CS1101: Lecture 38
Macros and
Pass One of an Assembler

Dr. Barry O'Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/"osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation The Assembly Language Level

Macros

A macro definition is a way to give a name to a
piece of text.

After a macro has been defined, the programmer
can write the macro name instead of the piece
of program.

A macro is, in effect, an abbreviation for a piece
of text.

See Figure 7-4.

Department of Computer Science, University College Cork 2

Lecture Outline

o Macros

Macro Definition

Macro Call and Expansion
Macros versus Procedures
Macros with Parameters

o Two-Pass Assemblers

Forward Reference Problem
Pass One

Data used during Pass One
The Symbol Table

— The Opcode Table

e Reading : Tanenbaum, Chapter 7, Section 2/3.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

Macro Definition

e Although different assemblers have slightly
different notations for defining macros, all
require the same basic parts in a macro
definition:

1. A macro header giving the name of the
macro being defined.

2. The text comprising the body of the macro.

3. A pseudoinstruction marking the end of the
definition (e.g., ENDM).

Department of Computer Science, University College Cork 3



Macro Call and Expansion

e When the assembler encounters a macro
definition, it saves it definition table for
subsequent use.

e From that point on, whenever the macro
appears as an opcode, the assembler replaces
it by the macro body.

e The use of a macro name as an opcode is
known as a macro call and its replacement by
the macro body is called macro expansion .

Department of Computer Science, University College Cork 4

CS1101: Systems Organisation The Assembly Language Level

Macros versus Procedures

e Macro calls should not be confused with
procedure calls.

e The basic difference is that a macro call is
an instruction to the assembler to replace the
macro name with the macro body.

e A procedure call is a machine instruction that is
inserted into the object program and that will
later be executed to call the procedure.

e See Figure 7-5

Department of Computer Science, University College Cork 6

Macro Call and Expansion

e Macro expansion occurs during the assembly
process and not during execution of the
program.

e Both programs we have seen will produce
precisely the same machine language code.

e Looking only at the machine language program,
it is impossible to tell whether or not any
macros were involved in its generation.

e The reason is that once macro expansion
has been completed the macro definitions are
discarded by the assembler.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level

Macros with Parameters

e Frequently, however, a program contains
several sequences of instructions that are
almost but not quite identical.

e Macro assemblers handle the case of nearly
identical sequences by allowing macro definitions
to provide formal parameters and by allowing
macro calls to supply actual parameters .

e When a macro is expanded, each formal
parameter appearing in the macro body
is replaced by the corresponding actual
parameter.

e The actual parameters are placed in the
operand field of the macro call.

e See Figure 7-6

Department of Computer Science, University College Cork 7



Two-Pass Assemblers

e An assembly language program consists of a
series of one-line statements.

e Reading the program one line at a time and
generating machine code for each line does not
work!

e Why not?

e Forward Reference Problem

Department of Computer Science, University College Cork 8

CS1101: Systems Organisation The Assembly Language Level

Resolving Forward References

e We can resolve the problem in two ways:

e Approach 1. The assembler may read the
source program twice — two passes . On
pass one , the definitions of symbols, including
statement labels, are collected and stored in a
table. When pass two starts, the definitions of
symbols are known.

e Approach 2: On the first reading of the
assembly program convert it to an intermediate
form stored in memory. The second pass is
made over this intermediate form. This saves
on /O time.

e Another task of pass one is to save all macro
definitions and expand the calls as they are
encountered.

e Therefore, pass one performs two tasks:
defining the symbols and expanding macros.

Department of Computer Science, University College Cork 10

Forward Reference Problem

o Consider the situation where the first statement
is a branchto L;

e The assembler needs to know the address of
statement L before it can assembile it.

e Statement L could be anywhere in the
programme.

e This is a forward reference problem since L
can be used before it has been defined — a
reference has been made to a symbol whose
definition will only occur later.

Department of Computer Science, University College Cork 9
CS1101: Systems Organisation The Assembly Language Level
Pass One

e The principal function of pass one is to build up
a table called the symbol table , containing the
values of all symbols.

e A symbol is either a label or a value that is
assigned a symbolic name, for example:

BUFSIZE EQU 8192

e During pass one the assembler “remembers”
the address of each instruction as it is read.

e This is done using a variable called the ILC
(Instruction Location Counter)

e This variable is set to 0 at the beginning of pass
one and incremented by the instruction length
for each instruction processed.

Department of Computer Science, University College Cork 11



Data used during Pass One The Symbol Table

e Pass one of most assemblers uses at least e The symbol table has one entry for each
three tables: symbol.

— the symbol table
— the pseudoinstruction table
— the opcode table

e Symbols are defined by using them as labels or
through the EQU pseudo-instruction.

e Each symbol table entry contains the symbol
itself, its numerical value, and sometimes
additional information such as:

e Some details of these follow.

— The length of the data field associated with
the symbol.

— The relocation bits (does the symbol change
value if the program is loaded at a different
address than the assember assumed?)

— Whether or not the symbol is to be
accessible outside the procedure.

Department of Computer Science, University College Cork 12 Department of Computer Science, University College Cork 13

CS1101: Systems Organisation The Assembly Language Level

The Opcode Table

e The opcode table contains at least one entry
for each symbolic opcode in the assembly
language.

e Each entry contains:

the symbolic opcode

two operands

the opcode’s numerical value

the instruction length

a type number that separates the opcodes
into groups depending on the number and
kind of operands.

Department of Computer Science, University College Cork 14



