the most robust approach for solving hard, structured, real-world instances
of SAT. This belief has been amply supported by extensive experimental ev-
idence obtained in recent years [12, 2, 21, 13, 10]. Moreover, the most effective
algorithms are complete, and so able to prove what local search is not capable
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of, i.e. unsatisfiability. Indeed, this is often the objective in a large number of
significant SAT-related real-world applications.

Most if not all backtrack search SAT algorithms also incorporate propagation
techniques for consistency checking, by applying boolean constraint propaga-
tion [20] (which is conceptually similar to maintaining arc consistency (MAC) [17],
and equivalent for suitable mappings [19, 9]). Another strategy for reducing the
number of searched nodes consists of performing non-chronological jumps in
the search tree, skipping portions of the search space that can be shown not
to contain a solution. In this context, and whenever a consistency check fails,
conflict-directed backjumping (CBJ) [15] enables the search process to safely
jump directly to the cause of the conflict.

In addition, state-of-the-art SAT solvers [12, 2, 21, 13, 10] effectively use learn-
ing techniques. In these solvers, whenever a conflict (dead-end) is reached, a new
clause (nogood) is recorded to prevent the occurrence of the same conflict again
during the subsequent search. Moreover, and from the first SAT solvers that
incorporated non-chronological backtracking [12, 2], learning has always been a
key component of the search algorithm, where recorded nogoods are used to
determine the search point to backtrack to.

Hence, it is certainly relevant to conduct an unbiased evaluation of the iso-
lated usefulness of MAC-CBJ [16] and of learning on a successful SAT solver.
Therefore, the objectives of this paper are two-fold. First, to describe the organi-
zation of a MAC-CBJ SAT algorithm. Second, to evaluate the effect of learning
in this algorithm. For this purpose, we developed a general framework that im-
plements a MAC-CBJ SAT algorithm with and without nogood recording. More-
over, we evaluate the performance on a representative set of instances, obtained
from different real-world problems. This allows us to confirm and extend the
preliminary experimental results presented in [1].

The remainder of the paper is organized as follows. Next, we introduce defini-
tions used throughout the other sections. Afterwards, we briefly describe chrono-
logical backtrack algorithms for SAT. In Section 4 we overview non-chronological
backtracking SAT algorithms, and further relate them with MAC-CBJ. Experi-
mental results are given in Section 5, and finally Section 6 concludes the paper.

2 Definitions

This section introduces the notational framework used throughout the paper,
for both CSP and SAT.

2.1 CSP

A CSP consists of a set of variables V and a set of constraints C. Each variable
v ∈ V has a domain of values Mv of size mv. Each a-ary constraint c ∈ C restricts
a tuple of variables 〈v1, ..., va〉 to an allowed combination of simultaneous values
for the variables in the tuple. In a binary CSP, each constraint is a relation
between two variables. Any binary CSP can be associated with a constraint
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graph, where the nodes represent variables and each edge links a pair of nodes if
and only if there is a constraint on the corresponding variables. A CSP consists
of deciding whether there exists an assignment to the variables such that all the
constraints are satisfied, i.e. no c ∈ C is violated.

Arc-consistency checking [11] is commonly used to solve CSP. A state is arc-
consistent if every variable has a value in its domain that is consistent with each
of the constraints on that variable. Arc consistency can be achieved by succes-
sive deletion of values that are inconsistent with some constraint. As values are
deleted, other values may become inconsistent because they relied on the deleted
values. Arc consistency therefore exhibits a form of constraint propagation, as
choices are gradually narrowed down. Furthermore, maintaining arc consistency

(MAC) [17] extends arc consistency by fully maintaining arc consistency during
backtrack search.

2.2 SAT

In a SAT problem, propositional variables are denoted x1, . . . , xn, and can be
assigned truth values 0 (or F ) or 1 (or T ). The truth value assigned to a variable x

is denoted by ν(x). (When clear from context we use x = νx, where νx ∈ {0, 1}).
A literal l is either a variable xi or its negation ¬xi. A clause ω is a disjunction
of literals and a CNF formula ϕ is a conjunction of clauses. A clause is said to
be satisfied if at least one of its literals assumes value 1, unsatisfied if all of its
literals assume value 0, unit if all but one literal assume value 0, and unresolved

otherwise. Literals with no assigned truth value are said to be free literals. A
formula is said to be satisfied if all its clauses are satisfied, and is unsatisfied if
at least one clause is unsatisfied. A truth assignment A for a formula is a set
of assigned variables and their corresponding truth values. The SAT problem
consists of deciding whether there exists a truth assignment to the variables
such that the formula becomes satisfied.

