
CS1101: Lecture 39
The Assembly Process

– Pass Two

Dr. Barry O’Sullivan
b.osullivan@cs.ucc.ie

Course Homepage
http://www.cs.ucc.ie/˜osullb/cs1101

Department of Computer Science, University College Cork

Lecture Outline

• Pass Two

• Code Generation

• Errors

• Managing the Symbol Table

• Arrays

• Binary Search

• Hash Coding

• Reading : Tanenbaum, Chapter 7, Section 3.

Department of Computer Science, University College Cork 1

CS1101: Systems Organisation The Assembly Language Level

Pass Two

• The function of pass two is to generate the
object program and possibly the assembly
listing.

• In addition, it must output certain information by
the linker for linking up procedures assembled
at different times into a executable file.

• Each line is read and processed one at a time

• Since we have written the type, opcode, and
length at the start of each line (temporary file),
these are read in to save some parsing.

Department of Computer Science, University College Cork 2

CS1101: Systems Organisation The Assembly Language Level

Code Generation

• During code generation evaluation procedures
are used to handle particular patterns in the
assembly language.

• For example, an opcode and two register
operands.

• Each one generates binary code for the
relevant instruction.

• Normally, as code generation progresses, the
binary code is buffered as it accumulates
binary code and written to the disk in large
chunks to reduce disk traffic.

• The original source statement and the object
code generated from it (in decimal) can then
be printed or put into a buffer for later printing.

• After the ILC has been adjusted, the next
statement is fetched.

Department of Computer Science, University College Cork 3



Errors

• Up until now it has been assumed that the
source program does not contain any errors.

• Some of the common errors are as follows:

1. A symbol has been used but not defined.
2. A symbol has been defined more than once.
3. The name in the opcode field is not a legal

opcode
4. An opcode is not supplied with enough

operands.
5. An opcode is supplied with too many

operands.
6. An octal number contains an 8 or a 9
7. Illegal register use (e.g. a branch to a

register).
8. The END statement is missing.

Department of Computer Science, University College Cork 4

Managing the Symbol Table

• During pass one of the assembly process,
the assembler accumulates information about
symbols and their values that must be stored in
the symbol table for lookup during pass two.

• Several different ways are available for organizing
the symbol table.

• All of them attempt to simulate an associative
memory , which conceptually is a set of
(symbol, value) pairs.

• Given the symbol, the associative memory
must produce the value.

Department of Computer Science, University College Cork 5

CS1101: Systems Organisation The Assembly Language Level

Arrays

• The simplest implementation technique is
indeed to implement the symbol table as an
array of pairs, the first element of which is (or
points to) the symbol

• The second of which is (or points to) the value.

• Given a symbol to look up, the symbol table
routine just searches the table linearly until it
finds a match.

• This method is easy to program but is slow,
because, on the average, half the table will
have to be searched on each lookup.

Department of Computer Science, University College Cork 6

CS1101: Systems Organisation The Assembly Language Level

Binary Search

• Another way to organize the symbol table is
to sort it on the symbols and use the binary
search algorithm to look up a symbol.

• This algorithm works by comparing the middle
entry in the table to the symbol.

• If the symbol comes before the middle entry
alphabetically, the symbol must be located in
the first half of the table.

• If the symbol comes after the middle entry, it
must be in the second half of the table.

• If the symbol is equal to the middle entry, the
search terminates.

Department of Computer Science, University College Cork 7



Binary Search

• Assuming that the middle entry is not equal to
the symbol sought, we at least know which half
of the table to look for it in.

• Binary search can now be applied to the correct
half, which yields either a match, or the correct
quarter of the table.

• Can search a table size n in log2n attempts.

Department of Computer Science, University College Cork 8

Hash Coding

• A completely different approach is known as
hash coding .

• This approach requires having a ”hash”
function that maps symbols onto integers in the
range 0 to k − 1.

• One possible function is to multiply the ASCII
codes of the characters in the symbols
together, ignoring overflow, and taking the
result modulo k or dividing it by a prime
number.

• In fact, almost any function of the input that
gives a uniform distribution of the hash values
will do.

Department of Computer Science, University College Cork 9

CS1101: Systems Organisation The Assembly Language Level

Hash Coding

• Symbols can be stored by having a table
consisting of k buckets numbered 0 to k − 1.

• All the (symbol, value) pairs whose symbol
hashes to i are stored on a linked list pointed
to by slot i in the hash table.

• With n symbols and k slots in the hash table,
the average list will have length n/k.

• By choosing k approximately equal to n,
symbols can be located with only about one
lookup on the average.

• By adjusting k we can reduce table size at the
expense of slower lookups.

Department of Computer Science, University College Cork 10

CS1101: Systems Organisation The Assembly Language Level

Hash Coding

(a)

(b)

Andy


Anton


Cathy


Dick


Erik


Frances


Frank


Gerrit


Hans


Henri


Jan


Jaco


Maarten


Reind


Roel


Willem


Wiebren

0


4


5


0


6


3


3


4


4


2


5


6


0


1


7


6


1

14025


31253


65254


54185


47357


56445


14332


32334


44546


75544


17097


64533


23267


63453


76764


34544


34344

Hash


table Linked table

0 Andy 14025 Maarten 23267 Dick





54185




1 Reind 63453




Wiebren 34344

2 Henri 75544

3 Frances 56445




Frank





14332

4 Hans





44546




Gerrit





32334





Anton





31253




5 Jan 17097




Cathy





65254




6 Jaco 64533




Willem





34544





Erik








47357







7 Roel 76764

Department of Computer Science, University College Cork 11


