CS1101: Lecture 33
The ISA Level:
Data Types, Instruction
Formats and Addressing

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

L=
ey

Y o)
LIng; 555
ARR TAGGAT LET MO

HE

Course Homepage
http://www.cs.ucc.ie/"osullb/cs1101

Department of Computer Science, University College Cork

CS1101: Systems Organisation The ISA Level

Introduction

e Atthe ISA level, a variety of different data types
are used to represent data.

e A key issue is whether or not there is hardware
support for a particular data type.

e Hardware support means that one or more
instructions expect data in a particular format,
and the user is not free to pick a different
format.

e Another issue is precision — what if we wanted
to total the transactions on Bill Gates’ deposit
account? :)

Department of Computer Science, University College Cork 2

Lecture Outline

e Data Types

— Numeric Data Types
— Nonnumeric Data Types

e Instruction Formats

— Examples of Instruction Formats
— Instruction and Word Length
— A Brief Look at Assembly Language

e Addressing

— Immediate Addressing
Direct Addressing

Register Addressing
Register Indirect Addressing
Indexed Addressing
Based-Indexed Addressing

e Reading : Tanenbaum, Chapter 5, Section 2, 3

Department of Computer Science, University College Cork 1
CS1101: Systems Organisation The ISA Level

Introduction

e Using 32-bit arithmetic would not work here
because the numbers involved are larger than
232 (about 4 billion).

e We could to use two 32-bit integers to
represent each number, giving 64 bits in all.

e However, if the machine does not support this
kind of double precision number, all arithmetic
on them will have to be done in software, thus,
without a required hardware representation.

e Today, we will look at data types are supported
by the hardware, and thus for which specific
formats are required.

Department of Computer Science, University College Cork 3

Numeric Data Types

e Data types can be divided into two categories:
numeric and nonnumeric.

e Chief among the numeric data types are the
integers, which come in many lengths, typically
8, 16, 32, and 64 bits.

e Most modern computers store integers in two’s
complement binary notation.

e Some computers support unsigned integers
as well as signed integers.

e For an unsigned integer, there is no sign bit and
all the bits contain data — thus the range of a
32-bit word is 0 to 232 — 1, inclusive.

e In contrast, a two’'s complement signed 32-bit
integer can only handle numbers up to 23! — 1,
but it can also handle negative numbers.

Department of Computer Science, University College Cork 4

CS1101: Systems Organisation The ISA Level

Nonnumeric Data Types

e Modern computers are often used for nonnumerical
applications, such as word processing or
database management.

e Thus, characters are clearly important here
although not every computer provides hardware
support for them.

e The most common character codes are ASCI|
and UNICODE.

e These support 7-bit characters and 16-bit
characters, respectively.

e It is not uncommon for the ISA level to
have special instructions that are intended for
handling character strings.

e The instructions can perform copy, search, edit
and other functions on the strings.

Department of Computer Science, University College Cork 6

Numeric Data Types

e For numbers that cannot be expressed as an
integer, floating-point numbers are used.

e They have lengths of 32, 64, or sometimes 128
bits.

e Most computers have instructions for doing
floating-point arithmetic.

e Many computers have separate registers for
holding integer operands and for holding
floating-point operands.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The ISA Level

Nonnumeric Data Types

e Boolean values are also important.
e Two values: TRUE or FALSE.

o In theory, a single bit can represent a Boolean,
with 0 as false and 1 as true (or vice versa).

e In practice, a byte or word is used per Boolean
value because individual bits in a byte do not
have their own addresses and thus are hard to
access.

e A common system uses the convention that 0
means false and everything else means true.

Department of Computer Science, University College Cork 7

Nonnumeric Data Types

Our last data type is the pointer, which is just a
machine address.

We have already seen pointers.

When we discussed stacks we came across
pointers SP and LV.

Accessing a variable at a fixed distance from
a pointer, which is the way ILOAD works, is
extremely common on all machines.

Department of Computer Science, University College Cork 8

10

The ISA Level

)
c
S
— S
O ©
> ©
=
o)
EQ
0 c
(7]
el—
_ g%
1 N
£ S
=) [
» | < | i
= i ¥ NS
a
= g 3] TS
(@] o < ~ 0
LL <ls =T ..E
c 5 2,
S 2 £8
) 1 o | —
o w - oo
2 Q o} = T
—_ o (@] c @©
+ o o o A
7 S 1O | 9 o
c — = x
— 3|_ o
u= 5~ °
© 50 g
2 — o = 3
Q A cC O >
o w O = o
o EO o
E S > £
@© < €5 S
= | 8E g
sl w o) ﬁ N 3
3 Ql = T SS9 @
£ el |58l 29 5
S o e w2 5
o — =} g
g w o3 c 3
2 Q W 4L 5
U>~) O (b Jei =
o 3 o £ 9 3
o LO: g
o L | > _ =4
— — +— 5
7S Do 0 &
& Lr2c a

Instruction Formats

e An instruction consists of an opcode, usually
along with some additional information such as
where operands come from, and where results
go to.

e The general subject of specifying where the
operands are (i.e., their addresses) is called
addressing .

e Instructions always have an opcode to tell what
the instruction does.

e There can be zero, one, two, or three
addresses present.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The ISA Level

Instruction Formats

e On some machines, all instructions have the
same length; on others there may be many
different lengths.

e Instructions may be shorter than, the same
length as, or longer than the word length.

e Having all the instructions be the same length
is simpler and makes decoding easier but often
wastes space, since all instructions then have
to be as long as the longest one.

