WORKSHOP NOTES
Third International Workshop on

User-Interaction in Constraint Satisfaction

Held in conjunction with the

Nineth International Conference on
Principles and Practice of Constraint Programming, CP-2003

Kinsale, County Cork, Ireland
September 2003

Editors
Barry O’Sullivan and Eugene C. Freuder

Cork Constraint Computation Centre
Department of Computer Science
University College Cork, Ireland.

Preface

User-interaction issues arise both for users of constraint programming languages
and for users of constraint-based applications. The former need assistance in
building models and tailoring solvers. The latter need assistance in specifying
problems and understanding results. Successful user-interaction is the key to
fully exploiting advances in constraint solving abilities.

This Third International Workshop on User-Interaction in Constraint Satisfac-
tion should be of interest to researchers who wish seek a deeper understanding
of the technical issues associated with supporting user-interaction for constraint-
based applications, languages or environments. The workshop should also be of
interest to industrialists interested in the state-of-the-art in the area.

These workshop notes comprise 7 papers. Amongst the topics addressed by
these papers are: visualizing explanations; question-generation in interactive
constraint-based systems; explanations for global constraints; tree-driven au-
tomata for interactive constraint processing; formal models of interaction in
constraint satisfaction; applications of interactive constraints to real-world prob-
lems; and tradeoff analysis for interactive constraint-based configurators.

We would like to acknowledge the Workshop Programme Committee for their
assistance in reviewing submissions for suitability for inclusion in the workshop
notes. Also, we would like to acknowledge the assistance of the CP-2003 Work-
shop Chair, Christian Bessiere, the CP-2002 Conference Chair, James Bowen,
and the CP-2002 Program Chair, Francesca Rossi, for their support and assis-
tance.

August 2003 Barry O’Sullivan and Eugene C. Freuder
Cork Constraint Computation Centre

Organizing Committee

Barry O’Sullivan (Chair), University College Cork, Ireland.
Eugene C. Freuder, University College Cork, Ireland.

Programme Committee

Alan Borning, University of Washington, USA.

Ken Brown, University of Aberdeen, UK.

Hélene Fargier, Laboratoire IRIT, Universite Paul Sabatier, France.
Gerhard Friedrich, Universitat Klagenfurt, Austria.

Pascal van Hentenryck, Brown University, USA.

Ulrich Junker, ILOG, France.

Narendra Jussien, Ecole des Mines de Nantes, France.

Pear]l Pu, EPFL, Switzerland.

Francesca Rossi, University of Padova, Italy.

Helmut Simonis, Parc Technologies Ltd, UK.

ii

Contents

Visualizing explanations to exhibit dynamic structure in constraint problems
— Mohammad Ghoniem, Narendra Jussien and Jean-Daniel Fekete

Question-Generation in Interactive Constraint Processing
— James Bowen and Stewart Cummins

Challenging explanations for global constraints
— Guillaume Rochart, Narendra Jussien, and Francois Laburthe

Compiling CSPs into tree-driven automata for interactive solving
— Hélene Fargier and Marie-Catherine Vilarem

Channel Theory for User-Interactions in Constraint Satisfaction and Design
— Makoto Kikuchi, Ichiro Nagasaka, and Mutsunori Banbara

CSPs at Work: Relevance of Interaction Modules to Deploy Applications
— Amedeo Cesta, Gabriella Cortellessa, Angelo Oddi and Nicola Policella

User-Involved Tradeoff Analysis in Configuration Tasks
— Pearl Pu, Boi Faltings, and Pratyush Kumar

iii

Page

16

31

44

56

70

85

Visualizing explanations to exhibit dynamic
structure in constraint problems*

Mohammad Ghoniem', Narendra Jussien!, and Jean-Daniel Fekete?

! Ecole des Mines de Nantes
4, rue Alfred Kastler — BP 20722
F-44307 Nantes Cedex 3 — France
{Mohammad .Ghoniem,Narendra. Jussien}@emn.fr
2 INRIA — Unité de recherche Futurs
Batiment 490, Université de Paris Sud
F-91405 Orsay Cedex — France
Jean-Daniel.Fekete@inria.fr

Abstract. In this paper, we introduce new visualization tools for expla-
nations generated during search in a constraint program. Explanations
are a very powerful tool for exhibiting dynamic interactions and relations
appearing only during search. Moreover, we show that classical informa-
tion that can be gathered in standard solvers does not allow retrieving
this dynamic behavior thus advocating for the embedding of explanations
within existing constraint solvers.

1 Introduction

Explanation-based constraint programming [9] has proven to be effective both
for improving search algorithms (as in mac-dbt [11] and decision-repair [12])
and providing user interaction tools (as in the COINS systems [15], or in [6]).

In this paper, we would like to go one step further and show how adapted
visualization tools used on explanations generated during search can help un-
derstand constraint solving: discovering static or dynamic structure between
constraints or variables emerging during search, discovering inefficient decisions,
observing hard resolution steps, etc.

We implemented the generic trace defined in the OADYMPPAC project [14]
within the PALM solver [10] and developed a set of visualization tools that we
introduce in this paper. We claim that using the information contained in the
explanation network helps discover information that is not available when look-
ing only at the structure of the solved problem and even when looking at domain
reductions as they are performed during search. Moreover, our tools provide in-
sights into the dynamics of search (as opposed to static exploration of conflicts
or search procedures as introduced for example in [16]) and help understand the
deep relations dynamically appearing between constraints or variables during
search.

* This work has been partially supported by the French RNTL project OADYMPPAC
[14].

This paper is organized as follows: after some definitions related to expla-
nations, we present the philosophy of our visualization tools. Next, various ex-
amples illustrate the interest of explanations for dynamic analysis of constraint
program.

2 Explanations for constraint programming

Solving constraint satisfaction problems is often based upon chronological back-
tracking algorithms. The main disadvantages of these algorithms are well known:
the thrashing phenomenon due to the impossibility to remember past failure con-
ditions and to the poor relevance, in general, of getting back to the last choice
point.

2.1 Definition

To compensate thrashing, explanation-based solutions were proposed in the lit-
erature [7,9]. An explanation contains enough information to justify a decision
(throwing a contradiction, reducing a domain...): it is composed of the con-
straints and the choices made during the search which are sufficient to justify
such an inference.

Definition 1 (Explanation) An explanation of an inference (X) consists of
a subset of original constraints (C' C C) and a set of instantiation constraints
(choices made during the search: dy,ds, ..., dy) such that:

CANdiAN...Ndyy, = X
C'ANdy A...Ndy, is called an explanation-set.

An explanation-set ey is said to be more precise than explanation-set e if
and only if e; C ez. The more precise an explanation, the more useful it is.

2.2 Explanation-based algorithms

Thanks to information about propagation, algorithms such as dynamic backtrack-
ing (dbt [7]) know all the instantiations that imply a contradiction, and so, it
is able to determine which instantiation should be undone (not necessarily the
last one). The instantiation order is then modified to undo this instantiation and
only this one (keeping non related inferences made in between).

A drawback of dynamic backtracking is that it does not take advantage of
propagation techniques. mac-dbt is an algorithm which allows to maintain arc-
consistency (mac [17]) within dbt. This algorithm offers advantages from both
filtering and repairing techniques but requires that all filtering decisions are
explained (contrarily to dynamic backtracking that only needs explanations for
contradictions). Moreover, since the cancelled decisions are not always the last
taken choice, the implementation of an explained constraint must support the
removal of constraints (or the addition of values to domains) and not only back-
tracking.

2.3 Computing explanations

The most interesting explanations are those which are minimal regarding in-
clusion. Those explanations allow highly focused information about dependency
relations between constraints and variables. Unfortunately, computing such an
explanation can be exponentially costly. We claim that a good compromise be-
tween precision and ease of computation is to use the solver embedded knowledge
to provide interesting explanations[9]. Indeed, constraint solvers always know,
although it is scarcely explicit, why they remove values from the domain of
the variables. By making that knowledge explicit, quite precise and interesting
explanations can be computed.

For example, let us consider two variables v; and v5 whose domains are both
{1,2,3}.

— Let ¢q be a first decision constraint: ¢; : v1 > 3. Let us assume that the
filtering algorithm in use is 2B-consistency filtering. The constraint ¢; leads
to the removal of {1,2} from the domain of v;. An explanation for the new
domain {3} of vy is thus {c1}.

— Let ¢g be a second constraint: ¢g : v9 > v1. Value 1 and value 2 of v9 have no
support in the domain of vy, and thus ¢ leads to the removal of {1,2} from
vg. An explanation of the removal of {1,2} from vs will be: ¢ A ca because
co precipitates that removal only because previous removals occurred in vy
due to ¢;.

3 Visualization tools

We introduce here some recent visualization tools that we used to exploit expla-
nation-related information in constraint networks.

3.1 An alternate representation of graphs

So far, visualization of networks has mainly focused on node-link diagrams be-
cause they are popular and well understood. However, node-link diagrams do
not scale well: their layout is slow and they become quickly unreadable when
the size of the graph and link density increase.

In this paper, we present a recent technique that uses adjacency matrices
instead of node-link diagrams to interactively visualize and explore large graphs,
with thousands of nodes and any number of links. This technique relies on the
well known property that a graph may be represented by its connectivity matrix,
which is an N by N matrix, where N is the number of vertices in the graph,
and each row or column in the matrix stands for a vertex. When two vertices
Vi and Vj are linked, the corresponding coefficient m;; in the matrix is set to 1,
otherwise it is set to 0.

From a visualization standpoint, not only do we switch on or off the cell
located at the intersection of V; and V; , but we use color coding as well when

dealing with weighted links: the heavier the weight (here the number of inter-
actions), the darker a link. Unlike node-link diagrams, matrix-based representa-
tions of graphs do not suffer from link and node overlappings. Virtually every
link (out of the N2/2 links) in the graph can be seen separately (see figure 1).
With this technique, we can show as many links as the display hardware resolu-
tion allows, roughly 2 million pixels on a regular 1600 x 1200 display. Moreover,
advanced information visualisation techniques such as dynamic queries [2], fish-
eye lenses [3] and excentric labels [5] enhance the exploration of large graphs
and push the matrix-based visualization one step further in coping with large
networks.

Fig. 1. Representing a graph with 220 vertices and 6291 links using a node-link classical
diagram (left) and an adjacency matrix (right). The matrix view is produced by our
tools. A fisheye magnifies the central part of the display. Notice that the node-link
diagrams in this paper are produced by neato, an open-source graph layout program
provided by AT&T. It relies on the force-directed layout algorithm of Kamada and
Kawai [13].

The main tradeoff of such a technique lies in the fact that vertices are no
longer represented by a unique graphic symbol, they are rather distributed on
both axes of the matrix. This is why users may often need some training be-
fore they get familiar with the matrix metaphor. Further investigation of this
technique in terms of human-computer interaction is still required though, in
order to assess more formally its advantages and weaknesses compared to the
traditional node-link metaphor.

3.2 Making sense of graphs

Making sense out of network data often depends on the ability to understand
its underlying structure. Therefore, cluster detection has been an active topic
of research for a long time. Many works have concentrated on data analysis
techniques in order to aggregate the graph into its main components. From a

different standpoint, Bertin [1] has shown that the discovery of the underlying
structure of a graph can be achieved through successive permutations over the
rows and columns of the grid representing it. This idea relies on the fact that
the rows and columns of a matrix can be ordered according to a given criterion,
which is another advantage of the matrix metaphor as ordering the vertices and
links in a node-link diagram is not straightforward.

In our tools, we achieve clustering through successive permutations of rows
and columns according to two generic algorithms (a hierarchical agglomerative
algorithm and a partition-based algorithm). Other domain-specific algorithms
can be fit in our system effortlessly e.g. algorithms tailored for constraint pro-
gramming graphs. In the following, we will present our early experiments in
making use of matrix-based visualizations with constraint programming graphs.

4 Experiments

We present here our first experiments with the visualization tools described
earlier. We first show how to confirm intuition or information that could be
deduced from the static structure of the problem on a toy problem involving
the allDifferent constraint. Second, solving that same toy problem for all
solutions we show how some new information could be gathered. Finally, we
present some early results obtained on an scheduling optimisation problem. In
all the experiments, we compare our explained system with what can be deduced
from a non explained system.

4.1 Visualization parameters
In the following, we display information using two main representations:

— An undirected constraint-constraint graph

Contraints ¢; and c¢; are connected in three different ways:

o representing static structure information: ¢; is related to ¢; if ¢; reduced a
variable shared with c;. This relation represents the fact that the activity
of ¢; will awake c; in the future. Only an explained constraint solver can
tell if the awakening is only due to ¢; and if it will add information
to the constraint store (reducing domains). This graph will be denoted
cc-direct.

e representing dynamic relations from the static structure of the problem:
c; isrelated to c; each time ¢; reduces a variable and if ¢; and ¢; share any
common variable. This relation states that all constraints c; with their
past effects are helping ¢; adding information to the constraint store.
This is a kind of a posteriori explanation-based information. That is all
that can be inferred from an non explanation-based constraint solver.
This graph will be denoted cc-static.

e representing the explanation network: ¢; is related to c¢; if ¢; and ¢;
appear in the same explanation during computation. This relation rep-
resents the fact that ¢; and ¢; concurrently worked to provide new in-
formation to the solver. It represents some dynamic structure appearing

during computation as constraints cooperate to solve the problem. This
graph will be denoted cc-explain.
Notice that these graphs, being undirected, will result in symmetric matrices.
— A directed variable-variable graph
Variables v; and v; are connected in two different ways:

e representing static structure information: v; has an impact on v; if v; has
been modified by a constraint ¢ which has been posted upon v;. This
represents the static relations between variables. No more information
can be computed from a non explanation-based constraint solver. This
graph will be denoted vv-direct.

e representing the explanations network: v; has an impact on v; if v; has
been modified because of the set of constraints e and v; is a variable
upon which a constraint ¢ € e has been posted. This represents real
variable impact as it can be inferred from explanations. This graph will
be denoted vv-explain.

