
Laurent Granvilliers and Barry O’Sullivan

(Editors)

Constraints and Design

First International Workshop
Sitges, Spain, 1st October 2005
Proceedings

Held in conjunction with the
Eleventh International Conference on
Principles and Practice of
Constraint Programming (CP 2005)

Preface

Constraint processing has emerged as an extremely expressive and powerful
paradigm in which to model, solve and reason about many complex problems.
Over the past several decades advances in both the fundamental aspects of con-
straint processing and practical applications of constraints have contributed to
making it one of the most promising of Artificial Intelligence technologies.

In product development and design, constraints arise in many forms. The func-
tional description of an artifact defines a set of constraints, as does the physical
realization of that functionality. The production processes that will be used to
manufacture the artifact can constrain the materials and dimensions that the
designer can select. Preferences can be represented as constraints so that opti-
mization techniques can be employed, as well as forming a basis for negotiation.
Of course, in many situations constraints emerge during design. Therefore, tech-
niques for supporting the acquisition and discovery of constraints are important.
Finally, designers often wish to have explained to them why some design option
is not available to them, or how to overcome blind-alleys. Techniques from the
fields of diagnosis, as well as approaches to visualization and explanation are
critical.

While the study of constraints has been maturing over the past several decades,
there are many opportunities to hybridize constraint processing with other tech-
nologies from the fields of both Artificial Intelligence and Cognitive Science to
develop sophisticated tools for supporting design. The objective of this workshop
is to collect papers that primarily exploit developments in constraint processing
in the domain of engineering design.

We wish to thank all the authors who submitted papers, the members of the
programme committee, and the CP-2005 Tutorial and Workshop Chairs, Alan
Frisch and Ian Miguel.

August 2005 Laurent Granvilliers and Barry O’Sullivan

Programme Chairs

Organising Committee

Laurent Granvilliers – LINA, France
Barry O’Sullivan – Cork Constraint Computation Centre, Ireland

Programme Committee

Pedro Barahona – New University of Lisbon
Frederic Benhamou – LINA, France
James Bowen – University College Cork, Ireland
Boi Faltings – EPFL, Switzerland
Xavier Fischer – LIPSI ESTIA, France
John Gero – University of Sydney, Australia
Ulrich Junker – ILOG, France
Krzysztof Kuchcinski – Lund University, Sweden
Patrick Sebastian – TREFLE, France
Radoslaw Szymanek – Cork Constraint Computation Centre, Ireland
Laurent Zimmer – Dassault Aviation, France

ii

Table of Contents

Acquiring an Incomplete Specification as a Partially Defined Constraint . . 1

Arnaud Lallouet, Andrëı Legtchenko

Knowledge Modeling for Decision Support Systems in Mechanical
Embodiment Design . 17

Patrick Sebastian, R. Chenouard and Jean-Pierre Nadeau

A Specificity of CSP in Design: Controlling the Relevance of the
Variables in the Problem . 34

Thomas van Oudenhove de Saint Gry, Paul Gaborit, and Michel
Aldanondo

iv

Acquiring an Incomplete Specification
as a Partially Defined Constraint

Arnaud Lallouet, Andrëı Legtchenko

Université d’Orléans — LIFO
BP6759, F-45067 Orléans

lallouet|legtchen@lifo.univ-orleans.fr

Abstract. Partially defined Constraints can be used to model the in-
complete knowledge of a concept or a relation. Instead of only comput-
ing with the known part of the constraint, we propose to complete its
definition by using Machine Learning techniques. Since constraints are
actively used during solving for pruning domains, building a classifier
for instances is not enough: we need a solver able to reduce variable do-
mains. Our technique is composed of two steps: first we learn a classifier
for the constraint’s projections and then we transform the classifier into a
propagator. We show that our technique not only has good learning per-
formances but also yields a very efficient solver for the learned constraint.
In Constraint Aided Design, this technology could be used when some
constraints are difficult to represent, like comfort, user satisfaction. . .

1 Introduction

The success of Constraint Programming takes its roots in its unique combina-
tion of modeling facilities and solving efficiency. However, the use of Constraint
Programming is often limited by the knowledge of the constraints which may be
appropriate to represent a given problem. It can happen that a model involves
a constraint which is only partially known like for example if the constraint
represents a concept we cannot, we do not know or we do not want to define
in extension. It can be the set of mammals in a description of animals, solar
systems inside astronomical data, a preference between possibilities in a con-
figuration problem, the notion of “good” wine or an habit like the usually free
time slots in somebody’s diary. It may also happen that the user does not know
which constraint can be used to model the problem because of lack of knowledge
in Constraint Programming, but on the other hand can easily express examples
or counter-examples for it. This situation appears in design [8, 18] when a re-
quirement is difficult or is impossible to model. For example, when designing a
bicycle, the angle α of the fork (see figure 1) has an impact on mesureable con-
cepts like the turning circle but also on less well-defined concepts like the ability
to go straight when driving hands up or the feeling of comfort of the user. Such
a constraint can be modeled by examples and counter-examples and impose re-
quirements on the shape of the item when designing a new fork. Also, other

1 of 41

Fig. 1. Angle of a bicycle fork

concepts like consumer satisfaction can be modeled alike by giving examples for
already built objects.

In this paper, we propose to use partially defined finite domain constraints.
In an partially defined constraint, some tuples are known to be true, some other
are known to be false and some are just unknown. We make use of this partial
knowledge for learning the concept which is behind the partially defined con-
straint. Given positive and negative examples of the concept, the task consists
in completing the definition in such a way that new examples never met by the
system will be correctly classified. This framework has been extensively studied
in Machine Learning [16] under the name of supervised classification. Partially
defined constraints were introduced in [11] in the context of distributed reasoning
but with the goal of minimizing the number of requests needed to complete the
definition. In contrast, we assume here that the full constraint is not available
even by asking other agents. Also there is not a single way to complete apartially
defined constraint since different people just agree on examples but may have
different extensions in mind. In addition, they may revise its definition when
they get more experience or knowledge. In this paper, we are only concerned by
the acquisition of a single constraint. However, its arity may be large.

Let us take an example in which partially defined constraints occur naturally:
in a large company, the canteen serves a large number of meals a day. One day,
the Chef is asked to prepare as first course a salad which should be good (to
respect the company’s high standards) but also the cheapest possible (because
of the company’s low profits last year). The Chef owns a cookbook composed of
53 recipes of salads and has various ingredients such as tomatoes, mayonnaise,
shrimps. . . All are given with price and available quantity. A first idea would
be to select from the cookbook the cheapest recipe possible given the available
ingredients. But, since not all knowledge about salads is contained in the cook-
book, the invention of a new salad is also an interesting option. The concept of
“good salad” can be modeled as an partially defined constraint whose solution
tuples are good salads and non-solutions are bad ones. The cookbook is then
viewed as a set of examples for the partially defined constraint (for the sake of
learning, we should also give examples of bad salads).

2 of 41

Partially defined constraints can be learned whenever examples and counter-
examples of the relation are available. For example, in the context of a distributed
appointment system using diaries stored on PDAs, each agent may learn a rep-
resentation of the other agents’ schedule in order to minimize future conflicts
when searching for a common appointment. Then a correct learning can be used
as an heuristic which proposes first the slots which are more likely to be free.
Examples are here provided by the history of interactions between agents.

The idea of the technique we use for learning comes directly from the clas-
sical model of solvers computing a chaotic iteration of reduction operators [3].
We begin by learning the constraint. But instead of learning it by a classifier
which takes as input all its variables and answers ”yes” if the tuple belongs to
the constraint and ”no” otherwise, we choose to learn the support function of
the constraint for each value of its variables’ domains. A tuple is part of the
constraint if accepted by all classifiers for each of its values and rejected as soon
as it gets rejected by one. This method is non-standard in Machine Learning
but we show in section 4 that it can achieve a low error ratio — comparable
to well-established learning methods — when new tuples are submitted, which
proves experimentally its validity.

As is, a classifier is only able to perform satisfiability checks for an partially
defined constraint. If put in a CSP, this constraint would not contribute to the
reduction of variables domains and it would yield a ”generate and test” behavior
that could quickly ruin the performances of the system. Hence, it is needed that
partially defined constraints should own a solver and not only a satisfiability
test in order to meet the standards of efficiency of Constraint Programming.
The classifiers we learn are expressed by functions and we turn them into prop-
agators by taking their extension to intervals. This formal transformation does
not involve any more learning technique, thus preserving the properties of the
first part. Then the classifiers can be used with variable domains as input. We
also show that the consistency they enforce, while weaker than arc-consistency,
is nevertheless interesting and yields a strong pruning along the search space.

2 Preliminaries: building consistencies

We first recall the basic notion of consistency in order to present the approxi-
mation scheme we use for learning. For a set E, we denote by P(E) its powerset
and by |E| its cardinal. Let V be a set of variables and D = (DX)X∈V be their
family of (finite) domains. For W ⊆ V , we denote by DW the set of tuples on W ,
namely ΠX∈W DX . Projection of a tuple or a set of tuples on a set of variables
is denoted by |. A constraint c is a couple (W,T) where W ⊆ V are the variables
of c (denoted by var(c)) and T ⊆ DW is the set of solutions of c (denoted by
sol(c)). A Constraint Satisfaction Problem (or CSP) is a set of constraints. A
solution is a tuple which satisfy all constraints. In this paper, we use the common
framework combining search and domain reduction by a consistency.

A search state is a set of yet possible values for each variable: for W ⊆ V ,
it is a family s = (sX)X∈W such that ∀X ∈ W, sX ⊆ DX . The corresponding

3 of 41

search space is SW = ΠX∈WP(DX). The set SW , ordered by pointwise inclusion
⊆ is a complete lattice. Some search states we call singletonic represent a single
tuple and play a special role as representant of possible solutions. A singletonic
search state s is such that |Πs| = 1.

A consistency can be modeled as the greatest fixpoint of a set of so-called
propagators and is computed by a chaotic iteration [3]. For a constraint c =
(W,T), a propagator is an operator f on SW

1 having the following properties:

– monotony: ∀s, s′ ∈ SW , s ⊆ s′ ⇒ f(s) ⊆ f(s′).
– contractance: ∀s ∈ SW , f(s) ⊆ s.
– correctness: ∀s ∈ SW ,Πs ∩ sol(c) ⊆ Πf(s) ∩ sol(c).
– singleton completeness: let s be a singletonic state, then Πs ∈ sol(c) ⇔

f(s) = s.

Correctness means that a solution tuple never gets rejected across the search
space while singleton completeness means that the operator is also a satisfiability
test for a single tuple.

