A Definition of Interchangeability for Soft CSPs^{*}

Stefano Bistarelli¹, Boi Faltings² and Nicoleta Neagu²

 ¹ Istituto per l'Informatica e la Telematica (IIT), CNR Pisa, Area della Ricerca di Pisa, Via G. Moruzzi 1, I-56124 Pisa, Italy, Stefano.Bistarelli@iat.cnr.it,
 ² Artificial Intelligence Laboratory (LIA), EPFL, IN-Ecublens, CH-1015 Ecublens, Switzerland,

boi.faltings|nicoleta.neagu@epfl.ch

Abstract. Substitutability and interchangeability in constraint satisfaction problems (CSPs) have been used as a basis for search heuristics, solution adaptation and abstraction techniques. In this paper, we consider how the same concepts can be extended to *soft* constraint satisfaction problems (SCSPs).

We introduce two notions: threshold α and degradation δ for substitutability and interchangeability, ($_{\alpha}$ substitutability/interchangeability and $^{\delta}$ substitutability/interchangeability respectively). We show that they satisfy analogous theorems to the ones already known for hard constraints. In $_{\alpha}$ interchangeability, values are interchangeable in any solution that is better than a threshold α , thus allowing to disregard differences among solutions that are not sufficiently good anyway. In $^{\delta}$ interchangeability, values are interchangeable if their exchange could not degrade the solution by more than a factor of δ .

We give efficient algorithms to compute $(^{\delta}/_{\alpha})$ interchangeable sets of value for a large class of SCSPs.

1 Introduction

Substitutability and interchangeability in CSPs have been introduced by Freuder ([1]) in 1991 with the intention of improving search efficiency for solving CSP. Interchangeability has since found other applications in abstraction frameworks ([2, 1]) and solution adaptation ([3, 4]). One of the difficulties with interchangeability has been that it does not occur very frequently.

In many practical applications, constraints can be violated at a cost, and solving a CSP thus means finding a value assignment of minimum cost. Various frameworks for solving such soft constraints have been proposed [5, 6, 7, 8, 9, 10]. The soft constraints framework of c-semirings [9] has been shown to express most of the known variants through different instantiations of its operators, and this is the framework we are considering in this paper.

The most straightforward generalization of interchangeability to soft CSP would require that exchanging one value for another does not change the quality of the solution at all. This generalization is likely to suffer from the same weaknesses as interchangeability in hard CSP, namely that it is very rare.

 $^{^{\}star}$ standard paper

Fortunately, soft constraints also allow weaker forms of interchangeability where exchanging values may result in a degradation of solution quality by some measure δ . By allowing more degradation, it is possible to increase the amount of interchangeability in a problem to the desired level. We define $^{\delta}$ substitutability/interchangeability as a concept which ensures this quality. This is particularly useful when interchangeability is used for solution adaptation.

Another use of interchangeability is to reduce search complexity by grouping together values that would never give a sufficiently good solution. In $_{\alpha}$ substitutability/interchangeability, we consider values interchangeable if they give equal solution quality in all solutions better than α , but possibly different quality for solutions whose quality is $\leq \alpha$.

Just like for hard constraints, full interchangeability is hard to compute, but can be approximated by neighbourhood interchangeability which can be computed efficiently and implies full interchangeability. We define the same concepts for soft constraints, and prove that neighborhood implies full $(^{\delta}/_{\alpha})$ substitutability/interchangeability. We give algorithms for neighborhood $(^{\delta}/_{\alpha})$ substitutability/interchangeability, and we prove several interesting and useful properties of the concepts.

Finally, we give two examples where $(^{\delta}/_{\alpha})$ interchangeability is applied to solution adaptation in configuration problems with two different soft constraint frameworks: delay and cost constraints, and show its usefulness in these practical contexts.

2 Background

2.1 Soft CSPs

Several formalization of the concept of *soft constraints* are currently available. In the following, we refer to the one based on c-semirings [9, 11], which can be shown to generalize and express many of the others [12].

A soft constraint may be seen as a constraint where each instantiations of its variables has an associated value from a partially ordered set which can be interpreted as a set of preference values. Combining constraints will then have to take into account such additional values, and thus the formalism has also to provide suitable operations for combination (\times) and comparison (+) of tuples of values and constraints. This is why this formalization is based on the concept of c-semiring, which is just a set plus two operations.

Semirings. A semiring is a tuple $\langle A, +, \times, \mathbf{0}, \mathbf{1} \rangle$ such that: 1. A is a set and $\mathbf{0}, \mathbf{1} \in A$; 2. + is commutative, associative and $\mathbf{0}$ is its unit element; 3. × is associative, distributes over +, **1** is its unit element and **0** is its absorbing element. A *c*-semiring is a semiring $\langle A, +, \times, \mathbf{0}, \mathbf{1} \rangle$ such that + is idempotent, **1** is its absorbing element and × is commutative. Let us consider the relation \leq_S over A such that $a \leq_S b$ iff a + b = b. Then it is possible to prove that (see [9]): 1. \leq_S is a partial order; 2. + and × are monotone on \leq_S ; 3. **0** is its minimum and **1** its maximum; 4. $\langle A, \leq_S \rangle$ is a complete lattice and, for all $a, b \in A, a + b = lub(a, b)$.