Notice that graphs, being directed, will result in possibly non symmetric
matrices. Moreover, we will represent them in such a way that variables on
top of the matrix are considered to impact variables on the left of the matrix.

All relations in those graphs are weighted with the number of times the
relation can be established throughout computation. This helps modifying the
static structure with dynamic information pointing out active relations. More
precisely, we keep a full history of activity within the graph. In this way, we can
dynamically query the graph for links that are active within a user-controlled
time range and compare the amount of activity between links in that range. The
user may visualize the activity in the graph throughout the whole resolution
process or in a smaller time range whose bounds and extent are interactively
parameterized. By sweeping the time range from the beginning to the end of
the history, the user may play back the resolution process and see which links
are established, when, and how often. Our tools also support user-defined time
slices. Simply put, a time slice is a time range between two events of interest.
For instance, in our experiments, we were interested in activity between pairs
of successive solutions. Our system computes the relevant time slices and allows
the user to jump between successive time slices through direct interaction too.

4.2 A toy problem: retrieving known information

A first example involves 13 variables: ay, as, as, b1, ba, b3, d1, d3 whose domain
is [1,3] and ¢, ca, c3, ¢4, c5 whose domain is [1,5]. Five constraints are posted
on these variables: three allDifferent constraints on respectively all the a;
(constraint coooo1), all the b; (constraint coppps) and all the ¢; (constraint cooooz)
and two allDifferent constraints relating the sets of variables, respectively on
dl,CQ and d3 (constraint 600003) and on aip, b17 Ci, and dl (Constraint 600005).

We are looking for the first solution to this problem. Constraint propagation
is not powerful enough to exhibit a solution without any enumeration. Nine
enumeration constraints need to be added in order to reach a solution. We will
therefore report 14 constraints on the following graphs.

What are we looking for ? Looking at the problem itself, one can deduce
that cgooo2 and copgpz have to interact to provide a solution because they share
a variable. However, constraint cgggp1 and cggoos should not be hard to satisfy,
they share variables with other constraints but they are quite easy to satisfy. The
hard part of the problem should be represented by the set {coo002, 00003, 00005 }-
Regarding search, obviously early choices (i.e. small constraint index) should
have a long impact on late choices as they should be used to lead search.

Regarding variables, as constraints cogggr and cgggos should not be hard to
satisfy, variables as, a3, b2, and bs should not have much impact during search.
This is probably the only information that can be identified just by looking at
the problem.

Constraint-constraint graphs We report in figure 2 the three constraint-
constraint graphs that can be obtained using the trace® generated by our solver.
According to the cc-direct graph, constraints cggo12 (enumeration constraint
assigning the value 2 to variable ¢3) and cpoo13 (enumeration constraint assigning
the value 1 to variable c3) are strongly related to coopo2 and coooos. We observe the
same apparent relation between constraints with coooos and copos (enumeration
constraint assigning the value 1 to variable ¢4). But, none of our intuitions can
be confirmed here (except for the strong links between cogoo2, Coooo3, and coooos-

The cc-static graph gives some more information. Indeed, in this graph,
constraints cgggoa and cgooo1 are not related to the other allDifferent con-
straints (except coooos) as expected. However, the dynamic structure that we
would like to appear between enumeration constraints is not apparent here. Only
the cc-explain graph gives the full information: links between the al1Different
constraints, and more importantly the strong impact of early enumeration con-
straints (coppog) compared to late ones (cogo14). Moreover, some structuring in-
formation appear: obviously enumeration constraint cppoos (and similarly con-
straint copo10) has not helped search (it had almost no subsequent relations with
other constraints). Notice that some of this information may be inferred from
the classical representation of graphs as shown in figure 3 in which cyggo5 appears
with a central role whereas constraints C000015 C00004; C00008, and C00010 play a
peripheral role.

As we can see, the explanation graph is able to provide both structure and
dynamic information about search in this toy example. Let us now have a look
at the variable-variable graphs reported on figure 4.

Variable-variable graphs The vv-direct graph of figure 4 confirms that
asz, as, by, and bz have a limited impact on other variable during the search
of the first solution to this toy problem. Notice that this graph also suggests
that variable a; has no impact on as which is quite odd. Moreover, the static
structure of the problem suggests that decisions on ¢; variables should impact by
and b3 variables which is also unexpected. The vv-explain gives us the correct?

3 Remember that we used the generic OADYMPPAC trace format (see [14]).
4 In the sense that it confirms intuitions about the problem.

e T L
o = o

08 [] coo0s

00007 H 00007

e JL | poo

oot | -

ooz B . | oz

<o0014 ‘ 00014

cc-direct cc-static

<0010
<coont
ooz
o3
oo

cc-explain

Fig. 2. A toy problem (first solution): constraint-constraint graphs. The darker the
dot, the more often the constraints are related.

C00008

C00004

C00010

Fig. 3. A toy problem (first solution): a classical representation of the cc-explain

graph

view about resolution: as, as, by, and bz have no impact on the other variables
of the problem. Moreover, a1, by, and finally d; seem to be the first enumerated
variables as they are used to reduce all the other variables. Finally, it seems hard
to satisfy the constraint coogos as all the ¢; interact a lot during search. Moreover,
¢; variables only impact other ¢; variables as expected. All the noise, on the upper
part of the vv-direct matrix is obliterated by the precise information provided
by the explanations.

»
|

H B a
@ @ B B |
s o
: - 0K m
« 0O O ”
® ©
vv-direct vv-explain

Fig. 4. A toy problem (first solution): variable-variable graphs

4.3 A toy problem: new information

Keeping the same problem, now we would like to discover some information
about search when computing all the 1152 solutions to the problem. At the end
of the process, 45 constraints have been posted i.e. the 5 original constraints and
40 possibly reused enumeration constraints.

4.4 Constraint-constraint graphs

Figure 5 reports the different constraint-constraint graphs that can be obtained
from the resolution trace. As we can see, the cc-direct graph tend to show
strong relations between enumeration constraints (in the middle of the matrix)
that cannot be explained. If we consider reduction-time relations, the cc-static
graph shows that those relations do not really exist, but only the explanation
graph cc-explain gives the correct perspective on what happens: as expected,
early enumeration constraints have a great impact on all the search. Moreover, a
clustered view (see figure 6) of that same matrix clearly shows that only roughly
half the enumeration constraints have an important role during search: many of
such enumeration constraints come from the fact that they correspond to the
only choice left.

Retrospectively, the relations appearing in the cc-direct graph can be ex-
plained by the fact that they are enumeration constraints posted on the same
variable (different values) that clearly cannot interact during search as only one
of them is active at any given time of the search.

« 1 I 1 CfEIe—rTeereE ..l ~ I 0
- " am 1 IE 1

I .b. [L -‘
™
] r

T 1l

B
L]
LI e -
- (LB LRI -
. LN - - -
- L L]
cc-direct cc-static cc-explain

Fig. 5. A toy problem (all solutions): constraint-constraint graphs

cc-explain clustered

Fig. 6. A toy problem (all solutions): a clustered matrix representation of a constraint-
constraint graph

4.5 Variable-variable graphs

As for constraint-constraint graphs, explanation-based variable-variable graphs
(see figure 7) both:

10

— reduce the noise of the static structure of the problem: see how all ¢; variables
seem to have an impact on all b; variables in the vv-direct representation
and how the vv-explain representation show that it is not the case at all
(only decisions made on ¢; have an impact).

— exhibit hidden information: indirect impact of a; (and az2) and b; (and bs)
on the ¢;.

w “
= [‘ | |
:

.
b
. II“
H N p
|| m - [

vv-direct vv-explain

& =8 20 R 2

Fig. 7. A toy problem (first solution): variable-variable graphs. The *dummy* variable
is used to generate new solutions and should not be considered as part of the problem.

4.6 Resolution dynamics

Another interesting use of our visualisation tools is to observe the dynamics of
search. Figure 8 shows time slices between different solutions among the 1152
identified ones. The first column shows how the first solution is obtained. We
recognize the cc-explain graph of figure 5 (with a different scale for intensity).
As we can see in the second column, getting from solution #2 to #3 only in-
volves working on the ¢; variables (variable-variable representation: bottom) but
some new enumeration constraints have been introduced to be able to produce
that solution (constraint-constraint representation: top). On the third column,
a completely new solution is found (modifying b; variables) whereas no new con-
straint is introduced: only old enumeration constraint are used. On the fourth
column, new symmetrical solutions are generated on the ¢; variables whereas
on the last column more variables are modified (¢;, b;, and d;). For that last
solution, new constraints are introduced and activated.

Such a representation should give interesting insight on what is really happen-
ing during search: which constraints are active, what dynamic relations appear
between variables, etc.

11

o -

L
Ll

[~
i
&
5

.:L- - ;..l-‘..l.-:..l-

getting sol.#1 sol.#2 to #3 sol.#24 to #25 sol.#30 to #31 sol.#48 to #49

Fig. 8. A toy problem (all solutions): cc-explain and vv-explain subgraphs for dif-
ferent solutions during search.

4.7 Open-shop scheduling problems: exhibiting structure

Our last reported experiments were done on open-shop scheduling problems.

Open-shop scheduling as CSP Classical scheduling shop problems, for which
a set J of n jobs consisting each of m tasks (operations) must be scheduled on a
set M of m machines, can be considered as ¢SP®. One of these problems is called
the open-shop problem [8]. For this problem, operations for a given job may be
sequenced as wanted but only one at a time. We will consider here the building
of non-preemptive schedules of minimal makespan®.

The open-shop scheduling problem is NP-hard as soon as min(n,m) > 3.
This problem although quite simple to enunciate is really hard to solve optimally:
instances of size 6 x 6 (i.e. 36) variables remain unsolved !

Solving open-shop scheduling problems As reported in [12], using explanation-
based algorithms to solve open-shop scheduling problems can be very effective.
We used here a complete version of decision-repair to solve a 4 x 4 instance of
the problem. This problem is structured as follows: 32 definition constraints are
posted (they related each task to the beginning and the end of the scheduling),
then 264 unary-resource related constraints (each machine and job is considered
as a unary resource’ used by the relevant tasks). During search, 102 enumeration

5 The variables of the csp are the starting dates of the tasks. Bounds thus represent
the least feasible starting time and the least feasible ending time of the associated
tasks.

5 Ending time of the last task.

T We use here task-intervals [4] to efficiently manage those resource.

12

constraints are needed in order to find the optimal solution and prove its optimal-
ity. Notice that the construction structure is clearly apparent in the cc-direct
graph reported in figure 9: part a represents the definition constraints, and part
b represents the machine-related resource management constraints, while part
c represents the job-related resource management, and part d represents the
enumeration constraints.

Learning from search In figure 9, we report the different constraint-constraint
graphs that can be obtained from the trace of the search. As we can see, the
construction structure of the problem (cc-direct and cc-static) is not the
structure that is really used through computation as reported in the cc-explain
graph. When looking at the clustered version of the graphs in figure 10, we
can see that unrelated constraints during search (in cc-explain) are statically
strongly related which helps determine the dynamic structure of the problem and
possibly explains the high-performance of explanation-based algorithms. Similar
information can be exhibited from the variable-variable graphs (figure 11).

cc-direct cc-static cc-explain

Fig. 9. Open-shop scheduling: constraint-constraint graphs

5 Conclusion

We introduced in this paper new visualization tools well suited for exploring re-
lations between constraints and variables through explanations. We showed how
explanations could provide much more insight about how search is performed in
a constraint program than classical representations of the static structure of the
solved problem.

A lot of work remains to be done especially on the interpretation of graphs
and providing navigation tools (in the constraint network, between solutions,
etc.) in our main tool.

13

cc-direct cc-static cc-explain

Fig. 10. Open-shop scheduling: clustered constraint-constraint graphs. We applied on
cc-direct and cc-static the same row and column order as pictured on cc-explain.

St LA R A TII7EEEEeRRER PR
o o
oz o
o3
o1t
02- 02-1 ||
oz-2 o2-2
0z-3 -3
oo-s o2ms
oo oo
w2 i
w3 P
o-e oss
I | o1
04-2 [| 04-2 |
04-3 04-3
ors ores
” | &
e "
vv-direct vv-explain

Fig. 11. Open-shop scheduling: variable-variable graphs.

14

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of Wis-
consin Press, 1983.

S. Card, J. Mackinlay, and B. Shneiderman. Readings in Information Visualiza-
tion: Using Vision to Think, chapter Dynamic Queries, pages 235-261. Morgan
Kaufmann, San Francisco, USA, 1999.