Let us now define some consistencies associated to a constraint c = (W,T).
The well-known arc-consistency operator acc is defined by:

∀s ∈ SW , acc(s) = s′ with ∀X ∈ W, s′X = (Πs ∩ T)|X

If we suppose that each variable domain DX is equipped with a total ordering
≤, we denote by [a..b] the interval {e ∈ DX | a ≤ e ≤ b}. For A ⊆ DX , we denote
by [A] the set [min(A).. max(A)]. By extension to Cartesian products, for s =
(sX)X∈W ∈ SW , we denote by [s] the family ([sX])X∈W in which each variable
domain is extended to its smallest enclosing interval. The bound-consistency
operator bcc is defined by:

∀s ∈ SW , bcc(s) = s′ with ∀X ∈ W, s′X = sX ∩ [(Π[s] ∩ T)|X]

Bound-consistency only enforces consistency for the bounds of the domain by
shifting them up to the next consistent value in the suitable direction. Consisten-
cies are partially ordered according to their pruning power and we have f ⊆ f ′

if ∀s ∈ SW , f(s) ⊆ f ′(s).
Since only variables domains are reduced, a consistency operator f for a

constraint c = (W,T) can be splitted in |W | projection operators (fX)X∈W

according each variable of the constraint. By confluence of chaotic iterations
[3], these operators can be scheduled independently as long as they follow the
three first properties of consistency operators. In order to represent the same
constraint, they have to be singleton complete collectively. It is worth to notice
that there is a disymetry between reject and acceptance and that for satisfiability,
a non-solution tuple must be rejected (at least) by one of these operators while
correctness imposes that a solution tuple is accepted by all operators.

1 When iterating operators for constraints on different sets of variables, a classical
cylindrification on V is applied.

4 of 41

The role of a consistency operator fX is to eliminate from the domain of its
target variable X some values which are unsupported by the constraint. Arc-
consistency eliminates all inconsistent values. Thus, it has to find a support for
each considered value a (a solution tuple whose projection on the target variable
is a) in order to allow the value to remain in the variable’s domain. This task
has been proved to be NP-complete in general [6] for n-ary constraints. While
many useful constraints have polynomial-time arc-consistency propagators, there
exists some for which this task is intractable. Since we are dealing in this paper
with constraints expressed by examples, this case must be taken into account
seriously and motivates an approximation scheme.

At a finer level of granularity, we can decompose an arc-consistency operator
fX according each value of X’s domain. We call an Elementary Reduction Func-
tion (or ERF) a boolean function fX=a checking if a value a in X’s domain has
a support. In order to achieve this check, this function uses as input the domain
of the other variables of the constraint. By combining ERFs for each domain
value, we can reconstitute the arc-consistency operator. Bound-consistency can
be obtained if the function reduces the bounds of its target variable and only
makes use of the bounds of the other variables’ domains.

If we give each domain value an ERF but if we assume that this ERF takes as
input only the bounds of the other variables’ domains, we get a new intermediate
consistency, we call ac−:

∀s ∈ SW , ac−c (s) = s′ with ∀X ∈ W, s′X = sX ∩ (Π[s] ∩ T)|X
It does not have the full power of arc-consistency since it make use of less input
information but may reduce more than bound-consistency since not only the
bounds can be reduced. The counterpart, called bc+ is when bounds can be
reduced by a function taking as input all information available in the whole
domain of the other variables:

∀s ∈ SW , bc+
c (s) = s′ with ∀X ∈ W, s′X = sX ∩ [(Πs ∩ T)|X]

Proposition 1. bc ⊆ bc+ ⊆ ac and bc ⊆ ac− ⊆ ac.

Proposition 2. ac− and bc+ are uncomparable.

3 Partially Defined Constraints

In this section, we give the definition of partially defined constraints and we
introduce the notion of extension which provides a closure of the constraint.

A classical constraint c = (W,T) is supposed to be known in totality. The
underlying Closed World Assumption (or CWA) states that what is not explicitly
declared as true is false. Hence the complementary T is the set of tuples which
do not belong to c. In the following, we call ordinary constraints under CWA
closed or classical constraints. When dealing with incomplete information, it may
happen that some parts of the constraint are unknown:

5 of 41

Definition 3 (Partially defined constraint).
An partially defined constraint is a triple c = (W, c+, c−) where c+ ⊆ DW , c− ⊆
DW and c+ ∩ c− = ∅.

In a partially defined constraint c = (W, c+, c−), c+ represents the allowed tu-
ples and c− the forbidden ones. The remaining tuples, i.e. c+ ∪ c− are simply
unknown. Note that a classical constraint c = (W,T) is a particular partially de-
fined constraint c = (W,T, T) for which the negative part is the complementary
of the positive part.

Partially defined constraints need a special treatment in order to be used in
a CSP since few propagation can be done without knowing the integrality of the
constraint. Hence a partially defined constraint needs to be closed to be usable in
a constraint solving environment. The closure of a partially defined constraint c
is done by choosing a class (it belongs or not to the constraint) for all unknown
tuples. We call the resulting classical constraint an extension of the partially
defined constraint:

Definition 4 (Extension).
Let c = (W, c+, c−) be a partially defined constraint. A (classical) constraint
c′ = (W,T) is an extension of c if c+ ⊆ T and c− ⊆ T .

In other terms, an extension is a classical constraint compatible with the known
part (positive and negative) of the partially defined constraint. A partially de-
fined constraint allows to catch a glimpse of a hidden reality and one of its
extensions corresponds to the genuine relation of the world. In most cases, the
knowledge of this constraint is impossible to get and all that can be done is
computing an approximation of it. In general, many extensions can be consid-
ered. We are interested in the extension in which the unknown part is completed
by a learning algorithm A : DW → {0, 1} such that t ∈ c+ ⇒ A(t) = 1 and
t ∈ c− ⇒ A(t) = 0.

This kind of extension is obtained by supervised classification: it consists in
the induction of a function which associates to all tuples a class from a set of
examples given with their respective class. Machine Learning puts strong re-
quirements on what is called a good algorithmic extension. First and perhaps
the most important, the correct class for unknown tuples should be forecast
with the highest possible accuracy. The ratio between the number of correctly
classified tuples and the number of presented tuples defines the correctness ratio
of the generalization. Most techniques used in Machine Learning provide much
better performances than random classification and more than 90% of success
in prediction is not unusual. In order to achieve this, we assume that the known
part of the partially defined constraint should be representative of the whole
underlying constraint. Then, the representation of the classification function is
searched in a space of possible functions called hypothesis space. A learning algo-
rithm finds the best possible function in this space by optimizing some criterions,
like correctness, accuracy, simplicity or generalization. . .

6 of 41

4 Constraint Acquisition

At first, we address the problem of constructing a good extension for a partially
defined constraint. In order to represent a relation, the first idea is to build a clas-
sifier taking as input an instantiation of all variables of the relation and returning
a boolean stating if the tuple belongs or not to the relation. But unfortunately,
while learning is effective with this technique (see [19]), it would be difficult to
extract a solver from this representation. Motivated by the equivalence between
a constraint and a correct and singleton complete solver, we propose to acquire a
partially defined constraint c = (W, c+, c−) by learning the support function for
all value of domain variables. More precisely, we propose to build an independent
classifier for each value a of the domain of each variable X ∈ W in the spirit
of ERFs introduced in section 2. This classifier computes a boolean function
stating if the value a should remain in the current domain (output value 1) or if
it can be removed (value 0). We call it an elementary classifier. It takes as input
the value of every other variable in W − {X}.

We propose to use as representation for learning an Artificial Neural Network
(ANN) with an intermediate hidden layer. This representation has been chosen
for its good properties in learning and the possibility of a further transformation
into a solver. Other kinds of classifiers can also be used but we cannot describe
them for lack of space. For W ⊆ V , a neuron is a function n(W) : R|W | → R
computing the weighted sum of its inputs followed by a threshold unit. A dummy
input set at 1 is added to tune the threshold. The sigmoid function is often chosen
for the threshold unit since derivability is an important property for the learning
algorithm. Let (wX)X∈W be the weights associated to each input variable and w0

be the adjustment weight for the dummy input. Hence, the function computed
by a neuron taking as input a = (aX)X∈W is:

n(a) =
1

1 + ew0−
P

X∈W wX .aX

For a constraint c = (W, c+, c−), the classifier we build for X = a is a tree
of neurons with one hidden layer as depicted in figure 2. Let (ni)i∈I be the
intermediary nodes and out be the output node. All neurons of the hidden layer
have as input a value for each variable in W − {X} and are connected to the
output node. Let us call n<X=a> the network concerning X = a. Since neurons
are continuous by nature, we use an analog coding of the domains. Let D be
a finite domain and < a total order on D (natural or arbitrary), then we can
write D as {a0, . . . , an} with ∀i ∈ [1..n], ai−1 < ai. According to this order, we
can map D on [0..1] by coding ai by i/n. In a similar way, the output is in the
interval [0..1] and we choose as convention that the value a should be removed
from the domain of X if out ≤ 0.5. This threshold is the last level of the network
depicted in figure 2.

The global classifier for the partially defined constraint is composed of all of
these elementary classifiers for all values in the domain of all variables {n<X=a>

| X ∈ W,a ∈ DX}. Following the intuition of ERFs for solving, we can use

7 of 41

Fig. 2. Structure of the ANN

these elementary classifiers to decide if a tuple belongs to the extension of the
constraint or not by checking if the tuple gets rejected or not by one of the
classifiers. Let t ∈ DW be a candidate tuple and let (n<X=t|X>(t|W−{X}))X∈W

be the family of 0/1 answers of the elementary classifiers for all values. We can
interpret the answers according two points of view:

– vote with veto: the tuple is accepted if and only if it is accepted by all
elementary classifiers.

– majority vote: the tuple is accepted if accepted by a majority of elementary
classifiers.

In order to produce the extension of the partially defined constraint, these
classifiers are trained on examples and counter-examples selected from the pro-
jection of the known part of the constraint on the sub-space orthogonal to a
variable’s value. For E ⊆ DW , X ∈ W and a ∈ DX , we denote by E<X=a> the
selection of tuples of DW having a as value on X: E<X=a> = {t ∈ E | t|X = a}.
Thus, in order to build the classifier n<X=a>, we take the following sets of
examples and counter-examples:

e+
<X=a> = c+

<X=a>|W−{X}

e−<X=a> = c−<X=a>|W−{X}

For example, for a partially defined constraint defined by W = {X, Y, Z}, c+ =
{(1, 1, 0), (1, 0, 1)} and c− = {(1, 1, 1)}, we get:

– e+
<X=1> = {(1, 0), (0, 1)}.

– e−<X=1> = {(1, 1)}.
The networks are trained by the classical backpropagation algorithm [21]

which finds a value for the weights using gradient descent. The algorithm is
stopped when all examples and counter-examples are correctly classified. This
requirement comes from the need of correctness of constraint programming but
it may be adjusted according to the application and to how noisy the training
set is. In order to do this, some changes to the structure of the network may have
to be done. ANN with an hidden layer have a sufficient expressivity to represent
any boolean function, but at the price of an exponential space complexity. In

8 of 41

Database salad mush. cancer votes-84

Arity 22 22 9 16

Size of DB 334 8124 699 435

Domain sz 2-4 2-12 10 3

neurons in HL 3 3 5 5

classifiers 64 116 90 48

Learning time 55′′ 2′30′′ 8′30′′ 4′30′′

gen ratio Solar veto (SD) 88.08 (3.66) 93.06 (1.91) 95.36 (1.80) 74.07 (3.82)

gen ratio Solar maj (SD) 96.36 (3.51) 99.29 (0.99) 96.52 (2.15) 96.23 (3.26)

gen ratio C5.0 (SD) 90.14 (6.87) 99.19 (1.21) 94.54 (2.44) 96.29 (3.39)

gen ratio C5.0 boost (SD) 95.17 (3.42) 99.80 (0.61) 96.33 (2.26) 95.63 (3.63)

Table 1. Learning results.

many case, it is better to keep a small network size in order to preserve its
generalization capabilities.

