
Experimental results in constraint relaxation

Walter Hower1 and Stephan Jacobi2

1 CRP – Gabriel Lippmann, 162a avenue de la Fäıencerie, L-1511 Luxembourg
hjm-w.hower@t-online.de

2 Dornenweg 4-6, D-53819 Neunkirchen, Germany
stephan@jacobi-software.de

Abstract. Relaxation is meant as a modification of a constraint network
such that the network permits more solutions; for instance, a formerly
inconsistent network may become consistent. A lot of algorithms in this
area try to localize constraints or even whole priority levels of constraints
that must be removed to allow global consistency. However, the problem
when removing entire (levels of) constraints is the high degree of viola-
tion of the original problem. (It is often the case that constraints do not
permit only a few tuples which are essential to form a globally consistent
solution. Removing entire levels of constraints is much farther away from
the original problem than additionally permitting just the necessary tu-
ples.) This article evaluates a more sophisticated fine-grained approach
(working with tuples) that should be able to detect and solve even com-
plex inconsistencies automatically. Besides, an optional cost function can
be applied to qualify the solutions by their costs in terms of the violation
of the original specification. The current paper focusses on the experi-
mental results obtained so far.

1 Background and Concepts

1.1 Introduction

The constraint satisfaction problem (CSP) comprises a set of n variables with
associated finite domains and a set of allowable value assignments (“constraints”)
to a subset of the variables; then, in order to get the globally consistent solution,
we need to compute the set of all n-tuples consistent with the given constraints
([6]).

The current work focusses on constraint relaxation — how to enable a CSP
to permit more solutions. The most prominent application of this feature is the
conflict resolution of inconsistent constraint networks ([5]). If we cannot establish
consistency the algorithm is able to detect the source of the inconsistency and to
provide a conflict-resolution set of possible relaxations. A potential cost function
may include the cardinality of this “candidate set” of relaxation candidates as a
parameter to calculate the cost of a specific relaxation. (The cost function may
allow to measure the degree of violation of the original problem.)

We like to report on the experimental results obtained — confirming the
corresponding algorithms published in [7]3 (and [8]).
3 the reason why we have to omit some parts of the formal framework here

The article is structured as follows: In the rest of this section we first make
some remarks on global consistency; then, a motivating example follows which
illustrates the interesting inconsistency aspect which we treat here. The subse-
quent section describes the system, followed by experimental results. Related
work and final remarks conclude the present paper.

1.2 Global Consistency

The time complexity of the algorithms presented in [6] and [7] is linear in the
size of the set of (original) constraints.4 (It does not artificially ”synthesize”
redundant constraints.) This set is of course exponentially bounded by O(2n),
where n is the problem size. Anyway, when we have a polynomial dependence
between the problem size and the number of restrictive constraints, the algorithm
will behave polynomially, in this regard — without currently considering the size
of the domains. (The arc-consistency algorithm by D. Waltz worked in linear
time and not quadratically because in its computer vision area the constraint
graph of binary relations was not a complete one. It was a planar graph where
the number of restrictive constraints only linearly depends on the number of the
variables.)

The linear dependence of the complexity on the number of restrictive con-
straints enables the algorithm to handle just those computation steps which are
really needed; therefore, it is very amenable to sparse networks.

1.3 Inconsistency

The computation of the globally consistent solution, as sketched before, may
yield an inconsistency which can be recognized as the generation of an empty
set during one of the two phases of the algorithm. (During the descending phase,
some kind of pre-filtering is done — in the sense of local (in-)consistency; the
ascending phase generates the global (in-)consistency.)5 Usually, inconsistencies
occur during the ascending phase, since pre-filtering is much less restrictive (and
does not ensure satisfiability). So, we will only consider the ascending phase here.

To motivate briefly the main ideas of our framework already presented in
[7], we illustrate the main features of the algorithm by the following example.
It models a typical project management problem, namely resource allocation.
In this example we have 8 activities to manage; the dependency graph of these
activities is illustrated in Figure 1. Each of the activities takes a specific period
of time to be completed and starts at a discrete point of time.

