
CS1101: Lecture 9
The Shell as a Programming

Language

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation UNIX Shell Scripting

Lecture Outline

� Counting Arguments

� Using read

� The set Command

� Arithmetic using expr

� Control Structures

– The if Statement
– Example: if Statement
– The test Command
– Using elif and else

� Taken from: Anderson – Just Enough UNIX
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Counting Arguments

� The parameter $# contains the number of
arguments that the user typed.

� We can modify the script echo.args once
again to use this parameter:

#!/bin/sh
# Illustrate the use of positional parameters
echo You typed $# arguments: $*

� Suppose we were then to type the command
line

$ echo.args To be or not to be

� The computer would respond with

You typed 6 arguments: To be or not to be
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Using read

� The positional parameters are useful for
capturing command-line arguments but they
have a limitation: once the script begins
running, the positional parameters cannot be
used for obtaining more input from the standard
input.

� For this you have to use the read statement.

� Let’s modify the previous program to make use
of read:

#!/bin/sh
# Illustrate the use of positional parameters, user-defined
# variables and the read command.
echo ’What is your name?’
read name
echo "Well, $name, you typed $# arguments:
echo "$*"
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� In this script, name is a user-defined variable.
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The set Command

� The positional parameters are sometimes
called read-only variables, because the shell
gets their values for you when you type
arguments to the script.

� However, you can also set their values using
the set command.

� To illustrate this, consider the following shell
script, which we will assume is in the file
setdate:

#!/bin/sh
# Demonstrate the set command
set ‘date‘
echo "Time: $4 $5"
echo "Day: $1"
echo "Date: $3 $2 $6"
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The set Command

� Assuming that setdate has been made
executable with the chmod command, we
can run the script by typing setdate as a
command name

� The output will look something like this:

Time: 10:56:08 EST
Day: Fri
Date: 10 Aug 2001

� What happened?
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The set Command

� The backquotes in the set ‘date‘ command
run the UNIX date command, which produces
output something like this:

Fri Aug 10 10:56:08 EST 2001

� This does not appear on the screen.

� Instead, the set command catches the output
in the positional parameters $1 through $6:

– $1 contains Fri
– $2 contains Aug
– $3 contains 10
– $4 contains 10:56:08
– $5 contains EST
– $6 contains 2001
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Arithmetic using expr

� The shell is not intended for numerical work – if
you have to do a lot of calculations, you should
consider C, FORTRAN, or Java.

� Nevertheless, the expr utility may be used
to perform simple arithmetic operations on
integers

� expr is not a shell command, but rather a
separate UNIX utility; however, it is most often
used in shell scripts.

� To use it in a shell script, you simply surround
the expression with backquotes.
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Arithmetic using expr

� For example, here is a simple script called add
that adds two numbers typed as arguments:

#!/bin/sh
# Add two numbers
sum=‘expr $1 + $2‘
echo $sum

� Example of its use:

$ add 4 3
7
$

� The expr command only works on integers (i.e.,
whole numbers).

� It can perform addition (+), subtraction (-),
multiplication (*), integer division (/) and integer
remainder (%).
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Control Structures

� Normally, the shell processes the commands
in a script sequentially, one after another in the
order they are written in the file.

� Often, however, you will want to change the
way that commands are processed.

� You may want to choose to run one command
or another, depending on the circumstances;
or you may want to run a command more than
once.

� To alter the normal sequential execution of
commands, the shell offers a variety of control
structures.
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Control Structures

� There are two types of selection structures,
which allow a choice between alternative
commands:

– if/then/elif/else/fi
– case

� There are three types of repetition or iteration
structures for carrying out commands more
than once:

– for
– while
– until
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The if Statement

� The if statement lets you choose whether
to run a particular command (or group of
commands), depending on some condition.

� The simplest version of this structure has the
general form

if conditional expression
then

command(s)
fi

� When the shell encounters a structure such
as this, it first checks to see whether the
conditional expression is true.

� If so, the shell runs any commands that it finds
between the then and the fi (which is just if
spelled backwards).
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� If the conditional expression is not true, the
shell skips the commands between then and
fi.
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Example: if Statement

� Here is an example of a shell script that uses a
simple if statement:

#!/bin/sh
set ‘date‘
if test $1 = Fri
then

echo "Thank goodness it’s Friday!"
fi
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The test Command

� Here we have used the test command in our
conditional expression.

� The expression

test $1 = Fri

checks to see if the parameter $1 contains Fri;
if it does, the test command reports that the
condition is true, and the message is printed.

� The test command can carry out a variety of
tests; refer to some documentation for details.
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Using elif and else

� We can make the selection structures much
more elaborate by combining the if statement
with the elif (“else if”) and else statements.

� Here is a simple example:

#!/bin/sh
set ‘date‘
if test $1 = Fri
then

echo "Thank goodness it’s Friday!"
elif test $1 = Sat 11 test $1 = Sun
then

echo "You should not be here working."
echo "Log off and go home."

else
echo "It is not yet the weekend."
echo "Get to work!"

fi
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