Since this technique for learning relations is not classical in Machine Learn-
ing, we present validation results to show that the concept lying behind the
partially defined constraint is actually learned. This framework has been imple-
mented in a system called Solar and tested on the salad example presented
in introduction and on various Machine Learning databases2 used as constraint
descriptions. This makes a contrast with classical Constraint Programming ex-
periments, for example on random CSPs, because we need to be sure that there
is an actual concept behind the partially defined constraint for the learning to
make sense. With random constraints, no learning is possible. For the salad ex-
ample, we have added to the cookbook a set of 281 recipes of bad salads as
counter-examples. The results are summarized in Table 1. The database mush-
room gives attributes to recognize edible candidates, breast-cancer-wisconsin to
recognize benign and malignant forms of disease and house-votes-84 to classify
democrats and republicans. For the salad and mushroom constraints, we have
3 neurons in the hidden layer while we have 5 for breast-cancer-wisconsin and
house-votes-84.

We compare the generalization performance of our technique to the popular
decision tree learning system C5.0 [20]. For each base, we have performed a
cross-validation by using the following method: we cut the base in ten parts,
we use nine of them for learning and the tenth for validation. This process is
repeated 10 times, each part of the base being used in turn for validation. The
cut off is identical for the test with all methods. Then the whole test is repeated
on 5 sessions with different cuts off, yielding 50 tests for each technique. The
generalization ratio is the percentage of correctly classified tuples.

Table 1 contains three parts. The first one contains a description of the
data: database name, arity, size and size of the variables’ domains. Then follow

2 The databases are taken from the UCI Machine Learning repository
(http://www.ics.uci.edu/~mlearn).

9 of 41

some informations about the learned classifiers: the number of neurons in the
hidden layer, the number of individual classifiers learned, and the learning time.
In comparison, the learning time for C5.0 is very low, typically a few seconds,
but the interest of our technique is not only for classification, as described in
the next section. In the last part are presented the generalization results: the
generalization ratio and standard deviation (SD) for Solar with veto vote, for
Solar with majority vote, for C5.0 and for C5.0 with boosting (with number
of trials equal to the arity of the constraint in order to balance our number of
classifiers). The mushroom database is very easy to learn, hence we only used 500
examples out of 8124 for all techniques, otherwise they all would have reached
100%.

The technique we propose challenges powerful techniques such as boosting
[13], both in generalization performance and scattering of results as measured
by standard deviation and error. Nevertheless, the vote of elementary classifiers
cannot be viewed as a variant of boosting. An important difference is that we
partition the set of examples. In veto mode, the learned concept is more fo-
cused on the core of the real concept as we impose more elementary classifiers
to agree on a tuple. Thus it is not surprising that veto mode performs less sat-
isfactorily than majority mode. The tuples which are accepted at unanimity are
in some sense the most ”pure” ones with respect to the real concept and the
error depicted in Table 1 corresponds to rejected positive tuples and never to
accepted negative ones. For optimization purposes, this could even be an ad-
vantage since the solution space is smaller and the correctness of the answer is
better preserved.

5 From classifiers to solvers

When put in a CSP, a constraint shall have an active behavior, it should con-
tribute to the domain reduction. Hence the ”generate and test” behavior induced
by classifiers is not powerful enough. Another idea could be to first generate off-
line the solutions of the extension of the constraint and use them for solving with
a standard but efficient arc-consistency propagation algorithm like GAC-schema
[7]. But unfortunately, this method suffers from two major drawbacks. First the
generation time is prohibitive. For example, 3 hours of ”generate and test” com-
putation on the mushroom database could hardly produce 76835 solutions out
of 1.5 107 tries. A second problem comes from the representation size of the
relation. The extension of the 22-ary constraint mushroom contains more than
4E6 solutions and would thus need more than 88 Mb of memory to be stored. In
contrast, the representation we have is rather economic. For a constraint of arity
n, if we assume that the hidden layer contains m neurons and the size of the
domains is d, it requires n(n+1)dm+1 floats (10 bytes) to store the weights. For
the salad constraint (n = 22,m = 3, d = 4), we get a size of 60Kb, for mushroom
(n = 22,m = 3, d = 12), 180 Kb. . .

We propose to use the learned classifiers also for solving. In order to do this,
let us recall some notions on interval analysis [17]. We call IntR the interval

10 of 41

lattice built on the set R of real numbers. First, all functions have extensions to
intervals:

Definition 5 (Extension to intervals).
Let f : R → R be a function. A function F : IntR → IntR is an extension to
intervals of f if ∀I ∈ IntR, ∀x ∈ I, f(x) ∈ F (I).

An extension F is monotonic if A ⊆ B ⇒ F (A) ⊆ F (B). Between all extensions
to intervals of f , there is a smallest one, called canonical extension to intervals:
f̂(I) = [{f(x) | x ∈ I}]. The canonical extension is monotonic. Here are the
canonical extensions to intervals of the operators we use in classifiers:

[a, b] + [c, d] = [a + c, b + d]
[a, b]− [c, d] = [a− d, b− c]
[a, b]× [c, d] = [min(P),max(P)]

where P = {ac, ad, bc, bd}
exp([a, b]) = [exp(a), exp(b)]

Division is not a problem in our setting since no interval contains 0 (see the
sigmöıd denominator). If e is an expression using these operators and E the
same expression obtained by replacing each operator by a monotonic extension,
then ∀I ∈ IntR, ∀x ∈ I, e(x) ∈ E(I). This property of monotonic extensions
is called ”The Fundamental Theorem of Interval Arithmetic” [17]. It also holds
when domains are replaced by cartesian products of intervals. By taking the
canonical extension of all basic operators in an expression e, we do not always
obtain an extension E which is canonical. We instead call it the natural extension.
Multiplication is only sub-distributive in Interval Arithmetic [17], i.e. A× (B +
C) ⊆ (A × B) + (A × C). Hence the natural extension is canonical only for
expressions with single variable occurences (”Single Occurence Theorem”, [17]).

An elementary classifier n<X=a> defines naturally a boolean function of its
input variables. Let N<X=a> be its natural interval extension, defined by taking
the canonical extension of each basic operator +,−,×, /, exp. Then, by using as
input the current domain of the variables, we can obtain a range for its output.
In order to do this, we compute the interval range of every neuron of the hidden
layer and we use these results to feed the output neuron and compute its domain.
Since we put a 0.5 threshold after the output neuron, we can reject the value a
for X if the maximum of the output range is less than 0.5, which means that all
tuples are rejected in the current domain intervals. Otherwise, the value remains
in the domain.

Proposition 6. N<X=a> is an ERF.

Proof. It is only needed to check the correctness of the function applied to a
search state s with respect to the partially defined constraint’s accepted tuples.
If a tuple t such that tX = a belongs to the solutions of the learned constraint,
then n<X=a>(({tY })Y ∈W−{X}) = 1. Hence if t ∈ Πs, we have max N<X=a> = 1
because N is a monotonic extension.

11 of 41

By doing this for every value of every variable’s domain, we are able to define
a consistency operator fX which gathers the results of the ERFs. For s ∈ SW ,
fX(s) = s′ where s′X = sX ∩ {a ∈ DX | max(N<X=a>(s|W−{X})) = 1} and
s′Y = sY for Y 6= X.

Proposition 7. The operators (fX)X∈W define a consistency for c.

Proof. Each operator fX is monotonic, contractant and correct (by the funda-
mental theorem of Interval Arithmetic). They are together singleton complete
(because the extension of the partially defined constraint is defined by them).

We call lc (for learned consistency) the consistency defined by the learned
propagators. Because we use multiple occurences of the same variable, the con-
sistency lc computes an approximation of ac−:

Proposition 8. lc ⊆ ac−

Proof. Since multiple occurences of variables yield a less precise interval, it fol-
lows that the maximum of the output interval of the last neuron of an ERF
N<X=a> may exceed 0.5 even if there is no support for X = a. Thus the value
is not suppressed as it would be by ac−.

Note that if we had used single layer perceptrons, the extension would have
been exact and we would have got ac−. But this technique has severe limitations
in learning [16]. The propagators for each variable are independent, thus the
generalization obtained when using the solver is the one obtained with veto
vote. This is due to the independent scheduling of the consistency operators for
each variable in the fixpoint computed by chaotic iteration [3].

Database salad mushroom cancer votes-84

#Sol 7.4E5 ≥ 4.1E6 1.27E5 1.27E5

#Fail lc 1.34E5 ≥ 3.1E6 1.28E5 3.47E5

ratio lc 1.8 0.75 0.99 2.86

Time lc 5′15′′ ≥ 2 hours 3′00′′ 7′30′′

Table 2. Results for solutions and failure.

The Solar system takes a partially defined constraint as input and outputs
a set of consistency operators which can be adapted to any solver. In our ex-
periments, we used a custom made solver. We made two sets of experiments in
order to evaluate the learned consistency. The first one is summarized in table
2 and describes the search for all solutions using the learned consistency lc. It
is done by taking a CSP containing the partially defined constraint alone. For
every partially defined constraint, we use our system to count the number of
solutions (#Sol). Since we do not have arc-consistency, we record the number
of failures lc makes while finding these solutions (#Fail lc). Then we compute

12 of 41

Salads:

|s| 29.881 127.406 561.79 2381.654 6721.499 24929.11 64928.5 166563.9

lc 0.003 0.106 0.31 4.094 104.220 1138.65 2440.9 9037.4

bc 0.001 0.005 0.04 0.256 31.889 473.99 280.5 2315.9

bc+ 0.001 0.005 0.04 0.260 31.888 473.15 275.8 1998.2

ac− 0.001 0.005 0.03 0.237 22.210 257.37 186.3 1533.7

ac 0.001 0.005 0.03 0.233 22.209 256.63 185.0 1326.5

Mushroom:

|s| 24.53 500.2 3711.2 23249.4

lc 1.57 181.6 1067.2 10226.1

bc 0.74 194.2 451.6 4078.4

bc+ 0.69 147.8 430.1 3933.2

ac− 0.55 126.4 275.6 2148.4

ac 0.52 96.0 261.4 2084.1

Table 3. Consistency tests.

the ratio lc = #Fail lc / #Sol. If we had arc-consistency, there would not be
any backtrack. The purpose of this experiment is to compare lc to what ac could
have done if ac was available for partially defined constraints. In terms of failure,
the average ratio on all experiments is of 1.6 failures per solution. This result
should be put into balance with the huge number of failures ”generate and test”
would have done. We also report the time lc needs to find these solutions. The
mushroom constraint has a very large space and a medium tightness and we
could not obtain its full extension. But for the other constraints, this is the only
method to get all solutions since the Cartesian products of the domains are so
large that this prevents the use of ”generate and test” with the classifier.

Fig. 3. Compared reduction of lc and ac.