The time periods of each activity are given in Table 1 as values of a duration
function.
4 O(|Corig|), because it just visits the |Corig| constraints at most only twice
5 The levels are indicated by the cardinalities of the index sets (referring to the arities)

of the constraints. We start at the level of those constraints with the highest arity
and descend in a certain manner reaching the domains (1-ary constraints) in the
end; afterwards, we ascend analogously.

Activity 1

Activity 2

Activity 4

Activity 3

Activity 5

Activity 6

Activity 7

Activity 8

Fig. 1. dependency graph of activities

dur(A1) = 3, dur(A2) = 2, dur(A3) = 5, dur(A4) = 4,

dur(A5) = 1, dur(A6) = 2, dur(A7) = 4, dur(A8) = 3

Table 1. duration of example activities

In this example we have chosen to model the activities as variables A1, . . . , A8

in the constraint network. The domain of each variable is then a set of discrete
starting points for the activity in question. For simplicity we define the domains
uniformly to be a set of 24 time points {t1, t2, . . . , t24}, where ti < tj for all
i < j.

The constraint definition is derived from the dependency graph as follows. For
each activity in the graph take the node itself and every activity where the node
has an incoming edge arriving at this specific activity. This construction leads
to the constraint set shown in Table 2. The associated graphical representation
is illustrated by Figure 2.

CA4,A5 = A5 ≥ A4 + dur(A4)
CA1,A3,A4 = A4 ≥ A1 + dur(A1) ∧A4 ≥ A3 + dur(A3)
CA1,A2,A4 = A2 ≥ A1 + dur(A1) ∧A2 ≥ A4 + dur(A4)
CA2,A3,A7 = A3 ≥ A2 + dur(A2) ∧A3 ≥ A7 + dur(A7)
CA3,A5,A6 = A6 ≥ A3 + dur(A3) ∧A6 ≥ A5 + dur(A5)
CA5,A6,A7 = A7 ≥ A5 + dur(A5) ∧A7 ≥ A6 + dur(A6)
CA5,A6,A7,A8 = A8 ≥ A5 + dur(A5) ∧A8 ≥ A6 + dur(A6)∧

A8 ≥ A7 + dur(A7)

Table 2. constraint definitions

Now assume that the relaxation costs will be given by a set of annotated cost

C1

C4,5

C2 C3 C4 C5 C6 C7 C8

C1,2,4 C1,3,4 C2,3,7 C3,5,6 C5,6,7

C5,6,7,8

C1,2,3,4,5,6,7,8

Fig. 2. associated constraint network of the example

functions as given in Table 3.

cost(CA4,A5) = 21, cost(CA1,A3,A4) = 43, cost(CA1,A2,A4) = 22, cost(CA2,A3,A7) =
37, cost(CA3,A5,A6) = 12, cost(CA5,A6,A7) = 54, cost(CA5,A6,A7,A8) = 122

Table 3. cost functions

To keep the example simple, we use a set of constant cost functions. Never-
theless, real applications may use much more sophisticated functions that take
the context and domain values into consideration for their computation.

The dependency graph exhibits two cycles, namely activities A2, A3, A4 and
A3, A6, A7. These cycles cause the inconsistency of the constraint network.

Now, the solver traverses through the network and produces a number of re-
laxations with their associated costs. The solver will try to find legal assignments
for each variable of each constraint. Whenever it is not possible to find such as-
signments it will generate a so-called “candidate set”, i.e. a set of assignments
the solver may choose as good candidates for a legal assignment. The solving
process can continue with this “candidate set” and finally, when the global so-
lution has been reached, the relaxation costs for these global solutions are being
calculated. Actually, the solver generates 47,025 possible relaxations, but there
are only two classes of relaxations. The first relaxes CA1,A3,A4 and CA2,A3,A7 ,
where the second one additionally relaxes CA4,A5 . One member of each class

is shown in Table 4. The graphical representation of the relaxation results are
illustrated in Figure 3 and Figure 4.

