
Constraint Processing Offers
Improved Expressiveness and Inference for

Interactive Expert Systems

James Bowen

Cork Constraint Computation Centre
UCC, Cork, Ireland

Email: j.bowen@4c.ucc.ie

Abstract. Expert systems constitute one of the most successful applica-
tion areas for Artificial Intelligence techniques; they have been deployed
in many areas of industry and commerce. If-then rules are the core knowl-
edge representation technology in currently deployed systems. However,
if we replace rules by constraints, we get improved expressiveness in
knowledge representation and richer inference.

1 Introduction

An expert system [5] is a program which mimics human problem-solvers, in
several senses: it contains an explicit representation of the knowledge which is
used by humans who are expert at solving tasks in some problem domain; its
reasoning process mimics that of the human experts; it elicits data from its
users in a fashion similar to that used by a human expert who questions his
client during a consultation; it can explain its answers to its users in the same
way as a human expert can explain his conclusions to his clients. Expert systems
constitute one of the most successful application areas for Artificial Intelligence
(AI) techniques - they have been assimilated into the mainstream where they
are widely deployed, frequently in concert with non-AI software technologies [8].

In currently deployed expert systems, knowledge about the problem domain
is represented in the form of if-then rules. There are two kinds of rules [5]:
imperative rules, where the consequent of a rule specifies some operation(s)
to be performed if the antecedent if satisfied; and declarative rules, where the
consequent of a rule specifies some fact which is implied by the truth of the
antecedent.

In this paper, it is argued that, if constraints are used instead of declarative
rules, improved functionality is achieved: constraints provide a richer expressive
medium than rules; constraints support a richer form of inference than rules.

The rest of this paper is organised as follows. First, a review of constraint-
based reasoning is given, with particular emphasis on interactive processing.
Then the notion of using constraints to build interactive expert systems is ex-
plored, with particular emphasis on mixed-initiative information acquisition dur-
ing interactive processing. Following this, constraint programming is related, in

a model-theoretic fashion, to Predicate Calculus, with particular emphasis on
a treatment of constraint satisfaction as model completion. The approach is il-
lustrated by means of an example expert system for selecting a laptop to meet
a user’s needs; in this discussion, emphasis is placed on the expressiveness of
constraint-based knowledge representation. Then, it is explained that constraint
propagation provides a richer form of inference than that supported by rule-
based systems, because it supports modus tollens as well as modus ponens.

2 Constraint-based reasoning

In the literature, several different definitions are given for constraint networks,
with varying degrees of formality. However, they may all be regarded as varia-
tions of the following theme:

Definition 1, Constraint Network:
A constraint network is a triple 〈D,X,C〉. D is a finite set of p > 0
domains, the union of whose members forms a universe of discourse, U .
X is a finite tuple of q > 0 non-recurring parameters. C is a finite set of
r ≥ q constraints. In each constraint Ck(Tk) ∈ C, Tk is a sub-tuple of
X, of arity ak; Ck(Tk) is a relation, a subset of the ak-ary Cartesian
product Uak . In C there are q unary constraints of the form
Ck(Xj) = Di, one for each parameter Xj in X, restricting it to range
over some domain Di ∈ D which is called the domain of Xj .

The overall network constitutes an intensional specification of the simultane-
ous value assignments that can be assumed by the parameters. In other words,
the network constitutes an intensional specification of a q-ary relation on Uq, in
which each q-tuple provides an ordered group of values, each value being an as-
signment for the corresponding parameter in X. This implicitly specified relation
is called the intent of the network:

Definition 2, The Intent of a Constraint Network:
The intent of a constraint network 〈D,X,C〉 is

ΠD,X,C = C1(X) ∩ ... ∩ Cr(X),
where, for each constraint Ck(Tk) ∈ C, Ck(X) is its cylindrical
extension [4] in Uq.

Note that the definitions given above admit infinite domains, implying that
the universe of discourse U may be infinite and that the constraint relations
may be infinite, thereby making it possible that the intent of a network may be
an infinite relation. In finite-domain networks, the domains and constraints are
usually specified extensionally; in networks which contain infinite domains and
relations, these domains and relations must, necessarily, be specified intension-
ally.

Many different forms of constraint satisfaction problem (CSP) have been
distinguished. The forms of CSP encountered most frequently in the literature
can be defined in terms of a network intent as follows:

Definition 3, The Decision CSP:
Given a network 〈D,X,C〉, decide whether ΠD,X,C is non-empty.
Definition 4, The Exemplification CSP:
Given a network 〈D,X,C〉: return nil if ΠD,X,C is empty; otherwise,
return some tuple from ΠD,X,C.
Definition 5, The Enumeration CSP:
Given a network 〈D,X,C〉, return ΠD,X,C.

