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Macros

A macro definition is a way to give a name to a
piece of text.

After a macro has been defined, the programmer
can write the macro name instead of the piece
of program.

A macro is, in effect, an abbreviation for a piece
of text.

See Figure 7-4.
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e Reading : Tanenbaum, Chapter 7, Section 2/3.
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Macro Definition

e Although different assemblers have slightly
different notations for defining macros, all
require the same basic parts in a macro
definition:

1. A macro header giving the name of the
macro being defined.

2. The text comprising the body of the macro.

3. A pseudoinstruction marking the end of the
definition (e.g., ENDM).
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Macro Call and Expansion

e When the assembler encounters a macro
definition, it saves it definition table for
subsequent use.

e From that point on, whenever the macro
appears as an opcode, the assembler replaces
it by the macro body.

e The use of a macro name as an opcode is
known as a macro call and its replacement by
the macro body is called macro expansion .
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Macros versus Procedures

e Macro calls should not be confused with
procedure calls.

e The basic difference is that a macro call is
an instruction to the assembler to replace the
macro name with the macro body.

e A procedure call is a machine instruction that is
inserted into the object program and that will
later be executed to call the procedure.

e See Figure 7-5
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Macro Call and Expansion

e Macro expansion occurs during the assembly
process and not during execution of the
program.

e Both programs we have seen will produce
precisely the same machine language code.

e Looking only at the machine language program,
it is impossible to tell whether or not any
macros were involved in its generation.

e The reason is that once macro expansion
has been completed the macro definitions are
discarded by the assembler.
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Macros with Parameters

e Frequently, however, a program contains
several sequences of instructions that are
almost but not quite identical.

e Macro assemblers handle the case of nearly
identical sequences by allowing macro definitions
to provide formal parameters and by allowing
macro calls to supply actual parameters .

e When a macro is expanded, each formal
parameter appearing in the macro body
is replaced by the corresponding actual
parameter.

e The actual parameters are placed in the
operand field of the macro call.

e See Figure 7-6
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Two-Pass Assemblers

e An assembly language program consists of a
series of one-line statements.

e Reading the program one line at a time and
generating machine code for each line does not
work!

e Why not?

e Forward Reference Problem
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Resolving Forward References

e We can resolve the problem in two ways:

e Approach 1. The assembler may read the
source program twice — two passes . On
pass one , the definitions of symbols, including
statement labels, are collected and stored in a
table. When pass two starts, the definitions of
symbols are known.

e Approach 2: On the first reading of the
assembly program convert it to an intermediate
form stored in memory. The second pass is
made over this intermediate form. This saves
on /O time.

e Another task of pass one is to save all macro
definitions and expand the calls as they are
encountered.

e Therefore, pass one performs two tasks:
defining the symbols and expanding macros.
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Forward Reference Problem

o Consider the situation where the first statement
is a branchto L;

e The assembler needs to know the address of
statement L before it can assembile it.

e Statement L could be anywhere in the
programme.

e This is a forward reference problem since L
can be used before it has been defined — a
reference has been made to a symbol whose
definition will only occur later.

Department of Computer Science, University College Cork 9
CS1101: Systems Organisation The Assembly Language Level
Pass One

e The principal function of pass one is to build up
a table called the symbol table , containing the
values of all symbols.

e A symbol is either a label or a value that is
assigned a symbolic name, for example:

BUFSIZE EQU 8192

e During pass one the assembler “remembers”
the address of each instruction as it is read.

e This is done using a variable called the ILC
(Instruction Location Counter)

e This variable is set to 0 at the beginning of pass
one and incremented by the instruction length
for each instruction processed.
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Data used during Pass One The Symbol Table

e Pass one of most assemblers uses at least e The symbol table has one entry for each
three tables: symbol.

— the symbol table
— the pseudoinstruction table
— the opcode table

e Symbols are defined by using them as labels or
through the EQU pseudo-instruction.

e Each symbol table entry contains the symbol
itself, its numerical value, and sometimes
additional information such as:

e Some details of these follow.

— The length of the data field associated with
the symbol.

— The relocation bits (does the symbol change
value if the program is loaded at a different
address than the assember assumed?)

— Whether or not the symbol is to be
accessible outside the procedure.
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The Opcode Table

e The opcode table contains at least one entry
for each symbolic opcode in the assembly
language.

e Each entry contains:

the symbolic opcode

two operands

the opcode’s numerical value

the instruction length

a type number that separates the opcodes
into groups depending on the number and
kind of operands.
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