It will often be simpler to refer to a clause as a set of literals, and to the CNF
formula as a set of clauses. Hence, the notation l ∈ ω indicates that a literal l is
one of the literals of clause ω, whereas the notation ω ∈ ϕ indicates that clause
ω is one of the clauses of CNF formula ϕ.

3 Chronological Backtrack SAT Algorithms

Over the years a large number of algorithms have been proposed for SAT,
from the original Davis-Putnam procedure [6], to recent backtrack search al-
gorithms [12, 2, 21, 13, 10], among many others.

The vast majority of chronological backtrack (CB) search SAT algorithms
build upon the original backtrack search algorithm of Davis, Logemann and
Loveland [5]. The backtrack search algorithm is implemented by a search process

that implicitly enumerates the space of 2n possible binary assignments to the n

problem variables. Each different truth assignment defines a search path within
the search space. A decision level is associated with each variable selection and



4 Inês Lynce and João Marques-Silva

assignment. The first variable selection corresponds to decision level 1, and the
decision level is incremented by 1 for each new decision assignment 1. When
relevant to the context, we use an assignment notation to indicate the decision
level at which the variable assignment occurred. Thus, x = νx@d reads as ”x
is assigned νx at decision level d.” In addition, and for each decision level, the
unit clause rule [6] is applied. If a clause is unit, then the sole free literal must
be assigned value 1 for the formula to be satisfied. In this case, the value of
the literal and of the associated variable are said to be implied. The iterated
application of the unit clause rule is often referred to as Boolean Constraint
Propagation (BCP) [20]. Observe that BCP is conceptually similar to MAC,
being equivalent for suitable mappings [19, 9].

In chronological backtracking, the search algorithm keeps track of which de-
cision assignments have been toggled. Given an unsatisfied clause (i.e. a conflict

or a dead end) at decision level d, the algorithm checks whether at the current
decision level the corresponding decision variable x has already been toggled.
If not, the algorithm erases the variable assignments which are implied by the
assignment on x, including the assignment on x, assigns the opposite value to
x, and marks decision variable x as toggled. In contrast, if the value of x has
already been toggled, the search backtracks to decision level d − 1.

4 Non-Chronological Backtrack SAT Algorithms

Recent state-of-the-art SAT solvers [2, 12, 21, 13, 10] utilize different forms of
non-chronological backtracking (NCB). Non-chronological backtracking backs up
the search tree to one of the identified causes of failure, skipping over irrelevant
variable assignments.

For example, let us consider Figure 1, that illustrates non-chronological back-
tracking for a given CNF formula. Once both x1 and x2 are assigned value 0,
there are no possible assignments for the remaining variables x3 and x4 to sat-
isfy the formula. In this example, chronological backtracking wastes a potentially
significant amount of time exploring a useless region of the search space, only
to discover, after potentially much effort, that the region does not contain any
satisfying assignments.

The forms of non-chronological backtracking used in state-of-the-art SAT
solvers can be related with dependency-directed backtracking [18], since they are
always associated with learning from conflicts. The incorporation of learning
consists of the following: for each identified conflict, its causes are identified,
and a new clause (called nogood) is created to explain and prevent the identified
conflicting conditions.

In the next section we address conflict-directed backjumping (CBJ) [15], an-
other form of non-chronological backtracking that does not incorporate learning.
Since our main goal is to evaluate the effect of learning in MAC-CBJ SAT algo-
rithms, a brief description of CBJ is essential.