The Exemplification CSP is the one most commonly addressed by algorithm
researchers. Solving the Exemplification CSP is frequently used as a surrogate
for solving the Decision CSP. The Enumeration CSP is rarely addressed; it is
sometimes solved analytically (in the case of infinite-domain problems) or, in the
case of finite-domain problems, by finding all solutions to the Exemplification
CSP.

2.1 Interactivity

Most research on constraint processing has focus on autonomous problem-solving
by machines. Many real-world applications, however, require interactive deci-
sion support rather than automated problem-solving. Consequently, recent con-
straints research has involved interactive processing. In [3] , for example, Exem-
plification CSPs are solved by an interactive version of the MAC algorithm, in
which search moves are made by a user assigning values to network parameters,
while the machine performs constraint propagation (arc-consistency) after each
move by the user.

In [2], a more general form of interactive processing was introduced. This was
based on a new form of CSP called the Specialization CSP:

Definition 6, The Specialization CSP:
Given a network 〈D,X,C〉: return nil if ΠD,X,C is empty; otherwise,
return (i) a set A of additional constraints such that ΠD,X,C∪A

contains exactly one tuple and (ii) this tuple.

If the given network has an empty intent, the task is, as in the Exemplification
CSP, to identify that fact. If the given network has a non-empty intent, the task
includes, as in the Exemplification CSP, finding a group of consistent assignments
for the network parameters. However, whereas solving the Exemplification CSP
involves searching through the space of possible parameter assignments, solving
the Specialization CSP involves searching through the space of possible con-
straints. When the Exemplification CSP is being solved interactively, the user
directs the search by inputting parameter assignments (which, of course, are
constraints of a restricted form). By contrast, when the Specialization CSP is
solved interactively, the user can input arbitrary constraints.

3 Constraint-based Interactive Expert Systems

While not all expert systems interact with human users (process control expert
systems, for example, interact with process sensors and actuators), most do. The

general scenario is that the expert system should advise the user by determining
the value for certain crucial characteristics of a situation affecting the user. This
form of decision-support can be accomodated in constraint-based reasoning if
we define a new form of CSP, as follows.

Definition 7, The Targeted Specialization CSP:
Given a network 〈D,X,C〉 and a sub-tuple T of X: return nil if
ΠD,X,C is empty; otherwise return (i) a set A of additional constraints
such that ΠD,X,C∪A

T contains exactly one tuple and (ii) this tuple.

An expression of the form ΠD,X,C
T denotes the projection of a network intent

onto the sub-tuple of the network parameters that are in T. This projection is a
relation in which each tuple provides an ordered group of values which, if they
are assumed by the corresponding paramters in T, will satisfy the constraints.
Thus, given a network with a non-empty intent, the task posed by the Targeted
Specialization CSP is to find a group of consistent values for the targeted param-
eters. As in the case of the Specialization CSP, the task of interactively solving
the Targeted Specialization CSP involves receiving information from the user
and propagating it throughout the network. As in the Specialization CSP, the
information from the user may be arbitrary constraints.

3.1 Knowledge Representation in a Constraint-based Expert
System

Generic Domain Knowledge In a constraint-based expert system, the do-
main knowledge embedded in the system consists of the constraints C in a
network 〈D,X,C〉. The intent of this network will be non-empty – otherwise,
the constraints would be just an inconsistent set of assertions, rather than a
coherent body of expertise about a class of situations that affect the users of the
expert system.

Instance-specific Knowledge Information about the problem instance affect-
ing a particular user is represented by a set, A, of additional constraints which
are received from the user. A complete description of a problem instance con-
sists, therefore, of C ∪A – the generic domain knowledge plus the information
about the specific problem instance.

The advice from the expert system to the user consists of the values for the
target parameters, T, that are admitted by the constraints in C ∪A – that is,
the advice consists of the single tuple in ΠD,X,C∪A

T .

3.2 Mixed-initiative acquisition of information

Mixed-initiative interaction is a desirable feature of intelligent programs. Achiev-
ing it is the subject of ongoing research – a workshop on the topic was organized
at AAAI-99 [1].

