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Lecture Outline

• Circuit Equivalence

• Using only NAND and NOR Gates

• Laws of Boolean Algebra

• Identities of Boolean Algebra

• Consequences of DeMorgan’s Law

• Using the Identities

• The EXCLUSIVE OR Gate

• Positive and Negative Logic

• Reading: Tanenbaum, Chapter 3, Section 1
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Using only NAND and NOR Gates
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Figure 3-4: Construction of (a) NOT, (b) AND, and
(c) OR gates using only NAND gates or only NOR
gates.
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Circuit Equivalence

• Circuits with fewer and/or simpler gates (fewer
inputs) are better.

• Boolean algebra can be a valuable tool for
simplifying circuits.

• Example:

M = AB + AC

• Many of the rules of ordinary algebra also hold
for Boolean algebra.

• In particular, AB + AC can be factored into
A(B + C) using the distributive law.

• Two functions are equivalent if and only if they
have the same output for all possible inputs

• Thus, AB + AC is equivalent to A(B + C).
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Circuit Equivalence
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Figure 3-5. Two equivalent functions. (a) AB +
AC (b) A(B + C).
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Laws of Boolean Algebra

• In general, a circuit designer starts with a
Boolean function and then apply the laws of
Boolean algebra to it in an attempt to find a
simpler but equivalent one.

• From the final function, a circuit can be
constructed.

• To use this approach, we need some identities
from Boolean algebra.
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Identities of Boolean Algebra

Identity law

Null law

Idempotent law

Inverse law

Commutative law

Associative law

Distributive law

Absorption law

De Morgan's law

1A = A

0A = 0

AA = A

AB = BA

(AB)C = A(BC)

A + BC = (A + B)(A + C)

A(A + B) = A A + AB = A

0 + A = A

1 + A = 1

A + A = A

A + B = B + A

(A + B) + C = A + (B + C)

A(B + C) = AB + AC

Name AND form OR form

AA = 0

AB = A + B

A + A = 1

A + B = AB

Figure 3-6. Some identities of Boolean algebra.
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Comments on the Identities

• It is interesting to note that each law has two
forms that are duals of each other.

• By interchanging AND and OR and also 0 and
1, either form can be produced from the other
one.

• All the laws can be easily proven by
constructing their truth tables.

• Except for DeMorgan’s law, the absorption law,
and the AND form of the distributive law, the
results are reasonably intuitive.

• DeMorgan’s law can be extended to more than
two variables, for example, ABC = A + B + C.
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Consequences of DeMorgan’s Law

• DeMorgan’s law suggests an alternative notation.

• An OR gate with inverted inputs is equivalent to
a NAND gate.

• A NOR gate can be drawn as an AND gate with
inverted inputs.

• Negating both forms of DeMorgan’s law also
has interesting consequences – leads to
equivalent representations of the AND and OR
gates.

Department of Computer Science, University College Cork 8

Consequences of DeMorgan’s Law
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Figure 3-7. Alternative symbols for some gates:
(a) NAND. (b) NOR. (C) AND. (d) OR.
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Using the Identities

• Using the identities it is easy to convert the
sum-of-products representation of a truth table
to pure NAND or pure NOR form.

• Example: consider the EXCLUSIVE OR
function:

XOR = AB + AB

• How do we get convert this to a completely
NAND form?

• The standard sum-of-products circuit is shown
in Fig. 3-8(b). To

• Note that inversion bubbles can be moved
along a line at will
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The EXCLUSIVE OR Gate
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Figure 3-8. (a) The truth table for the XOR
function. (b)-(d) Three circuits for computing it.
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Positive and Negative Logic

• As a final note on circuit equivalence, we
will now demonstrate the surprising result that
the same physical gate can compute different
functions, depending on the conventions used.

• If we adopt the convention that 0 volts is logical
0 and 5 volts is logical 1, this is called positive
logic.

• If, however, in negative logic, 0 volts denotes
a logical 1 and 5 volts a logical 0.

• What is the significance?
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Positive and Negative Logic
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Figure 3-9. (a) Electrical characteristics of a
device. (b) Positive logic. (c) Negative logic.

• Thus, the convention chosen to map voltages
onto logical values is critical.

• Except where otherwise specified, we will
henceforth use positive logic, so the terms
logical 1, true, and high are synonyms, as are
logical 0, false, and low.
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