Global solutions: (t1, t8, t10, t4, t10, t15, t17, t21)
Relaxation of CA1,A3,A4 with (t1, t10, t4) has costs of 43
Relaxation of CA2,A3,A7 with (t8, t10, t17) has costs of 37

Total costs of relaxation: 80

Global solution: (t5, t12, t13, t8, t10, t18, t20, t24)
Relaxation of CA4,A5 with (t8, t11) has costs of 21
Relaxation of CA1,A3,A4 with (t5, t13, t8) has costs of 43
Relaxation of CA2,A3,A7 with (t12, t13, t20) has costs of 37

Total costs of relaxation: 101

Table 4. relaxations and costs

Activity 1

Activity 2

Activity 4

Activity 3

Activity 5

Activity 6

Activity 7

Activity 8

t1

t10 t15

t21

t17t10t4

t8

Fig. 3. resulting dependency graph for the first relaxation

The example should just sketch the basic ideas. It does not cover all possible
cases of inconsistencies the algorithm is able to handle. For instance, here the
inconsistency occurs first at the n-ary constraint. It is also possible that the
inconsistency already occurs at lower-ary stages or that inconsistencies occur
several times. Nevertheless, it is a real world example of a typical CSP. Another
(the traffic lights) example can be found in [7].

2 System Design and Implementation

2.1 Equi-Join Optimization

The equi-join is performed for several purposes and especially very often. So,
the performance of this operation has a deep impact on the whole system. The

Activity 1

Activity 2

Activity 4

Activity 3

Activity 5

Activity 6

Activity 7

Activity 8

t5

t13 t18

t24

t20t10t8

t12

Fig. 4. resulting dependency graph for the second relaxation

first versions of the constraint solver used a simple strategy for calculating the
equi-join. It just sorted the constraints by the cardinality of the set of consistent
tuples and started with the two smallest sets. This intermediate set was joined
with the next set of tuples and so on. Finally, the result was intersected with
the set of ”admissible” tuples to get the set of ”consistent” tuples.6

This approach has several disadvantages that became clear during evaluation.
First, the intermediate sets may become much larger than the result set finally
produced due to weak join conditions. Second, too much work was done by
generating the result set in case the admissible tuples are available.

If the tuple sets are taken in the order implied by the defined order of con-
straints due to their indices, this may reflect inefficient join conditions and may
result in an explosion of the intermediate results. E.g., consider the case that an
equi-join is performed among C1,2, C3,4, C4,5,6. Taking the order given, the first
operation would result in the cross product C1,2×C3,4, whereas the equi-join of
C1,2,3,4 ./ C4,5,6 may result in a small subset for C1,2,3,4. In practise it showed
up that this case arises in many situations and reflects a real performance and
space problem.

To eliminate the generation of inefficient and large intermediate sets, a cost-
based join strategy generator was developed that calculates an optimizing join
strategy by ordering the tuple sets according to a cost function that has been
developed by taking the three factors number of join conditions, potential size of
the equi-join, and the size of the resulting index set in comparison to the “target”
index into account. This cost function takes the size of the intersection of the
indices, the size of the sets to join, and the arity of the resulting index (the union

6 The terminology is taken from [7]: The term ”admissible” tuples refers in this context
to the set of admissible assignments to the variables of a given constraint. It is given
by the definition of the CSP. The primary task of the solver is to compute the set
of ”consistent” tuples which (are a subset of the set of ”admissible” tuples and) are
consistent with all constraints connected.

of the two indices) into account.

2.2 Description of Candidate Set Generators

The generators can be classified as failure generators or as refinement generators,
whereas the first class is being used to generate initially a set of tuples, and the
second class is used to refine the set of tuples generated, if possible. So, every
generator has two exits (failure and success). Each generator has a potential
parameter, namely the candidate set to refine. That parameter is obviously only
useful for refinement generators and will be ignored in the other class.