In expert systems, supporting mixed-initiative interaction means enabling an
appropriate balance between machine-generated questions and user-volunteered
facts. Backward-chaining through declarative rules involves machine-driven ac-
quisition of information about a specific problem instance: the system’s hypothe-
ses comprise the roots of a set of interlaced trees whose leaves represent possible
data points; when considering a hypostheis, the system backward-chains from
the root to its leaves, asking questions about these; when a root is found, all of
whose leaf nodes receive positive answers from the user, modus ponens inference
causes the expert system to derive the truth of the hypothesis corresponding
to the root. Forward-chaining through declarative rules involves matching user-
volunteered facts with leaf nodes and using modus ponens to derive a conclusion
corresponding to some root. Mixed-initiative interaction with expert systems
based on declarative rules involves some mixture of backward- and forward-
chaining.

The interactive constraint-based systems which have been reported in the
literature involve users volunteering information – in [3], for example, the user
volunteers parameter assignments. This, and the fact that inference in constraint-
based systems is called constraint propagation, may seem to imply that interac-
tion in constraint-based systems must be user-driven. However, this is not the
case. It is possible to use backward-chaining in constraint networks – given a
target parameter whose value it must determine, the system can question the
user about the immediately neighbouring parameters, or about their neighbours,
and so on. However, the very richness of interconnectivity in constraint networks
(including, for example, cyclical interdependence of parameters) means that it
is much more difficult to decide which parameters to ask the user about – op-
timal question-generation in interactive constraint-based expert systems is the
subject of ongoing research by the author of this paper. While optimal question-
generation is still an open research topic, backward-chaining is already being
done – a system which questions the user about the parameters neighbour-
ing a target parameter will be illustrated below. Given that both backward-
and forward-chaining is possible in interactive constraint-based systems, mixed-
initiative interaction simply involves some mixture of the two – the system illus-
trated below supports mixed-initiative interaction.

4 Constraints and First-order Predicate Calculus

Depending on the nature of the symbols that can appear in their antecedents
and consequents, declarative if-then rules are implication statements in either
propositional or predicate calculus. Constraints offer a much richer expressive-
ness than rules because constraints can provide the expressive power of the full
first-order Predicate Calculus (PC).

When a first-order language, L, is used to discuss some universe of discourse,
U , the constant symbols of L denote elements in U , the function and relation
symbols of L denote functions and relations over U , while the logic variables
are quantified over U . Note that a universe of discourse, being a set of entities,

may be either a finite or an infinite set. If a universe of discourse is finite,
the Predicate Calculus is not essential – the Propositional Calculus provides
sufficient reasoning power.

However, there are other reasons for choosing a notation than just the power
of its associated reasoning system – otherwise, there would have been no need for
programming language developers to progress beyond machine code. In expert
systems, facility of user-input and perspicuity of system-output are just as im-
portant as speed of system-internal inference. Thus, even in applications having
finite universes of discourse, Predicate Calculus may be preferred to Proposi-
tional Calculus, simply because the greater expressive flexibility offered by the
Predicate Calculus enables knowledge to be represented in a more naturalistic
fashion – just as the father of a large family finds it easier to say that “”all my
children have left school” than to say that “Al, Bob, Cait, Dora, ..., Xavier, Yuri
and Zeev have left school”.

The discussion that follows will illustrate how, in applications having finite
universes of discourse, constraint-based technology offers both programmers and
users of expert systems the expressive flexibility of the full Predicate Calcu-
lus. It will also show how, in applications having infinite universes of discourse,
constraint-based technology offers almost the same flexibility – the only limi-
tation being that quantifiers must be relativized to finite subsets of an infinite
universe of discourse1.

4.1 Constraint Satisfaction as Model Completion

In [9], the current author first discussed the relationship between constraint satis-
faction and finding models in Predicate Calculus – Mackworth, in [7], discussed a
similar notion, the relationship between finite constraint satisfaction and finding
models in the Propositional Calculus.

The predicate calculus approach can be described as follows. Consider some
application domain for an expert system. The entities in this application domain
comprise a universe of discourse U . To discuss U , a first-order language, L, is
defined, with an associated partial model, Mp, which contains an interpretation,
in terms of U , for all function and predicate symbols of L and most, but not all,
of its constant symbols.

This language L can then be used to specify constraint networks, networks
in which the set of parameters will be the set of un-interpreted constant symbols
of L and in which the set of constraints will be a set S of sentences of L.
Any sentence of L, provided it references at least one of the un-interpreted
constant symbols of L, can be a constraint – even one containing arbitrarily
nested quantification2. From this perspective, it can be seen that CSPs become

1 Theoretically, this limitation is not necessary – quantifiers can range of over infinite
universes of discourse. In practice, however, the constraint processing algorithms
that have been developed so far can process only relativized quantifiers.