1 Observe that all the assignments made before the first decision assignment corre-
spond to decision level 0.
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Fig. 1. Non-Chronological Backtracking

4.1 Conflict-Directed Backjumping

Conflict-directed backjumping (CBJ) [15] is the most accurate form of backjump-
ing, and can be considered a combination of Gaschnig’s backjumping (BJ) [8]
and Dechter’s graph-based backjumping (GBJ) [7]. BJ aims performing higher
jumps in the search tree, rather than backtracking to the most recent yet un-
toggled decision variable. Gaschnig’s algorithm uses a marking technique that
maintains, for each variable vj , a pointer to a variable vi with the highest level
with which any value of vj was found to be inconsistent. After a backjump from
vj , and when the domain of variable vi is wiped out, the search simply backtracks
chronologically to vi−1. As an improvement, Dechter’s GBJ extracts knowledge
about dependencies from the constraint graph. CBJ builds upon this idea and,
based on dependencies from the constraints, records the set of past variables
that failed consistency checks with each variable v. This set is called conflict set

in [7].
BJ and CBJ behaviors are illustrated with Figure 2. Let us consider a CSP

with variables A, B, C, D, E and F. Suppose that we instantiate these variables
in alphabetically order, and also check backwards to ensure consistency. Assume
that a value tried for D conflicts with A, and a value for F conflicts with D. In
Gaschnig’s BJ the search will jump back from F to D and then to C, whereas in
CBJ will jump from E to C and then from C to A.

4.2 Learning and Conflict-Directed Backjumping

Learning can be combined with CBJ. When each identified conflict is analyzed,
its causes identified, and a nogood is recorded to explain and prevent the iden-
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Fig. 2. Backjumping and Conflict-directed backjumping

tified conflicting conditions from occurring again during the subsequent search.
Moreover, the newly recorded nogood is then used to compute the backtrack
point as the most recent decision assignment from all the decision assignments
represented in the recorded nogood.

For implementing learning techniques common to some of the most compet-
itive backtrack search SAT algorithms, it is necessary to properly explain the
truth assignments to the propositional variables that are implied by the clauses
of the CNF formula. For example, let x = vx be a truth assignment implied by
applying the unit clause rule to a unit clause clause ω. Then the explanation for
this assignment is the set of assignments associated with the remaining literals of
ω, which are assigned value 0. For example, let ω = (x1∨¬x2∨x3) be a clause of a
CNF formula ϕ, and assume the truth assignments {x1 = 0, x3 = 0}. For clause ω

to be satisfied we must necessarily have x2 = 0. Hence, we say that the antecedent

assignment of x2, denoted as A(x2), is defined as A(x2) = {x1 = 0, x3 = 0}.
In addition, in order to explain other NCB-related concepts, we shall often

analyze the sequences of implied assignments generated by BCP. These sequences
are captured by a directed acyclic implication graph I defined as follows:

1. Each vertex in I corresponds to a variable assignment x = ν(x).
2. The predecessors of vertex x = ν(x) in I are the antecedent assignments

A(x) corresponding to the unit clause ω that led to the implication of x.
The directed edges from the vertices in A(x) to vertex x = ν(x) are all
labeled with ω. Vertices that have no predecessors correspond to decision
assignments.

3. Special conflict vertices are added to I to indicate the occurrence of conflicts.
The predecessors of a conflict vertex κ correspond to variable assignments
that force a clause ω to become unsatisfied and are viewed as the antecedent
assignment A(κ). The directed edges from the vertices in A(κ) to κ are all
labeled with ω.

We illustrate nogood recording with the example of Figure 3. A subset of
the CNF formula is shown, and we assume that the current decision level is
6, corresponding to the decision assignment x1 = 1. This assignment yields a
conflict κ involving clause ω6. By inspection of the implication graph, we can
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Fig. 3. Example of conflict diagnosis with nogood recording

readily conclude that a sufficient condition for this conflict to be identified is,

(x10 = 0) ∧ (x11 = 0) ∧ (x9 = 0) ∧ (x1 = 1) (1)

By creating clause ω10 = (x10 ∨ x11 ∨ x9 ∨ ¬x1) we prevent the same set of
assignments from occurring again during the subsequent search.

In order to illustrate non-chronological backtracking based on nogood record-
ing, let us now consider the example of Figure 4, which continues the example in
Figure 3, after recording clause ω10 = (x10 ∨ x11 ∨ x9 ∨¬x1). At this stage BCP
implies the assignment x1 = 0 because clause ω10 becomes unit at decision level
6. By inspection of the CNF formula (see Figure 3), we can conclude that clauses
ω7 and ω8 imply the assignments shown, and so we obtain a conflict κ′ involving
clause ω9. By creating clause ω11 = (¬x13∨¬x12∨x11∨x10∨x9) we prevent the
same conflicting conditions from occurring again. It is straightforward to con-
clude that even though the current decision level is 6, all assignments directly
involved in the conflict are associated with variables assigned at decision levels
less than 6, the highest of which being 3. Hence we can backtrack immediately
to decision level 3.