The Dynamic Candidate Set Generator (DCSG) configuration makes it pos-
sible to change the configuration of candidate set generators easily. So, the can-
didate set generators can be used in every possible combination and as often as
needed. This part provides an overview of the candidate set generators used in
our experiments. One of the generators are described in greater detail to give an
impression of the way candidate set generators work.

The candidate set generators used are:

1. Equi-join Of Downlinks
This candidate set generator TEquiJoinOfDownlinks will take all the
downlinks of the inconsistent constraints and performs the equi-join among
them. The assumption behind this generator is that the inconsistency may
arise due to the intersection of the equi-join of the downlinks and the set
of admissible tuples. If this case occurs, this generator will produce a non-
empty candidate set from the downlinks. During the tests, this generator
has always been used as root generator in order to determine the source of
the inconsistency. If the equi-join of the downlinks is not empty, it is obvious
that an inconsistency with the set of admissible tuples exists. This is totally
different to the case where an inconsistency exists among the downlinks.

2. Largest Equi-join of Downlinks
This generator works very similiar to Equi-join of Downlinks. The major
difference is that it omits determines sets of downlinks which capture all
variables and performs the equi-join among them. The largest set of down-
links with an non-empty equi-join is used as candidate set.

3. Project and Intersect Uplinks
The generator TProjectAndIntersectUplinks collects the uplinks of the
given constraint and projects the set of admissible tuples to the index of the
inconsistent constraint. If no restrictive constraint exists or the number of
uplinks is less than two the generator will fail.
Afterwards the generator will search the largest combination of uplinks with
a non-empty intersection of the projected sets of admissible tuples. If such a
set exists it will be passed to the registered refinement generator. (The gen-
erator does not work as a refinement generator; it ignores a given candidate

set if there is one.)

4. Projection And Join Of Uplinks

The generator TProjectAndJoinOfUplinks (cf. Algorithm 5) is a spe-
cialization of TProjectAndIntersectUplinks. The first step is identical
to the former generator, but if there is a non-empty intersection of uplinks
the intermediate candidate set is intersected with the set of admissible tu-
ples.

5. Set Of Admissible Tuples

The generator TAdmissibleTuples is a trivial candidate set generator that
simply returns the set of admissible tuples as a candidate set. This may act
as a last chance strategy for hard cases where other generators would prob-
ably fail.

6. Smallest Candidate Set

TSmallestCandidateSet is a decision generator that can be used for a sim-
ple decision between a given candidate set and the set of admissible tuples,
whatever the smaller set is. This refinement generator may be used when-
ever the candidate set gets much too large and no “intelligent” approach of
cutting down this set is appropriate.

7. Intersection With Admissible Tuples

The refinement generator TIntersectAdmissible can be used to reduce
the size of the result set by intersecting it with the set of admissible tuples.
If this intersection is non-empty the intersection will be passed to the reg-
istered refinement generator, otherwise the original candidate set is passed
to the failure generator. To prevent the candidate set from getting too small
again, the refinement generator intersects only if the candidate set size is at
least the double of the size of the set of admissible tuples.

8. Lower Or Upper Half Of The Network

This strategy generator just looks at the arity of the inconsistent constraint
and calls the failure generator if the constraint is in the lower half and the
refinement generator if the constraint is located in the upper half.7 This may
help to guide the generation process in order to produce optimal results in
terms of relaxation costs. The idea behind is that if an inconsistency occurs

7 The arity of the constraints ranges from 1 . . . n, where the term “lower half” refers
to constraints with an arity in the range 1 . . . bn

2
c, and the term “upper half” refers

to constraints with an arity between bn
2
c+ 1 and n.

at an early stage it may be better to emphasize on upward compatibility,
whereas at later stages the downward compatibility may be appropriate.