Moreover, if \times is idempotent, then: + distribute over \times ; $\langle A, \leq_S \rangle$ is a complete distributive lattice and \times its glb. Informally, the relation \leq_S gives us a way to

compare semiring values and constraints. In fact, when we have $a \leq_S b$, we will say that *b* is better than *a*. In the following, when the semiring will be clear from the context, $a \leq_S b$ will be often indicated by $a \leq b$.

Constraint Problems. Given a semiring $S = \langle A, +, \times, \mathbf{0}, \mathbf{1} \rangle$ and an ordered set of variables V over a finite domain D, a *constraint* is a function which, given an assignment $\eta : V \to D$ of the variables, returns a value of the semiring.

By using this notation we define $\mathcal{C} = \eta \to A$ as the set of all possible constraints that can be built starting from S, D and V. Note that in this *functional* formulation, each constraint is a function (as defined in [11]) and not a pair (as defined in [9]). Such a function involves all the variables in V, but it depends on the assignment of only a finite subset of them. We call this subset the *support* of the constraint.

Consider a constraint $c \in \mathbb{C}$. We define his support as $supp(c) = \{v \in V \mid \exists \eta, d_1, d_2.c\eta[v := d_1] \neq c\eta[v := d_2]\}$, where

$$\eta[v := d]v' = \begin{cases} d & \text{if } v = v', \\ \eta v' & \text{otherwise.} \end{cases}$$

Note that $c\eta[v := d_1]$ means $c\eta'$ where η' is η modified with the association $v := d_1$ (that is the operator [] has precedence over application).

A soft constraint satisfaction problem is a pair $\langle C, con \rangle$ where $con \subseteq V$ and C is a set of constraints: con is the set of variables of interest for the constraint set C, which however may concern also variables not in con. Note that a classical CSP is a SCSP where the chosen c-semiring is: $S_{CSP} =$ $\langle \{false, true\}, \lor, \land, false, true \rangle$. Fuzzy CSPs [13] can instead be modeled in the SCSP framework by choosing the c-semiring $S_{FCSP} = \langle [0,1], max, min, 0, 1 \rangle$. Many other "soft" CSPs (Probabilistic, weighted, ...) can be modeled by using a suitable semiring structure $(S_{prob} = \langle [0,1], max, \varkappa, 0, 1 \rangle, S_{weight} =$ $\langle \mathcal{R}, min, +, 0, +\infty \rangle, \ldots \rangle$.

Fig. 1 shows the graph representation of a fuzzy CSP. Variables and constraints are represented respectively by nodes and by undirected (unary for c_1 and c_3 and binary for c_2) arcs, and semiring values are written to the right of the corresponding tuples. The variables of interest (that is the set *con*) are represented with a double circle. Here we assume that the domain D of the variables contains only elements a and b.

Combining and projecting soft constraints. Given the set \mathcal{C} , the combination function $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is defined as $(c_1 \otimes c_2)\eta = c_1\eta \times_S c_2\eta$.

In words, combining two constraints means building a new constraint involving all the variables of the original ones, and which associates to each tuple of domain values for such variables a semiring element which is obtained by multiplying the elements associated by the original constraints to the appropriate subtuples. It is easy to verify that $supp(c_1 \otimes c_2) \subseteq supp(c_1) \cup supp(c_2)$.

Given a constraint $c \in \mathcal{C}$ and a variable $v \in V$, the projection of c over $V - \{v\}$, written $c \downarrow_{(V-\{v\})}$ is the constraint c' s.t. $c'\eta = \sum_{d \in D} c\eta[v := d]$. Informally, projecting means eliminating some variables from the support. This is done by

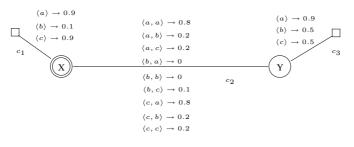


Fig. 1: A fuzzy CSP.

associating to each tuple over the remaining variables a semiring element which is the sum of the elements associated by the original constraint to all the extensions of this tuple over the eliminated variables. In short, combination is performed via the multiplicative operation of the semiring, and projection via the additive one.

Solutions. The solution of an SCSP $P = \langle C, con \rangle$ is the constraint $Sol(P) = (\bigotimes C) \downarrow_{con}$. That is, we combine all constraints, and then project over the variables in *con*. In this way we get the constraint with support *con* which is "induced" by the entire SCSP. Note that when all the variables are of interest we do not need to perform any projection.

For example, the solution of the fuzzy CSP of Fig. 1 associates a semiring element to every domain value of variable x. Such an element is obtained by first combining all the constraints together. For instance, for the tuple $\langle a, a \rangle$ (that is, x = y = a), we have to compute the minimum between 0.9 (which is the value assigned to x = a in constraint c_1), 0.8 (which is the value assigned to $\langle x = a, y = a \rangle$ in c_2) and 0.9 (which is the value for y = a in c_3). Hence, the resulting value for this tuple is 0.8. We can do the same work for tuple $\langle a, b \rangle \rightarrow 0.2$, $\langle a, c \rangle \rightarrow 0.2$, $\langle b, a \rangle \rightarrow 0$, $\langle b, b \rangle \rightarrow 0$, $\langle b, c \rangle \rightarrow 0.1$, $\langle c, a \rangle \rightarrow 0.8$, $\langle c, b \rangle \rightarrow 0.2$ and $\langle c, c \rangle \rightarrow 0.2$. The obtained tuples are then projected over variable x, obtaining the solution $\langle a \rangle \rightarrow 0.8$, $\langle b \rangle \rightarrow 0.1$ and $\langle c \rangle \rightarrow 0.8$.