2 Of course, constraint processing algorithms, in particular the type of consistency
processing algorithm that is discussed later in this paper, will be more likely to

model-completion problems. For example, the Exemplification CSP becomes the
task of computing, if one exists, a total model M of L such that M⊃Mp and
such that all the sentences in S are true under M, or, if no such model exists,
of returning the information that this is so. Similarly, if any model of L exists
which subsumes Mp and entails S, the Targeted Specialization CSP becomes
the task of computing a set Sa of additional sentences such that every model M,
M⊃Mp ∧ M |= (S ∪ Sa), has the same set of interpretations for the constant
symbols in T.

This approach to relating constraints and predicate calculus is quite different
from the CLP paradigm [6]. In CLP, a constraint network is treated as a goal (a
theorem to be proven); the clauses in a CLP program are not part of the network
– they define the semantics of application-specific relation symbols in the query.
Because a CLP network is treated as a query, network parameters correspond to
existentially quantified logic variables while constraints are restricted to a very
limited subset of PC utterances - arbitrary nesting of quantification, for example,
is prohibited in CLP. A key advantage of the model-completion approach over
CLP is that, since network parameters correspond to constant symbols (albeit
symbols in search of an interpretation) rather than logic variables, the parame-
ters can be referenced in multiple sentences; this is because usage of a constant
symbol, unlike usage of a logic variable, is not restricted to the lexical scope of
a single quantifier symbol within a single sentence. Thus, a parameter which is
referenced in sentences that form part of a generic network for an application
domain, can also be referenced in sentences input by the user to provide infor-
mation about his specific problem instance. Thus, this approach is better than
CLP at supporting user-interaction.

The greater expressiveness of the model-completion approach (the fact that,
subject to the caveats given earlier, arbitrary sentences of L can be used as
constraints) simply reinforces the benefits which are derived from the treatment
of parameters as constant symbols. It does, however, mean that, provided the
model completion approach is used, constraint-based reasoning offers greater
expressiveness for knowledge representation than rule-based reasoning.

4.2 Example

To illustrate the approach, consider a very simple expert system for selecting,
from a range of laptop computers, one which will best meet the needs of a user.

Language and Universe of Discourse The universe of discourse comprises
the range of available laptops and the real numbers, the latter being present
because the user’s requirements (regarding CPU speed, RAM and disk space,
and machine weight), as well as the corresponding laptop characteristics, and
their prices, are numbers. Inspired by a laptop range manufactured by a certain
well-known firm, our universe of discourse U is < ∪ {c810, c410, c210, c110},

achieve inferential completeness if either the universe of discourse is finite or all
quantifiers are relativized to finite subsets of the universe.

where < contains the real numbers while c810 etc. are laptops. Since U sub-
sumes <, our language L contains symbols to discuss the members of < - that
is, L contains numerals (constant symbols interpreted to denote members of <)
as well as predicate and function symbols, such as >=, *, etc., which are inter-
preted to denote standard relations and functions over <. Since U contains the
laptops, L must also include some symbols to discuss these: a unary predicate
symbol, laptop, whose extension is the set of laptops; some unary function sym-
bols, speed, ramCapacity, diskCapacity, weight and price, which map from
the laptops onto the numbers that are the obvious laptop characteristics; and
constant symbols, such as c110, c210, etc., which are interpreted to denote the
obvious laptops. The symbols listed above have their interpretations defined in
the partial model Mp of L. The symbols which are not interpreted in Mp are
the constant symbols minSpeed, minRAM, minDisk and maxWeight (which, when
they are finally interpreted, should denote the obvious user requirements), and
chosenModel (which should denote the appropriate laptop).

Generic Domain Knowledge The generic domain knowledge for our expert
system can now be expressed as a set of sentence in L. For example, the need
for the chosen laptop to satisfy the user’s computing requirements could be
expressed as a set of three ground atomic sentences

speed(chosenModel) >= minSpeed.
ramCapacity(chosenModel) >= minRAM.
diskCapacity(chosenModel) >= minDisk.

while the weight requirement could be expressed as

weight(chosenModel) =< maxWeight.