9. Union With Admissible Tuples

This refinement generator is used to extend the given candidate set by taking
the union among the set of admissible tuples of the inconsistent constraint.
It can only work as refinement generator, i.e. it must be called with a non-
empty candidate set. If the union does not extend the candidate set the
generator will fail, otherwise it is interpreted as success.

1 function TProjectAndJoinOfUplinks (TConstraint CI , TTupleSet CS)

2 if Cul
I = ∅ then return failure (CI , CS)

3 if CS = ∅ then CS ← Cadm
I

4 C̃S ← ∅
5 ∀X ∈ ℘(Cul

I)

6 CST ← (
⋂

J∈X
πI(C

adm
J)) ∩ CS

7 if |CST | > |C̃S then C̃S ← CST

8 if C̃S 6= ∅ then return success (CI , C̃S)

9 C̃S ← ∅
10 ∀X ∈ ℘(Cul

I)

11 CST ←
⋂

J∈X
πI(C

adm
J)

12 if |CST | > |C̃S then C̃S ← CST

13 if C̃S 6= ∅ then return success (CI , C̃S) else return failure (CI ,CS)

Algorithm5. candidate set generator TProjectAndJoinOfUplinks

3 Experimental Results

The relaxation algorithm and moreover the quality of solutions depend on several
parameters. For our experimental results we have chosen some parameters which
have a significant impact on the behavior of the algorithm. The results have been
gained during over 6000 runs of the solver.

The tests were performed using a test-case generator. A short description
of the parameters of the test-case generator are given before the results are
discussed.

1. Problem size n
The problem size is surely the most important factor of a CSP, since the
number of possible constraints exponentially grows as a function of n. So,
the problem size is a scaling factor for the whole problem.

2. Domain size d
The domain size d also is a fundamental parameter for the basic problem. It
determines the number of legal assignments to the variables. This is a slight
simplification here, since each variable can be assigned a different domain.
Nevertheless, the possibility to do so is in no way meaningful for test-case
generation. But it is clear that increasing the domain size exponentially in-
creases the size of the cross product (of the tuples) and thereby increases
the search space for the solver.

3. Restrictive Constraints
The number of possible constraints in CSPs may be overwhelming. Consider
the case when you have a problem size of 10. The CSP will permit the defi-
nition of 1,023 (= 210− 20) constraints. In practical applications usually the
opposite occurs; you have many variables, but only very few constraints that
are restrictive, i.e. you have a sparse constraint satisfaction network. The al-
gorithm used here offers optimized support for such cases, since it will not
generate or even traverse the undefined (or non-restrictive) constraints. So,
the number of really restrictive constraints is a major factor in the evalua-
tion of the algorithm, since it scales along the complexity of sparse networks
to high density networks.

4. Number Of Inconsistent Constraints
The number of inconsistent constraints is measured relative to the number of
restrictive constraints. It is used whenever a decision must be made during
test-case generation whether a constraint should get consistent or inconsis-
tent at runtime.

5. Number Of Global Solutions
While the number of restrictive constraints somehow relates to the problem
size, the number of global solutions relates to the domain size. It specifies
the size of the subset of the cross-product over all domains d1×d2× . . .×dn.
Since the test-bed generator will hopefully produce an inconsistent CSP, it is
a parameter that affects the generation indirectly. First of all, a set of virtu-
ally globally consistent solutions is being generated. This set is divided into
a number of different partitions. For every restrictive constraint within the
network a set of partitions is randomly chosen to form the set of admissible
tuples, whereas the union of all tuples of the chosen partitions projected to
the index set of the constraint in question is the set of admissible tuples.

6. Number Of Partitions
The number of partitions is directly related to the set of virtually consistent
tuples defined by the number of global solutions. The set of global solutions
is divided into the given number of partitions. Each partition is assigned a
probability factor, such that the sum of all probability factors is exactly 1. It
is obvious that the number of partitions cannot be greater than the number

of global solutions.