2.2 Interchangeability

Interchangeability in constraint networks has been first proposed by Freuder [14] to capture equivalence among values of a variable in a discrete constraint satisfaction problem. Value v = a is *substitutable* for v = b if for any solution where v = a, there is an identical solution except that v = b. Values v = a and v = b are *interchangeable* if they are substitutable both ways.

Fig. 2 shows a CSP (taken from [15]) that illustrates interchangeability. *Full* Interchangeability considers all constraints in the problem and checks if a values a and b for a certain variable v can be interchanged without affecting the global solution. In the CSP in Fig. 2, d, e and f are fully interchangeable for v_4 . This is because we inevitably have $v_2 = d$, which implies that v_1 cannot be assigned d in any consistent global solution. Consequently, the values d, e and f can be freely permuted for v_4 in any global solution. PSfrag replacements

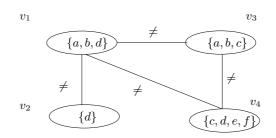


Fig. 2: An example of CSP with interchangeable values.

There is no efficient algorithm for computing full interchangeability, as it may require computing all solutions. The localized notion of *Neighbourhood Interchangeability* considers only the constraints involving a certain variable v. In this notion, a and b are *neighbourhood* interchangeable if for every constraint involving v, for every tuple that admits v = a there is otherwise an identical tuple that admits v = b, and vice-versa. In Fig. 2, e and f are neighbourhood interchangeable for v_4 .

Freuder showed that neighbourhood interchangeability always implies full interchangeability and can therefore be used as an approximation. He also provided an efficient algorithm for computing neighborhood interchangeability [14], and investigated its use for preprocessing CSP before searching for solutions [16].

3 Interchangeability in Soft CSPs

In soft CSPs, there are not any crisp notion of consistency. In fact, each tuple is a possible solution, but with different level of preference. Therefore, in this framework, the notion of interchangeability become finer: to say that values aand b are interchangeable we have also to consider the assigned semiring level.

More precisely, if a domain element a assigned to variable v can be substituted in each tuple solution with a domain element b without obtaining a worse semiring level we say that b is full substitutable for a.

Definition 1 (Full Substitutability (*FS***)).** Consider two domain values b and a for a variable v, and the set of constraints C; we say that b is Full Substitutable for a on v ($b \in FS_v(a)$) if and only if

$$\bigotimes C\eta[v:=a] \leq_S \bigotimes C\eta[v:=b]$$

When we restrict this notion only to the set of constraints C_v that involve variable v we obtain a local version of substitutability.

Definition 2 (Neighborhood Substitutability (NS**)).** Consider two domain values b and a for a variable v, and the set of constraints C_v involving v; we say that b is neighborhood substitutable for a on v ($b \in NS_v(a)$) if and only if

$$\bigotimes C\eta[v:=a] \leq_S \bigotimes C\eta[v:=b]$$

When the relations hold in both directions, we have the notion of Full/Neighborhood interchangeability of b with a.

Definition 3 (Full and Neighborhood Interchangeability (*FI* and *NI***)).** Consider two domain values b and a, for a variable v, the set of all constraints C and the set of constraints C_v involving v. We say that b is Full interchangeable with a on v ($FI_v(a/b)$) if and only if $b \in FS_v(a)$ and $a \in FS_v(b)$, that is

$$\bigotimes C\eta[v:=a] = \bigotimes C\eta[v:=b].$$

We say that b is Neighborhood interchangeable with a on v (NI_v(a/b)) if and only if $b \in NS_v(a)$ and $a \in NS_v(b)$, that is

$$\bigotimes C_v \eta[v := a] = \bigotimes C_v \eta[v := b].$$

This means that when a and b are interchangeable for variable v they can be exchanged without affecting the level of any solution.

Two important results that hold in the crisp case can be proved to be satisfied also with soft CSPs: transitivity and extensivity of interchangeability/substituability.

Theorem 1 (Extensivity: $NS \implies FS$ and $NI \implies FI$). Consider two domain values b and a, for a variable v, the set of constraints C and the set of constraints C_v involving v. Then neighborhood (substituability) interchangeability implies full (substituability) interchangeability.

Theorem 2 (Transitivity: $b \in NS_v(a), a \in NS_v(c) \implies b \in NS_v(c)$). Consider three domain values a, b and c, for a variable v. Then,

$$b \in NS_v(a), a \in NS_v(c) \implies b \in NS_v(c).$$

Similar results hold for FS, NI and FI.