Suppose we wish to specify that the cheapest laptop which meets the user’s
computing requirements must be chosen. Given that the only money-related sym-
bol we have is the function price, how do we represent the notion of “cheapest”?
A laptop is “cheapest” if there is no other laptop whose price is less. Thus, our
specification above can be expressed in L as:

not exists X :
(laptop(X) and
price(X) =< price(chosenModel) and
speed(X)>=minSpeed and
ramCapacity(X)>=minRAM and
diskCapacity(X)>=minDisk).

This PC sentence can be paraphrased in English as “there should not exist
any laptop which is cheaper than the chosen one and which also satisfies the
computing requirements”.

Note that the universe of discourse for this application is infinite – it sub-
sumes <. However, the quantification in the constraint just given is relativized
to a finite subset of the universe – to the set of laptops. This relativization means

that the sentence is equivalent to a ground sentence, one in which all the avail-
able laptops are referenced by name. While this equivalance is what makes the
sentence tractable3 as a constraint, the freedom to use a quantifier in express-
ing the constraint makes for easier knowledge management – just like the father
mentioned earlier, who often finds it easier to refer to his large family collectively
instead of listing them individually by name.

In this simple application domain, a constraint using heavily nested quan-
tification would be very contrived. However, if we extended the scope of the
application to include, say, power supply systems around the world, then we
might need a certain degree of quantifier nesting – in a constraint referring to
worldwide rechargability, for example, one quantifier might range over the lap-
tops while another ranged over the power supply systems used in various parts
of the world.

Partial Model An implementation of the model-completion approach to constraint-
based reasoning has been built by the author of this paper. An expert system
for laptop selection built on top of this implementation consists of the above
five sentences plus some statements which specify (a) the application-specific
language L to which the sentences belong and (b) a partial model Mp for L.
It is assumed that every universe of discourse subsumes <, so the implemen-
tation provides a set of pre-defined symbols for discussing < and a pre-defined
interpretation for all these symbols. Thus, in specifying a universe, a language
and a partial model for an application, all that needs to be done is to specify
the application-specific material. In an expert system for laptop selection, the
statements needed to provide the application-specific detail for L and Mp are
as follows:

domain laptop =::= {c810,c410,c210,c110}.
function speed(laptop) -> number

=::= { c810->1.2, c410->0.9, c210->0.6, c110->0.57 }.
function ramCapacity(laptop) -> integer

=::= { c810->1024, c410->1024, c210->256, c110->256 }.
function diskCapacity(laptop) -> integer

=::= { c810->68, c410->40, c210->20, c110->15 }.
function weight(laptop) -> number

=::= { c810->3.2, c410->2.9, c210->3.1, c110->2.7 }.
function price(laptop) -> integer

=::= { c810->3299, c410->2599, c210->1799, c110->1439 }.
chosenModel : laptop.
minSpeed : positive number.
minRAM : positive number.
minDisk : positive number.
maxWeight : positive number.

3 To currently developed algorithms, at least.

These statements can be explained as follows. An application-specific universe of
discourse consists of the union of < with the application-specific domains. The
example expert system needs only one such domain, containing the laptops; it
is declared in the first statement above. This statement also introduces several
symbols into L: a unary predicate symbol, laptop, and four constant symbols,
c810, c410, c210 and c110. The statement implicitly defines the interpretation
of these symbols: the constant symbols are interpreted as the obvious members
of U while the unary predicate symbol is interpreted as denoting the set of
laptops. Each of the subsequent five statements introduces an application-specific
unary function symbol into L and defines its interpretation. Each of the final
five statements introduces a constant symbol into L. These symbols are not
interpreted, although the space of possible interpretations for each symbol is
restricted to a subset of U ; chosenModel, for example, must denote a laptop
while minSpeed must denote a member of <+.

Network The constraint network defined by the foregoing contains five con-
straints (one for each of the five sentences of generic domain knowledge specified
above) and five parameters (one for each constant symbol that is un-interpreted
in Mp).

The parameters are: chosenModel, minSpeed, minRAM, minDisk and maxWeight.
The domain of the parameter chosenModel is {c810, c410, c210, c110}, while
each of the other parameters has the domain {X|X > 0}.

Four of the constraints are binary – those corresponding to the sentences
of generic domain knowledge which specify that the chosen model must satisfy
the user’s computing and weight requirements. The fifth constraint, that corre-
sponding to the sentence of generic domain knowledge which specifies that the
cheapest satisfactory laptop must be chosen, involves five parameters.

The constraint relations corresponding to the sentences of generic domain
knowledge can be computed from the interpretations, in Mp, for the interpreted
symbols in each sentence. For example, consider the sentence

speed(chosenModel) >= minSpeed.

