
CS1101: Lecture 14
Computer Systems

Organization:
Processors & Parallelism

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Design Principles for Modern Computers

• Parallelism

• Instruction-Level Parallelism

– Pipelining
– Dual Pipelines
– Superscalar Architectures

• Processor-Level Parallelism

– Array Computers
– Multiprocessors
– Multicomputers

• Reading : Tanenbaum, Chapter 2 Section 1

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation Computer Systems Organization: Processors

Design Principles for Modern Computers

There is a set of design principles, sometimes
called the RISC design principles, that architects
of general-purpose CPUs do their best to follow:

• All Instructions Are Directly Executed by
Hardware

– eliminates a level of interpretation

• Maximise the Rate at Which Instructions are
Issued

– MIPS = millions of instructions per second
– MIPS speed related to the number of

instructions issued per second
– Parallelism can play a role

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation Computer Systems Organization: Processors

Design Principles for Modern Computers

• Instructions Should be Easy to Decode

– a critical limit on the rate of issue of
instructions

– make instructions regular, fixed length, with
a small number of fields.

– the fewer different formats for instructions.
the better.

• Only Loads and Stores Should Reference
Memory

– operands for most instructions should come
from- and return to- registers.

– access to memory can take a long time
– thus, only LOAD and STORE instructions

should reference memory.

• Provide Plenty of Registers

– accessing memory is relatively slow, many
registers (at least 32) need to be provided,
so that once a word is fetched, it can be kept
in a register until it is no longer needed.

Department of Computer Science, University College Cork 3



Parallelism

• Computer architects are constantly striving to
improve performance of the machines they
design.

• Making the chips run faster by increasing their
clock speed is one way,

• However, most computer architects look to
parallelism (doing two or more things at once)
as a way to get even more performance for a
given clock speed.

• Parallelism comes in two general forms:

– instruction-level parallelism, and
– processor-level parallelism.

Department of Computer Science, University College Cork 4

Instruction-Level Parallelism

• Parallelism is exploited within individual instructions
to get more instructions/sec out of the machine.

• We will consider two approached

– Pipelining
– Superscalar Architectures

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation Computer Systems Organization: Processors

Pipelining

• Fetching of instructions from memory is a major
bottleneck in instruction execution speed.
However, computers have the ability to fetch
instructions from memory in advance

• These instructions were stored in a set of
registers called the prefetch buffer .

• Thus, instruction execution is divided into two
parts: fetching and actual execution;

• The concept of a pipeline carries this strategy
much further.

• Instead of dividing instruction execution into
only two parts, it is often divided into many
parts, each one handled by a dedicated piece
of hardware, all of which can run in parallel.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation Computer Systems Organization: Processors

A Example of Pipelining

(a)

(b)

S1:

S2:

S3:

S4:

S5:

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7

1 2 3 4 5 6

1 2 3 4 5



1 2 3 4 5 6 7 8 9

Time

…

S1 S2 S3 S4 S5

Instruction
fetch
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Figure 2-4. (a) A five-stage pipeline. (b) The state
of each stage as a function of time. Nine clock
cycles are illustrated.

Department of Computer Science, University College Cork 7



Dual Pipelines

• If one pipeline is good, then surely two
pipelines are better.

• Here a single instruction fetch unit fetches pairs
of instructions together and puts each one into
its own pipeline, complete with its own ALU for
parallel operation.

• To be able to run in parallel, the two instructions
must not conflict over resource usage (e.g.,
registers), and neither must depend on the
result of the other.

Department of Computer Science, University College Cork 8

Example: Dual Pipelines

S1 S2 S3 S4 S5

Instruction
fetch
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Instruction
decode

unit

Operand
fetch
unit

Instruction
execution

unit

Write
back
unit

Figure 2-5. (a) Dual five-stage pipelines with a
common instruction fetch unit.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation Computer Systems Organization: Processors

Superscalar Architectures

• Going to four pipelines is conceivable, but
doing so duplicates too much hardware

• Instead, a different approach is used on high-
end CPUs.

• The basic idea is to have just a single pipeline
but give it multiple functional units.

• This is a superscalar architecture – using
more than one ALU, so that more than one
instruction can be executed in parallel.

• Implicit in the idea of a superscalar processor
is that the S3 stage can issue instructions
considerably faster than the S4 stage is able
to execute them.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation Computer Systems Organization: Processors

Superscalar Architectures

S2 S3 S5

Instruction
decode

unit

Operand
fetch
unit

LOAD
Write
back
unit

S1

Instruction
fetch
unit

S4

Floating
point

STORE

ALU

ALU

Figure 2-6. A superscalar processor with five
functional units.

Department of Computer Science, University College Cork 11



Processor-Level Parallelism

• Instruction-level parallelism (pipelining and
superscalar operation) rarely win more than a
factor of five or ten in processor speed.

• To get gains of 50, 100, or more, the only way
is to design computers with multiple CPUS

• We will consider three alternative architectures:

– Array Computers
– Multiprocessors
– Multicomputers

Department of Computer Science, University College Cork 12

Array Computers

• An array processor consists of a large number
of identical processors that perform the same
sequence of instructions on different sets of
data.

• A vector processor is efficient at at executing
a sequence of operations on pairs of Data
elements; all of the addition operations are
performed in a single, heavily-pipelined adder.

Department of Computer Science, University College Cork 13

CS1101: Systems Organisation Computer Systems Organization: Processors

Example: Array Computers

Control unit

Broadcasts instructions

Processor

Memory

8 × 8 Processor/memory grid

Figure 2-7. An array processor of the ILLIAC IV
type.

Department of Computer Science, University College Cork 14

CS1101: Systems Organisation Computer Systems Organization: Processors

Multiprocessors

• The processing elements in an array processor
are not independent CPUS, since there is only
one control unit.

• The first parallel system with multiple full-blown
CPUs is the multiprocessor .

• This is a system with more than one CPU
sharing a common memory co-ordinated in
software.

• The simplest one is to have a single bus with
multiple CPUs and one memory all plugged
into it.

Department of Computer Science, University College Cork 15



Example: Multiprocessors

(a) (b)

CPU

Shared
memory

Bus

CPU CPU CPU

Local memories

CPU

Shared
memor

Bus

CPU CPU CPU

Figure 2-8. (a) A single-bus multiprocessor. (b) A
multicomputer with local memories.

Department of Computer Science, University College Cork 16

Multicomputers

• Although multiprocessors with a small number
of processors (< 64) are relatively easy to build,
large ones are surprisingly difficult to construct.

• The difficulty is in connecting all the processors
to the memory.

• To get around these problems, many designers
have simply abandoned the idea of having
a shared memory and just build systems
consisting of large numbers of interconnected
computers, each having its own private
memory, but no common memory.

• These systems are called multicomputers .

Department of Computer Science, University College Cork 17