M. S. T. Carpendale and C. Montagnese. A framework for unifying presentation
space. In Proceedings of the 14th annual ACM symposium on User inter-face
software and technology (UIST’01), pages 61-70, November 2001.

Y. Caseau and F. Laburthe. Improving clp scheduling with task intervals. In P. V.
Hentenryck, editor, Proc. of the 11th International Conference on Logic Program-
ming, ICLP’9/, pages 369-383. MIT Press, 1994.

J.-D. Fekete and C. Plaisant. Excentric labeling: Dynamic neighborhood labeling
for data visualization. In K. Ehrlich and W. Newman, editors, Proceedings of
the International Conference on Human Factors in Computing Systems (CHI 99),
pages 512-519. ACM, May 1999.

E. C. Freuder, C. Likitvivatanavong, and R. J. Wallace. A case study in explanation
and implication. In CP2000 Workshop on Analysis and Visualization of Constraint
Programs and Solvers, 2000.

M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research,
1:25-46, 1993.

T. Gonzales and S. Sahni. Open-shop scheduling to minimize finish time. Journal
of the Association for Computing Machinery, 23(4):665—679, 1976.

N. Jussien. e-constraints: explanation-based constraint programming. In CP01
Workshop on User-Interaction in Constraint Satisfaction, Paphos, Cyprus, 2001.

N. Jussien and V. Barichard. The PaLM system: explanation-based constraint
programming. In Proceedings of TRICS: Techniques foR Implementing Constraint
programming Systems, a post-conference workshop of CP 2000, pages 118-133,
Singapore, September 2000.

N. Jussien, R. Debruyne, and P. Boizumault. Maintaining arc-consistency within
dynamic backtracking. In Principles and Practice of Constraint Programming (CP
2000), number 1894 in Lecture Notes in Computer Science, pages 249-261, 2000.

N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-
based heuristics. Artificial Intelligence, 139(1):21-45, July 2002.

T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.
Information Processing Letters, 31(1):7-15, 1989.

OADYMPPAC. Tools for dynamic analysis and debugging of constraint programs.
http://contraintes.inria.fr/OADymPPaC, 2001. RNTL project.

S. Ouis, N. Jussien, and P. Boizumault. k-relevant explanations for constraint
programming. In FLAIRS’03: Sizteenth international Florida Artificial Intelligence
Research Society conference, pages 192-196, St. Augustine, Florida, USA, May
2003. AAAI press.

P. Pu and D. Lalanne. Interactive problem solving via algorithm visualization. In
Proceedings of the IEEE Symposium on Information Visualization (InfoVis 2000),
pages 145-154, Salt Lake City, Utah, October 2000.

D. Sabin and E. Freuder. Contradicting conventional wisdom in constraint satis-
faction. In A. Borning, editor, Principles and Practice of Constraint Programming,
volume 874 of Lecture Notes in Computer Science. Springer, May 1994. (PPCP’94:
Second International Workshop, Orcas Island, Seattle, USA).

15

Question-Generation
in Interactive Constraint Processing

J. Bowen and S. Cummins

Department of Computer Science, UCC, Cork, Ireland
{j.bowen,s.cummins}@cs.ucc.ie

Abstract. Existing work on interactive constraint processing has been
based on a scenario in which the machine infers the consequences of
choices made by the user; in other words, the interaction is user-driven.
In this paper, we address an alternative scenario where the interaction
is machine-driven: the machine requests, from the user, information that
it needs to solve a problem that has previously been posed by the user.
In particular, we address the task of minimizing the number of questions
that the machine must ask.

1 Introduction
A constraint network is a triple (D, X, C), in which D is a tuple of domains, X is

a tuple of parameters, each of which may assume values from the corresponding
domain in D, and C is a set of constraints, each of which restricts the values
that may simultaneously be assumed by a sub-tuple of the parameters in X.
The overall network constitutes, in effect, an intensional specification for a set of
tuples; each tuple in this set has the same length as X and provides assignments
for the corresponding parameters such that all the constraints are satisfied. The
set which contains all these tuples of consistent value assignments is called the
intent of the network. Many different forms of constraint satisfaction problem
(CSP) have been distinguished. The most common one, the Exemplification CSP,
will be relevant in this paper; it can be defined as follows:

Definition 1, The Exemplification CSP:
Given a network (D, X, C): return nil if the intent of (D, X, C) is
empty; otherwise, return some tuple from the intent.

Another problem which will be relevant in this paper, the Enumeration CSP,
can be defined as follows:

Definition 2, The Enumeration CSP:
Given a network (D, X, C): return the intent of (D, X, C).

Most research on constraint processing algorithms has been directed at con-
sistency propagation or at search. That work can be regarded as assuming au-
tonomous machine processing, in which the user gives a CSP to the machine and
waits for it to return a solution to the given problem.

In recent years, however, there has been increasing interest in interactive con-
straint processing. Research in this area has been based on a scenario in which

16

the user gives to the machine a CSP which the user and machine then co-operate
in solving [4]. For example, in some systems based on this scenario, the user-
machine duo can be regarded as performing MAC-type search: the user assigns
values to network parameters while the machine maintains arc-consistency; if
the machine finds an inconsistency, the user decides which of his previous as-
signments to change, he assigns a new value to the parameter involved and the
process continues.

Within this field of interactive constraint processing, various themes have
evolved. For example, some research [1,6,4, 5], has addressed the issue of ex-
planation generation, which involves the machine explaining to the user why a
certain parameter must, or may not, have a certain value. There has also been
some research on processing generalized user-inputs, where the user is allowed
to assert not just a value for a parameter but an arbitrary constraint between
parameters [2].

Nevertheless, all this work on interactive constraint processing has had a
common characteristic: the machine infers consequences of choices made by the
user; that is, the machine reacts to initiatives taken by the user. In this paper,
we address an alternative scenario, one in which the initiative is taken by the
machine.

To illustrate, consider the following situation, based on map colouring. The
user gives the machine a constraint network in which the parameters represent
countries on some map in an atlas that the user has in his hand, while the con-
straints represent inequality constraints between countries that are contiguous
on the map. The user tells the machine what range of colours are used on the
map; this becomes the domain for each parameter in the network. Then the
user chooses some country on the map and challenges the machine to determine
what colour is used in the atlas for this target country. The machine cannot, of
course, see the atlas but it is allowed to ask the user questions. Specifically, it
can ask the user what colour is used in the atlas for any country, apart from the
target country. The point, of course, is that the machine is expected to ask as
few questions as possible.

Consider a simple version of this situation, involving only three colours (red,
green and blue) and a map which contains only four countries (Austria, Ger-
many, Switzerland and Italy); the adjacency relations in this map are shown in
Figure 1 (a). Suppose that the user has asked the machine to determine what
colour is used in the atlas for Ttaly. How many questions would the machine have
to ask the user? What country should it ask about first? Should it ask about
one of the countries that touch Italy?

In fact, the machine need ask only one question — it should ask for the colour
of Germany, for the following reason. Germany must have a different colour from
Austria and Switzerland, whose colours must be different from each other. Italy
must also have a different colour from Austria and Switzerland. Since there are
only three colours, Italy must have the same colour as Germany.

17

Germany

(Switzerland }—(Austria)
Italy

(a) Graph-structured map (b) Multiple-image tree

Fig. 1. Map of Central Europe

The task posed to the machine above is an example of a class of problem
which we call the Optimal Questioning Strategy (OQS) problem and which can
be defined as follows.

Definition 3, The Optimal Questioning Strategy CSP:

Given a network (D, X, C) whose intent is non-empty and a tuple T of
target parameters in X, return the smallest tuple Q of the parameters
in X-T such that, if the values of all the parameters in Q were known,
there would be only one possible consistent value for each of the
parameters in T.!

In the example task above, the set T contained only one target parameter,
Italy, and the tuple Q contained only one question parameter, Germany. In
general, however, there could be several target parameters in T and the optimal
questioning strategy Q could contain a sequence of several questions.

Note that the projection of the network intent onto the parameters in T may
contain multiple tuples. In the example above, the projection of the network
intent onto T = {Italy} contains a set of three singleton-tuples {r, g, b}, each
of which is a possible consistent value for the single target parameter in T. If Q
contains only one question parameter, as in the example above, the task of com-
puting an optimal strategy is easier than where multiple questions are needed,
because, in the latter case, each of the different valuations in the projection of
the network intent on T may require a different sequence Q. In this latter case,
we have a multiple-ply gaming situation — in devising the questioning strategy,
the system must consider different possible answers that the user could give to
the various questions the system could pose.

In the rest of this paper, we will focus on OQS problems where there is only
one target parameter. Thus, we provide an explicit definition of this special case,
the single-target OQS problem:

Definition 4, The Single-Target Optimal Questioning Strategy CSP:
Given a network (D, X, C) whose intent is non-empty and a target
parameter 7' which is a member of X, return the smallest tuple Q of

! The sequence of parameters in Q is, then, the optimal questioning strategy.

18

the parameters in (X - (T)) such that, if the values of all the
parameters in Q were known, there would be only one possible
consistent value for T'.

This kind of constraint-based problem is not a frivolous one. There are many
economically or socially significant instances of the single-target OQS CSP. Con-
sider medical diagnosis, for example.? A body of diagnostic expertise could be
represented as a constraint network in which the target parameter represents
the disease afflicting a patient, while other parameters represent the results of
possible diagnostic tests that could be performed on him. Since diagnostic tests
can be dangerous, expensive and/or time-consuming, an expert diagnostician
tries to minimize the number of tests that he calls for. As another example of
the single-target OQS CSP, consider an automated telephone-based interactive
product selection and sales system.? Knowledge for this domain could be rep-
resented as a constraint network in which the target parameter represents the
product which best meets a customer’s needs, while other parameters represent
salient aspects of the situation in which the customer proposes to use the product
that he wishes to purchase. Since a customer is likely to hang up in frustration
if he is asked too many questions, a successful system will try to ask as few
questions as possible.

2 A Naive Approach to Question Generation

In this section, we will consider one approach to generating an optimal question-
ing strategy. While it may be practical in cases where the constraint network is
small, it is unlikely to be useful for dealing with real-world situations where the
constraint networks are likely to be quite big. Nevertheless, we present the ap-
proach because it illustrates some concepts which arise in the other approaches
that we will consider. The approach relies on prior computation of the intent
that is implicit in the constraint network.

Suppose that, in the constraint network (D,X,C) for the map-colouring
example we considered above, the parameters in tuple X are ordered { Germany,
Switzerland, Austria, Italy). The intent that is implicitly defined in Figure 1 (a)
is? then7 { <T7.g?b7,r>7 <,r7 b7g7 T)? <g7 T? b7g)7 <g7 b7/r7g>7 <b7,r7g7 b)7 <b7g7 T? b) }' Ifthe
system knew that the contents of the intent are as just given, it could compute
from this that, for each possible value of Germany, only one value is allowed
for Ttaly. It could also compute that, for each possible value of Switzerland, two
values are allowed for Italy. Similarly, it could also compute that each possible
value of Austria admits two values for Ttaly. Therefore, the system would know
that, if it wants to identify the value of Italy as quickly as possible, it should ask
about Germany.

2 Qur work can be regarded as preliminary steps to developing a constraint-based
approach to interactive diagnosis. While there is a large existing literature on rule-
based diagnosis, the richer expressiveness of constraints poses greater processing
complexity, in particular when it comes to question generation.

3 Interactive product configuration, as opposed to selection, corresponds to a multiple-
target OQS CSP.

19

To prepare ourselves to consider the later approaches, it it useful to cast this
argument in terms of probabilities and expected values of domain sizes. If the
system knew that the contents of the intent are as given above, it could, before
asking any question, compute an expected domain size for parameter Italy after
learning the answer to each possible first question. Let prob(X = y) denote the
probability that, if the system asks for the colour of some country X, it will
receive the answer y. The expected domain size for Italy after asking about
Germany is

prob(Germany = r) * 1 + prob(Germany = g) * 1 + prob(Germany = b) * 1.
Simplifying this, we get
prob(Germany = r) + prob(Germany = g) + prob(Germany = b)

which equals 1, since the probabilities for the different values of Germany must
sum to unity. Similarly, the expected domain size for Italy after asking about
Austria is

prob(Austria = r) * 2 + prob(Austria = g) * 2 + prob(Austria = b) x 2

which evaluates to 2. Finally, the expected domain size for Italy after asking
about Switzerland, which is

prob(Switz =) % 2 4+ prob(Switz = g) * 2 + prob(Switz = b) * 2

also evaluates to 2. Thus, the expected domain size, after asking one question, is
smallest if that question is about Germany. Therefore, the system knows that,
if it is interested in narrowing the possibilities for Italy as quickly as possible,
its best chance of doing so is to ask about Germany first.

3 Sampling the Intent

Although the rafionale for question selection given above was expressed in terms
of the expected domain size for the target parameter, the same approach can
be explained from a different perspective. We could have used Shannon’s In-
formation Theory [9]. That is, choosing between questions on the basis of their
effectiveness in reducing entropy would lead to exactly the same questioning
strategy. Indeed, our use of expected domain size in choosing questions is simi-
lar to the use of entropy reduction in Decision Tree learning [8].