As an example of interchangeability and substitutability consider the fuzzy CSP represented in Fig. 1. The domain value c is neighborhood interchangeable with a on x $(NI_v(a/b))$; in fact, $c_1 \otimes c_2\eta[x := a] = c_1 \otimes c_2\eta[x := c]$ for all η . The domain values c and a are also neighborhood substitutable for b on x $(\{a,c\} \in NS_v(b)\}$. In fact, for any η we have $c_1 \otimes c_2\eta[x := b] \leq c_1 \otimes c_2\eta[x := c]$ and $c_1 \otimes c_2\eta[x := b] \leq c_1 \otimes c_2\eta[x := c]$ and

3.1 Degradations and Thresholds

In soft CSPs, any value assignment is a solution, but may have a very bad preference value. This allows broadening the original interchangeability concept to one that also allows degrading the solution quality when values are exchanged. We call this $^{\delta}$ interchangeability, where δ is the *degradation* factor.

When searching for solutions to soft CSP, it is possible to gain efficiency by not distinguishing values that could in any case not be part of a solution of sufficient quality. In $_{\alpha}$ interchangeability, two values are interchangeable if they

do not affect the quality of any solution with quality better than α . We call α the *threshold* factor.

Both concepts can be combined, i.e. we can allow both degradation and limit search to solutions better than a certain threshold $(^{\delta}_{\alpha}$ interchangeability). By extending the previous definitions we can define thresholds and degradation version of full/neighbourhood substitutability/interchangeability.

Definition 4 (^{δ}Full Substitutability ($^{\delta}FS$)). Consider two domain values b and a for a variable v. Value b is $^{\delta}$ Full Substitutable for a on v ($b \in {}^{\delta}FS_v(a)$) if and only if for all assignments η ,

$$\bigotimes C\eta[v:=a] \times_S \delta \leq_S \bigotimes C\eta[v:=b]$$

Definition 5 ($_{\alpha}$ Full Substitutability ($_{\alpha}FS$)). Consider two domain values b and a, for a variable v, the set of constraints C and a semiring level α ; we say that b is $_{\alpha}$ full substitutable for a on v ($b \in _{\alpha}FS_{v}(a)$) if and only if

$$\bigotimes C\eta[v:=a] \ge \alpha \implies \bigotimes C\eta[v:=a] \le_S \bigotimes C\eta[v:=b]$$

Similarly all the notion of $^{\delta}/_{\alpha}$ Neighborhood Substitutability ($^{\delta}/_{\alpha}NS$) and of $^{\delta}/_{\alpha}$ Full/Neighborhood Interchangeability ($^{\delta}/_{\alpha}FI/NI$) can be defined (just considering the relation in both directions and changing C with C_v).

As an example consider Fig. 1. The domain values c and b for variable y are $_{0.2}$ Neighborhood Interchangeable. In fact, the tuple involving c and b only differ for the tuple $\langle b, c \rangle$ that has value 0.1 and for the tuple $\langle b, b \rangle$ that has value 0. Since we are interested only to solutions greater than 0.2, these tuples are excluded from the match. When $\alpha = 0$, only solutions with identical quality are considered, and for crisp CSP the notion is identical to that defined by Freuder ([14]).

The meaning of the degradation factor δ is that the solution does not get worse than if we had introduced another constraint violation with a semiring value of δ . To better understand the meaning, consider its instantiation in different semirings:

1. fuzzy CSP: $b \in {}^{\delta}FS_v(a)$ gets instantiated to:

$$\min(\min_{c \in C} (c\eta[v := a]), \delta) \le \min_{c \in C} (c\eta[v := b])$$

which means that changing v := a to v := b does not make the solution worse than before or worse than δ . In the practical case where we want to only consider solutions with a quality better than δ , this means that substitution will never put a solution out of this class.

2. weighted CSP: $b \in {}^{\circ}FS_{v}(a)$ gets instantiated to:

$$\sum_{c \in C} c\eta[v := a] + \delta \ge \sum_{c \in C} c\eta[v := b]$$

which means that the penalty for the solution does not increase by more than a factor of δ . This allows for example to express that we would not want to tolerate more than δ in extra cost. Note, by the way, that \geq_S translates to \leq in this version of the soft CSP.

3. probabilistic CSP: $b \in {}^{\delta}FS_v(a)$ gets instantiated to:

$$(\prod_{c \in C} c\eta[v := a]) \cdot \delta \le \prod_{c \in C} c\eta[v := b]$$

which means that the solution with v = b is not degraded by more than a factor of δ from the one with v = a.

4. crisp CSP: $b \in {}^{\delta}FS_v(a)$ gets instantiated to:

$$(\bigwedge_{c\in C} c\eta[v:=a]) \wedge \delta \Rightarrow (\bigwedge_{c\in C} c\eta[v:=b])$$

which means that when $\delta = true$, whenever a solution with v = a satisfies all constraints, so does the same solution with v = b (the same notion as defined by Freuder ([14]). When $\delta = false$, it is trivially satisfied (i.e. δ is too loose a bound to be meaningful).

3.2 Properties of Degradations and Thresholds

As it is very complex to determine full interchangeability/substitutability, we start by showing the fundamental theorem that allows us to approximate $^{\delta}/_{\alpha}FS/FI$ by $^{\delta}/_{\alpha}NS/NI$:

Theorem 3 (Extensivity). $^{\delta}$ neighbourhood substitutability implies $^{\delta}$ full substitutability and $_{\alpha}$ neighbourhood substitutability implies $_{\alpha}$ full substitutability.