Our second set of experiment is a random sampling of the reductions made by
the different consistencies on random search states (the domain of each variable
are arbitrary sets, not intervals). These results are depicted in Table 3 and 4. For
each constraint, we give the number of tuples of the initial search state (|Πs|)
and the number of tuples after an application of each of the operators lc, bc,

13 of 41

Breast cancer:

|s| 11.663 54.70 366.6 997.5 3224.7 8003.6 32014.0

lc 1.166 8.31 104.6 351.5 1483.4 4350.8 22142.7

bc 0.111 1.17 50.5 127.8 1012.6 1907.2 9423.7

bc+ 0.108 0.93 37.1 101.3 955.5 1550.0 7727.8

ac− 0.085 0.78 33.6 84.9 838.0 1528.7 6500.2

ac 0.083 0.72 22.0 69.4 686.4 1260.7 4998.0

Votes-84:

|s| 4.5207 18.408 68.62 229.5 766.9 2096.6 4159.5 13752.9 25147.4

lc 0.1256 1.352 11.98 53.6 231.4 858.9 1670.5 7787.2 12597.4

bc 0.0334 0.225 3.45 14.0 82.0 456.0 850.6 3990.5 6792.2

bc+ 0.0330 0.217 3.28 12.7 77.4 441.1 796.9 3450.0 6038.1

ac− 0.0326 0.219 3.43 13.9 81.9 453.3 850.1 3984.5 6777.4

ac 0.0322 0.211 3.26 12.6 77.3 438.5 796.4 3444.0 6027.4

Table 4. Consistency tests.

bc+, ac− and ac. The data are the average on 1000 experiments with the same
average size of search state. In order to compute exactly the consistencies bc,
bc+, ac− and ac, we have first computed all solutions included in s in a table
with the help of lc. In a second step, we have computed all needed projections
from the solution table. For example, the last column of table 3 for the salad
example, shows that, starting from a search space containing 166563 tuple (in
its Cartesian product), the learned consistency reduces it to a search space of
9037 tuple while for example arc-consistency allows to reduce to 1326 tuples
(all these values are average). This shows that the learned consistency is weaker
than more classical consistencies but still reduces notably the search space. We
recall that lc is the only available consistency for partially defined constraints,
thus this test is only made to give an hint of lc’s pruning power. In Figure 3 is
depicted a graphical view of the consistencies lc and ac for the salad example
with the data of Table 3.

In addition, the partially defined constraint salad has been used in the opti-
mization problem described in introduction and, as expected, the best solution
found is a recipe invented by the system and which is not in the cookbook.

6 Related work and Conclusion

Partially defined constraints were introduced in [15]. In [12], the comparable
concept of Open Constraint is proposed in the context of distributed reasoning
but with the goal of minimizing the number of requests needed to complete the
definition. They are similarly used in the framework of Interactive Constraint
Satisfaction [2]. Solver learning has been introduced in [4] with a special rule sys-
tem but the generation algorithm was a bottleneck to handle large constraints.

14 of 41

This work has been extended by [1] and [14] but still in the context of closed con-
straints. None of these method can combine generalization and solver efficiency.
partially defined constraints are also related to uncertainty since an uncertain
constraint [22] can be viewed as a limited form of partially defined constraint for
which it is assumed that only a few tuples are missing. The idea of learning con-
straints, extended to the learning of a preference instead of just a boolean for a
tuple has been used in [19] in the context of soft constraints. They use an ad-hoc
neural network to represent the constraint. While the learning is effective, the
problem of building a solver for the constraint is not tackled in this work. In [9]
and [5], a CSP composed of predefined constraints like = or ≤ is learned. The
constraints are discovered by a version-space algorithm which reduce the possi-
ble constraints during the learning process. Artificial Neural Networks have been
considered for solving CSPs in the GENET system [10] but with a completely
different approach.

Summary
Partially defined constraints allow the use of constraints partially defined by
examples and counter-examples in decision and optimization problems. In this
work, we propose a new technique for learning partially defined constraints by
using classifiers. Not only the generalization we obtain has remarkable properties
from a Machine Learning point of view, but it can also be turned into a very
efficient solver which gives an active behavior to the learned constraint. In a
design perspective, partially defined constraints can be used to represent complex
requirements for which a precise definition is either too complex or impossible
to get.

References

1. Slim Abdennadher and Christophe Rigotti. Automatic generation of rule-based
constraint solvers over finite domains. Transaction on Computational Logic, 5(2),
2004.

2. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and M. Milano. A chr-based imple-
mentation of known arc-consistency. Theory and Practice of Logic Programming,
to appear.

3. K.R. Apt. The essence of constraint propagation. Theoretical Computer Science,
221(1-2):179–210, 1999.

4. K.R. Apt and E. Monfroy. Automatic generation of constraint propagation algo-
rithms for small finite domains. In Joxan Jaffar, editor, International Conference
on Principles and Practice of Constraint Programming, volume 1713 of LNCS,
pages 58–72, Alexandria, Virginia, USA, 1999. Springer.

5. Christian Bessière, Rémi Coletta, Eugene C. Freuder, and Barry O’Sullivan. Lever-
aging the learning power of examples in automated constraint acquisition. In Mark
Wallace, editor, Principles and Practice of Constraint Programming, volume 3258
of LNCS, pages 123–137, Toronto, Canada, 2004. Springer.

6. Christian Bessière, Emmanuel Hebrard, Brahim Hnich, and Toby Walsh. The
complexity of global constraints. In Deborah L. McGuinness and Georges Ferguson,
editors, National Conference on Artificial Intelligence, pages 112–117, San Jose,
CA, USA, July, 25-29 2004. AAAI Press / MIT Press.

15 of 41

7. Christian Bessière and Jean-Charles Régin. Arc-consistency for general constraint
networks: preliminary results. In IJCAI, pages 398–404, Nagoya, Japan, 1997.
Morgan Kaufmann.

8. B. Chandrasekaran. Design problem solving: A task analysis. AI Magazine,
11(4):59–71, 1990.

9. R. Coletta, C. Bessière, B. O’Sullivan, E. C. Freuder, S. O’Connell, and J. Quinque-
ton. Semi-automatic modeling by constraint acquisition. In Francesca Rossi, editor,
International Conference on Principles and Practice of Constraint Programming,
number 2833 in LNCS, pages 812–816, Kinsale, Ireland, 2003. Springer.

10. A. Davenport, E. Tsang, C. Wang, and K. Zhu. GENET: A connectionist archi-
tecture for solving constraint satisfaction problems by iterative improvement. In
National Conference on Artificial Intelligence, pages 325–330, Seattle, WA, USA,
1994. AAAI Press.

11. Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In CP,
volume 2470 of LNCS, pages 356–370. Springer, 2002.

12. Boi Faltings and Santiago Macho-Gonzalez. Open constraint satisfaction. In Pascal
van Hentenryck, editor, International Conference on Principles and Practice of
Constraint Programming, volume 2470 of LNCS, pages 356–370, Ithaca, NY, USA,
Sept. 7 - 13 2002. Springer.

13. Y. Freund and R. Shapire. A short introduction to boosting. Journal of Japanese
Society for Artificial Intelligence, 14(5):771–780, 1999.

14. Arnaud Lallouet, Thi-Bich-Hanh Dao, Andrëı Legtchenko, and AbdelAli Ed-Dbali.
Finite domain constraint solver learning. In Georg Gottlob, editor, International
Joint Conference on Artificial Intelligence, pages 1379–1380, Acapulco, Mexico,
2003. AAAI Press.

15. Arnaud Lallouet, Andrëı Legtchenko, Eric Monfroy, and AbdelAli Ed-Dbali. Solver
learning for predicting changes in dynamic constraint satisfaction problems. In
Ken Brown Chris Beck and Gérard Verfaillie, editors, Changes’04, International
Workshop on Constraint Solving under Change and Uncertainty, Toronto, CA,
2004.

16. Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.
17. Ramon E. Moore. Interval Analysis. Prentice Hall, 1966.
18. Barry O’Sullivan. Constraint-Aided Conceptual Design. Professional Engineering

Publishing, 2002.
19. F. Rossi and A. Sperduti. Acquiring both constraint and solution preferences in

interactive constraint system. Constraints, 9(4), 2004.
20. RuleQuest Research. See5: An informal tutorial, 2004. http://www.rulequest.com/

see5-win.html.
21. D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations

by error propagation. Parallel Distributed Processing, vol 1:318–362, 1986.
22. Neil Yorke-Smith and Carmen Gervet. Certainty closure: A framework for reliable

constraint reasoning with uncertainty. In Francesca Rossi, editor, 9th International
Conference on Principles and Practice of Constraint Programming, number 2833
in LNCS, pages 769–783, Cork, Ireland, 2003. Springer.

16 of 41

 1

Knowledge modeling for decision support systems
in mechanical embodiment design

Patrick SEBASTIAN (1), R. CHENOUARD (1), Jean-Pierre NADEAU (1)
(1) TREFLE UMR CNRS 8508, Bordeaux-Talence, France
(2) LIPSI- ESTIA, Izarbel Centre Technopôle, Bidart, France

ABSTRACT

There has been growing interest in modeling complex
mechanical or energetic systems for decision support in
embodiment design. However, despite recent progresses in the
development of Constraint Satisfaction Problem (CSP) solvers
devoted to mechanical embodiment design, knowledge modeling
appears to be the main bottleneck of the development of
decision support systems in industrial mechanical applications.
A general approach of knowledge modeling dedicated to this
problem still lacks. In this paper, some fundamental aspects of
knowledge modeling for decision support in embodiment design
are investigated. This approach is based on the management of
the intrinsic precision, exactness, specialization and parsimony
of models, including functional and physics models. Models are
adapted to decision support applications by managing the
degrees of freedom related to these intrinsic parameters and by
using model adaptation methods. Model adaptation methods
investigated here are analytical integration or numerical
approximation methods used to improve the parsimony of
models. As an illustration, the design of an aircraft air
conditioning system has been performed using a Constraint
Satisfaction Problem solver based on interval analysis.

Keywords: Knowledge modeling, Decision support,
Embodiment design, Constraint Satisfaction Problem.

1. INTRODUCTION

In the framework of innovative processes, mechanical system
design is facing with a major difficulty related to the
embodiment phase of design [1]. Embodiment design aims to
establish the performances of mechanical concepts before
performing their detail design. This design phase is equivalent to
a feasibility investigation stage for testing new mechanical
concepts. Despite recent progresses in the domain of Constraint
Satisfaction Problem (CSP) solvers devoted to mechanical
embodiment design, decision support tools remains limited by
the knowledge pretreatment required by such tools, which
appear to be little used or ineffective in most cases. This
difficulty is due to the fact that CSP models frequently evolve
during the embodiment design phase and the development of
new CSP models remains tricky. The evolution of CSP models
may be imputed to two aspects:

• CSP models are representative of the functioning of
mechanical system whereas designer reasoning is
based on the system functionalities

• CSP models corresponds to the translation of
knowledge in a particular decisional state (intrinsic

capability of a model to support decision) whereas
designer reasoning is directly based on knowledge

Thus, embodiment design platform development is limited by
the management of model complexity within these platforms.
Model complexity must be managed from preliminary stages of
design processes as it depends on the conceptual, functional and
physics aspects of system design. During the embodiment phase
of design [2, 3], the main characteristics of the mechanical
systems have to be determined including the global structure and
the main dimensions of the systems. As embodiment design is
performed whereas the main characteristics of the designed
system are ill-known, the structure of the system is evolving
while some parameters of the system environment are not fixed
[4]. As design delays are short and as the model must evolve
quickly, designers are limited by the complexity of complex
physics phenomena. They often manage this difficulty by using
simplified and decoupled models based on their design
experience. There is a lack of numerical tools devoted to
embodiment design due to the difficulties inherent to this design
phase [5, 6]. The approach proposed in this paper aims to define
a general method for guiding knowledge modeling in the
development of embodiment design platforms.