This is a binary constraint – it contains two constant symbols, chosenModel
and minSpeed, and, since neither of them is interpreted in Mp, they are both
parameters in the constraint network. The constraint relation which corresponds
to this sentence can be computed from the pre-defined interpretation for the
standard predicate symbol >= and the interpretation of the application-specific
function symbol speed. Remember that the interpretation of the function symbol
speed was defined above as follows:

function speed(laptop) -> number
=::= { c810->1.2, c410->0.9, c210->0.6, c110->0.57 }.

Thus, the sentence speed(chosenModel) >= minSpeed means that if chosenModel
had the value c810, then 1.2 should be greater than or equal to the value of
minSpeed; similarly, if chosenModel had the value c410, then 0.9 should be

greater than or equal to the value of minSpeed; and so on. Thus, the sentence
speed(chosenModel) >= minSpeed corresponds to the following constraint rela-
tion on the parameter pair 〈chosenModel, minSpeed〉:

{〈X, Y 〉|(X = c810 ∧ Y ≤ 1.20) ∨ (X = c410 ∧ Y ≤ 0.90)∨
(X = c210 ∧ Y ≤ 0.60) ∨ (X = c110 ∧ Y ≤ 0.57)}

How are quantified sentences handled? Instead of considering the quantified
sentence which specifies that the cheapest satisfactory laptop must be chosen, we
will consider the following shorter sentence, which specifies that the maximum
possible amount of RAM is needed:

not exists X : (laptop(X) and ramCapacity(X)>minRAM).

Its meaning is computed as follows. First, the negation is moved inside the
quantifier, so that the sentence becomes

all X : (laptop(X) implies ramCapacity(X) =< minRAM).

Then, because the laptop domain is finite, the effect of this sentence can be
achieved by iterating over the domain – in essence, treating the sentence as if it
were

ramCapacity(c810) =< minRAM and ramCapacity(c410) =< minRAM and
ramCapacity(c210) =< minRAM and ramCapacity(c110) =< minRAM.

Remember that the function symbol ramCapacity was defined earlier as follows:

function ramCapacity(laptop) -> number
=::= { c810->1024, c410->1024, c210->256, c110->256 }.

This means that the constraint relation corresponding to the above sentence is
the following unary constraint on the parameter minRAM: {X|X ≥ 1024}.

At this stage, it may be appropriate to consider quantification over infinite
domains. Consider the sentence:

not exists X : X > minRAM.

The system being described here can accept this sentence, although it will not
be able to do anything useful with it. Recognizing that the quantifier is not
relativized to a finite subset of the universe of discourse, it will not attempt to
use iteration; instead, it will treat the above sentence as the following unary
constraint on the parameter minRAM: {X|¬∃Y (Y > X)}. As we shall see below,
the basic operation of the system involves arc consistency processing, using an
approach in which term re-writing is used to process to infinite constraint rela-
tions. The basic difficulty with the above sentence lies in the fact that nothing
in the set of term-rewriting rules used (so far) can do anything useful with the
above intensional formula – therefore, the system cannot guarantee to achieve

total arc consistency in a network containing such a constraint relation4. Possi-
bly, however, one could imagine an augmented set of rules which could do more.
Nevertheless, it will always be possible, given any set of re-writing rules, to devise
a set of constraints which are beyond the inferential competence of the rules.

Constraint Processing The basic operation of the run-time system consists of
applying (hyper-)arc consistency to the constraints in the network, constraints
whose relations may be either finite (and represented extensionally) or infinite
(and represented intensionally). Finite domains are pruned by removal of incon-
sistent values. An infinite domain is pruned in two stages: first, a conjunct is
added to the intensional formula that specified the domain before pruning; then,
term rewriting is used to simplify the extended intensional formula.

Consider, for example, the following constraint relation on the parameter
pair 〈chosenModel, minSpeed〉:
{〈X, Y 〉|(X = c810 ∧ Y ≤ 1.20) ∨ (X = c410 ∧ Y ≤ 0.90)∨

(X = c210 ∧ Y ≤ 0.60) ∨ (X = c110 ∧ Y ≤ 0.57)}
Initially, the domain of chosenModel is {c810, c410, c210, c110} and that of
minSpeed is {X|X > 0}. When we use arc-consistency on the arcs of the above
constraint, the domain of chosenModel is unchanged, but the intensional formula
for the domain of minSpeed undergoes the following changes. First it becomes

{X|X > 0 ∧ (X ≤ 1.2 ∨X ≤ 0.9 ∨X ≤ 0.6 ∨X ≤ 0.57)}

in which the intensional formula has been expanded, to include a conjoined
expression which captures the impact of the constraint on the set of possible
values for minSpeed. Term rewriting then changes this formula, initially reducing
it to

{X|X > 0 ∧ (X ≤ 1.2)}
and then rewriting it further to

{X|0 < X ≤ 1.2}.

