
CS1101: Lecture 8
UNIX Shell Scripts

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation UNIX Shell Scripting

Lecture Outline

� Shell Scripts

� Simple Shell Scripts

– Running the Script
– Permissions – chmod
– Subshells
– Defining our Subshell

� The Shell as a Programming Language

– Variables
– Environment Variables
– User-created Variables
– Positional Parameters

� Taken from: Anderson – Just Enough UNIX

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation UNIX Shell Scripting

Shell Scripts

� Until now we have used the UNIX shell as a
command-line interpreter.

� The shell can also be used as a high-level
programming language.

� Instead of entering commands one at a time
in response to the shell prompt, you can put a
number of commands in a file, to be executed
all at once by the shell.

� A program consisting of shell commands is
called a shell script.

� This lecture will introduce you to shell scripts
for the Bourne Shell.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation UNIX Shell Scripting

Simple Shell Scripts

� Suppose you were to make up a file named
commands containing the following lines:

A simple shell script
cal
date
who

� The first line in this file begins with a # symbol,
which indicates a comment line.

� Anything following the # is ignored by the shell.

� The remaining three lines are shell commands:

– the first produces a calendar for the current
month,

– the second gives the current date and time
– the third lists the users currently logged onto

your system.

Department of Computer Science, University College Cork 3

CS1101: Systems Organisation UNIX Shell Scripting

Running the Script

� One way to get the Bourne Shell (sh) to run
these commands is to type:

$ sh < commands

� The redirection operator (�) tells the shell to
read from the file commands instead of from
the standard input.

� It turns out, however, that the redirection
symbol is not really needed in this case.

� Thus, you can also run the commands file by
typing

sh commands

Department of Computer Science, University College Cork 4

CS1101: Systems Organisation UNIX Shell Scripting

Permissions

� Is there any way to set up commands so that
you can run it without explicitly invoking the
shell?

� In other words, can you run commands without
first typing sh, csh, or ksh?

� The answer is yes, but you first have to make
the file executable.

� The chmod utility does this:

$ chmod u+x commands

� Now all you need do is type the file name:

$ commands

and the shell will run the commands in the file.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation UNIX Shell Scripting

Subshells

� When you tell the shell to run a script such
as the commands file, your login shell actually
calls up another shell process to run the script.
(Remember, the shell is just another program,
and UNIX can run more than one program at a
time.)

� The parent shell waits for its child to finish, then
takes over and gives you a prompt:

$

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation UNIX Shell Scripting

Subshells

� Incidentally, a subshell can be different from its
parent shell.

� For example, you can have csh or ksh as your
login shell, but use sh to run your shell scripts.

� Many users in fact do this.

� When it comes time to run a script, the csh or
ksh simply calls up sh as a subshell to do the
job.

Department of Computer Science, University College Cork 7

CS1101: Systems Organisation UNIX Shell Scripting

Defining our Subshell

� We will always use sh for running shell scripts.

� To make sure that sh is used, we will include
the following line at the top of each shell script
file:

#!/bin/sh

� In this case # does not mark a comment.

� Thus, our commands file would look something
like this:

#!/bin/sh
A simple shell script
cal
date
who

Department of Computer Science, University College Cork 8

CS1101: Systems Organisation UNIX Shell Scripting

The Shell as a Programming Language

� The sample script commands is almost trivial –
it does nothing more than execute three simple
commands that you could just as easily type
into the standard input.

� The shell is actually is, in fact, a sophisticated
programming language, with many of the
features found in other programming languages:

– Variable
– Input-Output functions
– Arithmetic operations
– Conditional expressions
– Selection structures
– Repetition structures

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation UNIX Shell Scripting

Variables

� There are three types Of variables commonly
used in Bourne Shell scripts:

– Environment variables: Sometimes called
special shell variables, keyword variables,
predefined shell variables, or standard shell
variables, they are used to tailor the
operating environment to suit Your needs.
Examples include TERM, HOME, MAIL

– User-created varables: These are variables
that you create yourself.

– Positional Parameters: These are used by
the shell to store the values of command-line
arguments.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation UNIX Shell Scripting

Environment Variables

� Some standard shell variables (such as HOME,
SHELL) are set automatically for you when you
log in.

� Others (such as TERM) you may set yourself –
usually in one of your startup configuration files
(.profile, for example).

� To define an environment variable called
TERM, setting it equal to vt100:

TERM=vt100
export TERM

� To list the environment variables defined on
your system type set at the command prompt.

Department of Computer Science, University College Cork 11

CS1101: Systems Organisation UNIX Shell Scripting

User-created Variables

� You can specify these yourself, give them
whatever names you wish.

� Example: create a synonym for a directory:

stuff=/user/local/users/allsorts
export stuff

� To refer to this directory you can type:

cd $stuff

Department of Computer Science, University College Cork 12

CS1101: Systems Organisation UNIX Shell Scripting

Positional Parameters

� The positional parameters are very useful in
shell programming.

� The positional parameters are also called
read-only variables, or automatic variables,
because the shell sets them for you automatically.

� They ”capture” the values of the command-line
arguments that are to be used by a shell script.
The positional parameters are numbered 0, 1,
2, 3, ����� , 9.

� To illustrate their use, consider the following
shell script, and assume that it is contained in
an executable file named echo.args:

#!/bin/sh

Illustrate the use of positional parameters
echo $0 $1 $2 $3 $4 $5 $6 $7 $8 $9

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation UNIX Shell Scripting

Positional Parameters

� Suppose you run the script by typing the
command line:

echo.args We like UNIX.

� The shell stores the name of the command
(“echo.args”) in the parameter $0; it puts
the argument “We” in the parameter $1; it
puts “like” in the parameter $2, and “UNIX.” in
parameter $3.

� Since that takes care of all the arguments, the
rest of the parameters are left empty.

� Then the script prints the contents of the
variables:

echo.args We like UNIX.

Department of Computer Science, University College Cork 14

CS1101: Systems Organisation UNIX Shell Scripting

Positional Parameters

� What if the user types in more than nine
arguments?

� The positional parameter $* contains all of
the arguments $1, $2, $3, ... $9, and any
arguments beyond these nine.

� Thus, we can rewrite echo. args to handle any
number of arguments:

#!/bin/sh
Illustrate the use of positional parameters
echo $*

Department of Computer Science, University College Cork 15

