
CS1101: Lecture 40
Linking & Loading

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Introduction

• Linking & Loading

• The Complete Translation Process

• Object Files and Executables

• Tasks Performed by the Linker

• Example: Loaded & Linked Program

• The Relocation Problem

• The External Reference Problem

• Structure of an Object Module

• A Final Word...

• Reading: Tanenbaum, Chapter 7, Section 4.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

Introduction

• Most programs consist of more than one
procedure.

• Compilers and assemblers generally translate
one procedure at a time and put the translated
output on disk.

• Before the program can be run, all the
translated procedures must be found and
linked together properly.

• If virtual memory is not available, the linked
program must be explicitly loaded into main
memory as well.

• Programs that perform these functions are
called by various names, including linker,
linking loader, and linkage editor.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Assembly Language Level

Linking & Loading

• The complete translation of a source program
requires two steps:

1. Compilation or assembly of the source
procedures.

2. Linking of the object modules.

• The first step is performed by the compiler or
assembler

• The second one is performed by the linker.

Department of Computer Science, University College Cork 3



C
S

11
01

:
S

ys
te

m
s

O
rg

an
is

at
io

n
T

he
A

ss
em

bl
y

La
ng

ua
ge

Le

T
h

e
C

o
m

p
le

te
Tr

an
sl

at
io

n
P

ro
ce

ss

T
ra

n
s
la

to
r

L
in

k
e
r

E
xe

c
u
ta

b
le



b
in

a
ry



p
ro

g
ra

m

S
o
u
rc

e



p
ro

c
e
d
u
re

 1

S
o
u
rc

e



p
ro

c
e
d
u
re

 2

S
o
u
rc

e



p
ro

c
e
d
u
re

 3

O
b
je

c
t


m
o
d
u
le

 1

O
b
je

c
t


m
o
d
u
le

 2

O
b
je

c
t


m
o
d
u
le

 3

F
ig

u
re

7-
13

.
G

en
er

at
io

n
of

an
ex

ec
ut

ab
le

bi
na

ry
pr

og
ra

m
fr

om
co

lle
ct

io
n

of
in

de
pe

nd
en

tly
tr

an
sl

at
ed

so
ur

ce
pr

oc
ed

ur
es

re
qu

ire
s

us
in

g
lin

ke
r.

D
ep

ar
tm

en
to

fC
om

pu
te

r
S

ci
en

ce
,U

ni
ve

rs
ity

C
ol

le
ge

C
or

k

Object Files and Executables

• The translation from source procedure to object
module represents a change of level because
the source language and target language have
different instructions and notation.

• The linking process, however, does not
represent a change of level, since both
the linker’s input and the linker’s output are
programs for the same virtual machine.

• The linker’s function is to collect procedures
translated separately and link them together to
be run as a unit called an executable binary
program.

• On MS-DOS, Windows 95/98, and NT the
object modules have extension obj and the
executable binary programs have extension
exe.

• On UNIX, the object modules have extension
.o; executable binary programs have no
extension.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level

Tasks Performed by the Linker

• At the start of pass one of the assembly
process, the instruction location counter is set
to 0.

• Thus, we assume that the object module will be
located at (virtual) address 0 during execution.

• In order to run the program, the linker brings
the object modules into main memory to form
the image of the executable binary program

• The idea is to make an exact image of the
executable program’s virtual address space
inside the linker and position all the object
modules at their correct locations.

• If there is not enough (virtual) memory to form
the image, a disk file can be used.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Assembly Language Level

Example: Loaded & Linked Program

Object module A

0

100

200

300

400

BRANCH TO 200

MOVE P TO X

CALL B

0

100

200

300

400

500

600

BRANCH TO 300

MOVE Q TO X

CALL C

Object module B

0

100

200

300

400

500
Object module C

BRANCH TO 200

MOVE R TO X

CALL D

0

100

200

300

MOVE S TO X

BRANCH TO 200

Object module D




Figure 7-14. Each module has its own address
space, starting at 0.

Department of Computer Science, University College Cork 7



The Relocation Problem

• Consider what would happen if execution
began with the instruction at the beginning of
module A.

• The program would not branch to the
MOVE instruction as it should, because that
instruction is now at 300.

• This problem, called the relocation problem,
occurs because each object module in Fig. 7-
14 represents a separate address space.

Department of Computer Science, University College Cork 8

The External Reference Problem

• The procedure call instructions will not work
either.

• At address 400, the programmer had intended
to call object module B, but because each
procedure is translated by itself, the assembler
has no way of knowing what address to insert
into the CALL B instruction.

• The address of object module B is not known
until linking time.

• This problem is called the external reference
problem.

• Both of these problems can be solved by the
linker.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Assembly Language Level

Tasks Performed by the Linker

• The linker merges the separate address
spaces of the object modules into a single
linear address space in the following steps:

1. It constructs a table of all the object modules
and their lengths.

2. Based on this table, it assigns a starting
address to each object module.

3. It finds all the instructions that reference
memory adds to each a relocation constant
equal to the starting address of its module.

4. It finds all the instructions that reference
other procedures and inserts the address of
these procedures in place.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation The Assembly Language Level

An Example Object Table

• Below is the object module table constructed in
step 1 for the modules of Fig. 7-15.

• It gives the name, length, and starting address
of each module.

Module Length Starting address
A 400 100
B 600 500
c 500 1100
D 300 1600

Department of Computer Science, University College Cork 11



Structure of an Object Module

Identification

Entry point table

External reference table

End of module

Machine instructions

and constants

Relocation

dictionary

Figure 7-16. The internal structure of an object
module produced by a translator.

Department of Computer Science, University College Cork 12

Structure of an Object Module

• Object modules often contain six parts.

• The first part contains the name of the module,
certain information needed by the linker, such
as the lengths of the various parts of the
module, and sometimes the assembly date.

• The second part of the object module is a
list of the symbols defined in the module that
other modules may reference, together with
their values.

• The third part of the object module consists of a
list of the symbols that are used in the module
but which are defined in other modules, along
with a list of which machine instructions use
which symbols.

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation The Assembly Language Level

Structure of an Object Module

• The fourth part of the object module is the
assembled code and constants. This part of
the object module is the only one that will be
loaded into memory to be executed.

• The fifth part of the object module is the
relocation dictionary.

• The sixth part is an end-of-module indication,
sometimes a checksum to catch errors made
while reading the module, and the address at
which to begin execution.

Department of Computer Science, University College Cork 14

CS1101: Systems Organisation The Assembly Language Level

A Final Word...

• Most linkers require two passes.

• On pass one the linker reads all the object
modules and builds up a table of module
names and lengths, and a global symbol table
consisting of all entry points and external
references.

• On pass two the object modules are read,
relocated, and linked one module at a time.

Department of Computer Science, University College Cork 15