When the constraints representing the generic domain knowledge have all
been processed (as they would be before any user input were accepted), the
domains of minRAM, minDisk and maxWeight would have been reduced to {X|0 <
X =< 1024}, {X|0 < X =< 68} and {X|X >= 2.7}, respectively.

Mixed-initiative Interaction The approach supports mixed-initiative inter-
action. A user interacting with this expert system can volunteer instance-specific
4 Strictly speaking, of course, the system can achieve “‘total” arc consistency, by prop-

agating this intensional formula through all relevant parts of the network. In practice,
of course, useful arc consistency involves producing simplified intensional formulae
– for example, if a formula involves a contradiction, useful arc consistency would
involve detecting this and inferring that the parameter whose domain is described
by the formula is the empty set.

data by asserting appropriate sentences in L – each such sentence must, of course,
refer to at least one of the un-interpreted symbols. For example, if the user knows
that he needs a CPU speed of at least 0.7 gigahertz, he could assert

minSpeed = 0.7.

Similarly, if he wants the largest possible amount of RAM, he could assert

not exists X : (laptop(X) and ramCapacity(X)>minRAM).

Each such sentence5 extends the constraint network defined in the expert system,
by adding a new constraint. After each new constraint is asserted by the user, its
arcs are entered into the queue of arcs maintained by the hyper-arc consistency
algorithm. As usual in arc consistency algorithms, if the domain of any parameter
is reduced by any arc of this new constraint, the other constraint arcs referencing
this parameter are appended to the queue. The algorithm reaches quiescence
when the queue becomes empty again, at which point the user can volunteer
another assertion or retract one of his previous assertions – dependency records
are maintained to facilitate such retractions. (The dependency records are also
used to generate explanations when requested by the user.)

Suppose, for example, the user asserted minSpeed=0.7. Constraint propaga-
tion would result in the domain of minSpeed being restricted to {0.7}. Since this
parameter is also referenced in speed(chosenModel) >= minSpeed, the arcs of
this constraint would be appended to the queue. The effect of this is that the
domain of chosenModel is reduced to {c810, c410}, because the other laptops
are not fast enough. This change would then activate the other constraints which
reference this parameter. By the time that quiescence is reached, the domain for
maxWeight would have been reduced from {X|X >= 2.7} to {X|X >= 2.9}. If
the user were then to assert not exists X : (laptop(X) and ramCapacity(X)
> minRAM), that would reduce the domain of minRAM from {X|0 < X =< 1024}
to {1024} but would not reduce further the domain of any other parameter.

Instead of volunteering instance-specific data, the user could hand the initia-
tive over to the machine by specifying that he wishes it to help him determine
an appropriate value for chosenModel. In doing so, he would be creating a Tar-
geted Specialization CSP in which T, the set of targeted parameters, would be
5 One reviewer asked whether a “real” user would be able to construct predicate

calculus utterances like this one. Several comments must be made in response. First,
the point being made at this stage in the paper is that the computational model being
described in the paper is capable of accepting this kind of information from a user – if
the user is capable of giving it. Second, some “real” users can use predicate calculus
notation. Third, for those users who cannot use predicate calculus, an interface may
be capable of translating from the user’s preferred mode of expression into predicate
calculus. The author is actually involved in a research project aimed at building
an interface which will be capable of translating from natural language utterances
into constraints expressed as PC sentences. Such translation is not a trivial task –
nevertheless, the main point is that, regardless of whether all “real” users are capable
of using PC, the computational model described here is capable of accepting PC
sentences as input.

{chosenModel}. The machine would then ask the user for information about the
other parameters in the network, each reply being treated as another constraint
to be added to the network: a user’s reply need not specify a value for the pa-
rameter which was the subject of the machine’s question; it could, instead, be
an arbitrary sentence involving the parameter – for example, a user asked about
the required disk space could reply that he wants ten times as much disk space
as RAM, by entering the sentence minDisk = 10 * (minRAM/1000), division by
1000 being involved because RAM is specified in megabytes while disk space is
specified in gigabytes.

