
CS1101: Lecture 21
The Digital Logic Level:

Circuit Equivalence & Boolean
Algebra

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Circuit Equivalence

• Using only NAND and NOR Gates

• Laws of Boolean Algebra

• Identities of Boolean Algebra

• Consequences of DeMorgan’s Law

• Using the Identities

• The EXCLUSIVE OR Gate

• Positive and Negative Logic

• Reading: Tanenbaum, Chapter 3, Section 1

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Digital Logic Level

Using only NAND and NOR Gates

A + B

A + B

A

A

B

B

AB

AB

A

A

A

A

(a)

(b) (c)

A

B

A

B

Figure 3-4: Construction of (a) NOT, (b) AND, and
(c) OR gates using only NAND gates or only NOR
gates.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Digital Logic Level

Circuit Equivalence

• Circuits with fewer and/or simpler gates (fewer
inputs) are better.

• Boolean algebra can be a valuable tool for
simplifying circuits.

• Example:

M = AB + AC

• Many of the rules of ordinary algebra also hold
for Boolean algebra.

• In particular, AB + AC can be factored into
A(B + C) using the distributive law.

• Two functions are equivalent if and only if they
have the same output for all possible inputs

• Thus, AB + AC is equivalent to A(B + C).

Department of Computer Science, University College Cork 3



Circuit Equivalence

C

B

A A(B + C)

B + C

A

B

C

AB + AC

AB

AC

(a) (b)

A B C AB AC AB + AC

0 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0

1 0 1 0 1 1

1 1 0 1 0 1

1 1 1 1 1 1

A B C A B + C A(B + C)

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 1 0

0 1 1 0 1 0

1 0 0 1 0 0

1 0 1 1 1 1

1 1 0 1 1 1

1 1 1 1 1 1

Figure 3-5. Two equivalent functions. (a) AB +
AC (b) A(B + C).

Department of Computer Science, University College Cork 4

Laws of Boolean Algebra

• In general, a circuit designer starts with a
Boolean function and then apply the laws of
Boolean algebra to it in an attempt to find a
simpler but equivalent one.

• From the final function, a circuit can be
constructed.

• To use this approach, we need some identities
from Boolean algebra.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Digital Logic Level

Identities of Boolean Algebra

Identity law

Null law

Idempotent law

Inverse law

Commutative law

Associative law

Distributive law

Absorption law

De Morgan's law

1A = A

0A = 0

AA = A

AB = BA

(AB)C = A(BC)

A + BC = (A + B)(A + C)

A(A + B) = A A + AB = A

0 + A = A

1 + A = 1

A + A = A

A + B = B + A

(A + B) + C = A + (B + C)

A(B + C) = AB + AC

Name AND form OR form

AA = 0

AB = A + B

A + A = 1

A + B = AB

Figure 3-6. Some identities of Boolean algebra.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Digital Logic Level

Comments on the Identities

• It is interesting to note that each law has two
forms that are duals of each other.

• By interchanging AND and OR and also 0 and
1, either form can be produced from the other
one.

• All the laws can be easily proven by
constructing their truth tables.

• Except for DeMorgan’s law, the absorption law,
and the AND form of the distributive law, the
results are reasonably intuitive.

• DeMorgan’s law can be extended to more than
two variables, for example, ABC = A + B + C.

Department of Computer Science, University College Cork 7



Consequences of DeMorgan’s Law

• DeMorgan’s law suggests an alternative notation.

• An OR gate with inverted inputs is equivalent to
a NAND gate.

• A NOR gate can be drawn as an AND gate with
inverted inputs.

• Negating both forms of DeMorgan’s law also
has interesting consequences – leads to
equivalent representations of the AND and OR
gates.

Department of Computer Science, University College Cork 8

Consequences of DeMorgan’s Law

(a)

AB = A + B

(c)

A + BAB =

(b)

A + B = AB

AB=

(d)

A + B

Figure 3-7. Alternative symbols for some gates:
(a) NAND. (b) NOR. (C) AND. (d) OR.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Digital Logic Level

Using the Identities

• Using the identities it is easy to convert the
sum-of-products representation of a truth table
to pure NAND or pure NOR form.

• Example: consider the EXCLUSIVE OR
function:

XOR = AB + AB

• How do we get convert this to a completely
NAND form?

• The standard sum-of-products circuit is shown
in Fig. 3-8(b). To

• Note that inversion bubbles can be moved
along a line at will

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation The Digital Logic Level

The EXCLUSIVE OR Gate

(a) (b)

A B XOR

0 0 0

0 1 1

1 0 1

1 1 0

A

B

B

A

(d)(c)

A

B

B

A

A

B

B

A

Figure 3-8. (a) The truth table for the XOR
function. (b)-(d) Three circuits for computing it.

Department of Computer Science, University College Cork 11



Positive and Negative Logic

• As a final note on circuit equivalence, we
will now demonstrate the surprising result that
the same physical gate can compute different
functions, depending on the conventions used.

• If we adopt the convention that 0 volts is logical
0 and 5 volts is logical 1, this is called positive
logic.

• If, however, in negative logic, 0 volts denotes
a logical 1 and 5 volts a logical 0.

• What is the significance?

Department of Computer Science, University College Cork 12

Positive and Negative Logic

(a)

A B

0V 0V

0V 5V

5V 0V

5V 5V

F

0V

0V

0V

5V

(b)

A B

0 0

0 1

1 0

1 1

F

0

0

0

1

(c)

A B

1 1

1 0

0 1

0 0

F

1

1

1

0

Figure 3-9. (a) Electrical characteristics of a
device. (b) Positive logic. (c) Negative logic.

• Thus, the convention chosen to map voltages
onto logical values is critical.

• Except where otherwise specified, we will
henceforth use positive logic, so the terms
logical 1, true, and high are synonyms, as are
logical 0, false, and low.

Department of Computer Science, University College Cork 13