4.3 Nogoods Deletion Policy

Unrestricted nogood recording can in some cases be impractical. Recorded no-
goods consume memory and repeated recording of nogoods can eventually lead
to the exhaustion of the available memory. Observe that the number of recorded
nogoods grows with the number of conflicts; in the worst case, such growth can
be exponential in the number of variables. Furthermore, large recorded nogoods
are known for not being particularly useful for search pruning purposes [12].

As a result, there are three main solutions for guaranteeing the worst case
growth of the recorded nogoods to be polynomial in the number of variables:
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Fig. 4. Computing the backtrack decision level

1. We may consider n-order learning, that records only nogoods with n or fewer
literals [7].

2. Nogoods can be temporarily recorded while they either imply variable as-
signments or are unit clauses, being discarded as soon as the number of
unassigned literals is greater than an integer m [2]. This technique is named
m-size relevance-based learning.

3. Nogoods with a size less than a threshold k are kept during the subsequent
search, whereas larger nogoods are discarded as soon as the number of unas-
signed literals is greater than one [12]. We refer to this technique as k-bounded

learning.

Observe that we can use k-bounded learning together with m-size relevance-
based learning. The search algorithm is organized so that all recorded clauses
of size no greater than k are kept and larger clauses are deleted only after m

literals have become unassigned.

5 Experimental Results

In this section we present the obtained experimental results. We start by describ-
ing the experimental setup that has been used to obtain the different results.
Then we analyze the results for the MAC-CB SAT algorithm, the MAC-CBJ
SAT algorithm and the MAC-CBJ SAT algorithm with nogood recording 2.

5.1 Experimental Setup

In order to experimentally evaluate the different algorithms, in a controlled ex-
periment that ensures that only specific differences are evaluated, a dedicated
SAT solving framework is needed. Consequently, we developed the JQUEST
SAT framework, a Java implementation that can be used to conduct unbiased
experimental evaluations of SAT algorithms and techniques.

2 Observe that in this context MAC corresponds to BCP.
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In order to perform this comparison using the JQUEST SAT solver, instances
were selected from several classes of instances (see Table 1)3. In all cases, the
problem instances chosen can be solved with several thousands of decisions by
the most effective solvers, usually taking a few tens of seconds, thus being sig-
nificantly hard 4. For this reason, different algorithms can result in significant
variations on the time required for solving a given instance. In addition, we
should also observe that the problem instances selected are intended to be rep-

resentative, since each resembles, in terms of hardness for SAT solvers, the typical
instance in each class of problem instances.

Table 1. Example Instances

Application Domain Selected Instance # Variables #Clauses Satisfiable?

Circuit Testing
(Dimacs)

bf0432-079 1044 3685 N
ssa2670-141 4843 2315 N

Inductive
Inference(Dimacs)

ii16b2 1076 16121 Y
ii16e1 1245 14766 Y

Parity
Learning(Dimacs)

par16-1-c 317 1264 Y
par16-4 1015 3324 Y

Graph Colouring
flat200-39 600 2237 Y
sw100-49 500 3100 Y

Quasigroup
qg3-08 512 10469 Y
qg5-09 729 28540 N

Blocks World
2bitadd 12 708 1702 Y
4blocksb 410 24758 Y

Planning-Sat
logistics.a 828 6718 Y
bw large.c 3016 50457 Y

Planning-Unsat
logistics.c 1027 9507 N
bw large.b 920 11491 N

Bounded Model
Checking

barrel5 1407 5383 N
queueinvar16 1168 6496 N
longmult6 2848 8853 N

Superscalar
Processor
Verification

dlx2 aa 490 2804 N
dlx2 cc a bug17 4847 39184 Y
2dlx cc mc ex bp f2 bug006 4824 48215 Y
2dlx cc mc ex bp f2 bug010 5754 60689 Y

Data Encryption
Standard

cnf-r3-b2-k1.1 152608 17857 Y
cnf-r3-b4-k1.2 939040 35963 Y

3 All the instances are available from http://www.lri.fr/∼simon/satex/satex.php3

(Sat-Ex web site), with the exception of the superscalar processor verification in-
stances.