In the framework of this approach, knowledge modeling is
perceived as a definition process of models related to intrinsic
precisions, exactnesses, parsimonies and specializations. The
complexity of a model is adapted to real time simulation and
decision support by increasing the model parsimony and by
using model adaptation methods. These adaptation methods are
based on the characterization of the model parameters which are
related to precision, exactness, parsimony and specialization and
by using the degrees of freedom offered by these parameters.

Two model adaptation methods are investigated and compared
in this paper based on analytical integration or numerical
approximation. The Transfer Units method is used in the energy
exchanger modeling domain [7, 8]. In the framework of this
method, two types of analytical integration approaches are
combined by analyzing the topologies of fluid circulations inside
the exchangers and the physics phenomena inside elementary
models. Integration is performed by fuzzifying some physics
parameters and considering different fluid circulation topologies.
The scope of application of neural network approximation
methods [9] is more extended than the previous method. This
adaptation method leads to the definition of grey box models
which appear to be highly specialized and parsimonious.

As an illustration, the embodiment design of an Air
Conditioning System (ACS) is investigated in this paper. The
global performances of the ACS are greatly influenced by the

17 of 41

 2

behavior and the inner shapes of two heat exchangers. These
inner shapes have been optimized by developing a knowledge
base taking into account the physical behavior of the
components of the system. The numerical treatment of the
knowledge base is performed using a CSP solver. This solver
takes into account discrete or continuous variables and is based
on interval analysis.

2. KNOWLEDGE MODELING

Knowledge modeling for embodiment design

Design process is classically developed in sequenced phases
starting from need analysis, mechanical concept investigation
and leading to detail design of mechanical systems. Embodiment
design phase is taking place between concept analysis and
detailed definition. This phase is a feasibility analysis stage and
aims to define the main characteristics of mechanical systems,
namely, the structure, main dimensions and performances of
these systems. It is currently of major importance to support
design during this phase as it is a strategic stage for innovation
processes. However, embodiment design support remains
challenging and there is a lack of computing tools for the
embodiment of mechanical systems.

This lack is due to specific difficulties encountered during this
phase. Embodiment design aims to define the structure of
mechanical systems and their geometry remains ill-known at this
stage. Thus, the structural model of the system is evolving and
the system functioning can’t be simulated using classical
simulation tools. However, physics modeling must be taken into
account during the embodiment design of complex mechanical
systems as it determines the system performances. Designers are
therefore facing with the difficulty of handling complex
knowledge in a varying context and to take care of several
models corresponding to different system structures.

Embodiment design platforms (see figure 1) are based on
knowledge modeling and numerical treatment units. The
numerical treatment unit is involved in decision support, real
time and virtual environment simulations of the system. The
knowledge modeling unit is concerned with physics, functional
and system environment modeling. Due to the complexity of the
models resulting from the knowledge modeling process,
knowledge integration and qualification for the numerical
treatment remains challenging. Models have to be adapted to
numerical treatment requirements and this adaptation process is
the bottleneck of the development of embodiment design
platforms.

Model adaptation process still requires expert competences and
can’t be computed as some fundamentals of the process are ill-
known. Figure 2 presents the main design alternatives taken into
account during the knowledge modeling process and the
numerical treatment of the design problem. The knowledge
modeling phase aims to translate functions into functioning and
modeling alternatives. Due to the high number of alternatives
corresponding to the mechanical system functions, designers
have to perform choices to narrow down the complexity of the
models considered during the numerical treatment. The
numerical treatment phase is performed to determine

dimensional and structural characteristics of the system being
designed.

Table 1 presents, as an illustration, some functioning alternatives
related to the main function of heat exchangers, namely
“Transfer heat between two fluids”. These functioning
alternatives are restricted by use limitations which guide
designers in their choices. The correspondence between
functions and functioning alternatives is currently investigated
by several research teams [] and this paper is more concerned
with knowledge modeling alternatives.

The approach of knowledge modeling process being proposed is
based on intrinsic adaptation parameters. These parameters are
the intrinsic precision, exactness, parsimony and specialization
related to any knowledge. Model adaptation is performed by
adjusting these parameters in consistency with decision support
or real time simulation objectives. By modifying these intrinsic
parameters, the model expression is evolving whereas the
corresponding knowledge remains constant.

Decision support applications
Real time simulation and decision support for the design of
complex mechanical systems are facing with similar difficulties
deriving from model complexity. Few variables are used by
decision support or real time applications in design whereas
models resulting from design knowledge entail many variables
and relations. These variables derive from model discretization
process as complex models of mechanical systems take into
account several scales inside the system.

System scales derive from the technical organization chart of the
mechanical systems (see figure 3). These systems are organized
by assembling functional blocs deriving from the system
definition at a conceptual level (level 1) and beyond this level (2
to n) technical choices are performed, which tends to complexify
the system. Model complexity of a mechanical system derives
from interactions between the levels of the system organization.
The scale of elements in level “n” sometimes correspond to
representative elementary volumes derives from the
discretization of differential models, which describe physics
phenomena at very small scales. In such cases, the number of
elements or components contributing to the system functioning
tends to be high and the corresponding model might involve a
high number of relations and variables.

Real time simulation and decision support applications are
concerned with a few numbers of variables within complex
models. In this case, most of the variables appear to be
intermediary variables used to link observation variables, which
concern the design process and the choices performed by
designers. Observation variables may be divided in two
categories. The first category consists of design evaluation
variables used to give an assessment of the mechanical system
performances being designed. For instance, thermal efficiencies
are design evaluation variables used to determine energetic
system performances. The second category contains the design
variables, namely, variables used to define the system
characteristics. In particular, these definition variables are used
by real time virtual applications to represent and visualize the
system in its virtual environment. More generally, these
variables are related to the system definition from the design
point of view.

18 of 41

 3

The amount of intermediary variables of a model has to be
restricted to limit the model complexity and the number of
operations required by its numerical treatment. Throughout
design processes, this is performed by adapting knowledge
modeling to design requirements and numerical treatment
necessities. Model complexity is managed by adjusting the
model precision and exactness but also the extent of the range of
application of the model. In the following paragraphs these
intrinsic parameters of models are called Precision, Exactness,
Parsimony and Specialization (PEPS parameters). These
intrinsic parameters are defined as follows:

 Parsimony is an inverse measurement of complexity.
The parsimony of a model is often roughly estimated
as the inverse number of relations and coupled
variables involved in this model. Parsimony may also
be more precisely calculated using the order of
magnitude of the number of operations required to
solve the model.

 The Specialization of a model consists of the whole
hypothesis and data restricting its application scope.

 The Precision of a model is related to the vagueness of
the variables and parameters of the model. In the later
paragraphs, variable precision is taken into account
through the width of interval values.

 The Exactness of a model is related to its realism,
namely, the deviation between the model and
reference models such as models based on
experimental analysis.

Knowledge modeling

The PEPS parameters of models are the intrinsic parameters
handled by designers during the knowledge modeling phase in
embodiment design. Designer structure his knowledge by
defining models (variables linked to relations and domains) and
by looking for a suitable balance between PEPS intrinsic
parameters of the models being defined. As an illustration, table
2 displays four models related to energy balance in heat
exchangers. The four models are concerned with the same
objective as they aim to determine the outlet temperatures of the
fluids flowing through heat exchangers. Model 1 is a very
imprecise but very parsimonious model as it consists of only two
relations. Model 2 is based on an analytical integration method
(NTU-Efficiency method) and appears to be fairly precise and
parsimonious. Nevertheless, the analytical integration exploits
some hypothesis related to the topology of fluid circulation
inside the heat exchanger, limiting the range of application of
the model and thus increasing the model specialization. The
imprecision of the NTU-Efficiency model is due to a heat
exchange global parameter (κ*) related to complex physics
phenomena occurring at small scale inside the exchanger. The
third model is based on the numerical approximation of partial
differential equations taking into account complex fluid
mechanics and heat transfer phenomena. This type of model
may integrate thousands of equations or intermediary variables
and has a very low parsimony. Despite the fact that the third
model is based on equations having a large application range, it
has been highly specialized during the PDE approximation
process as it is linked to the geometry of the heat exchanger and
to the fluid properties. The last model is an experimental model.
Its range of application is highly restricted by the experimental
conditions (fixed topology, geometry, fluids, mass flows,
temperatures, etc.). Thus, it is highly specialized but, on the
other hand, appears to be very parsimonious.

The previous illustration shows off that knowledge of a designer
may be interpreted in different manners leading to different
models. Knowledge interpretation is related to PEPS parameters
which are interdependent. The designer manages the
interpretation of its knowledge by increasing the precision,
exactness and parsimony of the model being defined and by
decreasing the model specialization. However, PEPS parameters
can’t be individually improved without affecting the other
parameters. PEPS parameters are confined inside a convex
domain preventing the knowledge modeling to converge towards
an ideal model extremely precise, exact, parsimonious and lowly
specialized. This can be summarized by the following

 PEPS conjecture: “The intrinsic exploitability of a model
only depends on four parameters characterizing the model
parsimony, exactness, precision and specialization (PEPS
parameters). The more, parsimonious, exact, precise and
lowly specialized is the model, the more it is exploitable”.

 PEPS evolution law: “Knowledge modeling process aims
simultaneously to express knowledge and manage the
intrinsic exploitability of the models being defined. The
exploitability of models is managed by adjusting the PEPS
parameters related to these models. Nevertheless, PEPS
parameters are confined inside a convex domain called
intrinsic PEPS domain of models. None of the PEPS
parameters related to a model can be individually and
indefinitely improved without altering some of the other
parameters”.

Table 3 displays extreme values reached by the PEPS
parameters, namely the extreme limits of the definition intrinsic
domain of a model.

The intrinsic PEPS domain of models is completed by an
extrinsic domain related to the environment of the model. This
environment takes into account the numerical treatment of the
model (algorithms, computing performances, etc.) and the
design environment linked to the model (delays, design
requirements, etc.). The extrinsic domain characteristics may be
investigated as the intrinsic domain ones. This domain includes
the point of infinite parsimony, exactness and precision and of
nil specialization, seeing that a model characterized by such
PEPS parameters is obviously exploitable. Starting from a model
already exploitable, it is always possible to use a model related
to better PEPS parameters. By increasing the model parsimony,
its numerical treatment is facilitated; by increasing its exactness
the model leads to more exploitable results; by increasing its
precision, the probability that these results support designer
decisions increases. By decreasing the model specialization, the
model range of application enlarges and the model is more
exploitable. Moreover, the extrinsic exploitability domain of
models does not include the point of nil parsimony, exactness
and precision and of infinite specialization, seeing that models
related to such PEPS parameters are not exploitable.

