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• Reading : Tanenbaum, Chapter 7, Section 3.
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Pass Two

• The function of pass two is to generate the
object program and possibly the assembly
listing.

• In addition, it must output certain information by
the linker for linking up procedures assembled
at different times into a executable file.

• Each line is read and processed one at a time

• Since we have written the type, opcode, and
length at the start of each line (temporary file),
these are read in to save some parsing.
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Code Generation

• During code generation evaluation procedures
are used to handle particular patterns in the
assembly language.

• For example, an opcode and two register
operands.

• Each one generates binary code for the
relevant instruction.

• Normally, as code generation progresses, the
binary code is buffered as it accumulates
binary code and written to the disk in large
chunks to reduce disk traffic.

• The original source statement and the object
code generated from it (in decimal) can then
be printed or put into a buffer for later printing.

• After the ILC has been adjusted, the next
statement is fetched.
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Errors

• Up until now it has been assumed that the
source program does not contain any errors.

• Some of the common errors are as follows:

1. A symbol has been used but not defined.
2. A symbol has been defined more than once.
3. The name in the opcode field is not a legal

opcode
4. An opcode is not supplied with enough

operands.
5. An opcode is supplied with too many

operands.
6. An octal number contains an 8 or a 9
7. Illegal register use (e.g. a branch to a

register).
8. The END statement is missing.
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Managing the Symbol Table

• During pass one of the assembly process,
the assembler accumulates information about
symbols and their values that must be stored in
the symbol table for lookup during pass two.

• Several different ways are available for organizing
the symbol table.

• All of them attempt to simulate an associative
memory , which conceptually is a set of
(symbol, value) pairs.

• Given the symbol, the associative memory
must produce the value.
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Arrays

• The simplest implementation technique is
indeed to implement the symbol table as an
array of pairs, the first element of which is (or
points to) the symbol

• The second of which is (or points to) the value.

• Given a symbol to look up, the symbol table
routine just searches the table linearly until it
finds a match.

• This method is easy to program but is slow,
because, on the average, half the table will
have to be searched on each lookup.
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Binary Search

• Another way to organize the symbol table is
to sort it on the symbols and use the binary
search algorithm to look up a symbol.

• This algorithm works by comparing the middle
entry in the table to the symbol.

• If the symbol comes before the middle entry
alphabetically, the symbol must be located in
the first half of the table.

• If the symbol comes after the middle entry, it
must be in the second half of the table.

• If the symbol is equal to the middle entry, the
search terminates.
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Binary Search

• Assuming that the middle entry is not equal to
the symbol sought, we at least know which half
of the table to look for it in.

• Binary search can now be applied to the correct
half, which yields either a match, or the correct
quarter of the table.

• Can search a table size n in log2n attempts.
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Hash Coding

• A completely different approach is known as
hash coding .

• This approach requires having a ”hash”
function that maps symbols onto integers in the
range 0 to k − 1.

• One possible function is to multiply the ASCII
codes of the characters in the symbols
together, ignoring overflow, and taking the
result modulo k or dividing it by a prime
number.

• In fact, almost any function of the input that
gives a uniform distribution of the hash values
will do.
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Hash Coding

• Symbols can be stored by having a table
consisting of k buckets numbered 0 to k − 1.

• All the (symbol, value) pairs whose symbol
hashes to i are stored on a linked list pointed
to by slot i in the hash table.

• With n symbols and k slots in the hash table,
the average list will have length n/k.

• By choosing k approximately equal to n,
symbols can be located with only about one
lookup on the average.

• By adjusting k we can reduce table size at the
expense of slower lookups.
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Hash Coding
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