Department of Computer Science, University College Cork 11

The ISA

1 Word
Instruction
Instruction | Instr. | Instr.
Instruction
C

Instruction
Instruction
Instruction
Instruction

1 Word
b

Instruction
Instruction
Instruction
Instruction

Instruction and Word Length

Some possible relationships between instruction and w

Department of Computer Science, University College Cork

c

o

T

@

c

g EEEE

1] s|o|B|lo|B| = :

2 HHEEHEEES

5 T|2|2[2]|2 '

@ le}

I .

o Q=

g el

s 2 <

8] Lo

CS1101: Systems Organisation The ISA Level
Addressing

Instructions generally have one, two or three
operands.

The operands are addressed using one of the
following modes:

Immediate
Direct
Register
Indexed
Other mode

Some machines have a large number of
complex addressing modes.

We will consider a few addressing modes here.

Department of Computer Science, University College Cork 14

A Brief Look at Assembly Language

e Here is a Java code fragment:

if (i == 0)
k = 1;
else
k = 2;

e lts translation to a generic assembly language:

CMP i,0 ; compare i to 0
BNE Else ; branch to Else is not equal
Then: MOV k,1 ; move 1 to k
BR Next ; unconditional branch to Next
Else: MOV k,2 ; move 2 to k
Next:
Department of Computer Science, University College Cork 13
CS1101: Systems Organisation The ISA Level

Immediate Addressing

e The simplest way for an instruction to specify
an operand is for the address part of the
instruction actually to contain the operand itself
rather than an address or other information
describing where the operand is.

e Such an operand is called an immediate
operand because it is automatically fetched
from memory at the same time the instruction
itself is fetched.

e Example:
MOV R1,4

e Advantage — no extra memory reference to
fetch the operand.

e Disadvantage — only a constant can be
supplied this way.

Department of Computer Science, University College Cork 15

Direct Addressing

A method for specifying an operand in memory
is just to give its full address.

This mode is called direct addressing

Like immediate addressing, direct addressing
is restricted in its use: the instruction will
always access exactly the same memory
location.

So while the value can change, the location
cannot.

Thus direct addressing can only be used to
access global variables whose address is
known at compile time.

Department of Computer Science, University College Cork 16

CS1101: Systems Organisation The ISA Level

Register Indirect Addressing

In this mode, the operand being specified
comes from memory or goes to memory, but its
address is not hardwored into the instruction,
as in direct addressing.

Instead, the address is contained in a register.

When an address is used in this manner, it is
called a pointer .

A big advantage of register indirect addressing
is that it can reference memory without paying
the price of having a full memory address in the
instruction.

Department of Computer Science, University College Cork 18

Register Addressing

e Register addressing is conceptually the same
as direct addressing but specifies a register
instead of a memory location.

e Because registers are so important (due to fast
access and short addresses) this addressing
mode is the most common one on most
computers.

e Many compilers go to great lengths to
determine which variables will be accessed
most often (for example, a loop index) and put
these variables in registers.

e This addressing mode is known simply as
register mode .

Department of Computer Science, University College Cork 17

CS1101: Systems Organisation The ISA Level

Example of Register Indirect Addressing

e Consider an program which steps through the
elements of a 1024-element one-dimensional
integer array to compute the sum of the
elements in register R1.

o We will indirectly register through R2 to access
the elements of the array

e Here is the assembly program:

Department of Computer Science, University College Cork 19

The ISA

Example of Register Indirect Addressing

CS1101: Systems Organisation

The ISA Level

CS1101: Systems Organisation

An Example of Indexed Addressing

; accumulate the sum in R1, initially 0
; R2 = address of the array A

MOV R1,#0
MOV R2#A

; accumulate the OR in R1, initially 0

MOV RI,#0

index, i, of current product: A[i] AND BJi]

; R3 = first index not to use

: R4 = A[]

; R2

MOV R2,#0

address of the first word beyond A

; register indirect through R2 to get opera

; R3

MOV R3,#A+4096

MOV R3 #4096
LOOP: ADD RL,(R2)

LOOP: MOV R4,A(R2)

nd

; increment R2 by one word (4 bytes)

; are we done yet?

ADD R2#4
CMP R2,R3
BLT LOOP

: R4 = Ali] AND B[]

AND R4,B(R2)
OR RI1,R4
ADD R2,#4
CMP R2,R3
BLT LOOP

; OR all the Boolean products in R1

; if R2 < R3, we are not done, so continue

;i =i + 4 (step through units of 1 word = 4 bytes)

; are we done yet?

; if R2 < R3, we are not done, so continue

Department of Computer Science, University College Cork

22

Department of Computer Science, University College Cork

Indexed Addressing

e It is frequently useful to be able to reference
memory words at a known offset from a
register.

e Addressing memory by giving a register
(explicit or implicit) plus a constant offset is
called indexed addressing

e Example: consider the following calculation:

¢ We have two one-dimensional arrays of 1024
words each, A and B, and we wish to compute
A; AND B, for all the pairs and then OR these
1024 Boolean products together to see if there
is at least one nonzero pair in the set.

e Here is the assembly program.

Department of Computer Science, University College Cork 21

CS1101: Systems Organisation The ISA Level

Based-Indexed Addressing

e Some machines have an addressing mode
in which the memory address is computed
by adding up two registers plus an (optional)
offset.

e Sometimes this mode is called based-indexed
addressing .

e One of the registers is the base and the other
is the index .

e Such a mode would have been useful in our
example here.

e QOutside the loop we could have put the address
of Ain R5 and the address of B in R6.

e Then we could have replaced the instruction at
LOOP and its successor with

LOOP: MOV R4,(R2+R5)
AND R4,(R2+R6)

Department of Computer Science, University College Cork 23

