CS1101: Lecture 37
Introduction to Assembly
Language

Dr. Barry O'Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/"osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation The Assembly Language Level

Introduction

e The assembly language level differs in a
significant respect from the microarchitecture,
ISA, and operating system machine levels — it
is implemented by translation rather than by
interpretation .

e Programs that convert a user’'s program written
in some language to another language are
called translators.

e The language in which the original program is
written is called the source language

e The language to which it is converted is called
the target language .

Department of Computer Science, University College Cork 2

Lecture Outline

Introduction
What is Translation?
Types of Translator

What is an Assembly Language?

— Assembly versus Machine Language
— Why Use Assembly Language?
— Performance & Machine Access

Format of Assembly Language Statements

— Register Lengths

— Data Words

— Operands Field

— The Comments Field

Pseudoinstructions

Reading : Tanenbaum, Chapter 7, Section 1.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

What is Translation?

In translation, the original program in the
source language is not directly executed.

Instead, it is converted to an equivalent
program called an object program or executable
binary program whose execution is carried out
only after the translation has been completed.

In translation, there are two distinct steps:
Generation of an equivalent program in the
target language. Execution of the newly
generated program.

In translation, these two steps do not occur
simultaneously.

The second step does not begin until the first
has been completed.

In interpretation, there is only one step:
executing the original source program.

Department of Computer Science, University College Cork 3



Types of Translator

e Translators can be roughly divided into two
groups, depending on the relation between the
source language and the target language.

e When the source language is essentially
a symbolic representation for a numerical
machine language, the translator is called an
assembler and the source language is called
an assembly language .

e When the source language is a high-level
language such as Java or C and the target
language is either a numerical machine
language or a symbolic representation for one,
the translator is called a compiler .

What is an Assembly Language?

e A pure assembly language is a language in

which each statement produces exactly one
machine instruction.

There is a one-to-one correspondence between
machine instructions and statements in the
assembly program.

If each line in the assembly language program
contains exactly one statement and each
machine word contains exactly one machine
instruction, then an n-line assembly program
will produce an n-word machine language
program.

Department of Computer Science, University College Cork 4 Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level CS1101: Systems Organisation The Assembly Language Level

Assembly versus Machine Language Assembly versus Machine Language

e Assembly language is easier to use than
machine language (hexadecimal)

e The use of symbolic nhames and symbolic
addresses instead of binary or octal ones
makes an enormous difference.

for add, subtract, multiply, and divide are ADD,
SUB, MUL, and DIV, but few can remember the
corresponding numerical values the machine
uses.

e The assembly language programmer need only
remember the symbolic names because the
assembler translates them to the machine
instructions.

Department of Computer Science, University College Cork 6

Most people can remember that the abbreviations

The same remarks apply to addresses.

The assembly language programmer can give
symbolic names to memory locations and
have the assembler worry about supplying the
correct numerical values.

The machine language programmer must
always work with the numerical values of the
addresses.

As a consequence, no one programs in
machine language today, although people did
so decades ago, before assemblers had been
invented.

Department of Computer Science, University College Cork 7




Assembly versus Machine Language Why Use Assembly Language?

e The assembly programmer has access to all
the features and instructions available on the e Assembly language programming is difficult.
target machine.
e Writing a program in assembly language takes
e The high-level language programmer does not. much longer than writing the same program in
a high-level language.
e Everything that can be done in machine
language can be done in assembly language, e It also takes much longer to debug and is much
but many instructions, registers, and similar harder to maintain.
features are not available for the high-level

language programmer to use. e However, there are two reasons for using

assembly language: performance and access

e One final difference that is worth making to the machine

explicit is that an assembly language program
can only run on one family of machines,
whereas a program written in a high-level
language can potentially run on many machines.

e For many applications, this ability to move
software from one machine to another is of
great practical importance.

Department of Computer Science, University College Cork 8 Department of Computer Science, University College Cork 9
CS1101: Systems Organisation The Assembly Language Level CS1101: Systems Organisation The Assembly Language Level
Performance & Machine Access Format of Assembly Language Statements

e See Figure 7-2
e Performance
e Assembly language statements have four

— An expert assembly language programmer
parts:

can often produce code that is much smaller
and much faster than a high-level language
programmer can.