7. Randomization Factor
The randomization factor is a pair of values and determines the minimal and
maximal number of additionally generated tuples for each constraint.

3.1 Consistency And Resolution Performance

Interesting properties of an algorithm are always its time and space require-
ments. Since global consistency is NP-complete in general it is interesting to see
whether or not the algorithm also shows an exponential behaviour in practise —
especially, since the algorithm takes only the constraints into account that are
really restrictive.

Figure 5 shows the time used for establishing consistency as a function of
the parameters constraints and inconsistent. The performance of the solver is
quite good-looking and the average time required to solve a single constraint is
about 0.01 sec. This behaviour can be explained with the optimized handling of
equi-joins, as it is described in Section 2.1.

Concluding, it can be stated that the consistency times confirm the algorithm
being in good shape in general — nearly every constraint could be computed
within a tenth of a second. The most influencing parameter on the times turned
out to be the parameters Number Of Global Solutions and Randomization Factor,
whereas the parameter Number Of Partitions shows a systematic influence only
for n = 10.

3.2 Resolution Quality

The most interesting question with regard to a relaxation solver is of course how
good are the relaxations it generates with regard to the given cost function.

Figure 6 and Figure 7 illustrate the candidate-set generator usage and per-
formance.

Please note that the diagrams have logarithmically scaled y-axes; in some
diagrams some values are missing. This is due to the fact that in such diagrams
0-values cannot be plotted. But on the other hand, it does not make sense to
use linear scaled y-axes, since the values vary too much.

Figure 6 shows the number of calls to each candidate-set generator. Ev-
ery generator has been called, except the generator epai (Extended Projection
and Intersection). The candidate-set generator ejod has been called for every
inconsistency, since it acts as root generator. Remarkable is the curve of the
candidate-set generator adm (the set of admissible tuples) which acts as a last
chance handler in the DCSG configuration. The usage of this generator increases
with increasing number of constraints and inconsistent constraints.

Remarkable is the kind of inconsistencies the solver had to process; almost
every call to ejod leads to a call to lejod which was called in the case of failure of
the former one. The major part of inconsistencies has not been an incompatibility

of the equi-join of the downlinks and the admissible tuples itself; even the equi-
join has been empty. This case is much harder to handle than the other one.

Figure 7 shows the time usage of the different candidate set generators. The
most expensive generator is lejod. Interesting is that the average times are almost
identical to the maximal times. This implies that there are no “easy” cases. The
variance of the generator ejod is much greater. All other generators perform
under 0.1 sec. in the average case.

Concluding this group it becomes obvious that most of the time used for
candidate-set generation has been consumed by the generators lejod and ejod.
Although this generators have been optimized several times, since they turned
out to be the major factors for resolution, they are still slow. On the other hand,
the counterparts of lejod for the uplinks, namely piou and pjou, do not show
such a behaviour. This is surely related to the fact that projection is much less
expensive in contrast to the equi-join operation.

There are two possible sources for optimizations implied by the results; first,
equi-join operations should be delayed as long as possible and reasonable in
terms of candidate-set quality, and second, expensive refinements do not make
sense and should be omitted.

But nevertheless, the time needed to produce a candidate set is one thing,
the quality of the candidate set is the other.

Figure 8 illustrates the costs depending on the number of constraints and
percentage of inconsistent constraints. The costs of each relaxation is likely the
same as calculated for the test-case before. It increases with the number of
constraints affected. The solver found most of the global solutions that were
given by the CSP generator. A lot of solutions with very high relaxation costs
have been filtered out, but surprisingly, the solver found in some cases solutions
with less than 5% of the costs of all other solutions.

The in-depth analysis of the experimental results gave us the affirmation that
multi-level candidate-set generation is a good way to resolve inconsistencies and
to provide high quality solution for such problems.

3.3 Conclusion

The performance of the solving process is good, whereas the performance of
inconsistency resolution is in some cases poor. But, in the average case it shows
a reasonable behaviour which may be influenced by the candidate-set generator
configuration or even by the generators themselves.