In fact, an alternative approach to our task is prompted by the observation
that Optimal Questioning Strategy generation in constraint networks is similar
to Decision Tree Learning. This second approach is likely to be more practical
than the first approach because it does not require knowledge of the intent of the
constraint network; that is, it does not require prior solution of the Enumeration
CSP. Instead, as we shall see below, this second approach requires solving the
Exemplification CSP, which is computationally much less expensive than solving
the Enumeration CSP.

A decision tree [8] is a tool for classifying instances from some population.
A non-leaf node in the tree is a question whose children are connected to it by

20

edges which correspond to the possible answers for the question. A leaf node
in the tree is a classification. When an instance from the population is to be
classified, it is analysed according to the questions encountered along the path,
from the root node, that correspond to the answers which the attributes of the
instance give to the questions; this path eventually leads to a leaf-node which is
the classification for the instance.

Answering questions posed by a machine which has solved the Single-Target
0QS problem can be compared with the process by which a decision tree classi-
fies an instance. The domain of the target parameter in the constraint network
corresponds to the range of possible classifications that may result from a de-
cision tree analysis of an instance. The non-target parameters in the constraint
network correspond to the instance attributes that are examined by the question
nodes in a decision tree. In fact, the population of instances which a decision
tree is supposed to be capable of classifying corresponds to the intent of the
constraint network: each tuple in the constraint network intent contains the de-
scription of an instance and its corresponding classification — the value, in the
tuple, of the target parameter corresponds to the classification, while the values
of the non-target parameters correspond to the attribute-values of the instance.

While decision trees could be constructed manually, they are normally con-
structed by machine learning algorithms called Decision Tree Learning algo-
rithms [8]. Such an algorithm is given a sample from the population along with,
for each member of the sample, its appropriate classification. We have seen that
the population of instances to be classified by a decision tree corresponds to the
intent of a constraint network. Since a decision tree learning algorithm needs
only a sample of the population, this suggests that we should be able to gen-
erate a constraint-based questioning strategy if we know only a sample of the
network intent?.

In other words, instead of requiring prior solution of the Enumeration CSP
(in order to compute the complete intent), it should be possible to learn an
appropriate set of questions from a relatively small set of alternative solutions
to the Exemplification CSP; an important requirement, of course, is that this
set of alternative solutions should be representative of the overall intent of the
network.

An investigation of this approach is part of our ongoing research. The basic
idea is as follows: use repeated invocations of a search algorithm to find several
randomly distributed solutions to the Exemplification CSP; then use a decision
tree learning algorithm to learn a decision tree from this sample of the overall
intent of the constraint network. We are investigating usage of the approaches
presented in [3,7] for generating random solutions to the Exemplification CSP,
as part of this sample-based approach to generating questioning strategies.

Our work on learning a questioning strategy from randomly generated solu-
tions to the Enumeration CSP is, however, still in its early stages. The rest of
this paper reports on a different approach, where our work is further advanced.

4 Acknowledgement: this observation was made by Pat Langley during a conversation.

21

4 Intent-independent Question-Generation
So far, we have outlined two approaches to question generation, one of which

requires prior computation of the network intent (by solving the Enumeration
CSP) while the other requires prior computation of a random sample from the
network intent (by computing several randomly distributed solutions to the Ex-
emplification CSP).

An obvious ambition, therefore, is to find some approach which does not
require prior knowledge of any part of the network intent, an approach which
does not require prior solution even of the Exemplification CSP, let alone prior
solution of the Enumeration CSP.

Such an approach does exist. Before introducing it, is is useful to define some
concepts.

Definition 5, Target Shadow:

The set of values for the target parameter that are consistent with a
particular value of a non-target parameter is called the target shadow of
that value for the non-target parameter.

To see some examples of target shadows, consider, again, the network for the
map-colouring problem — see Figurel (a). Remember that, where the parameters
in this network are ordered (Germany, Switzerland, Austria, Italy), the intent
Ofthe network is { (”'797 b7 r>7 <r7 b7 g7 ,")7 <g7 ,"7 b7g>7 <g7b7 ,"79)7 <b7,r7g7 b)7 <b7g7 r? b)
}. From this, we can see that, if Austria has the value r, the target parameter,
Italy, can have either the value g (tuple 4 in the intent) or b (tuple 6 in the
intent). Thus, the target shadow for the value r in the domain of Austria is
{g,b}. The target shadows for all the values in the domain of each non-target
parameter are shown in the following table:

Germany |r — {r}, g = {g}, b = {b}

Switzerland|r — {g,b}, g = {r,b}, b — {r, g}

Austria r— {g,b}, g = {r,b}, b= {r, g}

To compute the expected size of the domain of the target parameter that
would result if the user were to instantiate some non-target parameter P, we
need to know (a) the target shadow for every value v in the domain of P and
(b), in most, but not all, cases, the probability® that the user will select the value
v for P.

Definition 6, Expected Shadow Size The expected size of the domain of
the target parameter that results from instantiating some non-target

® We say “in most but not all cases” because we do not need the probability distribu-
tion if each value in a domain has the same size of target shadow. So, what about
those cases where the values in a domain do have differening sizes of target shadow?
For now, as a simplifying heuristic, we assume a uniform probability distribution.
However, the expert knowledge in a real-world problem domain usually includes a
better approximation than this — for example, in medicine, diagnosticians know that
certain symptoms are more likely than others; eventually, we propose to represent
this information by treating the domains of the parameters in a constraint networks
as sets with associated probability distributions.

22

parameter, P, is called the ezpected shadow size of P. Its value is

Z prob(P = v) x |shad(v)|

vEdomain(P)

where, for each value v in the domain of P, prob(P = v) is the
probability that the user will instantiate P to this value and shad(v) is
the target shadow of v.

From what we have seen so far, it appears that the best question to ask the
user at any time is to ask him for the value of the non-target parameter which
has the minimum expected shadow size®. To determine this “best” question, we
need to know the target shadow for every value in the domain of every non-target
parameter.

We have seen that we can compute these target shadows if we know the
network intent. However, we do not need to know the network intent. In what
follows, we will first show that this is true in the case of tree-structured constraint
networks. Then we will extend the result to cover graph-structured networks.

5 Target-shadow Propagation in Tree-Structured
Networks

Theorem 1: If a constraint network is tree-structured, only 2-consistency
information is needed to compute the target shadows for all the values
of all the non-target parameters in the network.

Proof. In a tree-structured network, any node can be regarded as the
root; thus it is possible to treat the target node as the root. Consider
a parameter whose node is a child of the root. Using only 2-consistency
information, each value in domain of this parameter can be labelled
with a set which contains those values of the target parameter that are
supported by this value of the child parameter — that is, each value can
be labelled with its the target shadow”. Now consider a parameter whose
node is a child of the parameter for whose values we have just computed
the target shadows. Using only 2-consistency information, each value
in the domain of this grand-child parameter can be labelled with a set
which is the union of the target shadows of those values of the child node
that are supported by this value of the grand-child node; the resultant
set contains the values of the target parameter that are supported by
this value of the grand-child node — in other words, its target shadow. In

8 In fact, of course, this notion of “best” question leads to a hill-climbing approach
to question generation — there are instances where it will lead to question sequences
that are longer than necessary.

" Note that the memory cost of storing these labels is only O(qd), where ¢ is the
number of parameters and d is the maximum domain size, because each of the subsets
of the domain of the target parameter can be represented by a binary number; for
example, if the domain of the target parameter is {r,g,b}, we can represent the
subset {r,b} of this domain by the binary number 101.

23

this manner, the target shadow for every value in the domain of every
non-target parameter can be determined.

Consider, for example, the tree-structured map in Figure 2; suppose that,
again, we have a palette of three colours, red, blue and green. Let Poland be the
target parameter.

Fig. 2. Tree-structured map

The target shadows for the values in the domain of Germany are {r — {g, b},
g — {r,b}, b = {r,g}}. The target shadows for the values in the domain of
Austria can be computed from those for Germany; they are {r — {r,b} U {r, g},
g—{9,b} U {r,g}, b — {g,b} U {r,b}}; in other words, they are {r — {r, g,b},
g — {r,g,b}, b = {r,g,b}}. Similarly, the target shadows for the values in the
domain of Lithuania are {r — {g,b}, g = {r,b}, b = {r,g}} and those for the
values in the domain of Latvia are {r — {r,g,b}, 9 = {r,g,b}, b = {r,g9,b}}.

6 Target Shadow Propagation in Graph-Structured
Networks

It is probably not surprising that we need only 2-consistency information to com-
pute the target shadows in a tree-structured constraint network. What is more
surprising is that, as we will prove below, only the same degree of consistency
is needed to compute target shadows in graph-structured constraint networks.
The reason that we need only 2-consistency information to compute the target
shadows in a graph-structured network is that we can use hypothetical reasoning
to temporarily break cycles, so that we can use the approach given above for
propagating target shadows in tree-structured networks. To simplify the proof
below, we will first define some terms.

Definition 7, Non-target Cycle-Cutset:

In a graph-structured network (D, X, C), there is at least one subset of
the non-target parameters that are in the tuple X such that, if these
parameters were instantiated, the remaining constraint network would
be a tree. Such a set of parameters is called a non-target cycle-cutset.

Consider, for example, the map-colouring network shown in Figure 3 (a),
where Lilliput is the target node. One non-target cycle-cutset is {Gilgitia}.

24

Lilliput
Tarantua) Karantin

Ruritania Gilgitia Virastan

Ruritania Gilgitia1) (Gilgitia2)

(a) Graph (b) Multiple-image tree

Fig. 3. Lilliput and its neighbours

Definition 8, Multiple-Image-Tree:

Together, a graph-structured network and a non-target cycle-cutset, O,
for the network define a tree, called a multiple-image-tree. This tree is
produced by making multiple distinct images of each parameter in O,
one for each of its neighbours in the original graph-structured network.

The multiple-image-tree defined by the network in Figure 3 (a) and the non-

target cycle-cutset {Gilgitia} is shown in Figure 3 (b); in this tree, there are three
separate nodes which contain an image of the Gilgitia node in Figure 3 (a).

Definition 9, Multiple-Image Tree Constraint Network:

While a graph-structured network (D, X, C) and a non-target
cycle-cutset O define a unique multiple-image-tree, they define a set of
constraint networks, called multiple-image-tree constraint networks.
The set of such networks is defined as follows. Let the
multiple-image-tree be M. Let X, be that sub-tuple of X which
contains the parameters that are in O. Let D, be the Cartesian
cross-product of the domains of the parameters in X,. Then there is
one multiple-image-tree constraint network corresponding to each tuple
t in D,. A multiple-image-tree constraint network is a constraint
network whose parameters and constraints are, respectively, the nodes
and edges of M. Except for the multiple-image node parameters, the
domain of each parameter is the same as its domain in the original
given network. However, the domain of each multiple-image node
parameter is a singleton set which contains the value in tuple ¢ for the
parameter in the original network of which the node is one of the
multiple images.

For example, consider, again, the map-colouring constraint network in Fig-

ure 3 (a); suppose that the palette of colours contains the three colours {r, g, b}.
Then, using the the non-target cycle-cutset {Gilgitia}, we get three multiple-
image-tree constraint networks. The topology of each of these networks is as
shown in Figure 3 (b). Except for parameters Gilgitial, Gilgitia2 and Gilgitia3,
the domain of each parameter is {r, g,b}. In one multiple-image-tree constraint

25

network, the three parameters, Gilgitial, Gilgitia2 and Gilgitia3, all have the
same singleton domain {r}; in another network they all have the same singleton
domain {g}; in the third network they all have the same singleton domain {b}.

A little extra care must be taken in computing target shadows in multiple-
image-tree constraint networks. Remember that all nodes in a group of image
nodes that are related by virtue of being images of the same parameter in the
original graph represent different facets of that parameter in the original graph.
Specifically, propagating along the path between the target node to such an
image node produces a set of values in the target node that are supported via
that path by the single value in the domain of the image node. However, the
target shadow must be supported along all such paths. Therefore, the target
shadow of the single value in the domain of a group of related image nodes is the
intersection of the sets of values that are supported along the different paths.

For example, consider one of the multiple-image-tree constraint networks
based on the multiple-image-tree in Figure 3 (b) — consider the network where
images nodes Gilgitial, Gilgitia2 and Gilgitia3 all have the singleton domain {r}.
The target shadow for the sole value r in this domain is the intersection of three
subsets of the domain of the target parameter: the subset of the target domain
that is supported by r along the path from Gilgitial to the target node; the
subset of the target domain that is supported by r along the path from Gilgitia2
to the target node; the subset of the target domain that is supported by r along
the path from Gilgitia3 to the target node.

With this infrastructure of ideas in place we can now prove that, to com-
pute target shadows for graph-structured constraint networks, we need only
2-consistency.?

Theorem 2: Only 2-consistency information is needed to compute the
target shadows for all the values of all the non-target parameters in a
graph-structured network.

Proof. Given a graph-structured network, take any non-target cycle-
cutset for the network. The network and the non-target cycle-cutset
implicitly define a set of multiple-image-tree constraint networks, each
of which represents the situation that would result from one possible
instantiation of the parameters in the non-target cycle-cutset. The tar-
get shadow for a value in the domain of a non-target parameter in the
graph-structured network represents the set of values in the domain of
the target parameter that are supported by this value in the domain of
the non-target parameter. Such a target shadow is the union of the target
shadows that the value has in the various multiple-image-tree constraint
networks that are produced by instantiating the parameters in a non-
target cycle-cutset for the graph-structured network. Theorem 1 shows
that we need only 2-consistency information to compute target shadows

8 Note that, even though only 2-consistency is required, the amount of time taken by
the algorithm can, in the general case, be exponential in the size of the cycle-cutset.
However, needing only 2-consistency means that memory complexity is limited.