4 The Data Encryption Standard instances have significantly more variables and
clauses then the other instances, even though some of them are known to be trivially
removed.
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For the results shown a P-IV@1.7 GHz Linux machine with 1 GByte of
physical memory was used. The Java Virtual Machine used was SUN’s HotSpot
JVM for JDK1.4. The CPU time was limited to 1500 seconds.

Table 2. CPU Time (in seconds)

Instance MAC MAC MAC-CBJ+ng

CB CBJ +ng0 +ng5 +ng10 +ng20 +ng50 +ng100 +ngAll

bf0432-079 —– 41.74 5.18 2.78 2.97 2.70 1.53 1.44 1.45

ssa2670-141 —– —– 1.21 0.87 0.81 0.52 0.55 0.54 0.56

ii16b2 —– —– —– —– 857.61 302.63 158.63 141.41 141.05

ii16e1 —– —– 20.58 26.75 20.40 12.65 12.89 15.96 11.86

par16-1-c 65.92 77.06 19.91 14.75 16.07 16.78 18.19 18.08 18.13

par16-4 14.88 20.59 11.51 8.49 8.77 9.34 7.16 7.20 7.14

flat200-39 8.44 8.75 97.35 255.04 85.19 114.05 67.55 67.00 67.19

sw100-49 —– —– 1.94 13.48 1.26 2.18 0.73 0.74 0.71

qg3-08 2.29 2.65 0.86 0.88 0.91 1.00 1.07 1.30 1.32

qg5-09 13.28 8.61 1.35 1.29 1.06 1.17 1.16 1.21 1.15

2bitadd 12 —– —– —– —– —– —– 87.68 50.74 50.93

4blocksb —– —– 31.23 30.25 39.62 29.66 16.34 20.33 31.75

logistics.a —– —– 2.98 1.87 1.62 1.65 1.61 1.63 1.68

bw large.c —– —– 76.03 55.13 36.41 38.37 43.71 38.03 38.06

logistics.c —– —– 26.88 7.24 4.60 15.40 10.22 10.23 10.25

bw large.b 8.27 4.78 1.60 0.59 0.61 0.64 0.61 0.62 0.62

barrel5 99.49 132.37 171.94 279.31 36.35 19.80 23.43 24.00 21.99

queueinvar16 —– —– 23.36 21.39 15.74 15.48 8.05 8.08 8.12

longmult6 —– —– 27.66 23.63 26.20 29.16 32.32 31.74 32.02

dlx2 aa —– —– 54.74 36.21 37.96 9.80 6.43 6.62 6.60

dlx2 cc a bug17 —– —– 430.31 —– —– 500.25 220.06 6.48 6.54

2dlx ... bug006 —– —– 17.29 14.32 3.87 2.27 2.27 2.23 2.22

2dlx ... bug010 —– —– 3.32 4.13 3.83 5.31 4.55 2.03 1.93

cnf-r3-b2-k1.1 802.90 19.37 3.05 3.13 2.39 2.58 2.40 2.16 3.90

cnf-r3-b4-k1.2 405.98 12.62 5.42 5.39 5.48 5.12 4.89 4.45 3.91

5.2 MAC-CBJ and Nogood Recording

The first table of results (Table 2) shows the CPU time required to solve each
problem instance 5. For the algorithms considered: MAC-CB denotes the chrono-
logical backtracking search SAT algorithm that maintains arc consistency, MAC-

CBJ denotes the MAC-CBJ SAT algorithm and MAC-CBJ+ng denotes the

5 Instances that were not solved in the allowed CPU time are marked with —–.
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MAC-CBJ SAT algorithm with nogood recording. Moreover, a variety of nogood
deletion policies were considered, depending on the value of k, where k defines
the k-bounded learning procedure used (see Section 4.3). For instance, +ng10
means that recorded nogoods with size greater than 10 are deleted as soon as
they become unresolved, whereas +ngAll means that all the recorded nogoods
are kept.

Table 2 reveals interesting trends, and several conclusions can be drawn:

– Clearly, MAC-CB and MAC-CBJ have in general similar behavior (except
for bf0432-079 and data encryption standard instances, that only MAC-CBJ
is able to solve).