Figure 4 outlines the extrinsic and intrinsic exploitability
domains of models. Knowledge modeling process performed by
designers aims to express their knowledge through models and
to find a satisfactory compromise between PEPS parameters of
the model being built. This compromise search endeavors to
assess a model related to PEPS parameters at the intersection
between the extrinsic and intrinsic exploitation domains.

19 of 41

 4

The development of embodiment design platforms for decision
support and real time simulation is faced with the difficulties of
intrinsic exploitability management of models in the knowledge
modeling process. This process is still performed by designers,
which are able to take into account the parsimony, precision
exactness and specialization of models and meet an exploitable
model.

3. MODELING PROCESS

Functional modeling

The management of the intrinsic exploitability of models for the
embodiment design of mechanical systems has to be performed
from functional modeling to physics modeling of systems.
Functional modeling leads to the definition of functional blocks
and components (technical organization chart) characterizing a
hierarchy between the system elements and therefore, between
the variables involved in the system modeling. This functional
organization is completed by service or constraint functions of
the mechanical system in its environment. These functions are
related to variables at the different level of the system
organization.

The main variables of a design problem are those which have
been defined at the inlet or outlet of the functional blocks or
components at the upper levels of the system technical
organization chart (see figure 3). These main variables also
come out of the definition of the system functions and some of
them may be related to the lowest levels of the system
organization. Main variables of design problems appear to be
design evaluation or design definition variables (see § 2.2). The
rest of the variables are intermediary variables that should be
eliminated to improve the model parsimony.

Due to the PEPS evolution law, the parsimony of models can’t
be improved indefinitely without altering the model precision,
exactness or specialization. This adaptation process supposes a
transformation of the model structure, which appears to be a
complex and difficult operation based on mathematical, physical
and technical considerations.

Physics modeling and model adaptation methods

Most of the model adaptation methods are devoted to physics
modeling. More to the point, many of them are dedicated to
specific domains of physics as they are based on mathematical
transformations linked to physics phenomena. However, model
adaptation methods can be classified in four main categories:

 Parsimonious approximation methods are based on
analytical or numerical integration approaches. These
mathematical methods tend to increase the parsimony
of models by increasing the model specialization. The
precision and exactness of models are lowly altered
throughout the adaptation process,

 Mixed methods increase the parsimony of models by
adapting both model specialization and precision.
These methods may be based on mathematical,
physics and technological considerations to manage
the precision of some of the model parameters,

 Analogical methods are based on the analogy between
different physics models. Model exactness is altered

by the physics analogy but may be improved by
limiting the application range of the model or by
introducing imprecise parameters within the model,

 Standardization methods are based on the restriction of
the model range of application to punctual domains.
These punctual domains correspond to standard
configurations of the system being investigated. The
standardization process highly limits the application
range of the model to application cases and therefore
highly increases the model parsimony and
specialization.

In the following paragraphs two different adaptation methods
are considered based on parsimonious approximation methods
(neural network based approximation) or mixed methods
(transfer units).

Transfer Units adaptation method

The Transfer Units method is used in the energy transfer
modeling domain to investigate the behavior of complex heat
exchangers. This method is based on the analytical integration of
equations derived from fluid mechanics and energy transfers. It
also based on the fuzzification of heat exchange parameters.
Table 2 presents some heat exchanger models derived from this
method.

In the framework of this method, the heat transfer coefficient
“κ” is regarded as an imprecise parameter taking into account
the complex physical phenomena out of the scope of the model.
Due to this fuzzification process, the differential equations
which describe the energy transfers inside the heat exchanger
may be analytically integrated. However, this integration entails
the specialization of the models. Transfer Units models consist
of two types of models relative to the interactions between the
system elements (interaction models) and to the behavior of
these elements (elementary models). The topologies of fluid
circulations inside the exchanger lead to the specialization of the
interaction models. Some physics phenomena such as fluid
mixing inside the model elements lead to the specialization of
the elementary models.

The models derived from this method are currently used by
designers to dimension and define the structure of heat
exchangers. Due to the parsimony of Transfer Units models they
are involved in the embodiment design of most of these systems.
However, this method is highly dedicated to transfer phenomena
analysis because of the analytical integration process which is
dependent on the structure of the differential equations that
describe the transfer phenomena. On the other hand, Transfer
Units methods may be regarded as network based adaptation
methods and the corresponding models could be related to other
types of models such as Bond Graphs for instance.

Neural network based approximation method

Neural network based approximation technique is a very general
method used in many application domains of mechanical design.
Due to some specific properties of neural networks [10], the
models derived from this approach appear to be highly
parsimonious. However, despite the generic character of the
method, these models also appear to be highly specialized
because of the approximation process.

20 of 41

 5

Figure 6 presents the different phases of the method. Starting
from physics and functional models, the method aims to
converge towards a grey box model of the mechanical system
being investigated. Grey box models integrate the physics model
related to the system components inside a structure derived from
the functional model. The parsimonies of the physics models of
the components are adapted to balance the global parsimony of
the grey box model. Thus, elementary models which appear to
be lowly parsimonious are approximated by using a numerical
approximation technique. Numerical approximation is based on
numerical results derived from the mechanical system modeling
and on neural networks fitting to these results. Elementary
models generally concern the behavior of some system
components or functional units; however, they may also concern
physics phenomena occurring inside the components.

The numerical approximation process narrows the application
range of the elementary models and thus increases the
specialization of the grey box model. This approximation is
limited by the extent of the domain mapped by the numerical
values resulting from the numerical treatment of the elementary
models. Thus, grey box models are generally related to narrow
validity domains and appear to be highly specialized.

4. DECISION SUPPORT FOR AIR CONDITIONING IN
AERONAUTICS

A knowledge base dedicated to the embodiment design of an Air
Conditioning System (ACS) for aircrafts has been developed.
This base takes into account the physics and functional modeling
of this mechanical system. The knowledge base is coupled to a
Constraint Satisfaction Problem solver called "Constraint
explorer" (CE) based on interval analysis and devoted to
problems mixing continuous and discrete variables. This solver
has been developed in the framework of the CO2 project
(French RNTL project Conception par COntraintes) managed by
the society DASSAULT-Aviation. The constraints propagation
and domain restrictions are based on the HC3 algorithm (Hull
Consistency 3) developed within the LINA [11]. The TREFLE
laboratory is involved in the project at the interface between
design and the numerical aspects of the solver.

The knowledge base aims to optimize component choices and
dimensions inside of the air conditioning system. These systems
are based on an open Joule-Brayton cycle[12]. Figure 7 presents
the functional bloc diagram of this mechanical system. It is
mainly constituted by:

 Two cross current heat exchangers
 A turbine and a compressor coupled by a

transmission shaft
 Diffusers, nozzles, gates and pipes that bring air

from the outside of the aircraft and from the aircraft
turboreactor into the system

The ACS works in varying conditions corresponding to the
different flight points of the aircraft. In the following
application, we consider an aircraft flying at an altitude of 3000
feet and flying at a speed of 0.8 Mach.

The structure of the fins inside of the heat exchangers
determines the performances of the system. The fin
configuration optimization appears to be very difficult and
classical design tools are ineffective to support designer. In this
application the exchanger fins are chosen among six different

configurations. These configurations are used for the two
exchange surface of each exchanger leading to 1296 exchanger
configurations.

The knowledge base includes:
 23 thermodynamical variables (pressures,

temperatures, mass flows)
 14 geométrical and structural variables (lengths,

exchange surface configurations, number of passes)
 8 variables (efficiencies, etc.) defining the system

performances
 24 intermediary variables linking the previous 45

variables. Some of these variables are defined through
matricial functions due to the model adaptation
process and to the approximations of some physics
laws.

The constraints of the model have been classified as:

 26 physics functional constraints
 9 physics constraints concerning some phenomena

induced by the physics functional phenomena
 2 constraints relative to the system regulations
 18 standardization constraints
 12 constraints (12 inequalities) relative to the deign

requirements

As an illustration figure 8 presents some important results
obtained using the knowledge base. Due to the heat exchangers,
the Air Conditioning System induces a drag force tending to
decrease the aircraft performances. This drag force is compared
to the thrust force induced by the turboreactor linked to the
ACS. Some combinations of exchange surfaces appear to highly
increase the system performances.

5. CONCLUSIONS

An approach of knowledge modeling for real time simulation
and decision support in embodiment design of mechanical
systems has been proposed in this paper. Knowledge modeling
appears to be the bottleneck of the development of embodiment
design platforms. The knowledge modeling method is based on
the management of the intrinsic Parsimony, Exactness, Precision
and Specialization (PEPS parameters) of models. PEPS intrinsic
parameters determine the exploitability of models. They are
submitted to an evolution law preventing the knowledge
modeling process to converge towards an ideal model extremely
precise, exact, parsimonious and lowly specialized. Model
adaptation to real time and decision support applications may be
regarded as PEPS regulation techniques of models used for
specific applications. These applications require more
parsimonious models than classical simulation applications.
Two different model adaptation techniques have been
investigated based on Transfer Units method and on neural
network numerical approximation technique. Transfer Units
method is based on the fuzzification of some physical
parameters and on analytical integration. The models derived
from this method appear to be very parsimonious and
specialized to particular topologies of fluid circulations inside
energy transfer systems. Numerical network approximation
techniques are used in many domains of mechanical design.
However, the validity domain of the grey box models resulting
from this adaptation method is highly limited by the numerical
approximation process. Thus, these models are very precise and
parsimonious, but in counterpart they are highly specialized by

21 of 41

 6

the validity domains of some sub-models involved in the grey
box model definition. An illustration has been presented based
on the optimized design of an air conditioning system. This
optimization process shows off the ability of constraint based
decision support systems to optimize some internal parameters
of the system functioning.

6. REFERENCES

[1] Pahl G., Beitz W., Engineering design: A systematic
approach, ISBN 3-540-19917-9, Springer-Verlag Berlin
Heidelberg, 1996.

[2] Hicks B.J., Culley S.J., An integrated modelling approach
for the representation and embodiment of engineering
systems with standard components, Engineering with
Computers, Vol. 20, 1, p 96, 2004

[3] Sehyun M., Soonhung H.Knowledge-based parametric
design of mechanical products based on configuration design
method, Expert Systems with Applications, Vol. 21, 2, pp
99-107, 2001

[4] Scaravetti D., Nadeau J.-P., Sébastian P., Pailhès J., Aided
decision-making for an embodiment design problem,
proceedings of International IDMME, Bath, UK, 2004.

[5] Thornton A., The Use of Constraint-based Design
Knowledge to Improve the Search for Feasible Designs,
Engineering Application of Artificial Antelligence, Vol.
9, No, 4. pp. 393-402. 1996

[6] O'Sullivan, B., Constraint-Aided Conceptual Design PhD
thesis, Professional Engineering Publishing, ISBN: 1-86058-
335-0, 2001.

[7] Incropera F. P., DeWitt D. P., Fundamentals of Heat and
Mass Transfer, John Wiley & Sons, New York, p 644,
2002.