This theorem is of fundamental importance since it gives us a way to approximate full interchangeability by neighborhood interchangeability which is much less expensive to compute.

Theorem 4 (Transitivity using thresholds and degradations). Consider three domain values a, b and c, for a variable v. Then,

$$b \in {}^{\delta_1} NS_v(a), \qquad a \in {}^{\delta_2} NS_v(c) \implies b \in {}^{\delta_1 \times \delta_2} NS_v(c) \text{ and} \\ b \in {}_{\alpha_1} NS_v(a), \qquad a \in {}_{\alpha_2} NS_v(c) \implies b \in {}_{\alpha_1 + \alpha_2} NS_v(c)$$

Similar results holds for FS, NI, FI.

In particular when $\alpha_1 = \alpha_2 = \alpha$ and $\delta_1 = \delta_2 = \delta$ we have:

Corollary 1 (Transitivity and equivalence classes). Consider three domain values a, b and c, for a variable v. Then,

 Threshold interchangeability is a transitive relation, and partitions the set of values for a variable into equivalence classes, that is

$$b \in {}_{\alpha}NI_{v}(a), a \in {}_{\alpha}NI_{v}(c) \implies b \in {}_{\alpha}NI_{v}(c)$$

- If the \times_S -operator is idempotent, then degradation interchangeability is a transitive relation, and partitions the set of values for a variable into equivalence classes, that is

$$b \in {}^{\delta}NI_{v}(a), a \in {}^{\delta}NI_{v}(c) \implies b \in {}^{\delta}NI_{v}(c)$$

By using degradations and thresholds we have a nice way to decide when two domain values for a variable can be substituable/interchangeable. In fact, by changing the α or δ parameter we can obtain different results.

Computing δ/α -substitutability/interchangeability $\mathbf{3.3}$

As it is very complex to determine full interchangeability/substitutability, the result of Theorem 1 is fundamental since it gives us a way to approximate full substituability/interchangeability by neighbourhood substituability/interchangeability which is much less costly to compute.

The most general algorithm for neighborhood substituability/interchangeability in the soft CSP framework is to check for each pair of values whether the condition given in the definition holds or not. This algorithm has a time complexity exponential in the size of the neighbourhood and quadratic in the size of the domain (which may not be a problem when neighbourhoods are small).

Better algorithms can be given when the times operator of the semiring is idempotent. In this case, instead of considering the combination of all the constraint C_v involving a certain variable v, we can check the property we need (NS/NI and their relaxed version $\frac{\delta}{\alpha}NS/NI$) on each constraint itself.

Theorem 5. Consider two domain values b and a, for a variable v, and the set of constraints C_v involving v. If the times operator of the semiring is idempotent we have:

- $\begin{array}{l} \ if \ \forall c \in C_v \ we \ have \ c\eta[v := a] \leq_S c\eta[v := b], \ then \ b \in NS_v(a); \\ \ if \ \forall c \in C_v \ we \ have \ c\eta[v := a] \times_S \delta \leq_S c\eta[v := b], \ then \ b \in {}^{\delta}NS_v(a); \\ \ if \ \forall c \in C_v \ we \ have \ c\eta[v := a] \geq \alpha \implies c\eta[v := a] = c\eta[v := b], \ then \ have \ c\eta[v := b], \ then \ have \ c\eta[v := b], \ then \ have \ c\eta[v := b] = c\eta[v := b], \ then \ have \ b(v := b], \ then \$ $b \in {}_{\alpha}NS_v(a).$

By using Theorem 5 (and Corollary 1 for $^{\delta}/_{\alpha}NS$) we can find substituable/interchangeable domain values more efficiently. Algorithm 1 shows an algorithm that can be used to find domain values that are Neighborhood Interchangeable. It uses a data structure called *discrimination trees*, first introduced by Freuder in [14]. Every leaf node in the discrimination tree corresponds to a set of assignments to variables in the neighbourhood of v that are compatible with some value of v itself. Interchangeable values are found by the fact that they fall into the same leaf node. Algorithm 1 can compute different versions of neighbourhood interchangeability depending on the procedure NI - nodes used. Algorithm 2 shows the simplest version without threshold or degradation. The algorithm is very similar to that defined by Freuder in [14], and when we consider the semiring for classical CSPs $S_{CSP} = \langle \{false, true\}, \lor, \land, false, true \rangle$ and all

- 1: Create the root of the discrimination tree for variable v
- 2: Let $C_v = \{c \in C \mid v \in supp(c)\}$
- 3: Let $D_{v_i} = \{$ the set of domain values d_{v_i} for variable $v_i \}$
- 4: for all $d_{v_i} \in D_{v_i}$ do
- 5: for all $c \in C_v$ do
- 6: execute Algorithm NI-nodes(c) to build the nodes associated to c
- 7: Add v_i , $\{d_{v_i}\}$ to annotation of the node,
- 8: Go back to the root of the discrimination tree.

Algorithm 1: Algorithm to compute neighbourhood interchangeable sets.

- 1: for all assignments η_c to variables in supp(c) do
- 2: compute the semiring level $\beta = c\eta_c[v_i := d_{v_i}],$
- 3: if there exists a child node corresponding to $\langle c = \eta_c, \beta \rangle$ then
- 4: move to it,
- 5: **else**
- 6: construct such a node and move to it.

