
CS1101: Lecture 28
The Microarchitecture Level

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• What is a microarchitecture?

• OPCODE

• Stacks

• How does a stack works?

• Use of a stack for storing local variables

• Operand Stacks

• Use of an Operand Stack

• Reading: Tanenbaum, Chapter 4: 4.1, 4.2,
4.5.1

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Microarchitecture Level

Where are we now?

Level 1

Level 2

Level 3

Level 4

Level 5

Level 0

Problem-oriented language level

Translation (compiler)

Assembly language level

Translation (assembler)

Operating system machine level

Microarchitecture level

Partial interpretation (operating system)

Instruction set architecture level

Hardware

Digital logic level

Interpretation (microprogram) or direct execution

Figure 1-2. Our six-level computer.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Microarchitecture Level

Introduction

• The level above the digital logic level is the
microarchitecture level.

• Its job is to implement the ISA (Instruction Set
Architecture) level above it, as illustrated in Fig.
1-2.

• The design of the microarchitecture level
depends on the ISA being implemented, as
well as the cost and performance goals of the
computer.

• Many modern ISAs, particularly RISC designs,
have simple instructions that can usually be
executed in a single clock cycle.

• More complex ISAs may require many cycles
to execute a single instruction.

• Executing an instruction may require locating
the operands in memory, reading them, and
storing results back into memory.

Department of Computer Science, University College Cork 3



What is a microarchitecture?

• A convenient model for the design of the
microarchitecture is to think of the design as a
programming problem, where each instruction
at the ISA level is a function to be called by a
master program.

• In this model, the master program is a simple,
endless loop that determines a function to be
invoked, calls the function, then starts over.

• The microprogram has a set of variables,
called the state of the computer, which can be
accessed by all the functions.

• Each function changes at least some of the
variables making up the state.

• For example, the Program Counter is part of
the state – the memory location for the next
instruction.

Department of Computer Science, University College Cork 4

OPCODE

• Each instruction has a few fields, usually one or
two, each of which has some specific purpose.

• The first field of every instruction is the opcode
(short for operation code).

• The opcode identifies the instruction, telling
whether it is an ADD or a BRANCH, or
something else.

• Many instructions have an additional field,
which specifies the operand.

• For example, instructions that access a local
variable need a field to tell which variable.

• This model of execution is sometimes called
the fetch-execute cycle.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Microarchitecture Level

Stacks

• Virtually all programming languages support
the concept of procedures (methods), which
have local variables.

• These variables can be accessed from inside
the procedure but cease to be accessible once
the procedure has returned.

• Where should these variables be kept in
memory?

• The simplest solution, to give each variable
an absolute memory address, does not work,
since a procedure may call itself (be recursive).

• Why?

• If a procedure is active (i.e., called) twice, it
is impossible to store its variables in absolute
memory locations because the second invocation
will interfere with the first.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Microarchitecture Level

How does a stack works?

• Instead, an area of memory, called the stack, is
reserved for variables, but individual variables
do not get absolute addresses in it.

• Instead, a register, say, LV, is set to point to
the base of the local variables for the current
procedure.

• Another register, SP, points to the highest word
of the local variables.

• Variables are referred to by giving their offset
(distance) from LV.

• The data structure between LV and SP (and
including both words pointed to) is called a
variable’s local variable frame.

Department of Computer Science, University College Cork 7



C
S

11
01

:
S

ys
te

m
s

O
rg

an
is

at
io

n
T

he
M

ic
ro

ar
ch

ite
ct

ur
e

Le

U
se

o
f

a
st

ac
k

fo
r

st
o

ri
n

g
lo

ca
lv

ar
ia

b
le

s

S
P LV

a
3

a
1

(a
)

1
0

8

1
0

0
a

2
1

0
4

S
P LV

a
3

a
1

(b
)

a
2

b
3

b
4

b
1

b
2

a
3

a
1

(c
)

a
2

b
3

b
4

LV
c
1

S
P

c
2 b
1

b
2

LV
a

3

a
1

(d
)

a
2

d
3

d
4

S
P

d
5

d
1

d
2

F
ig

u
re

4-
8.

U
se

of
a

st
ac

k
fo

r
st

or
in

g
lo

ca
lv

ar
ia

bl
es

.
(a

)
W

hi
le

A
is

ac
tiv

(b
)

A
fte

r
A

ca
lls

B
.(

c)
A

fte
r

B
ca

lls
C

.(
d)

A
fte

r
C

an
d

B
re

tu
rn

an
d

A
ca

lls
D

D
ep

ar
tm

en
to

fC
om

pu
te

r
S

ci
en

ce
,U

ni
ve

rs
ity

C
ol

le
ge

C
or

k

Operand Stacks

• Stacks have another use, in addition to holding
local variables.

• They can be used for holding operands during
the computation of an arithmetic expression.

• When used this way, the stack is referred to as
the operand stack.

• Example: suppose that before calling B, A has
to do the computation:

a1 = a2 + a3

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Microarchitecture Level

Use of an Operand Stack

• Push a2 onto the stack – here SP has been
incremented by the number of bytes in a word,
say, 4, and the first operand stored at the
address now pointed to by SP.

• Next, a3 is pushed onto the stack.

• The actual computation can be done by now
executing an instruction that pops two words off
the stack, adds them together, and pushes the
result back onto the stack.

• Finally, the top word can be popped off the
stack and stored back in local variable a1.

Department of Computer Science, University College Cork 10 C
S

11
01

:
S

ys
te

m
s

O
rg

an
is

at
io

n
T

he
M

ic
ro

ar
ch

ite
ct

ur
e

Le
ve

l

U
se

o
f

an
O

p
er

an
d

S
ta

ck

LV

a
3

�
�

�

S
P

a
2

a
1

(a
)

a
2

LV

a
3

���

a
2

��

S
P

a
3

a
1

(b
)

a
2

LV

a
3

���

S
P

a
2
 +

 a
3






a
1

(c
)

a
2

LVS
P

a
3

a
2
 +

 a
3

(d
)

a
2

F
ig

u
re

4-
9.

U
se

of
an

op
er

an
d

st
ac

k
fo

r
do

in
g

an
ar

ith
m

et
ic

co
m

pu
ta

tio
n.

D
ep

ar
tm

en
to

fC
om

pu
te

r
S

ci
en

ce
,U

ni
ve

rs
ity

C
ol

le
ge

C
or

k
11


