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Lecture Outline

• Design Principles for Modern Computers

• Parallelism

• Instruction-Level Parallelism

– Pipelining
– Dual Pipelines
– Superscalar Architectures

• Processor-Level Parallelism

– Array Computers
– Multiprocessors
– Multicomputers

• Reading : Tanenbaum, Chapter 2 Section 1
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Design Principles for Modern Computers

There is a set of design principles, sometimes
called the RISC design principles, that architects
of general-purpose CPUs do their best to follow:

• All Instructions Are Directly Executed by
Hardware

– eliminates a level of interpretation

• Maximise the Rate at Which Instructions are
Issued

– MIPS = millions of instructions per second
– MIPS speed related to the number of

instructions issued per second
– Parallelism can play a role
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Design Principles for Modern Computers

• Instructions Should be Easy to Decode

– a critical limit on the rate of issue of
instructions

– make instructions regular, fixed length, with
a small number of fields.

– the fewer different formats for instructions.
the better.

• Only Loads and Stores Should Reference
Memory

– operands for most instructions should come
from- and return to- registers.

– access to memory can take a long time
– thus, only LOAD and STORE instructions

should reference memory.

• Provide Plenty of Registers

– accessing memory is relatively slow, many
registers (at least 32) need to be provided,
so that once a word is fetched, it can be kept
in a register until it is no longer needed.
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Parallelism

• Computer architects are constantly striving to
improve performance of the machines they
design.

• Making the chips run faster by increasing their
clock speed is one way,

• However, most computer architects look to
parallelism (doing two or more things at once)
as a way to get even more performance for a
given clock speed.

• Parallelism comes in two general forms:

– instruction-level parallelism, and
– processor-level parallelism.
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Instruction-Level Parallelism

• Parallelism is exploited within individual instructions
to get more instructions/sec out of the machine.

• We will consider two approached

– Pipelining
– Superscalar Architectures
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Pipelining

• Fetching of instructions from memory is a major
bottleneck in instruction execution speed.
However, computers have the ability to fetch
instructions from memory in advance

• These instructions were stored in a set of
registers called the prefetch buffer .

• Thus, instruction execution is divided into two
parts: fetching and actual execution;

• The concept of a pipeline carries this strategy
much further.

• Instead of dividing instruction execution into
only two parts, it is often divided into many
parts, each one handled by a dedicated piece
of hardware, all of which can run in parallel.
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A Example of Pipelining
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Figure 2-4. (a) A five-stage pipeline. (b) The state
of each stage as a function of time. Nine clock
cycles are illustrated.
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Dual Pipelines

• If one pipeline is good, then surely two
pipelines are better.

• Here a single instruction fetch unit fetches pairs
of instructions together and puts each one into
its own pipeline, complete with its own ALU for
parallel operation.

• To be able to run in parallel, the two instructions
must not conflict over resource usage (e.g.,
registers), and neither must depend on the
result of the other.
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Example: Dual Pipelines
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Figure 2-5. (a) Dual five-stage pipelines with a
common instruction fetch unit.
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Superscalar Architectures

• Going to four pipelines is conceivable, but
doing so duplicates too much hardware

• Instead, a different approach is used on high-
end CPUs.

• The basic idea is to have just a single pipeline
but give it multiple functional units.

• This is a superscalar architecture – using
more than one ALU, so that more than one
instruction can be executed in parallel.

• Implicit in the idea of a superscalar processor
is that the S3 stage can issue instructions
considerably faster than the S4 stage is able
to execute them.
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Superscalar Architectures
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Figure 2-6. A superscalar processor with five
functional units.
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Processor-Level Parallelism

• Instruction-level parallelism (pipelining and
superscalar operation) rarely win more than a
factor of five or ten in processor speed.

• To get gains of 50, 100, or more, the only way
is to design computers with multiple CPUS

• We will consider three alternative architectures:

– Array Computers
– Multiprocessors
– Multicomputers
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Array Computers

• An array processor consists of a large number
of identical processors that perform the same
sequence of instructions on different sets of
data.

• A vector processor is efficient at at executing
a sequence of operations on pairs of Data
elements; all of the addition operations are
performed in a single, heavily-pipelined adder.
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Example: Array Computers

Control unit

Broadcasts instructions

Processor

Memory

8 × 8 Processor/memory grid

Figure 2-7. An array processor of the ILLIAC IV
type.
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Multiprocessors

• The processing elements in an array processor
are not independent CPUS, since there is only
one control unit.

• The first parallel system with multiple full-blown
CPUs is the multiprocessor .

• This is a system with more than one CPU
sharing a common memory co-ordinated in
software.

• The simplest one is to have a single bus with
multiple CPUs and one memory all plugged
into it.
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Example: Multiprocessors
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Figure 2-8. (a) A single-bus multiprocessor. (b) A
multicomputer with local memories.
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Multicomputers

• Although multiprocessors with a small number
of processors (< 64) are relatively easy to build,
large ones are surprisingly difficult to construct.

• The difficulty is in connecting all the processors
to the memory.

• To get around these problems, many designers
have simply abandoned the idea of having
a shared memory and just build systems
consisting of large numbers of interconnected
computers, each having its own private
memory, but no common memory.

• These systems are called multicomputers .
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