[8] Sébastian P., Nadeau J.P., Aso S., “Numeric-CSP for air
conditioning in aeronautics”, Actes du congrès “,
proceedings of the 8th World Multi-Conference on
Systemics, Cybernetics and Informatics, SCI 2004”, p 6,
2004.

[9] Hugget A., Sébastian P., Nadeau J.P., Global Optimization
of a Dryer by using Neural Networks and Genetic
Algorithms, AIChE Journal , Vol 45, No 6, pp 1227-38,
1999.

[10] Dreyfus G., Martinez J., Samuelides M., Gordon M.,
Badran F., Thiria S., Hérault L., Réseaux de neurones -
Méthodologie et applications, Edit. Eyrolles, p 386, 2002

[11] Granvilliers L., On the Combination of Interval Constraint
Solvers, Reliable Computing, Vol 7, N°6, pp 467-483,
2001.

[12] Pérez-Grande I., Leo T. J., Optimization of a commercial
aircraft environmental control system, Applied Thermal
Engineering, 2002; 22, pp 1885–1904.

7. NOTATIONS

A: exchange surface (m2)
Cp: heat capacity (J/kg/K)
NTU: number of transfer units (-)
q: mass flow (kg/s)
R: heat capacity ratio (-)
T: temperature (K)
Greek letters:

∆D: drag force (N)
ε: efficiency (-)
κ: heat transfer coefficient (W/m2/K)
ψ: thrust force (N)

22 of 41

 7

Figure 1: Embodiment design platform

23 of 41

 8

Figure 2: From product functions to selected solutions throughout embodiment design process

24 of 41

 9

Figure 3: Technical organization chart of a mechanical system

25 of 41

 10

Function Functioning
alternatives

Principle
illustration

Main physics
phenomena Use limitations (*)

n°1 Fluid
mixer

Fluid mixing
Fluid flowing

 i
hf

o
hf

o
cf

i
cf TTTT ≤=≤

 Fluids are mixed
 System power on weight is high
 Investment cost is low

n°2 Heat
exchanger

Heat convection
Heat conduction

Fluid flowing

 i
hf

o
hf

o
cf

i
cf TTTT ≤≤≤

 Hot and cold fluid circuits are
close

 System power on weight is high
 Investment cost is low

n°3
Indirect

heat
exchanger

Heat convection
Heat conduction

Fluid flowing

 i
hf

o
hf

o
cf

i
cf TTTT ≤≤≤

 Hot and cold fluid circuits may be
distant

 System power on weight is
average

 Investment cost is average

n°4

Vapor
cycle

based heat
pump

Heat convection
Heat conduction

Fluid flowing
Phase change

Fluid
compression

Fluid expansion

 o
hf

i
hf

i
cf

o
cf TTTT ≤≤≤

 Hot and cold fluid circuits may be
distant

 System power on weight is low
 Investment cost is average

To
transfer

heat
between

two fluids

n°5

Brayton
cycle

based heat
pump

Heat convection
Heat conduction

Fluid flowing
Fluid

compression
Fluid expansion

Torque
transmission

 o
hf

i
hf

i
cf

o
cf TTTT ≤≤≤

 Hot and cold fluid circuits may be
distant

 System power on weight is high
 Investment cost is high

(*) Inlet and outlet fluid temperatures:

Table 1: Function “To transfer heat between two fluids” related to functioning alternatives and their corresponding use limitations.

26 of 41

 11

Knowledge
modeling

Modeling
alternatives

Model
illustration Model definition Model

qualification

n°1
Interval
based

modeling

[]
[] *

hf
o
hf

i
hf

o
cf

*
hf

*
cf

o
cf

o
hf

i
cf

*
cf

TT/T,TT

TT/T,TT

=∈∃

=∈∃

 Precision: low (due to
T*)

 Parsimony: high
 Specialization: low

n°2

Transfer
Units
based

modeling

i
cf

i
hf

o
hf

i
hf

2i
cf

i
hf

i
cf

o
cf

1 TT
TT;

TT
TT

−
−

=ε
−
−

=ε

[] *
maxmin

* /, κ=κκκ∈κ∃
()
() ()hc

h

Cpq
ANTU;

Cpq
CpqR

⋅
⋅κ

=
⋅
⋅

=

()
















⋅

−⋅−
−Π−=ε −= 22.0

78.0n

1i1 NTUR
1NTURexpexp1

12 R ε⋅=ε

 Precision: average (due
to k*)

 Parsimony: average
 Specialization: average

 (fixed topologies)

n°3

Navier-
Stockes

and
Fourier
based

modeling

Discretized partial differential equ.:
 - Navier Stockes (fluid mechanics)
 - Fourier Law (heat conduction)

 Precision: high
 Parsimony: low
 Specialization: high

 (fixed geometries)

Calculation
method of
the outlet

temperatures
of fluids
flowing

through an
heat

exchanger

n°4 Experiments

Experimental measurements:

 Precision: high
 Parsimony: high
 Specialization: very

high
 (fixed exp. cond.)

Table 2: Knowledge modeling related to energy balance in a heat exchanger.

27 of 41

 12

Figure 4: Extrinsic exploitability and intrinsic PEPS domains of models.

28 of 41

 13

Figure 5: Heat transfer models derived from the Transfer Unit method.

29 of 41

 14

Figure 6: Parsimonious grey box models derived from the neural network approximation method.

30 of 41

 15

Figure 7: Functional block diagram related to an air conditioning system

31 of 41

 16

Figure 8: Drag forces due to the ram air to the turboreactor thrust versus the heat exchanger surface configurations.

32 of 41

 17

Parsim. Exact. Precis. Special. Interpretation

Infinite Nil - -
Very parsimonious models
describe real behaviors with
low exactness

Infinite - Nil -
Very parsimonious models
must be lowly precise to
describe real behaviors

Infinite - - Infinite
Very parsimonious models
describe highly specialized
real behaviors

Nil Infinite - -
Very exact models must be
lowly parsimonious to
describe real behaviors

- Infinite Nil -
Very exact models must be
lowly precise to describe
real behaviors

- Infinite - Infinite
Very exact models describe
highly specialized real
behaviors

Nil - Infinite -
Very precise models must
be lowly parsimonious to
describe real behaviors

- Nil Infinite -
Very precise models
describe real behaviors with
low exactness

- - Infinite Infinite
Very precise models
describe highly specialized
real behaviors

Nil - - Nil
Lowly specialized models
describing real behaviors
are lowly parsimonious

- Nil - Nil
Lowly specialized models
describing real behaviors
are lowly exact

- - Nil Nil
Lowly specialized models
describing real behaviors
are lowly precise

Table 3: PEPS parameters at the limits of the exploitability intrinsic domain.

33 of 41

A Specificity of CSP in Design: Controlling the

Relevance of the Variables in the Problem

Thomas van Oudenhove de Saint Géry, Paul Gaborit, and Michel
Aldanondo

{vanouden, gaborit, aldanond}@enstimac.fr

École des Mines d’Albi-Carmaux,
Laboratoire de Génie Industriel,

Campus Jarlard, Route de Teillet,
81013 ALBI CT Cedex 09, FRANCE.

Abstract. Research in product configuration intends to provide tools
for manufacturers to satisfy their clients’ requirements. Among the cons-
traint-based approaches, we study the StCSP model, which consists in
associating a state attribute to each variable in order to control the
relevance of the variables. After a brief presentation of our reasoning, we
present our first results in resolution.

1 Introduction: domain and needs

Among design problems, configuration is a particular kind of design problem
where the solution space is known in advance. For this kind of problem, Mittal
and Frayman [1] have proved that CSP was a good candidate for modelling and
solving.

The configuration process can be achieved in two different ways: autonomous
or interactive. The autonomous way aims at finding at least one or all the so-
lutions of a configuration problem. Therefore solving CSP techniques based on
the BackTrack algorithm [2] are used. The interactive way consists in progres-
sively reducing the solution space after each user’ choice. In that case, filtering
techniques mainly based on Arc-Consistency [3] are used most of the time.

However, almost all configurable products include optional components, mean-
ing that this kind of component may or may not belong to the configured prod-
uct. In order to take into account this kind of component in a CSP, we need
a way to control that the variables of the CSP may or may not belong to the
whole problem.

A very small number of studies have already tried to answer this need. The
Dynamic Constraint Satisfaction Problems (DCSP, [4]) allow to activate or de-
sactivate variables through different kinds of activity constraints. The State Con-
straint Satisfaction Problems (StCSP, cf. [5]) associate a state attribute to every
problem variable; state attributes and variables are constrained. Another ap-
proach consists in adding a value meaning inactive to each domain of the CSP
variables [6]. This approach is of interest but [7] have shown that StCSP can
handle hierarchical models; therefore we focus upon this approach: StCSP.

34 of 41

These references proposed a general framework aiming to consider conditional
variables in CSP. Nevertheless, they do not contain many details about the
implementation of these models, and very few performance analyses. Therefore,
our main goal consists in studying these models. As Veron [5] proved that a
DCSP can be handled with the StCSP framework, this paper deals with a first
level analysis of the StCSP propositions. Our ideas are (i) to reformulate the
StCSP model in a CSP model and (ii) to modify classical CSP solving and
propagation techniques thanks to the information that characterizes the StCSP
model.

Our goal is to conduct an evaluation and a comparison of these two ideas. The
next section describes the general idea of the evaluation. Then, we will present
our first results in resolution (for autonomous configuration). The conclusion
will move on to propagation techniques.

2 Evaluation approach

We first recall the definition of the CSP and StCSP models. Then a simple
example allows to illustrate StCSP model interests. The final section describes
the reformulation idea (i) and the propositions of modification (ii).

2.1 Definitions

The CSP [8] is a triplet (X , D, C), where X is a set of variables, D a set of
domains and C a set of compatibility constraints describing allowed combinations
of variable values.

The StCSP can be defined as follows:

Definition 1. A StCSP (State CSP) is a triplet (V , A, F) where:

– V is a set of variables, each one with a state attribute (whose value may be
active or inactive);

– A is the set of variables’ domains;
– F is a set of constraints over the variables, each one can be seen as a logical

formula, involving at least one variable or its state attribute.

The idea of StCSP is to consider that when a state attribute is inactive,
the variable is not of interest in the problem interpretation and is considered
inactive (see the example of section 3.2). A consequence of StCSP is that some
constraints may gather active and inactive variables. Then, it is necessary to
decide about the way constraints are taken into account. According to [4]:

Premise 1. A constraint will be taken as part of the problem if and only if
every variable involved in it is active; in other cases, the constraint is considered
satisfied.

35 of 41

The definition of a solution of a StCSP is also necessary for a good under-
standing of the differences between a CSP and a StCSP.

Definition 2. A solution of a StCSP is an instanciation of all the state at-
tributes and of all the active variables (whose attribute is active) such as all
constraints that must be considered are satisfied.

2.2 Example

We show on figure 1 a simple example with an optional variable. The three vari-
ables “car”, “glasses” and “inside”, always belong to the problem. The variable
“sunroof” belongs to the problem if and only if the variable “car” is valuated at
“lux”.