Algorithm 2: NI - Nodes(c) for Soft-NI.

constraints are binary, it computes the same result. When all constraints are binary, considering all constraints involving variable v is the same as considering all variables connected to v by a constraint, and our algorithm performs steps as that given by Freuder.

We can determine the complexity of the algorithm by considering that the algorithm calls NI - Nodes for each k - ary constraint exactly once for each value of each the k variables; this can be bounded from above by k * d with d the maximum domain size. Thus, given m constraints, we obtain a bound of

$$O(m * k * d * O(Procedure NI - nodes)).$$

The complexity of Procedure NI-nodes strictly depends on the size of the domain d and from the number of variables k involved in each constraint and is given as

$$O(Procedure NI - nodes) = d^{k-1}.$$

For complete constraint graphs of binary constraints (k = 2), we obtain the same complexity bound of $O(n^2d^2)$ as Freuder in [14].

Algorithms for the relaxed versions of NI are obtained by substituting different versions of Procedure 2. For $_{\alpha}NI$, the algorithm needs to only consider tuples whose semiring value is lower than α , as shown in Procedure 3. For $^{\delta}NI$, the algorithm needs to only consider tuples that can cause a degradation by more than δ , as shown in Procedure 4. As both procedures treat the same assignments as Procedure 2, their complexity remains unchanged at $O(d^{k-1})$.

4 An Example

Fig. 3 shows the graph representation of a CSP which might represent a car configuration problem.

- 1: for all assignments η_c to variables in supp(c) s.t. $\alpha \leq_S c\eta_c[v_i := d_{v_i}]$ do
- 2: compute the semiring level $\beta = c\eta_c [v_i := d_{v_i}],$
- 3: if there exists a child node corresponding to $\langle c = \eta_c, \beta \rangle$ then
- 4: move to it,
- 5: else
- 6: construct such a node and move to it.

Algorithm 3:
$$NI - Nodes(c)$$
 for α -Soft- NI

- 1: for all assignments η_c to variables in supp(c) do
- 2: compute the semiring level $\beta = c\eta_c[v_i := d_{v_i}],$
- 3: if there exists a child node corresponding to $\langle c = \eta_c, \beta', \bar{\beta} \rangle$ with $(\bar{\beta} \leq \beta) \wedge (\beta \times \delta \leq \beta')$ then
- 4: move to it and change the label as $\langle c = \eta_c, glb(\beta', \beta), \bar{\beta} + (\beta \times \delta) \rangle$,
- 5: else
- 6: construct the node $\langle c = \eta_c, \beta, \beta \times \delta \rangle$ and move to it.

Algorithm 4:
$$NI - Nodes(c)$$
 for δ -Soft-NI.

A product catalog might represent the available choices through a soft CSP. With different choices of semiring, the CSP of Fig. 3 can represent different problem formulations:

- Example1 - for optimizing the cost of the product, a representation as a weighted CSP might be most appropriate. Here, the semiring models the cost of the different options and their integration with the others, using the semiring: $\langle \Re^+, \min, +, +\infty, 0 \rangle$. We might have the constraints:

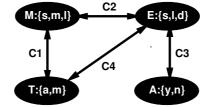


Fig. 3: Example of a CSP modeling car configuration. It has 4 variables: M = model, T = transmission, A = Air Conditioning, E = Engine.

and also unary constraints C_M, C_E, C_T and C_A that model the cost of the components:

$$C_M = \frac{s \ m \ l}{10 \ 20 \ 30} \quad C_E = \frac{s \ l \ d}{10 \ 20 \ 20} \quad C_T = \frac{a \ m}{15 \ 10} \quad C_A = \frac{y \ n}{10 \ 0}$$

- Example2 - another optimization criterion might be the time it takes to build the car. Delay is determined by the time it takes to obtain the components and to obtain reserve the resources for the assembly process. For the delivery time of the car, only the longest delay would matter. This could be modelled by the semiring: $< \Re^+, min, max, +\infty, 0 >$, with the binary constraints:

$$C_{1} = \frac{\begin{pmatrix} M \\ s \ m \ l \\ m \\ 2 \ 4 \ \infty \end{pmatrix}}{ \begin{array}{c} M \\ r \\ s \ m \ l \\ 2 \ 4 \ \infty \end{array}} C_{2} = \frac{\begin{pmatrix} M \\ s \ m \ l \\ s \\ m \\ l \\ 2 \ 3 \ \infty \end{array}}{ \begin{array}{c} C_{3} = \frac{E \\ s \ l \ d \\ A \ y \\ 0 \ 30 \ 0 \end{array}} C_{4} = \frac{E \\ s \ l \ d \\ T \ a \\ m \\ 4 \ 10 \ 3 \end{array}}{ \begin{array}{c} m \\ s \ l \ d \\ m \\ 4 \ 10 \ 3 \end{array}}$$

and unary constraints C_M, C_E, C_T and C_A that model the time to obtain the components:

$$C_M = \frac{s m l}{2 3 3}$$
 $C_E = \frac{s l d}{3 2 3}$ $C_T = \frac{a m}{1 2}$ $C_A = \frac{y n}{3 0}$

Let's now consider the variable E of the time optimization example, and let's compute $^{\delta}/_{\alpha}NS/NI$ between its values. Fig. 4 shows how the occurrence of $^{\delta}/_{\alpha}NS$ change depending on δ and α degrees.