26

in tree-structured networks. Therefore we need only 2-consistency infor-
mation to compute target shadows in the multiple-image-tree constraint
networks that result from instantiating the parameters in the non-target
cycle-cutset. Therefore we need only 2-consistency information to com-
pute target shadows in graph-structured constraint networks.

Let see this approach at work in the map-colouring network shown in Fig-
ure 1 (a), remembering that the palette contains only three colours, {r, g,b} and
that Italy is the target parameter.

A non-target cycle-cutset is {Austria}, whose corresponding multiple-image-
tree is as shown in Figure 1 (b). There are three images of Austria in this tree,
one for each of Austria’a neighbours in the original, graph-structured, network.

This multiple-image-tree implicitly defines three multiple-image-tree con-
straint networks, because there are three values in the domain of Austria. Con-
sider the first of these multiple-image-tree constraint networks, the network in
which each of the multiple images of Austria is given the singleton domain {r}.
Applying arc-consistency, the domains of the other three parameters are reduced
to {g,b}. The value r in the domain of Austrial is compatible with both values
that remain in the domain of Italy; that is, 7 supports the set {g, b} along the
path from Austrial to Italy. Each of the two values in the domain of Switzerland,
g and b, is compatible with only one value in the domain of Italy; their target
shadows are {b} and {g}, respectively. The single value, r, in the domain of
Austria2 is compatible with both values in the domain of Switzerland, so, along
the path from Austria2 to Italy, the value r supports the union of the target
shadows of the two values in the domain of Switzerland — it supports the set
{g,b}. The value g in the domain of Germany is compatible with only only value
in the domain of Switzerland, b, so it inherits its target shadow, namely {g}.
Similarly, the value b in the domain of Germany inherits the target shadow of
the value ¢ in the domain of Switzerland, namely {b}. The single value, r, in the
domain of Austria3 is compatible with both values in the domain of Germany,
so, along the path from Austria3 to Italy, the value r supports the union of the
target shadows for the two values in the domain of Germany — it supports the set
{g,b}. The target shadow for the value r in the singleton domain that is shared
by Austrial, Austria 2 and Austria3 is the intersection of the three sets that are
supported along the paths from Austrial to Italy, from Austria2 to Italy and
from Austria3 to Italy; since the three sets are the same, the result is {g, b}.

The above reasoning is summarised in the left-most table below. The cor-

responding reasoning for the cases where Austria is given the singleton domain
{g} and the singleton domain {b} are summarised in the next two tables.

27

Alternative 1: Alternative 2: Alternative 3:
domain(Austrial) « {r} domain(Austrial) « {g} domain(Austrial) « {b}
domain(Austria2) « {r} domain(Austria2) « {g} domain(Austria2) « {b}
domain(Austria3) « {r} domain(Austria3) « {g} domain(Austria3) « {b}
domain(Italy) « {g, b} domain(Italy) « {r, b} domain(Italy) « {r, g}
domain(Switzerland) « {g, b} domain(Switzerland) « {r,b} domain(Switzerland) « {r, g}
domain(Germany) + {g, b} domain(Germany) « {r, b} domain(Germany) + {r, g}
Austrial: » — {g, b} Austrial: g — {r, b} Austrial: b — {r, g}
Switzerland: g — {b}, b — {g} Switzerland: » — {b}, b = {r} Switzerland: » — {g}, g — {r}
Austria2: r» — {g, b} Austria2: g — {r, b} Austria2: b — {r, g}
Germany: g — {g}, b — {b} Germany: » — {r}, b — {b} Germany: » — {7}, g = {g}
Austria3: » — {g, b} Austria3: g — {=, b} Austria3: b — {r, g}
So, finally: So, finally: So, finally:
Switzerland: g — {b}, b = {g} Switzerland: » — {b}, b — {=} Switzerland: » — {g}, g = {=}
Austria: » = {g, b} Austria: g = {r, b} Austria: b — {r, g}
Germany: g = {g}, b = {b} Germany: » = {r}, b — {b} Germany: » = {r}, g = {g}

Now unioning the corresponding target shadows from all three possible multiple-
image-tree constraint networks, we get the target shadows for the original graph-
structured constraint network, as follows:

Switzerland: r — {b}U {9}, g—{b}U{r}, b—>{g}U{r}
Austria: r — {g,b}, g— {r,b}, b—{r,g}

Germany: r— {r}U{r}, g—{g}tU{g}, b— {p}U{b}
In summary, therefore, the target shadow situation for the original graph-
structured constraint network is as shown in the table below. Compare these
results with the target shadows that were computed in Section 4, where knowl-
edge of the network intent was assumed. The results are the same — as they
should be, according to Theorem 2, the theorem that target shadows in graphs
can be calculated without knowing the network intent.

Switzerland|r — {g, b}, g = {r,b}, b = {r,g}

Austria r—{g,b}, g = {r,b},b— {r, g}

Germany |r — {r}, g = {9}, b — {b}

7 Experimental Results
We have implemented the target-shadow propagation approach to computing

the best first question. We have applied it to randomly-generated networks with
densities between 0.11 and 0.15, inclusive, and for constraint tightnesses ranging
from 0.1 to 0.8° For each density-tightness combination, we generated 100 Single-
Target OQS problems involving 20 parameters of domain size 10. We averaged
the number of constraint checks required to compute the best first question for
each of these problems. The results are shown in the table below.

Density Tightness
% 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
0.15 |77,229,876|64,787,446|47,034,884(63,604,847|45,706,708|25,268,699 3,507,446
0.14 |13,256,210|28,504,676|18,801,745|23,994,163|11,540,742|13,799,755|2,256,582
0.13 | 6,336,532|12,563,793| 7,427,831| 7,280,836|10,719,907| 5,875,652(1,381,702|12,589
0.12 979,060 1,150,906 757,176| 976,660| 683,436| 542,493| 199,465|17,027
0.11 270,111 135,615 123,824 259,546 148,624| 220,507| 104,071{12,100

It can be seen that, as density increases, the amount of work required also
increases. This is to be expected because, as network density increases, the size

9 Networks with density 0.1 were only trees, so we excluded them as being too easy.
Our random networks at 0.9 tightness were arc-inconsistent and those with tightness
0.8 were arc-inconsistent at density 0.14 and above.

28

of the cycle-cutset needed to produce a multiple-image tree increases. When
several parameters are needed in a cycle-cutset and when the domains of these
parameters are large, the amount of work needed to generate optimal questions
can grow very quickly.

How practical is this approach? This depends on user-acceptability which, in
turn, depends on the time taken to compute the best question. In networks of
density 0.11 and 0.12, this was always less than 1 second, using a modern desk-
top computer. For networks of density 0.13 and 0.14, the times were less than
10 seconds. The worst case, at density 0.15 and tightness 0.1, was 45 seconds.

It may be asked whether problems with 20 parameters of domain size 10,
and densities of 15% and below, are meaningful surrogates for the real-world.
We have found several real-world tasks which are smaller than this — for example,
laptop computer selection.

Our results here are only preliminary. Nevertheless, we believe that they
indicate that practical approaches can be found for generating optimal questions
in some classes of real-world situation. The approach we have presented here is
the first we have investigated in what we believe to be a new form of problem-
solving. We hope to develop improvements which can function at acceptable
speeds in larger problems.

8 Concluding Remarks

We have introduced the notion of question generation in constraint processing.
We have considered three approaches to generating questions, based, respec-
tively, on the prior computation of the network intent, on the prior computation
of a sample from the network intent and on the propagation of target shadows
without knowing any member of the network intent.

We have proven that target shadow propagation can be done on the basis
of information that need be only 2-consistent — we have proven that this is the
case in graph-structured constraint networks as well as in tree-structured net-
works. However, while target shadow propagation in tree-structured networks
is relatively inexpensive, there are several factors which may make it an ex-
pensive tool when used in graph-structured networks — prior computation of
a non-target cycle-cutset for the graph-structured network is required!® and,
more significantly, target shadow propagation must be performed for each of the
multiple-image-tree constraint networks which result!!.

However, it must be pointed out that the situation, vis-a-vis graph-structured
networks, is not as black as might be deemed from the above remark. Remember
that an expert system for medical diagnosis or tele-marketing will be used re-
peatedly, on many occasions, by many users. It is, therefore, worthwhile spending
a lot of effort processing the network before it is released to its user community.

10 There is no known polynomial cost algorithm for computing the minimum non-target
cycle-cutset. However, non-minimum sets can be computed at reasonable cost.

1 This, of course, means that the best non-target cycle-cutset is one whose domains
have the smallest cross-product of all non-target cycle-cutsets. While no polynomial
cost algorithm for computing the optimal non-target cycle-cutset is known, heuris-
tics exist which enable the optimal set to be computed at reasonable cost in many
networks. These heuristics are beyond the scope of this paper.

29

Such pre-processing effort has two kinds of cost: the memory space needed and
the time required. The fact that only 2-consistent information is required for
target shadow propagation in graph-structured networks is good news on the
memory front. If a complete questioning strategy (which, in most real-world
applications, will require that multiple questions be asked of the user) can be
computed before the expert system is released to the user community, the time
cost of target shadow propagation may not be a problem either. (It is, of course,
always possible to compute the best'? candidate for the first question, before re-
leasing an expert system to its users. However, there are some unexplored issues
related to the complexity of using target shadow propagation for computing an
optimal sequence of questions.)

There are several issues that we have not touched on in this paper, including
the following. What is the appropriate probability distribution to use for the
possible answers that a user could give when asked for the value of a parameter?
Do there exist heuristics for reducing the extent of target shadow propagation
needed in trees. Do heuristics exist for reducing the number of multiple-image-
tree constraint networks that need be considered for graphs? What additional
complexity is introduced by the fact that, in many real-world applications, some
questions may be more expensive to answer than others? We have some results
in each of these areas, but they are beyond the scope of this paper which has
provided preliminary results in what we believe to be a new area of constraint
processing.

References
1. Bowen J and Bahler D, 1992, “Frames, Quantification, Perspectives and Negoti-

ation in Constraint Networks for Life-Cycle Engineering”, Intn’l Journal of Al in
Engineering, 7, 199-226.

2. Bowen J, 2001, “The (Minimal) Specialization CSP: A basis for Generalized In-
teractive Constraint Processing”, CP-2001 Workshop on User-Interaction in Con-
straint Processing.

3. Dechter R, Kask K, Bin E and Emek R, “Generating Random Solutions for Con-
straint Satisfaction Problems”, Proceedings AAAI-02.

4. Freuder E, Likitvivatanavong C and Wallace R, 2000, “A Case Study in Explana-
tion and Implication”, Proc. CP-2000 Workshop on Analysis and Vizualization of
Constraint Programs and Solvers.

5. Junker U, 2001, “Quickxplain: Conflict detection for arbitrary constraint propaga-
tion algorithms”, IJCAI-2001 Workshop on Modeling and Solving Problems with
Constraints.

6. Jussien N and Barichard V, 2000, “The PaLM system: explanation-based con-
straint programming”, CP-2000 Workshop on Techniques for Implementing Con-
straint Programming Systems.

7. Larkin D, “Generating Random Solutions from a Constraint Satisfaction problem
with Controlled Probability”, Proceedings CP-2002.

8. Mitchell M, 1997, Machine Learning, McGraw-Hill.

9. Shannon C and Weaver W, 1949, The Mathematical Theory of Communication,
University of Ilinois Press.

12 Modulo the remark, made earlier, about hill-climbing.

30

Challenging explanations for global constraints

Guillaume Rochart!2, Narendra Jussien!, and Francois Laburthe?

! Département Informatique de I’'Ecole des Mines de Nantes
4, rue Alfred Kastler - B.P. 20722 — F-44307 Nantes Cedex 3
2 Institut de Recherche en Informatique de Nantes — Université de Nantes
2, rue de la Houssiniere - B.P. 92208 — F-44322 Nantes Cedex 3
3 Bouygues e-lab
1 av. Eugene Freyssinet — F-78061 St Quentin en Yvelines Cedex
{grochart, jussien}@emn.fr,flaburthe@bouygues.com

Abstract. This article presents the challenge of implementing explana-
tions within global constraints. After defining explanations, it introduces
what explanations for global constraints could be through the example of
the all_different constraint, then it presents the issues of their imple-
mentation and the interest of precise explanations. At last, it illustrates
these principles with the stretch and flow constraints.

1 Introduction

Numerous industrial problems can be modelled as constraint satisfaction prob-
lems: scheduling, call centres, television spots, etc. Constraint programming of-
fers high-level modelling and reusable techniques for solving such problems. In
order to provide efficient solvers and to better meet user needs, global constraints
are often used. They model complex constraints over numerous variables: gcc
[17], all.different [16] or stretch [15].