Car V1

lux

usual

Glasses V2

electric

manual

V4Sunroof

electric

manual

Inside V3

leather

cloth

active inactive

active inactive

active inactiveactive inactive

Fig. 1. Example “simple car” with an optional variable

Thus, we have a StCSP modelled as follows:

– variables: V : {Car (V1), Glasses (V2), Inside (V3), Sunroof (V4)};
– domains: A:

{

{lux, usual}, {manual, electric}, {cloth, leather}, {manual,

electric}
}

;
– constraints: F :

F1 : ∀i ∈ {1, 2, 3}, Vi active

F2 : (V2 = manual) ⇒ (V4 = manual)
F3 : (V3 = leather) ⇒ (V4 = electric)
F4 : (V1 = lux) ⇔ (V4 active)

2.3 Reformulation idea

The first idea is to translate the StCSP model in a CSP, to solve the CSP problem
or prune the domains, and then to come back to the StCSP formulation. In order
to do so, we propose the following steps:

36 of 41

1. translate the StCSP in a CSP:

(a) each state attribute becomes a state variable, whose domain is {active,
inactive},

(b) variables of the StCSP become base variables in the translated CSP,

(c) constraints are translated the way we show in premise 1 (cf. equation 1);

2. solve the translated CSP (or prune its domains), using known techniques
(BackTrack, Arc-Consistency,...);

3. one of the following items, depending on the needs (resolution or propaga-
tion):

– aggregate the CSP solutions in solutions of the StCSP,

– modify the initial StCSP variables states and domains with the filtered
domains obtained with the CSP propagation.

So, the example presented in previous section will be translated into this
CSP:

– variables: X : {Car (Xb
1
), Glasses (Xb

2
), Inside (Xb

3
), Sunroof (Xb

4
), Car State

(Xs
1
), Glasses State (Xs

2
), Inside State (Xs

3
), Sunroof State (Xs

4
)};

– domains: D:
{

{lux, usual}, {manual, electric}, {cloth, leather}, {manual,

electric}, {active, inactive} ∀Xs
i
, i ∈ {1, 2, 3, 4}

}

;

– constraints: C:

C1 : ∀i ∈ {1, 2, 3}, Xs
i

= active

C2 : (Xs
2

= inactive) ∨ (Xs
4

= inactive)∨
:

(

(Xb
2 = manual) ⇒ (Xb

4 = manual)
)

C3 : (Xs
3

= inactive) ∨ (Xs
4

= inactive)∨
:

(

(Xb
3

= leather) ⇒ (Xb
4

= electric)
)

C4 : (Xs
1

= inactive) ∨
(

(Xb
1

= lux) ⇔ (Xs
4

= active)
)

(1)

2.4 Modification of CSP solving techniques

The second idea is similar to the first one, except that CSP solving and propaga-
tion techniques are modified in order to be able to use some information relevant
to the fact that the CSP is the result of a translation of a StCSP.

In this communication we will only consider the solving problem and propose
two modifications:

m1: BackTrack with specific heuristics on the instanciation order of variables
for solving the translated CSP: the state variables are instanciated before
base variables ;

m2: modifying the BackTrack algorithm: we do not need any value for the
variables whose state is inactive.

37 of 41

3 First results: resolution

3.1 Evaluation criteria

The three following criteria are considered:

– number of solutions (it may vary if we try to reach the set of solutions of
the CSP or the StCSP one);

– number of BackTracks;
– number of constraint verifications (which is the most important, as it is the

longest operation).

Our proposals will be all the more efficient since the number of verifications
will decrease.

3.2 Evaluation examples

Two examples are considered. The first one has been presented in section 2.2.
The second one is larger and has been introduced by Mittal and Falkenhainer [4]
for the DCSP and used by Soininen and Gelle [9] (extended DCSP) and Veron
and Aldanondo [7] (State CSP).

3.3 Evaluation of the reformulation idea

Two variable ordering heuristics have been used :

H0 — random: variables are instanciated in a random order.
H1 — CSP: we first instanciate the most constrained variables (those which

appear in most constraints), in case of equality, we choose the smallest do-
main (classical CSP heuristic “Most Constrained Variables”, cf. [10, 11]).

These results will be used as a basis in order to compare our proposals. The
results are shown on table 1. All values in the following tables are the average
results for 20 tests; this explains the decimal values.

Table 1. Comparison of H0 and H1 with the BackTrack algorithm

Criteria Solutions:
CSP (StCSP)

BackTracks Constraint
verifications

Example “simple car”

H0 — random 12 (8) 110.2 198
H1 — CSP 12 (8) 32.8 62.4

Example of the car (cf. [4, 5])

H0 — random 1072 (450) 61418.8 207335.2
H1 — CSP 1072 (450) 794.2 3824.6

38 of 41

3.4 Evaluation of the modification of CSP solving techniques

Evaluation of the modification m1 The three following heuristics have been
evaluated:

H2 — StCSP 1: we instanciate first the state variables ; in the state or base
variable subsets, the order is randomized.

H3 — StCSP 2: we use the principles of H2 and H1; the state variables and
base variable are separated, and each subset is then ordered in accordance
with the number of constraints their appear in (and the cardinal number of
their domains if necessary).

H4 — StCSP 3: we use the principles of H1 and H2; we first instanciate the
most constrained variables (those which appear in most constraints), in case
of equality, we choose the smallest domain; if it remains equalities, we in-
stanciate first the state variables.

The results are shown on table 2.

Table 2. Comparison of StCSP heuristics with the BackTrack algorithm (m1)

Criteria Solutions:
CSP (StCSP)

BackTracks Constraint
verifications

Example “simple car”

H2 — StCSP 1 12 (8) 64.8 50.4
H3 — StCSP 2 12 (8) 25.0 54.1
H4 — StCSP 3 12 (8) 24.2 52.5

Example of the car (cf. [4, 5])

H2 — StCSP 1 1072 (450) 680.8 6381.0
H3 — StCSP 2 1072 (450) 334.3 2680.0
H4 — StCSP 3 1072 (450) 869.7 4071.2

Evaluation of the modification m2 In this case, the modification of the
BackTrack is based on the fact that we look for StCSP solutions. So we do not
need to verify the constraints that act on an inactive variable (associated with
a state variable, whose value is inactive).

When the algorithm instanciates a variable, it verifies whether the associated
state variable is active or not. If this state variable is inactive, the variable is
instanciated with an arbitrary value and all the constraints involving this variable
are considered satisfied. Thus, we do not verify the whole domain of the variable.

This modified BackTrack algorithm is evaluated with the five previous heuris-
tics H0, H1, H2, H3, H4, as shown on table 3.

39 of 41

Table 3. Comparison of different heuristics and random order with a modified algo-
rithm based on BackTrack (m2)

Criteria Solutions:
CSP (StCSP)

BackTracks Constraint
verifications

Example “simple car”

H0 — random 10.0 (8) 82.0 142.0
H1 — CSP 8 (8) 25.6 45.6
H2 — StCSP 1 8 (8) 18.0 34.8
H3 — StCSP 2 8 (8) 21.9 41.8
H4 — StCSP 3 8 (8) 22.5 43.0

Example of the car (cf. [4, 5])

H0 — random 733.6 (450) 9061.2 24474.8
H1 — CSP 450 (450) 331.0 1541.8
H2 — StCSP 1 450 (450) 404.4 3904.0
H3 — StCSP 2 450 (450) 231.5 1291.0
H4 — StCSP 3 450 (450) 342.0 1550.0

3.5 Evaluation discussion

We first notice in table 3 that the number of solutions is not the same without
heuristics (H0 cases). This is due to the fact that if a base variable is instanciated
before its state variable, the algorithm can lead to several solutions which are
equivalent for the StCSP, if the state variable is inactive.

From the comparison of the two first tables (tables 1 and 2), we can deduce
that StCSP heuristics are of interest, specially on small problems. The fact that
CSP heuristic H1 may be better than some StCSP heuristics on bigger problems
is a consequence of premise 1. With our process of translation, we will get, for
each constraint on the base variable, a constraint on the state variable too. As
a consequence, state variables will appear in at least as much constraints as
their corresponding base variable; moreover, the state domains are binary, so
they are most of the time smaller than base domains. Thus, even in the CSP
heuristic (H1), state variables will be instanciated before their corresponding
base variable, which allows a significant reduction of constraint verifications. As
we can expect, the heuristic H3 is better on large problems, because it has all
advantages of both heuristics H1 and H2. Heuristic H4 is quite equivalent to H1.

Comparing the classical BackTrack algorithm and our modified version (ta-
bles 1 and 2 and table 3), the number of verified constaints is obviously much
lower using this modified algorithm (m2). Thus, this algorithm seems quite
promising for the resolution of StCSP.

Finally, on table 3, we can notice that H1 remains a good heuristic for StCSP
resolution and H2 is an interesting way to enhance H1 performances, as seen in
H3. We will have to test all these heuristics on realistic problems to conclude
which one is the best, depending on the size of problems (number of variables
and constraints, size of domains,...).

40 of 41

4 Conclusion

In product configuration and design problems, it is often necessary to control
the relevance of the variables. StCSP allows this possibility.

In order to prove StCSP efficiency, we build an approach based on a transla-
tion of StCSP into CSP. Then, we deal with this CSP with classical and adapted
algorithms. We presented our first results in resolution, where we noticed that
using StCSP specific information leads to better results.

As a perspective, we are working on propagation capabilities of StCSP. We
intend to develop algorithms for StCSP filtering, similar to Arc-Consistency.

References

1. Mittal, S., Frayman, F.: Toward a Generic Model of Configuration Tasks. In: Ĳ-
CAI’89, International Joint Conference on Artificial Intelligence, Detroit, Michigan
(1989).

2. Golomb, S.W., Baumert, L.D.: Backtrack Programming. Journal of the ACM 12
(1965) 516–524.

3. Mackworth, A.: Consistency in networks of relations. Artificial intelligence 8 (1977)
99–118.

4. Mittal, S., Falkenhainer, B.: Dynamic Constraint Satisfaction Problem. In:
AAAI’90, American Association for Artificial Intelligence, Boston, Massachusetts
(1990).

5. Veron, M.: Modélisation et résolution du problème de configuration industrielle :
utilisation des techniques de satisfaction de contraintes. Thèse de doctorat, Institut
National Polytechnique de Toulouse, ENI Tarbes (2001).

6. Prosser, P.: Domain filtering can degrade intelligent backtracking search. In: Ĳ-
CAI’93, International Joint Conference on Artificial Intelligence, Chambéry, France
(1993) 262–267.

7. Veron, M., Aldanondo, M.: Yet another approach to CCSP for configuration prob-
lem. In: ECAI’00, European Conference on Artificial Intelligence, Workshop on
Configuration, Berlin, Allemagne (2000) 59–62.

8. Montanari, U.: Networks of constraints : fundamental properties and application
to picture processing. Information sciences 7 (1974) 95–132

9. Soininen, T., Gelle, E.: Dynamic Constraint Satisfaction in Configuration. In:
AAAI’99, Workshop on Configuration, Orlando, Floride (1999) 95–100.

10. Haralick, R.M., Elliott, G.L.: Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. Artificial Intelligence 14 (1980) 263–313.

11. Smith, B.M.: A Tutorial on Constraint Programming. Technical report, University
of Leeds (1995)

41 of 41