— For some applications, speed and size are

a label field,
an operation (opcode) field,
an operands field,

critical. — a comments field.
— For example, smart cards, embedded
applications, device drivers etc. e Labels, which are used to provide symbolic
names for memory addresses, are needed on
e Access to the machine: executable statements so that the statements

can be branched to.
— Some procedures need complete access to

the hardware, something usually impossible e They are also needed for data words to permit

in high-level languages. the data stored there to be accessible by
— For example, the low-level interrupt and trap symbolic name.

handlers in an operating system, and the

device controllers in many embedded real- e If a statement is labeled, the label (usually)

time systems fall into this category. begins in column 1.

Department of Computer Science, University College Cork 10 Department of Computer Science, University College Cork 11



Format of Assembly Language Statements

e Each of the three parts of Fig. 7-2 has four
labels: FORMULA, I, J, and N.

e Note that sometimes colons are used and
sometimes not.

e Each of the machines has some registers , but
they have been given very different names.

e The Pentium Il registers have names like EAX,
EBX, ECX, and so on.

e The Motorola registers are called DO, D1, D2,
among others.

e The SPARC registers have multiple names —
here we have used

Department of Computer Science, University College Cork 12

CS1101: Systems Organisation The Assembly Language Level

Register Lengths

e On the Pentium II, different length registers
have different names, so EAX is used to move
32-bit items, AX is 16-bit items, and AL and AH
are used to move 8-bit items.

e The Motorola assembler uses a suffix .L for
long, .W for word, or .B for byte to each opcode
rather than giving subsets of DO, etc., different
names.

e The SPARC uses different opcodes for the
different lengths (e.g., LDSB, LDSH, and
LDSW to load signed bytes, halfwords, and
words into a 64-bit register, respectively).

Department of Computer Science, University College Cork 14

Format of Assembly Language Statements

e The opcode field contains either a symbolic
abbreviation for the opcode — if the statement
is a symbolic representation for a machine
instruction — or a command to the assembler
itself.

e The Pentium family, 680x0, and SPARC all
allow byte, word, and long operands.

e How does the assembler know which length to
use?

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation The Assembly Language Level

Data Words

e The three assemblers also differ in how they
reserve space for data.

e The Intel assembly language designers chose
DW (Define Word), although WORD was added
as an alternative later.

e The Motorola ones liked DC (Define Constant).

e The SPARC folks preferred WORD from the
beginning.

Department of Computer Science, University College Cork 15



Operands Field

The operands field of an assembly language
statement is used to specify the addresses and
registers used as operands by the machine
instruction.

The operands field of an integer addition
instruction tells what is to be added to what.

The operands field of a branch instruction tells
where to branch to.

Operands can be registers, constants, memory
locations, and so on.

CS1101: Systems Organisation

Department of Computer Science, University College Cork 16

The Assembly Language Level

Pseudoinstructions

In addition to specifying which machine
instructions to execute, an assembly language
program can also contain commands to the
assembler itself.

For example, asking it to allocate some storage
or to eject to a new page on the listing.

Commands to the assembler itself are called
pseudoinstructions or sometimes assembler
directives .

We have already seen a typical pseudoinstruction:

DW.

Some other from the Microsoft MASM assembler
for the Intel family are shown on the next slide.

Department of Computer Science, University College Cork 18

The Comments Field

e The comments field provides a place for

programmers to put helpful explanations of how
the program works for the benefit of other
programmers.

An assembly language program without such
documentation is nearly incomprehensible to
all programmers.

The comments field is solely for human
consumption — it has no effect on the assembly
process or on the generated program.

CS1101: Systems Organisation

Department of Computer Science, University College Cork 17

The Assembly Language Level

Examples: Pseudoinstructions

The SEGMENT pseudoinstruction starts a new
segment, and ENDS terminates one.

It is allowed to start a text segment, with code,
then start a data segment, then go back to the
text segment, and so on.

EQU is used to give a symbolic name to an
expression.

For example, after the pseudoinstruction
BASE EQU 1000

the symbol BASE can be used everywhere
instead of 1000.

Department of Computer Science, University College Cork 19



Examples: Pseudoinstructions

e See Figure 7-3

e The expression that follows the EQU can
involve multiple defined symbols combined with
arithmetic and other operators, as in

LIMIT EQU 4 = BASE + 2000
e Most assemblers, including MASM, require that

a symbol be defined before it is used in an
expression like this.

Department of Computer Science, University College Cork 20