Explanation-based algorithms like dynamic backtracking [8] or its extension
mac-dbt [11] have now proven their efficiency. Explanations can also be used
for debugging purposes (from problem modelling to constraint implementation
itself) or to point out a part of the problem responsible for a contradiction.
Hence, explained implementations of global constraints must be provided to
solve real life problems. The aim of this work is to show what are the issues
of adding explanations capabilities to global constraints and that investing in
sophisticated algorithms to provide precise explanations is useful for both solving
and debugging purposes.

First, explanations are introduced along with some explanation-based algo-
rithms. Then, we show how explanations for global constraints could be com-
puted thanks to the filtering algorithms. This is done through the case study of
the all_different constraint [16]. We illustrate why such implementations are
complex and above all why it can be really useful for debugging, documenting
or solving purpose. Last, we present an application to some global constraints
in order to illustrate these principles and to present some experimentations for
the stretch constraint [15].

31

2 Explanations

Solving constraint satisfaction problems is often based upon chronological back-
tracking algorithms. The main disadvantages of these algorithms are well known:
the thrashing phenomenon due to the impossibility to remember past failure con-
ditions and to the poor relevance, in general, of getting back to the last choice
point.

2.1 Definition

To compensate thrashing, explanation-based techniques were proposed [8,10].
An explanation contains enough information to justify a decision (throwing a
contradiction, reducing a domain. ..): it is composed of constraints and choices
made during the search sufficient to justify such an inference.

Definition 1 (Explanation) The explanation of an inference X (a filtering
decision like value removal or bound modification for instance) is a subset of
original user constraints (C' C C) and instantiation constraints (choices made
during the search: dy,ds,...,dy) such that:

CANdLAN...Ndp = X
—

explanation

An explanation e; is said to be more precise than explanation ey if and only
if e C e2. The more precise is an explanation, the more useful it is.

2.2 Explanation-based algorithms

Thanks to this information about propagation, algorithms such as dynamic back-
tracking (dbt [8]) know all the instantiations that imply a contradiction, and so
can determine which instantiation should be undone (not necessarily the last
one). The instantiation order is then modified to undo this instantiation and
only this one (keeping non related inferences made in between).

A drawback of dynamic backtracking is that it does not take advantage of
propagation techniques. mac-dbt is an algorithm which allows to maintain arc-
consistency (mac [20]) within dbt. As illustrated in Figure 1, this algorithm
extends the current partial solution (by instantiating variables) as long as no
contradiction occurs. If a contradiction is raised, it is handled as described in
Figure 2: a contradiction explanations is computed and a constraint is selected
within. The incremental removal of this constraint will hopefully overcome the
contradiction. In order to avoid unnecessary loops, the negation (obtained us-
ing the opposite function) of the retracted constraint is posted. Last, all the
constraints are re-propagated if necessary to achieve a given local consistency.

This algorithm offers advantages from both filtering and repairing techniques
(see Figure 1) but it requires that all filtering decisions are explained (contrarily

32

to dynamic backtracking that only needs explanations for contradictions). More-
over, since the cancelled decisions are not always the last choice, the implemen-
tation of an explained constraint must support incremental constraint removal
that replaces backtracking (see Figure 2).

(1) begin

(2) while unassignedVars # () do

(3) v «— problem.selectVarToAssign()

(4) a « problem.selectValToAssign(v)

(5) try

(6) problem.post(v == a)

(7) problem.propagate() % Filtering
(8) catch

(9) problem.handleContradiction() % Decision repairing
(10) endtry

(11) endwhile

(12) end

Fig. 1. Generic explanation-based algorithm

(13) begin

(14) e « problem.getContradictionExplanation()

(15) if e.isempty() then

(16) problem.raiseProblemContradiction() % Over-constrained problem

(17) else

(18) ct — e.selectConstraintToRemove()

(19) try

(20) problem.remove(ct) % Incremental constraint removal

(21) e.delete(ct)

(22) problem.post(opposite(ct), e) % Contextual posting forbidding ct to be reintroduced
(23) problem.propagate() % Re-propagation

(24) catch

(25) problem.handleContradiction() % Possible recursive contradiction
(26) endtry

(27) endif

(28) end

Fig. 2. Contradiction handling for mac-dbt algorithm

2.3 Computing explanations

The most interesting explanations are those which are minimal regarding in-
clusion. Those explanations allow highly focused information about dependency
relations between constraints and variables. Junker [9] proposes the QUICKX-
PLAIN algorithm for computing minimal explanation with a non-intrusive conflict
detection solution.

Unfortunately, computing such an explanation can be exponentially costly.
We claim that a good compromise between precision and ease of computation is
to use the solver embedded knowledge to provide interesting explanations[10].

33

Indeed, constraint solvers maintain information that makes possible the fil-
tering decisions. By making that knowledge explicit, quite precise and interesting
explanations can be computed more easily.

For example, let us consider two variables v; and v whose domains are both
{1,2,3}.

— Let ¢; be a first decision constraint: ¢; : v; > 3. Let us assume that the
filtering algorithm in use is 2B-consistency. The constraint ¢; leads to the
removal of {1, 2} from the domain of v;. An explanation for the new domain
{3} of vy is thus {c1}.

— Let ¢ be a second constraint: ¢ : v9 > v1. Value 1 and value 2 of v5 have no
support in the domain of vy, and thus co leads to the removal of {1,2} from
vg. An explanation of the removal of {1,2} from ve will be: ¢1 A co because
co leads to that removal only because previous removals occurred in v; due
to c;.

3 Explanations and global constraints

Global constraints considered as high-level algorithms designed for pruning large
portions of the search space may not be, as is, well suited to provide precise expla-
nations. Indeed, a theoretical analysis of the involved algorithm is often needed
in order to provide precise explanations within a global constraint. Moreover,
algorithms may need to be designed again in order to be able to both provide
efficient propagation and efficient explanation computation. However, we show
that such a hard work is well worth it when considering the different possible
uses of explanations.

3.1 Explaining global constraint: a case study

Unlike simple constraints (such as inequalities presented in Section 2.3), ex-
plaining a global constraint may need the theoretical analysis of the algorithms
used to perform the constraint propagation along with the used data structure.
Although a simple explanation always exists (consider the explanations of the
current domain of all variables of the considered constraint), it may not be useful
(consider a problem with a single all_different posted on all the variables of
the problem!). Some more precise information may be found. Consider for exam-
ple the following situation where an all_different constraint [16] is considered
over four variables with the domain {1,2, 3,4}, and suppose that after filtering,
we obtain v; = {1,2} and ve = {1,2} as illustrated on the figure 3. We can
deduce that v3 and v4 cannot have 1 or 2 in their domains since these values will
be taken by the v; and wve variables. The explanation should only be composed
of the explanations of v; and vy domains (that is the union of the explanations
for each value removal and bound modifications). Indeed only these two domains
imply these removals.

Understanding the way a global constraint is propagated is the first step
to provide precise explanation. It may not be sufficient. Indeed, consider again

34

Fig. 3. Example of all_different constraint with four variables

the all_different constraint. The constraint can be seen as a flow problem as
illustrated on the figure 3. Then, all the strongly connected components (SCC)
are computed in the residual graph in order to know all the interchangeable
affectations. Thus, if an edge is linking two different SCC, there is no way to make
the flow go back to source SCC otherwise there would be a global SCC composed
of at least these two ones. All the edges linking two SCC will be removed, since
they cannot be used in any feasible solution to the all_ different constraint
[16].

Fig. 4. The equivalent flow and the residual graph with its strongly connected compo-
nents

The classical all_different constraint only needs to know that information
about different SCC but if we want to justify value removal, we need to be
able to explain why two nodes are in different SCC. We therefore need here an
algorithm that does not only determine the different SCC but keeps track of the
links between them. Indeed, the explanation is composed of all the edges that
could link directly or indirectly the two strongly connected components that the
edge to be removed links, as illustrated on the figure 5.

In the previous case (figure 4), an edge would be needed from the first compo-
nent to the second one to avoid the removal. So the explanation will be composed
of the explanation of the removal of 3 and 4 for the two variables A and B. That
is the intuitive explanation of the removal we could make at the beginning of
the section.

Formally, let < be an order such that SCCy < SCC, if and only if there is
a path in the residual graph from SCC; to SCC}. Then the formal explanation

35

Fig. 5. Explanation for an edge removal: at least one of the dashed lines should be
present to avoid the removal.

of a value removal will be (with ¢ the number of the SCC containing the value
u to be removed and i 4+ 1 the one containing the involved variable v):

expl(v # u) = U U U U expl(x #t)

k,SCCL<SCC; z€XNSCCy, \1,SCC;>SCCi1 teD,NSCCY

where X contains all the variables and D, is the domain of the variable x. Since
all the SCC form a partition, the complexity is obviously O(nc) where n is the
number of variable and ¢ is the maximal cardinality of the domains.

To conclude, explaining global constraint needs to understand the way this
constraint is propagated and to extend this algorithm to provide some useful
explanations.

3.2 The challenge of the implementation

Implementing an explained global constraint can be a challenge for two rea-
sons: explanation-based constraint algorithms [10] need specific incremental al-
gorithms and explained constraints need to remain efficient w.r.t. time complex-
ity.

Algorithms like dynamic backtracking [8], mac-dbt [11] and decision-repair
[12] have been proven quite efficient on structured problem. Their main fea-
ture is to replace chronological backtracking with a repair technique (see Figure
1) that reduces thrashing and allows an efficient conflict-driven exploration. In
such an algorithm, the enumeration process is considered as a dynamic problem:
enumeration constraints are dynamically added and removed (when repairing
or backtracking) during search. Therefore, such algorithms do not rely on the
backtracking process to maintain data structures and need explicit incremental
algorithms for both handling value removals (constraint propagation) and value
additions (repairing or backtracking) in the domain of the variables. This can
be tricky for specific algorithms.

Moreover, the resulting propagation algorithm need to be efficient for both
explanation computation and propagation itself. For example, in the all dif-
ferent constraint the use of the underlying data structure keeping track of the
SCC will be used for the explained version. Moreover, it can be easily proven
that for all different keeping also track of the relations between SCC can
be done without modifying the overall complexity of the propagation algorithm
leading to an efficient explained version of the constraint (even if computing the
actual explanations has a cost as we have seen if the previous section).

36

However, this is not always the case. For example, when considering schedul-
ing problems, one of the key techniques used is called immediate selection. It is
a domain reduction technique for unary resource constraints [6]. The main idea
of immediate selection is to identify a task ¢ and a set S of tasks that share a
common unary resource such that it can be proven that ¢ cannot be scheduled
before any task in set S. The lower bound for the starting time of task ¢ can be
modified to reflect that information. There are (at least) two implementations
of immediate selection:

— one [6] does not explicitly compute set S but only the adjustment that can
be made to the starting time of task ¢: it is not explanation-friendly. There
is no way of precisely explaining the adjustments.

— another one [7] uses another point of view. Its idea is to maintain a set of tasks
(prospective sets S) that fit in a given evolutive interval of time (namely task-
intervals) and to check whether a candidate task ¢ exists for adjustments.
This is a technique equally efficient to the first one but it is explanation-
friendly. Indeed, an explanation for any adjustment can be restricted to
explanations of the current domains of the tasks in set S that is explicitly
available. [12] shows the interest of such a technique for explanations.

3.3 Utility of explained global constraints

As we saw, designing explained global constraints can be a tedious task. How-
ever, we strongly believe that it is well worth it. Several usage of such efficient
constraints exist:

— user-interaction requires precise explanations in order to point out parts of
problems (set of constraints) responsible for value removal, current solu-
tions, contradictions. For instance, computing timetables for a college can
be dramatically simplified thanks to precise explanations of contradiction in
order to modify only the involved constraints. Moreover, efficiently explained
global constraint can be considered within recent debugging tools based on
explanations [14].

— explanation-based constraint programming needs precise information to pro-
vide efficient solvers. The embedded conflict-driven techniques need precise
explanations in order to directly perform the good repairs during search.

— explained propagation algorithms can act as self documentation for con-
straint solvers. Using and designing explained global constraints help un-
derstanding and diffusing the constraint technology by providing self docu-
mented tools. For example, consider scheduling problems that we mentioned
earlier, the task-interval based implementation is much more understandable
than an immediate-selection one.

4 Applications

We began to instrument various global constraints following the principles de-
scribed above. We quickly present here what we have done for two global con-
straints after introducing the palm system.

37

4.1 The palm system

palm is an explanation-based constraint solver [10] provided as a free choco
library. The main feature of palm is that it provides tools to explicitly compute,
store and retrieve explanations for every domain modification in a given problem.
But, it is also a constraint solver:

— palm is a classic constraint solver: it can be used to solve problems as if it
were choco.

— palm is a dynamic constraint solver: it handles dynamic addition and re-
traction of constraints before, during or after resolution.

— palm is an explanation-based constraint solver: it provides specific search
algorithms that make an active use of explanations (as illustrated on Figures
1, 2 in Section 2.2).

In the following, we will provide examples and experiments using the palm
system.

4.2 The stretch constraint

This constraint was proposed by [15] for assigning shifts to employees (in call
centres or for a nurse planning for instance). It allows to specify which minimal
and maximal length, each stretch of identical sequencing values may have. It
may be used for legal constraints (a nurse can not work on evening more than
five sequencing days) or preference constraints (a nurse should have at least two
days off between working stretches).

