Lecture Outline

CS1101: Lecture 22

The Digital Logic Level: **Basic Logic Circuits**

Dr. Barry O'Sullivan b.osullivan@cs.ucc.ie

Course Homepage

http://www.cs.ucc.ie/~osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation

The Digital Logic Level

Basic Digital Logic Circuits

- We have seen how to implement truth tables and other simple circuits using individual gates.
- Few circuits are built like this in the realworld
- Instead modules containg many gates are used
- We will briefly look consider:
 - Integrated Circuits
 - Combinational Circuits
 - Arithmetic Circuits
 - Clocks

Basic Digital Logic Circuits

- Integrated Circuits
- Combinational Circuits
- Multiplexer
- Decoder
- Comparator
- Reading: Tanenbaum, Chapter 3, Section 2

Department of Computer Science, University College Cork

CS1101: Systems Organisation

The Digital Logic Level

Integrated Circuits

- Gates are manufactured and sold in units called Integrated Circuits, often called ICs or chips.
- These are usually either square or rectangular packages of either plastic or ceramic, and have pins to connect them to the outside world.
- Dual Inline Packages or DIPs have two rows of parallel pins
- ICs can be classified according to the number of gates they contains:
 - SSI (Small Scale Integrated) circuit: 1-10
 - MSI (Medium Scale Integrated) circuit: 10-100 gates
 - LSI (Large Scale Integrated) circuit: 100-100,000 gates
 - VLSI (Very Large Scale Integrated) circuit: >100,000 gates

Integrated Circuits

Figure 3-10. An SSI chip containing four gates.

Combinational Circuits

 Many applications of digital logic require a circuit with multiple inputs and multiple outputs in which the outputs are uniquely determined by the current inputs.

• This is a combinational circuit

- Some frequently used combinational circuits are:
 - Multiplexers
 - Decoders
 - Comparators
 - Programmable Logic Arrays

Department of Computer Science, University College Cork

4

Department of Computer Science, University College Cork

-

CS1101: Systems Organisation

The Digital Logic Level

Multiplexers

- A multiplexer is a circuit with 2^n data inputs, one data output and n control inputs that select one of the outputs.
- The selected data input is selected "gated" (routed) to the output.
- The *n* inputs encode an *n*-bit number that specifies which input is selected as the output.

CS1101: Systems Organisation

The Digital Logic Level

Example: A Multiplexer

Figure 3-11. An eight-input multiplexer circuit.

A Multiplexer Application

Decoders

Figure 3-12. (a) An MSI multiplexer. (b) The same multiplexer wired to compute the majority function.

 A decoder is a circuit which takes an n-bit number as input and uses it to select (set to 1) exactly one of its 2ⁿ outputs

Department of Computer Science, University College Cork

Department of Computer Science, University College Cork

-

CS1101: Systems Organisation

The Digital Logic Level

Example: A Decoder

CS1101: Systems Organisation

The Digital Logic Level

Comparators

Figure 3-13. A 3-8 decoder circuit.

- A comparator is a circuit which compares two input words and produces 1 if they are equal and 0 if they are not equal.
- Based on the Exclusive-OR gate, which returns
 0 if its inputs are equal and 1 if they are unequal.
- A NOR gate decides whether to return 1 for equality or 0 for inequality.

Example: A Comparator

Figure 3-14. A simple 4-bit comparator.

Department of Computer Science, University College Cork