
CS1101: Lecture 9
The Shell as a Programming

Language

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation UNIX Shell Scripting

Lecture Outline

� Counting Arguments

� Using read

� The set Command

� Arithmetic using expr

� Control Structures

– The if Statement
– Example: if Statement
– The test Command
– Using elif and else

� Taken from: Anderson – Just Enough UNIX

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation UNIX Shell Scripting

Counting Arguments

� The parameter $# contains the number of
arguments that the user typed.

� We can modify the script echo.args once
again to use this parameter:

#!/bin/sh
Illustrate the use of positional parameters
echo You typed $# arguments: $*

� Suppose we were then to type the command
line

$ echo.args To be or not to be

� The computer would respond with

You typed 6 arguments: To be or not to be

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation UNIX Shell Scripting

Using read

� The positional parameters are useful for
capturing command-line arguments but they
have a limitation: once the script begins
running, the positional parameters cannot be
used for obtaining more input from the standard
input.

� For this you have to use the read statement.

� Let’s modify the previous program to make use
of read:

#!/bin/sh
Illustrate the use of positional parameters, user-defined
variables and the read command.
echo ’What is your name?’
read name
echo "Well, $name, you typed $# arguments:
echo "$*"

Department of Computer Science, University College Cork 3

CS1101: Systems Organisation UNIX Shell Scripting

� In this script, name is a user-defined variable.

Department of Computer Science, University College Cork 4

CS1101: Systems Organisation UNIX Shell Scripting

The set Command

� The positional parameters are sometimes
called read-only variables, because the shell
gets their values for you when you type
arguments to the script.

� However, you can also set their values using
the set command.

� To illustrate this, consider the following shell
script, which we will assume is in the file
setdate:

#!/bin/sh
Demonstrate the set command
set ‘date‘
echo "Time: $4 $5"
echo "Day: $1"
echo "Date: $3 $2 $6"

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation UNIX Shell Scripting

The set Command

� Assuming that setdate has been made
executable with the chmod command, we
can run the script by typing setdate as a
command name

� The output will look something like this:

Time: 10:56:08 EST
Day: Fri
Date: 10 Aug 2001

� What happened?

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation UNIX Shell Scripting

The set Command

� The backquotes in the set ‘date‘ command
run the UNIX date command, which produces
output something like this:

Fri Aug 10 10:56:08 EST 2001

� This does not appear on the screen.

� Instead, the set command catches the output
in the positional parameters $1 through $6:

– $1 contains Fri
– $2 contains Aug
– $3 contains 10
– $4 contains 10:56:08
– $5 contains EST
– $6 contains 2001

Department of Computer Science, University College Cork 7

CS1101: Systems Organisation UNIX Shell Scripting

Arithmetic using expr

� The shell is not intended for numerical work – if
you have to do a lot of calculations, you should
consider C, FORTRAN, or Java.

� Nevertheless, the expr utility may be used
to perform simple arithmetic operations on
integers

� expr is not a shell command, but rather a
separate UNIX utility; however, it is most often
used in shell scripts.

� To use it in a shell script, you simply surround
the expression with backquotes.

Department of Computer Science, University College Cork 8

CS1101: Systems Organisation UNIX Shell Scripting

Arithmetic using expr

� For example, here is a simple script called add
that adds two numbers typed as arguments:

#!/bin/sh
Add two numbers
sum=‘expr $1 + $2‘
echo $sum

� Example of its use:

$ add 4 3
7
$

� The expr command only works on integers (i.e.,
whole numbers).

� It can perform addition (+), subtraction (-),
multiplication (*), integer division (/) and integer
remainder (%).

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation UNIX Shell Scripting

Control Structures

� Normally, the shell processes the commands
in a script sequentially, one after another in the
order they are written in the file.

� Often, however, you will want to change the
way that commands are processed.

� You may want to choose to run one command
or another, depending on the circumstances;
or you may want to run a command more than
once.

� To alter the normal sequential execution of
commands, the shell offers a variety of control
structures.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation UNIX Shell Scripting

Control Structures

� There are two types of selection structures,
which allow a choice between alternative
commands:

– if/then/elif/else/fi
– case

� There are three types of repetition or iteration
structures for carrying out commands more
than once:

– for
– while
– until

Department of Computer Science, University College Cork 11

CS1101: Systems Organisation UNIX Shell Scripting

The if Statement

� The if statement lets you choose whether
to run a particular command (or group of
commands), depending on some condition.

� The simplest version of this structure has the
general form

if conditional expression
then

command(s)
fi

� When the shell encounters a structure such
as this, it first checks to see whether the
conditional expression is true.

� If so, the shell runs any commands that it finds
between the then and the fi (which is just if
spelled backwards).

Department of Computer Science, University College Cork 12

CS1101: Systems Organisation UNIX Shell Scripting

� If the conditional expression is not true, the
shell skips the commands between then and
fi.

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation UNIX Shell Scripting

Example: if Statement

� Here is an example of a shell script that uses a
simple if statement:

#!/bin/sh
set ‘date‘
if test $1 = Fri
then

echo "Thank goodness it’s Friday!"
fi

Department of Computer Science, University College Cork 14

CS1101: Systems Organisation UNIX Shell Scripting

The test Command

� Here we have used the test command in our
conditional expression.

� The expression

test $1 = Fri

checks to see if the parameter $1 contains Fri;
if it does, the test command reports that the
condition is true, and the message is printed.

� The test command can carry out a variety of
tests; refer to some documentation for details.

Department of Computer Science, University College Cork 15

CS1101: Systems Organisation UNIX Shell Scripting

Using elif and else

� We can make the selection structures much
more elaborate by combining the if statement
with the elif (“else if”) and else statements.

� Here is a simple example:

#!/bin/sh
set ‘date‘
if test $1 = Fri
then

echo "Thank goodness it’s Friday!"
elif test $1 = Sat 11 test $1 = Sun
then

echo "You should not be here working."
echo "Log off and go home."

else
echo "It is not yet the weekend."
echo "Get to work!"

fi

Department of Computer Science, University College Cork 16