– The MAC-CBJ+ng algorithms are in general significantly more efficient than
the other algorithms. Indeed, for almost all the instances MAC-CBJ+ng
achieves remarkable improvements, when compared with MAC-CB or with
MAC-CBJ. Instances flat200-39 and barrel5 are the only exceptions. (For
instance barrel5, this is only true for MAC-CBJ+ng with small values of k.)

– Some of the instances that are not solved by MAC-CBJ in the allowed CPU
time (e.g ii16b2 and dlx2 cc a bug17), also need a significant amount of time
to be solved by k-bounded learning with a small value of k.

– For instance flat200-39, recorded nogoods result in an additional search effort
to find a solution.

– From a practical perspective, unrestricted nogood recording is not necessarily
a bad approach.

It is interesting to observe that the uselessness of CBJ-related algorithms
w.r.t. CB-related algorithms has been experienced in the past [14] [3]. CBJ,
when applied jointly with a domain filtering procedure (e.g. MAC) and an accu-
rate variable ordering heuristic, has been considered an expensive approach that
almost always slows down the search, even if it saves a few constraint checks 6.

Table 3 gives the results for the number of searched nodes, for each instance
and for the different configurations. It is plain from the results that MAC-CB
and MAC-CBJ in general need to search more nodes to find a solution. This
can be explained by the effect of the recorded nogoods. Besides explaining an
identified conflict, nogoods are often re-used, either for yielding conflicts or for
implying variable assignments, introducing significant pruning in the search tree.
Moreover, other conclusions can be established from the results on the searched
nodes:

– For the par instances, there are none or just a few backjumps during the
search. This fact explains why MAC-CB and MAC-CBJ have the same or
an approximate number of search nodes for these instances.

– Only small-size nogoods are recorded for instances logistics.a, bw large.b and
qg5-09. This is the reason why the search has the same number of nodes for
increasing values of k.

6 Even though different conclusions have been obtained for instances of specific
classes [4].
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– Usually more recorded nogoods indicate less searched nodes and less time
needed to find a solution (even though the reduction in the number of nodes
is more significant than the reduction in the amount of time, due to the
overhead introduced by the management of nogoods).

Table 3. Searched nodes

Instance MAC MAC MAC-CBJ+ng

CB CBJ +ng0 +ng5 +ng10 +ng20 +ng50 +ng100 +ngAll

bf0432-079 —– 98824 3939 1950 2010 1600 1168 1188 1188

ssa2670-141 —– —– 2882 1988 1480 806 736 698 698

ii16b2 —– —– —– —– 101451 32923 12188 10573 10573

ii16e1 —– —– 20872 24714 17271 13869 8117 8442 7869

par16-1-c 52800 52800 11307 7249 7524 5255 5364 5364 5364

par16-4 10673 10246 4157 2676 2745 2467 1919 1919 1919

flat200-39 6286 5427 139264 287983 51308 40888 26428 25738 25738

sw100-49 —– —– 4596 44247 2370 3748 1450 1450 1450

qg3-08 617 703 220 220 242 214 222 282 282

qg5-09 1578 1547 373 329 318 337 337 337 337

2bitadd 12 —– —– —– —– —– —– 21244 11238 11238

4blocksb —– —– 5559 5007 6205 5009 2618 2491 3363

logistics.a —– —– 32872 16999 14899 15185 15185 15185 15185

bw large.c —– —– 6137 5132 2763 2878 3000 2783 2783

logistics.c —– —– 55721 18839 14520 16444 15441 15441 15441

bw large.b 1431 1112 293 128 195 195 195 195 195

barrel5 24727 24664 90115 141953 14684 8731 10396 12315 5985

queueinvar16 —– —– 45053 41510 24842 19557 8460 8506 8083

longmult6 —– —– 7407 5482 5666 5507 5019 4729 4725

dlx2 aa —– —– 319120 204995 208725 21036 10062 10035 10035

dlx2 cc a bug17 —– —– 446626 —– —– 212816 85713 3383 3383

2dlx ... bug006 —– —– 32297 25259 7775 3288 3227 3123 3123

2dlx ... bug010 —– —– 10086 19002 14358 13229 8533 3547 3522

cnf-r3-b2-k1.1 219037 6273 1168 1138 872 942 825 667 1221

cnf-r3-b4-k1.2 57843 2216 1011 1012 1010 943 910 776 729

Overall, the effect of nogood recording is clear, and in general dramatic.
The results clearly indicate that nogood recording is an essential component of
current state-of-the-art SAT solvers. Nevertheless, the actual best value for k is
not clear, and subject of additional research.