We can notice that when δ takes values 0 (the **1** of the optimization semiring) small degradation is allowed in the CSP tuples when the values are substituted; thus only value *s* can be substituted for value *d*. As δ increases in value (or decreases from the semiring point of view) higher degradation of the solutions is allowed and thus the number of substitutabilities increase with it.

In the second part of the Fig. 4 we can see that for $\alpha = 0$ as there are no solutions better than α , there no matter how one choose the values and thus all the values are α -interchangeable. For a certain threshold ($\alpha = 4$) values s and d are $_{\alpha}$ interchangeable and value l can substitute values s and d. In this example for an $\alpha \geq 4$ only s can substitute d. We calculate now the $^{\delta}/_{\alpha}$ substitutability between values of variable E for the weighted CSP example. Fig. 4 shows how occurrence of $^{\delta}/_{\alpha}$ substitutability among values of variable E change w.r.t. δ and α . We can see that when δ takes high values of the semiring, small degradation in the solution is allowed. Thus for $\delta = 0$ there is no substitutability between the values of variable E. As δ decreases in the values of the semiring, here goes to ∞ - the cost increases, there is more degradation allowed in the solution and thus more $^{\delta}$ substitutability among the values of the variable E.

For high semiring values of α as there are no good solutions, all the values are interchangeable. In the example in the Fig. 4 only value s is α substitutable for value d of variable E.

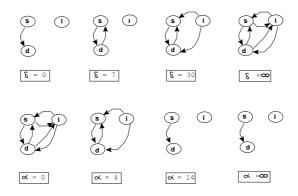


Fig. 4: Example of how δ -substitutability and α -substitutability varies in a soft CSP over the values of variable E from Fig. 3.

(s) (l) (d) (l) (l) (l) (l) (l) (l) (l) (l) (l) (l	s l d	S I d	S I d
& = 0	8 = 5	§ = 27	<i>δ</i> =∞
S I d d	s I T	s l (d	S () (d
X = 0	cx = 15	c = 37	o, =∞

Fig. 5: Example of how δ -substitutability and α -substitutability varies in a weighted CSP over the values of variable E from Fig. 3.

We will illustrate now how to use Algorithm 1 with Procedure 3 to compute $_{\alpha}$ interchangeability for the variable M of Fig. 3. Fig. 6 show the discrimination tree for values of variable M when $\alpha = 3$ and $\alpha = 6$. We can see that values m and l for variable M are ₃ interchangeable whilst there are no interchangeabilities for $\alpha = 6$.

5 Conclusions

Interchangeability in CSPs has found many applications for problem abstraction and solution adaptation. In this paper, we have shown how the concept can be extended to soft CSPs in a way that maintains the attractive properties already known for hard constraints.

The two parameters α and δ allow us to express a wide range of practical situations. The threshold α is used to eliminate distinctions that would not interest us anyway, while the allowed degradation δ specifies how precisely we