Inconsistency resolution is not only a question of efficiency, the other key fac-
tor is relaxation quality. In this regard the tested candidate-set generator config-
uration produced qualitatively very good results, sometimes with the drawback
of long computation times.

Nevertheless, the results are quite promising for the relaxation approach pur-
sued here.

Consistency Time / Constraint (n=10)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

0,04

0,045

<5,10> <5,50> <5,75> <10,10> <10,50> <10,75> <20,10> <20,50> <20,75>

Parameter 'Constraints','Inconsistent'

t (
se

c)

0

50

100

150

200

250

C

on
st

ra
in

ts

Consistency t
(min)

Consistency t
(avg)

Consistency t
(max)

Consistency

Fig. 5. parameters Constraints, Inconsistent (problem size n=10)

4 Discussion

4.1 Related Work

[1] interactively computes consistent subsets of user wishes in an ATMS-like
manner. [4] utilizes CLP(FD) for (partial) arc-consistency, avoiding an ATMS
framework. [2] also deals with local consistency. [3] presents an interesting inter-
active approach for binary constraints where relaxation is done via additional
”tradeoff” constraints. [11] does filtering of inconsistent values in a cost mini-
mization framework (using lower bounds), accepting a non-optimal output (due
to the complexity). [12] exploits preferences to retract constraints, in interaction
with the user. [10] copes with the MAX-CSP (with entire constraints). [9] treats
constraint optimization. The focus of our work, however, is the search for the
source of global inconsistency dealing with fine-grained tuples.

4.2 Final Remarks

We have presented a sensible framework for constraint relaxation. It first tries to
compute the globally consistent solution by just exploiting the explicitly given
constraints (without artificially ”synthesizing” redundant constraints). In case
of an inconsistency it proposes conflict candidates to relax only those constraints
involved in the inconsistency. Besides many other approaches this one works on

 Candidate Set Generator Usage (n=10)

0,01

0,1

1

10

100

<5,10> <5,50> <5,75> <10,10> <10,50> <10,75> <20,10> <20,50> <20,75>

Parameter 'Constraints','Inconsistent'

C

al
ls

Resolutions

ejod

lejod

pjou

piou

epai

adm

ia

louh

ssac

uwa

Fig. 6. number of calls to each CS-generator (problem size n=10)

a tuple-level which ensures relaxations with relatively low degrees of violation
to the original problem. Moreover, by choosing one relaxation from the set of
calculated relaxations, at least one globally consistent solution becomes avail-
able. (It is trivial that always a relaxation exists where all constraints have to
be modified by adding an additional tuple. But this case is impossible to oc-
cur since there always exists at least one solution that remains at least one
constraint unchanged.) The algorithm produces a minimal cost relaxation with
respect to the tuples yielded by the generators. It is really encouraging that the
heuristic generator functions well. The current work illustrates that constraint
relaxation based on candidate sets generated heuristically may work efficiently
producing quite promising results in terms of “relaxation costs”. (The approach
of inconsistency resolution is a general one that does not exploit any domain
specific knowledge; any usage of such knowledge may offer additional potentials
for further optimizations and quality improvements.) The algorithm was able
to resolve all inconsistencies in reasonable time.8 The candidate set generator
in the configuration actually used for the tests proved to work effectively; the
solver was able to find a set of relaxations minimal in the terms of the given cost
function. In some circumstances it found some solutions with a fraction of the
costs all other relaxations have.

8 No test-case took more than 5 hours of computation time. In most cases the com-
putation took less than 10 min. per test-case — without special tuning.