A stretch [15] is formally defined as a subsequence z;, . .. x; of variables such
that z; = ... = x; but Z(;_1) mod n # Ti and Tj # T(j41) mod n- Lhe span of the
stretch containing xy, is then defined by span(zy,) = 1+ (j —i) mod n. Let A and
A be two vectors of length m (the domain size). The constraint stretch implies
X:nk < Span(xk) < S\Ik

For the filtering algorithm of this constraint, bounds are computed to know
the minimal and the maximal span of the studied stretch. For instance, if the
span is necessarily too great, a contradiction should be thrown.

Bound computation. To know the minimal span (that is, the variables that
must be in the current stretch), the maximal beginning (8,,4.) and the minimal
ending (€5,) bounds should be computed and explained by the algorithm. In the
case of these bounds, the computation is really easy: the variables are scanned
until a non instantiated variables is reached. Then, the following explanation can
be deduced: ezpl(Bmaz < j) = Uyep;,i €2Pl(Ds,;) where Dy is the domain of y
and expl(D,) the explanation of its state. The same explanation can be deduced
for €min.-

38

Filtering explanation. Let us take an example: one of the filtering rules checks
that the span length is correct. If the stretch is too long, the following explana-
tion can then be deduced: expl(contradiction) = expl(Bmaz) U expl(€min). More
generally, filtering decisions are explained using the explanation of the computed
bounds [19].

Experimentations In order to check that using explanation does not decrease
the performance, we evaluated the performance of an explanation-based algo-
rithm: mac-dbt [11].

Several versions of the stretch constraint were implemented: a classical ver-
sion (thanks to choco) and two explained versions: one with basic explanations
(explanations of the domains of all the variables in the constraint) and one with
the proposed explanations.

10000 ¢
(ms) £
1000
100
r Choco low; bnd. (<50,000 bt) —— o
| Improved explained version ------ 10
Basic explained version -~ --- B
10 ‘ ‘ ‘ ‘ B h % @ m & W
20 30 40 50 60 70 80 920 100

Fig. 6. Comparison between the different version (CPU time and BT number) accord-
ing to the number of variables. The results for the choco version are lower bounds of
the real values: the resolution is limited to 50,000 backtracks.

To estimate the contribution of explanations for the interaction of global
constraints, we tried to make some tests with two overlapped constraints: half
of all the variables are shared between the two instances of the constraint. Tests
were made with 25 to 100 variables (each time with 20 instances to get significant
mean values) with the three versions of the constraint: the choco version, the
basic and improved explained versions. As in the original paper about stretch
[15], instantiation and value choices are randomly made to simulate a complex
problem.

The results presented in figure 6 clearly show that computation time and
number of backtracks needed to solve the problems are lower in the case of the
improved explained version than with the other versions. Indeed, in the choco
version and the basic explained version, no information is shared between the two
constraints. So the constraints work blindly and this implies a lot of unnecessary

39

backtracks. With the improved explained version, precise explanations allow to
identify quickly and efficiently a subset of variables responsible of a contradiction,
which permits a sensible improvement of the resolution.

4.3 Explaining a maximal flow

Following [2], we define a network as a directed graph G(X, A, L,U, s, t) with: L
lower bounds on the edges, U upper bounds, and s and ¢ are the source and the
sink of the network. A flow can then be defined as a function @ : X x X — N
with:

— for each edge (4,), Lij < $;; < U;; (capacity constraint),
— for each node i, 37, coming Pii = 2 outgoing Pij (flow conservation constraint).
A flow constraint (see the second section of [4]) allows to check that there exists
a flow @ in G such that ZZ ®,; is in the domain of a variable F'.

Explanation. A cut of G [2] is a subset S of X such that s € S. This implies the
existence of outgoing and incoming edges, linking S and X\S. The cut capacity
2] can be defined by: C(S,T) = >, .t40ing Uii = 2incoming Lij- Last, the min-
cut/max-flow [2] property guarantees that “the value of any flow is less than or
equal to the capacity of any cut in the network”.

This implies the following explanation for F < C(S,T) [18]:

expl(F < C(S.T)) = Uputgoing €xPLOsup(Vis)) U Ui coming €xpL(binf(Vij))

To get an explanation of the maximal flow F', the minimal cut should be
chosen, since it can be proven that the maximal flow (if it exists) equals the
minimal cut. This mechanism can be extended for other filtering inferences [18].

For instance, on figure 7, a maximal flow is provided. The cut is here basically
{1}. So the explanation of the maximal flow is composed of the explanations of
the maximal bounds on the two edges outgoing from 1. The following explanation
would be used:

expl(F < 10) = eapl(bsup(Viz)) U capl (bsup(Vis))

Computing such explanations is quite easy. Indeed a really simple algorithm
in O(nm) (with n the number of nodes and m the number of edges) can be used
to compute a minimal cut as soon as a maximal flow has been found :

— first marking all the accessible nodes from the source in the residual graph
(O(nm));
— then selecting all the edges linking a marked node to an unmarked one

(O(m)).

40

4 € [2,5]

5¢€[0,5]

5 € [0,5]

Fig. 7. Explaining a maximal flow

Application to the all different constraint The all different con-
straint can be explained with specialised explanations as proposed by [1] and
as we explained in the section 3.1. But, all different [16] and gcc (Global
Cardinality Constraint) [17] constraints are specialisation of the flow constraint.
Thus the explanations proposed for the flow constraint can be applied to these
constraints too.

— 1[0]]

--0[0]]

--- 0[0,0] (removed value)

O Strongly connected component
--- Cut

Fig. 8. A flow explanation for the all_different constraint

For instance, on the figure 8, we applied the flow explanation with the case
study of all different presented in the section 3.1 where we added a fifth
variable with only 5 in the domain and we added the 5 value in the domain
of A and B. As the figure shows, the cuts will include all the edges that link
directly or indirectly the two components (like (A, 3) for instance). But, it will
contain some more edges. First, it contains some edges where no variable are
attached (on the bottom and on the top of the graph): this is not a problem, the
algorithm do not take care of such edges. But, it contains for instance the edge
(B, 5) which is useless, since there is no outgoing edges in the component {F, 5}.

41

In this precise case, the cut will provide some explanation which is actually not
needed.

To conclude, similar explanations are found (that is edges linking two com-
ponents) but the flow explanations are a bit less precise than the one presented
in the section 3.1.

5 Discussion

We introduced in this paper how providing explanations for global constraints
filtering algorithms. But we supposed that the user only need to know which
assignments or which constraints are responsible for a contradiction. However
one could need which part of a global constraint is responsible. For instance, with
the all_different constraint, it may happen that only some of the inequalities
are responsible for the contradiction and not all the global constraint?.

Actually, this issue is only relevant for global constraints that may be decom-
posed into a conjunction of basic constraints. For semantically global constraint
as defined in [5], the proposed explanations are totally relevant since they cannot
be decomposed in sub-constraints. But for the other global constraints, it could
be useful in future works to provide precise explanations with the exact sub-
constraints responsible for each filtering decision, thanks to global constraints
decomposition like the decompositions proposed by [3].

6 Conclusion

We introduced in this article how explanations for global constraints can be
defined thanks to the use and the extension of the filtering algorithms. Then, we
summarised the main issues of these implementations: the incremental aspect of
these constraints, the need of explanation friendly algorithms, the lack of minimal
explanations or the coarse grain aspect of explanations. Precise explanations
are particularly useful for debugging, documenting and solving purpose since it
provides quite precise information about each decision. Last we illustrated these
principles through the implementation of explained versions of stretch, flow
and all_different constraints.

Explanations for global constraints open new fields. First, explanations could
be used for solver cooperation by providing precise information about a fail or
each decision taken by a solver. They could be used for documentation, analy-
sis or debugging since explanations provide quite precise information about the
working of these constraints and the solving of the problem. Last, a very interest-
ing feature would be to provide a way to explain a constraint without modifying
the constraint code, or a generic framework for explaining global constraints.

4 We would like to thank the anonymous referee who pointed this issue.

42

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Magnus Agren. Tracing and explaining the execution of clp(fd) programs in sicstus
prolog. Master’s thesis, Uppsala University, Sweden, July 2002.

. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network flows:

theory, algorithms, and applications. Prentice Hall, New York, 1993.

Nicolas Beldiceanu. Global constraints as graph properties on structured network
of elementary constaints of the same type. Technical report, SICS, 2000.

Thierry Benoist, Etienne Gaudin, and Benoit Rottembourg. Constraint Program-
ming Contribution to Benders Decomposition: A Case Study. In Principles and
Practice of Constraint Programming (CP 2002), LNCS, pages 603-617, 2002.
Christian Bessiere and Pascal Van Hentenryck. To be or not to be...a global
constraint. In Principles and Practice of Constraint Programming CP’03, 2003.
Jacques Carlier and Eric Pinson. Adjustment of heads and tails for the job-shop
problem. Furopean Journal of Operational Research, 78:146-161, 1994.

Yves Caseau and Frangois Laburthe. Improving clp scheduling with task intervals.
In P. Van Hentenryck, editor, Proc. of the 11th International Conference on Logic
Programming, ICLP’9}, pages 369-383. MIT Press, 1994.

Matthew Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Re-
search, 1:25-46, 1993.

Ulrich Junker. QUickXPLAIN: Conflict detection for arbitrary constraint propaga-
tion algorithms. In IJCAI’01 Workshop on Modelling and Solving Problems with
Constraints, 2001.

Narendra Jussien. e-constraints: explanation-based constraint programming. In
CP01 Workshop on User-Interaction in Constraint Satisfaction, Cyprus, 2001.
Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint
Programming (CP 2000), LNCS, pages 249-261, Singapore, 2000.

Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139, July 2002.

Francois Laburthe. Choco: implementing a cp kernel. In Proceedings of TRICS, a
post-conference workshop of CP 2000, Singapore, 2000.

Samir Ouis, Narendra Jussien, and Patrice Boizumault. k-relevant explanations for
constraint programming. In FLAIRS’03: Sizteenth international Florida Artificial
Intelligence Research Society conference, St. Augustine, USA, 2003.

Gilles Pesant. A filtering algorithm for the stretch constraint. In Principles and
Practice of CP (CP 2001), LNCS, pages 183-195, 2001.

Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In
AAATI 94, Twelth National Conference on Al, pages 362-367, Seattle, 1994.
Jean-Charles Régin. Generalized arc consistency for global cardinality constraint.
AAAI 1:209-215, 1996.

Guillaume Rochart and Narendra Jussien. Explanations for a flow constraint (in
French). Technical report, Ecole des Mines de Nantes and Bouygues SA, 2002.
Guillaume Rochart and Narendra Jussien. Explanations for global constraints:
instrumenting the stretch constraint. Technical report, Ecole des Mines de Nantes,
03/1/INFO, 2003.

Daniel Sabin and Eugene C. Freuder. Contradicting conventional wisdom in con-
straint satisfaction. In Principles and Practice of CP, LNCS, 1994. Second Inter-
national Workshop, PPCP’94, USA.

43

Compiling CSPs into tree-driven automata for
interactive solving

Héléne Fargier! and Marie-Catherine Vilarem?

L TRIT, Toulouse
2 LIRMM, Montpellier

Abstract. Constraint programming techniques are widely used to model
and solve decision problems and many algorithms have been developed to
solve automatically and efficiently families of CSPs; nevertheless, they
do not help solve interactive decision support problems, like product con-
figuration. In such problems, the user herself chooses the values of the
variables, and the role of the system is not to solve the CSP, but to
help the user in this task. Dynamic global consistency maintaining s
one of the most useful functionalities that should be offered by such a
CSP platform. Unfortunately, this task is intractable in the worst case.
Since interactivity requires short response times, intractability must be
circumuented some way. To this end, compilation methods have been pro-
posed that transform the original problem into a data structure allowing
a short response time. In this paper, we extend the work of [14,1] by
the use of a new structure, tree-driven automata, that take advantage of
the structural characteristics of configuration problems (decomposition of
the components into independent subcomponents). Tree-driven automata
can be far more compact than classical automata while keeping their good
properties, especially a tractable complezity for the maintenance of global
consistency.

1 Introduction

Constraint programming techniques are widely used to model and solve decision
problems and many algorithms have been developed to solve automatically and
efficiently some families of CSPs; nevertheless, they do not help solve decision
support problems that are interactive in essence. For such problems, the user is
in charge of the choice of values for the variables, and the role of the system is
not to solve the CSP, but to help the user in this task. Product configuration
[13][11] is a typical example of such problems: a configurable product is defined
by a finite set of components, options, or more generally by a set of attributes, the
values of which have to be chosen by the user. These values must satisfy a finite
set of configuration constraints that encode the feasibility of the product, the
compatibility between components, their availability, etc. A configurable product
can thus be represented by means of a CSP, the solutions of which represents
the catalog, i.e., all the feasible variants of the product.

44

When configuring a product, the user specifies her requirements by interac-
tively giving values to variables or more generally by stating some unary con-
straints that restrict the possible values of the decision variables. Now each time
a new choice is made, the domains of the variables must be pruned so as to
ensure that the values available for the further variables can lead to a feasible
product (i.e., a product satisfying all the initial configuration constraints). These
dynamical constraints can also be removed during the configuration process be-
cause they lead to a solution that is judged unacceptable by the user. Dynamic
global consistency maintaining is thus one of the most useful functionalities that
should be offered by the CSP platform.