5 Improved Inference

It has been shown how the use of constraints supports richer knowledge represen-
tation than that available to rule-based expert systems – constraints extend both
the range of domain expertise that can be expressed and the range of instance-
specific data that users of an interactive expert system can provide. However, it
should also be pointed out that constraints also support richer inference.

Inference in rule-based expert systems is based on modus ponens. That is, we
can have inferences of the form

(A ⇒ B,A) ` B.

Constraint propagation, however, subsumes both modus ponens and modus tol-
lens. That is, it can also make inferences of the form

(A ⇒ B,¬B) ` ¬A.

Suppose, for example, that we have an expert system in which there are two
parameters, length and width, that must assume values from <+. Suppose that
one piece of domain knowledge is length >= 1000 implies width >= 500.
Suppose that, while backward-chaining through some other piece of domain
knowledge, the expert system asks the user for the value of width and receives
the response that width = 400. A rule-based expert system would not be able to
deduce from this reply, and from the domain knowledge just given, that length
must be less than 1000.

Now suppose that the expert system is constraint-based rather than rule-
based. Initially, the domains of length and width would both be {X|X > 0}.
According to the standard semantics of material implication in logic, the con-
straint relation corresponding to length >= 1000 implies width >= 500 is
the union of two infinite sets of tuples, represented by the two disjuncts in this
intensional formula:

{〈X, Y 〉|X < 1000 ∨ (X ≥ 1000 ∧ Y ≥ 500)}.

The first of these two sets corresponds to the case where the antecedent
of the implication is not satisfied, the second to the case where it is. When

the user replies that width = 400, this is treated as a unary constraint whose
relation is {400}. Propagating this constraint would, first, reduce the domain
of width from {X|X > 0} to {400} and then activate the constraint length
>= 1000 implies width >= 500. The fact that the domain of width is now
{400} means that the second set in the union comprising the semantics of the
constraint is irrelevant. Thus, arc consistency means that the first set can be
projected onto the domain of length. Thus, the domain of length is reduced
from {X|X > 0} to {X|0 < X < 1000}. In other words, applying arc consistency
to the constraint relation {〈X, Y 〉|X < 1000 ∨ (X ≥ 1000 ∧ Y ≥ 500)} on the
parameters 〈 length, width 〉, in a context where the domain of width is {400},
achieves the same effect as applying modus tollens to the following premises:
length >= 1000 implies width >= 500 and width=400.

6 Conclusions

The standard way of relating constraint-based reasoning to the Predicate Cal-
culus (PC) is Constraint Logic Programming (CLP), in which constraints are
integrated into a proof-theoretic approach to logic. This paper advocates an
alternative, model-theoretic approach. In this approach, the task of solving a
constraint satisfaction problem becomes that of completing a partial model for a
first-order PC language. It has been shown that, in this context, constraint prop-
agation algorithms provide an inference capability which subsumes the effects of
both modus ponens and modus tollens. Thus, if constraints replace declarative
rules in the construction of expert systems, two benefits follow: more expressive
knowledge representation and more powerful inference.

7 References

1. AAAI, 1999, Proc. AAAI-99 Workshop on Mixed-Initiative Intelligence.
2. Bowen J, 2001, “The (Minimal) Specialization CSP: A basis for Generalized In-

teractive Constraint Processing”, Proc. CP-2001 Workshop on User-Interaction in
Constraint Processing.

3. Freuder E, Likitvivatanavong C and Wallace R, 2000, “A Case Study in Explana-
tion and Implication”, Proc. CP-2000 Workshop on Analysis and Vizualization of
Constraint Programs and Solvers.

4. Friedman G and Leondes C, 1969, “Constraint Theory, Part I: Fundamentals”,
IEEE Transactions on Systems Science and Cybernetics, ssc-5, 1, 48-56.

5. Jackson P, 1999, Introduction to Expert Systems, 3 rd. Edition, Addison Wesley
Longman.

6. Jaffar J and Lassez J, 1987, “Constraint Logic Programming”, Proc. POPL-87.
7. Mackworth A, 1992, “The Logic of Constraint Satisfaction”, Artificial Intelligence,

58, 3-20.
8. Rasmus D, 2000, “Knowledge Management Trends: The Role of Knowledge in

E-Business”, PCAI Magazine, 14(4), Special issue on Knowledge Management,
Expert Systems and E-Business.

9. Bowen J and Bahler D, 1991, “Conditional Existence of Variables in Generalized
Constraint Networks”, Proc. AAAI-91.