 Candidate Set Generator Times (n=10)

0,0001

0,001

0,01

0,1

1

10

100

1000

<5,10> <5,50> <5,75> <10,10> <10,50> <10,75> <20,10> <20,50> <20,75>

Parameter 'Constraints','Inconsistent'

t a
vg

 (
se

c)
Resolutions

ejod

lejod

pjou

piou

epai

adm

ia

louh

ssac

uwa

Fig. 7. average time for each CS-generator (problem size n=10)

Constraint relaxation and inconsistency resolution is an important aspect
in many areas where combinatorial problems are to be solved. This work may
offer a practicable way to solve such problems in real applications. Additionally,
the approach provides many degrees of freedom to integrate domain specific
knowledge for further enhancements.

References

1. Jérôme Amilhastre, Hélène Fargier, and Pierre Marquis. Consistency restoration
and explanations in dynamic CSPs—Application to configuration. Artificial Intelli-
gence, 135(1–2):199–234, Elsevier Science B.V., 2002

2. S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier.
Semiring-Based CSPs and Valued CSPs: Frameworks, Properties, and Comparison.
Constraints, 4(3):199–240, Kluwer Academic Publishers, 1999

3. Eugene C. Freuder and Barry O’Sullivan. Modeling and Generating Tradeoffs for
Constraint-Based Configuration. UICS’01: User-Interaction in Constraint Satisfac-
tion, CP 2001 Workshop Proceedings, pp. 43–57, Paphos, Cyprus, 2001

4. Yan Georget, Philippe Codognet, and Francesca Rossi. Constraint Retraction in
CLP(FD): Formal Framework and Performance Results. Constraints, 4(1):5–42,
Kluwer Academic Publishers, 1999

5. Walter Hower. On Conflict Resolution in Inconsistent Constraint Networks. Mas-
ter’s thesis (”Diplomarbeit”), Fachbereich Informatik, Universität Kaiserslautern,

 Costs/Relaxation (n=10)

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

<5,10> <5,50> <5,75> <10,10> <10,50> <10,75> <20,10> <20,50> <20,75>

Parameter 'Constraints','Inconsistent'

C
os

ts
/R

el
ax

at
io

n

0

5

10

15

20

25

30

35

40
Constr./Relax.
(min)

Constr./Relax.
(max)

Constr./Relax.
(avg)

Relaxations

Fig. 8. costs per relaxation (problem size n=10)

Germany, 1989
6. Walter Hower. Revisiting global constraint satisfaction. Information Processing

Letters, 66(1):41–48, Elsevier Science Publishers, B.V., Amsterdam, The Nether-
lands, 1998 (pre-print: Global constraint satisfaction revisited. Technical Report 97-
02, Department of Computer Science, University College Cork, National University
of Ireland, 1997)

7. Walter Hower and Stephan Jacobi. Fine-grained conflict resolution in constraint
satisfaction problems. Journal of Experimental & Theoretical Artificial Intelligence,
10(1):37–47, Taylor & Francis, London, UK, 1998

8. Stephan Jacobi. Fine-grained constraint relaxation. Master’s thesis (”Diplom-
arbeit”), Fachbereich Informatik, Universität Koblenz-Landau, Germany, 1999

9. Javier Larrosa and Rina Dechter. Boosting Search with Variable Elimination in
Constraint Optimization and Constraint Satisfaction Problems. Constraints, Kluwer
Academic Publishers, 2002 (in press)

10. Javier Larrosa and Pedro Meseguer. Partition-Based Lower Bound for Max-CSP.
Constraints, Kluwer Academic Publishers, 2002 (in press)

11. Thierry Petit, Jean-Charles Régin, and Christian Bessière. Specific Filtering Algo-
rithms for Over-Constrained Problems. In T. Walsh (Ed.): Principles and Practice of
Constraint Programming – CP 2001, 7th International Conference, Paphos, Cyprus,
Proceedings, pp. 451–463, LNCS 2239, Springer-Verlag, Berlin/Heidelberg, 2001

12. Yan Qu and Stephen Beale. Cooperative Resolution of Over-Constrained Informa-
tion Requests. Constraints, 7(1):29–47, Kluwer Academic Publishers, 2002

This article was processed using the LATEX macro package with LLNCS style