Finally, we present another table of results (Table 4), but only for the MAC-
CB and MAC-CBJ algorithms. The only difference regarding the previous results
is the variable ordering heuristic used. For the first results (Tables 2 and 3), we
have applied the variable selection heuristic VSIDS (Variable State Independent
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Decaying Sum) [13]. It selects the literal that appears most frequently over all
clauses, which means that the metrics only have to be updated when a new
recorded clause is created.

Table 4. Time and nodes for DLIS

Instance Time Nodes
MAC-CB MAC-CBJ MAC-CB MAC-CBJ

bf0432-079 —– 437.12 —– 275336

ssa2670-141 —– 363.53 —– 244848

ii16b2 1220.50 630.05 53667 37141

ii16e1 —– 30.32 —– 3277

par16-1-c 41.15 39.56 8212 7906

par16-4 130.45 132.49 13786 13556

flat200-39 45.26 8.91 9437 2756

sw100-49 —– —– —– —–

qg3-08 323.92 184.29 35120 30943

qg5-09 —– —– —– —–

2bitadd 12 —– 49.79 —– 51900

4blocksb —– —– —– —–

logistics.a —– —– —– —–

bw large.c —– —– —– —–

logistics.c —– —– —– —–

bw large.b 49.31 17.46 1794 986

barrel5 379.46 411.72 25624 25731

queueinvar16 —– —– —– —–

longmult6 —– —– —– —–

dlx2 aa —– —– —– —–

dlx2 cc a bug17 —– —– —– —–

2dlx ... bug006 —– —– —– —–

2dlx ... bug010 0.63 0.61 718 711

cnf-r3-b2-k1.1 —– —– —– —–

cnf-r3-b4-k1.2 —– —– —– —–

Given that MAC-CB and MAC-CBJ do not record nogoods, for these al-
gorithms VSIDS corresponds to SLIS (Static Largest Individual Sum). SLIS is
a heuristic that selects the literal that appears most frequently in the original
clauses; in this case, the metrics are not dynamically changed during the search.

For the last table of results we used the DLIS (Dynamic Largest Individual
Sum of literals) heuristic. The intuition is that MAC-CB(J) cooperates poorly
with a simple heuristic such as SLIS. On the contrary, VSIDS cooperates ef-
fectively with MAC-CBJ+ng, because learning allows correcting early wrong
variable orderings. For this reason, we decided to experiment DLIS, a more
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elaborated heuristic. The obtained results are significantly better than those ob-
tained with SLIS (namely for MAC-CBJ), but are still far from being competitive
with MAC-CBJ+ng results.

6 Conclusions and Future Directions

In this paper we address the use of MAC-CBJ in SAT algorithms. In addition,
we evaluate the effect of nogood recording in MAC-CBJ SAT algorithms, and
further analyze the effect of different nogood deletion policies. Given the ex-
perimental results, obtained for representative instances from several classes of
problem instances, we conclude that nogood recording is crucial for competi-
tive SAT algorithms. In addition, the results strongly suggest that backjumping
techniques are not enough per se.

Moreover, we believe that CSP algorithms may also improve their perfor-
mance by applying both jumping and learning. Interestingly, backjumping tech-
niques and learning have their roots in Truth Maintenance Systems [18] but
have been extensively in CSP [8, 7, 15]; nevertheless, constraint programming
technology appears not to exploit it.

Future research work will extend the results of this paper by considering alter-
native approaches with the goal of optimizing SAT solvers. It is well-known that
state-of-the-art SAT solvers use nogood recording. On the other hand, MAC-
CBJ does not incorporate learning, but does consider conflict sets. Hence, we
can envision an algorithm that explores the advantages of CBJ to compensate the
disadvantages of nogood recording. This algorithm can apply nogood recording,
but use conflict sets to avoid recording large nogoods that must be eventually
deleted.
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