$\begin{array}{c} \mbox{root for M} \\ \hline \\ (C_M = s, 2) \\ (C_M = m, 2) \\ (C_M = 1, 2) \\ (C_1 = (s, a), 3) \\ (C1 = (s, a), 2) \\ (C1 = (m, a), 2) \\ (C1 = (m, a), 3) \\ (C1 = (m, a), 3) \\ (C1 = (m, a), 3) \\ (C1 = (1, a), 3) \\ (C2 = (s, b), 2) \\ (C2 = (s, b), 2) \\ (C2 = (s, b), 2) \\ (C2 = (m, b), 3) \\ (C2 = (m, b), 3) \\ (C2 = (m, b), 2) \\ (C2 = (1, b), 3) \\ (C2 = (1, b), 3) \\ (C2 = (1, b), 3) \\ (C2 = (1, b), 2) \\ (C2 = (1, b), 3) \\ (C2 = (1, b), 3) \\ (C2 = (1, b), 2) \\ (C2 = (1, b)$	$\begin{array}{c} (C_{M} = s, 3) \\ (C_{M} = n, 3) \\ (C_{M} = 1, 3) \\ (C1 = (s, a), 3) \\ (C1 = (s, a), 3) \\ (C1 = (m, a), 3) \\ (C1 = (m, a), 3) \\ (C1 = (m, a), 3) \\ (C2 = (s, b), 3) \\ (C2 = (s, b), 3) \\ (C2 = (s, b), 3) \\ (C2 = (m, b), 3) \\ (C3 = (m, b), 3) \\ (C4 = (m, b), 3) \\ (C4 = (m, b), 3) \\ (C5 = (m, b)$	$\begin{array}{c} \mbox{root for M} \\ \hline \\ (C_M = s, 2) \\ (C_M = m, 2) \\ (C_M = 1, 2) \\ (C1 = (s, a), 6) \\ (C1 = (s, m), 2) \\ (C1 = (m, m), 2) \\ (C1 = (m, m), 2) \\ (C1 = (1, m), 3, 6) \\ (C1 = (1, m), 2) \\ (C2 = (s, 1), 6) \\ (C2 = (s, 1), 6) \\ (C2 = (m, 1), 6) \\ (C2 = (m, 1), 6) \\ (C2 = (m, 1), 6) \\ (C2 = (1, 1), 6) \\ (C3 = (1, 1), 6) \\ (C4 = (1, 1), 6) \\ (C4 = (1, 1), 6) \\ (C5 = (1, $	$\begin{array}{c} (C_{\rm M} = {\rm s}, 3) \\ (C_{\rm M} = {\rm m}, 3) \\ (C_{\rm M} = {\rm l}, 3) \\ (C_{\rm M} = {\rm l}, 3) \\ (Cl = ({\rm s}, {\rm a}), 3) \\ (Cl = ({\rm m}, {\rm a}), 3) \\ (Cl = ({\rm m}, {\rm a}), 3) \\ (Cl = ({\rm m}, {\rm a}), 3) \\ (Cl = ({\rm l}, {\rm a}), 3) \\ (Cl = ({\rm l}, {\rm a}), 3) \\ (Cl = ({\rm s}, {\rm s}), 3) \\ (C2 = ({\rm s}, {\rm s}), 3) \\ (C2 = ({\rm s}, {\rm s}), 3) \\ (C2 = ({\rm m}, {\rm s}), 3) \\ (C2 = ({\rm m}, {\rm s}), 3) \\ (C2 = ({\rm m}, {\rm s}), 3) \\ (C2 = ({\rm l}, {\rm s}), 3) \\ (C2$	$\begin{array}{c} & (C1 = (s, a), 4) \\ \bullet & (C1 = (s, m), 6) \\ \bullet & (C1 = (m, a), 4) \\ \bullet & (C1 = (m, a), 4) \\ \bullet & (C1 = (m, a), 4) \\ \bullet & (C1 = (1, a), 4) \\ \bullet & (C1 = (1, a), 6) \\ \bullet & (C2 = (s, s), 2) \\ \bullet & (C2 = (s, d), 6) \\ \bullet & (C2 = (m, a), 2) \\ \bullet & (C2 = (n, d), 2) \\ \bullet & (C2 = (1, s), 6) \\ \bullet & (C2 = (1, a), 6) \\ \bullet & (C2 = (1, d), 6) \\ \bullet & (C2 = (1, d), 6) \end{array}$
M = s	$M=\{m,l\}$	M = s	M = m	M = 1
(= 3)		(ch	. = 6	

Fig. 6: Example of a search of α -interchangeability computing by the use of discrimination trees.

want to optimize our solution. We are now conducting a detailed investigation on how variation of these parameters affects interchangeability on random problems.

References

ſ

- Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction Problems. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227–233
- Haselbock, A.: Exploiting Interchangeabilities in Constraint Satisfaction Problems. In Proc. of the 13 th IJCAI (1993) 282–287
- [3] Weigel, R., Faltings, B.: Interchangeability for Case Adaptation in Configuration Problems. In Proceedings of the AAAI98 Spring Symposium on Multimodal Reasoning, Stanford, CA, TR SS-98-04. (1998)
- [4] Neagu, N., Faltings, B.: Exploiting Interchangeabilities for Case Adaptation. In Proc. of the 4th ICCBR01 (2001)
- [5] Freuder, E., Wallace, R.: Partial constraint satisfaction. AI Journal 58 (1992)
- [6] Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proc. IEEE International Conference on Fuzzy Systems, IEEE (1993) 1131–1136
- [7] Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proc. 3rd IEEE International Conference on Fuzzy Systems. (1994) 1263–1268
- [8] Schiex, T., Fargier, H., Verfaille, G.: Valued Constraint Satisfaction Problems: Hard and Easy Problems. In: Proc. IJCAI95, San Francisco, CA, USA, Morgan Kaufmann (1995) 631–637
- [9] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Solving and Optimization. Journal of the ACM 44 (1997) 201–236
- [10] Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Logic Programming: Syntax and Semantics. ACM Transactions on Programming Languages and System (TOPLAS) 23 (2001) 1–29
- Bistarelli, S., Montanari, U., Rossi, F.: Soft concurrent constraint programming. In: Proc. ESOP, April 6 - 14, 2002, Grenoble, France. LNCS, Springer-Verlag (2002)

- [12] Bistarelli, S., Fargier, H., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G.: Semiring-based CSPs and Valued CSPs: Frameworks, properties, and comparison. CONSTRAINTS: An international journal. Kluwer 4 (1999)
- [13] Schiex, T.: Possibilistic constraint satisfaction problems, or "how to handle soft constraints?". In: Proc. 8th Conf. of Uncertainty in AI. (1992) 269–275
 [14] Freuder, E.C.: Eliminating Interchangeable Values in Constraint Satisfaction
- Problems. In: In Proc. of AAAI-91, Anaheim, CA (1991) 227-233
- [15] Choueiry, B.Y., Noubir, G.: On the Computation of Local Interchangeability in Discrete Constraint Satisfaction Problems. In: Proc. of AAAI-98, Madison, Wiscowsin (1998) 326–333
- [16] Benson, B., Freuder, E.: Interchangeability Preprocessing can Improve Forward Checking Search. In Proc. of the 10 th Ecai, pages 28-30, Vienna, Austria (1992)