Unfortunately, this task is intractable in the worst case [1]. Since interactivity
requires short response times, intractability must be circumvented in some way.
To this end, compilation methods have been proposed [15, 14, 1], that transform
the original problem into a data structure allowing a short response time. This
principle was already be used in different domains of Artificial Intelligence, like
planning under uncertainty [5] or automated reasoning [3] [6].

The approach of [14, 1] emphasizes the compilation of the original problem
into a finite automaton, from which much better performance can be obtained.
The construction of the automaton requires choosing carefully a total order on
the variables: otherwise, the size of the automaton, exponential in the worst case,
could be too large to be used in practice. This approach relies on the frequent
interchangeability of values in real configurable products: it can thus be described
concisely by the automaton. But, contrarily to other constraint-based approaches
to product configuration (|7] [8][10]), it does not take advantage of the following
structural characteristic: complex products are generally structured into sub-
components (more or less independent from each other) the existence of which
depends on the values given to some of the variables of the upper component.
The linear order on the variables required by the Vempaty’s automaton is not
suited at all for adding and removing sub-components.

In the present paper, we propose a new structure, tree-driven automaton,
to represent the solution set of a CSP. Shortly, it can be understood as a tree
of small linear automata, each of them corresponding to a sub-component (and
recursively). Tree driven automata are obviously a generalization of classical,
linear, automata. Importantly, they can be far more compact than classical au-
tomata while keeping their good properties, especially a tractable complexity for
the maintenance of global consistency. In order to rigorously show the interest
of our structure, we to proof that there are some CSP that necessarily lead to
an exponentially-sized linear automaton, and whereas they yield a polynomialy
sized tree-driven automaton.

In Section 2, we briefly recall how a linear automaton can represent the
set of solutions of a CSP. Section 3 then presents tree-driven automata and
Section 4 shows how a useful set of computational tasks (such as maintaining
global consistency) can be efficiently achieved on this structure. In Section 5, we
finally study how a tree-driven automaton can be more compact than a classical
automaton.

45

2 Compiling a CSP into a finite automaton [14][1]

Automata

A finite-state automaton (FA) is a directed graph the edges of which (the tran-
sitions of the automaton) are labelled by elements of a set X (the alphabet).
The nodes of the graph are called states; this graph has one initial state I and
at least one final state. It is such that any transition and any state belong to at
least one path from I to a final state.

A word m = ajasy...a, is recognized by the automaton if there exists a
path from the initial state I to a final state F' with the label m. The language
recognized by the automaton is the set of words it recognizes.

Finally, a finite automaton is said to be deterministic if and only if all the
transitions coming from a single state have different labels.

Associating FA with CSP

Let IT = (X,D,C) be a CSP. Given a permutation O = [X1, Xs,...,Xp] of X,
any solution of I = (X, D, () defines a word of length n over the alphabet D.
Hence, the set of solutions of IT defines a language over D. This language, called
the solution language of II w.r.t. O and denoted Sp can be represented by a FA.
This automaton has only one initial state I and one final state F', and is such
that the length of any path from I to F' is n.

Computing the automaton associated with a CSP

The automaton can be generated by composition operators on (small) automata
representing the constraints of C. The complexity of the computation obviously
depends on its size, which is mainly influenced by the order in which the vari-
ables of the CSP are taken into account [2].

3 Tree-driven automata

As said in the introduction the structure of configuration CSPs is close to an
hypertree (each hyper-edge corresponding to a sub-component) Moreover, the
sub-components induced by the user’s choices of values for variables are loosely
connected to the upper-components. So we wish to take better advantage of this
nearly tree structure.

3.1 Definitions

Definition 1. The quotient of a graph (Q, E) by coloring T of its nodes, is the
graph T = (Q 7, ET) defined by:

QT = {T(Q)aq € Q} = {0,1,...,71}
Er={{i,j}/3¢,d €Q s.t. 7(q) =4,7(¢') = j,{¢,¢'} € E}

46

Definition 2. A tree-driven automaton A of order n on the alphabet X is
a graph (Q, E) such that:

— there is a coloring of the vertices Q with n + 1 colors, denoted by T : each
vertex is labelled by an element of {0,1,...,n} and adjacent vertices have
different colors

— the edges are labelled by subsets of X ; this labelling is denoted by o

— the quotient (Q, E) by T, denoted by T = (Q1, ET) is a tree (T = (Q1,ET) is
called the support of A).

Definition 3. A transition of A is a pair (a,e) where e is an edge of E and
a an element of X belonging to the labelling of e (a € o(e))

Fig. 1. An example of a tree-driven automaton and its support; the bold edge defines
two transitions corresponding to the two labels b and c.

Since a chain is a tree, a classical, linear, automata is no more than a tree-
driven automata the support of which is a chain (it is enough to build a 7 that
maps every vertex of rank X; to X;)

Definition 4. A word on a support T = (Q1, ET) is a labelling w of Et which
associates to each edge of T an element of X.

A T-tree t is a labelled subgraph (Qy, B¢, ws) of A which is isomorphic
to T (i.e (Qy, Ey) is a tree, T induces a one-to-one correspondence between Q
and Q1 and between Ey and E7) and, for each edge e of E;,w;(e) € o(e).

In fact, E; and w; define a set of transitions. In the following, for sake of
simplicity, we consider a T -tree as a set of transitions.

A word w is recognized by a tree-driven automaton A with support T if
it has an associated T -tree in A , i.e. if there exists a T -treet of A such that
for each e in Ey, wi(e) = w(r(e)).

47

The language recognized by a tree-driven automaton A is the set L(A) of the
words that it Tecognizes.

Equivalent tree-driven automata : two tree-driven automata built on the
same support are equivalent if and only if they recognize the same language.

Fig. 2. An example of a word recognized by the tree-driven automaton on the left; the
bold edges of the tree-driven automaton define four 7T-tree , one of them corresponds
to the word on the right

3.2 Special cases of tree-driven automata

— Normalized tree-driven automata
Let A =(Q,E) be a tree-driven automaton with support 7 and let Q; =
{q € Q such that 7(g) = i}. It is easy to see that collapsing all the vertices of
Q; when i is a leaf of T gives an automaton equivalent to A (this operation is
called the normalization of the automaton). So, in the following, we consider
only normalized automata i.e. automata such that for each leaf ¢ of T ,
#Q; = 1.

— Trimmed tree-driven automata
A tree-driven automaton A may contain useless vertices : vertices which
do not belong to any subtree isomorphic to the support. Formally, a vertex
g€ Q; of A=(Q,E) is useless if 3j s.t. {i,j} € E7 , and there is no edge
between ¢ and a vertex of @);.
The suppression of the useless vertices (and of their incident edges) yields
an equivalent automaton and can be achieved in linear time in the size of
(Q, B).

— Deterministic tree-driven automata
It is also possible to extend the classical definition and properties of deter-
ministic automata to tree-driven automata. The key point is that the support

48

is no longer an undirected tree, but must be a directed rooted tree (so, one
consider a 7 defines a directed rooted tree) : A tree driven automata is said
to be deterministic if and only if it is normalized, it only has one initial
state (of level 0), and for any couple of transitions (x;,y1) and (x2,y2) of
the same level (7(y1) = 7(y2) and 7(y1) = 7(y2)), 1 = z2 and y; # y2 =
o((z1,y1)) N o((z2,y2)) = 0. The definition is quasi-equivalent to the one
provided for linear automata, and it can be proved that, like in the latter
case, the deterministic representation of a language is unique (up to a given
7). Any tree driven automaton can be determinized with a procedure very
close to the one used for classical automata — as in this latter case, it is
polynomial in the size of the original automaton.

3.3 Associating a tree-driven automata with a CSP

So, in order to represent the solution set of a CSP, we can choose a support such
that there is a one-to-one correspondence between the edges of the support and
the variables of the CSP. A word can then be build for each solution, and we
associate to the CSP the tree-driven automaton the langage of which is precisely
this set of words.

3.4 Associating a tree-driven automaton with a tree-structured

CSpP

When the CSP is tree-structured, a tree-driven automaton can be built which is
very close to its microstructure.

D3

o b

>~o ¢

~o a

D1=D2=D3=D4={a,b,c}

Fig. 3. A CSP II and its microstructure

49

We have noticed previously that the edges of the support are in one-to-one
correspondence with the variables of the CSP ; so we can slightly modify the
constraint graph of II in order to obtain the support : we add a new vertex
(0) and a new edge , linking 0 and another vertex 1 for instance (this vertex
is called the handle — it roots the tree). This new graph form the support of
the forthcoming automata. Then we construct A by adding a new vertex ¢g to
the micro-structure of IT which is linked to all the vertices corresponding to D;.
qo is the root of a tree. The labelling o is then obtained by making the values
(that originally pertain to the vertices of the micro structure) “slide” along the
incident edges.

For instance, Figure 3 defines a CSP II and shows its microstructure, while
Figure 2 shows the tree-driven automaton .A built by this procedure from II.

3.5 Associating a tree driven automaton with a CSP

Finding a support

The first step is to build a tree, the vertices of which correspond to the vari-
ables {1,...,n}. The second step is to add a “handle”(0) and a new edge that
links it to the tree (say for example (0,1)). We thus obtain a tree with vertices
{0,...,n}. There is a one-to-one correspondence between the edges of this tree
and the variables of the CSP, and also between the set of vertices {1,...,n}
and the variables of CSP - this defines the mapping 7 and the support of the
automaton.

Computing a tree-driven automaton

The approach is similar to the one used for classical automata. In theory, it is
possible to compute the solution set of IT = (X,D,C) , and so the set of words
which must be recognized by the automaton. This set forms a tree-driven au-
tomaton. The normalization (and other reductions operations which are beyond
the scope of this paper) of this automaton yield an exploitable tree-driven au-
tomaton. Another method,that relies on tree-driven automata composition can
also be used. We don’t address here the problem of efficiently computing the
tree-driven automaton.

The computational cost depends on the size of the tree-driven automaton and
of course on the choice of the underlying tree. The details are beyond the scope
of this paper. Nevertheless, since in configuration problems the constraint graph
is close to a tree, the choice is rather natural.

4 Maintaining global consistency

Following [1], we consider that in configuration problems, a CSP IT = (X, D, C) defines
the feasible products, and that a set of constraints H represents the current set
of user’s choices; we also assume that 7 is a set of unary constraints.

To be useful, a decision support system for such problems should at least
achieve :

50

(1) detection of inconsistency of II' = (X,D,C UH) : at any time, the system
must tell whether there is a feasible product satisfying the user’s require-
ments

(2) maintenance of global consistency : at any time, the system must discard
from the domain of available values those that cannot lead to a feasible
product, i.e. it must be able to compute the projection of the solution set of
IT' on each variable X;.

Besides, other functionalities are necessary (for instance, the computation of
nogoods in case of inconsistency), but we address here only the ones described
above.

4.1 Adding costs to the edges of A

The approach used to efficiently perform these tasks on a tree-driven automaton
is a straightforward extension of the approach presented in [1]. The principle is to
associate a cost ¢ to each transition of the automaton : for the transition (a,e),
the cost ¢({a, e)) is 1 if a corresponds to an assignment to var(e) ® forbidden by
a constraint of H, and 0 otherwise?.

Definition 5. Let A = (Q,E) be a tree-driven automaton with support T =
(Qr, ET) -

— cost(t) = Xiq eyt (e, a) is the cost of a T-tree t.
— cost({a,e)) is the cost of a better (i.e. minimal cost) T -tree which contains
(a,e)

— cost(q) with q € @Q is the cost of a best T-tree containing q

Property 1. The CSP IT' = (X, D,C UH) is consistent if and only if there is in
A a T-tree of cost 0.

Property 2. Let Px, denote the projection of the solution set S(II') on the vari-
able X;. Then, a belongs to Px, if and only if there is a transition {(a,e) in
A such that var(e) = X; and {a, e) belongs to a 7T -tree of cost 0 .

4.2 Algorithms

The tasks (1) and (2) amount to the search of some minimal 7 -tree in the tree-
driven automaton. We associate to each ¢ of @ two counters : ¢;(¢) and ¢.(q).
For any vertex i of (7 which is not a leaf, the removing of i induces two
connected components ; by convention we call the one containing the vertex 0
the left one and denote it by Qi; the other one is called the right one and is
denoted by Q.

3 For an edge e of E7 , var(e) denotes the associated variable in X
4 for sake of simplicity, we choose here to consider that all the violations have the
same cost 1 ; it is easy to extend this by associating a cost to any constraint of H.

51

Definition 6. counters associated to the vertices of A= (Q,FE)

- fOT' qc€ Qi:
* c;(q) is the minimal cost of a T-tree of the subautomaton induced by
{d €Q;,5 € QU{i}}
e c.(q) is the mim'mal cost of a T -tree of the sub-automaton induced by
{¢' € Qj,j € Q. U{i}}
— for the unique qo € Qo, ¢;(q¢) =0
— for each i € Q1 which is a leaf, Vg € Q;,¢.(q) =0

When unary constraints are added or deleted, the costs of some transitions
have to be updated; the counters defined previously can then be maintained
by propagation algorithms which are very similar to those used for classical
automata in [1]. This work can be done in time polynomial in the size of the
tree-driven automaton.

5 Space complexity

The computational cost of these algorithms depends heavily on the automaton
size — it is also the case with linear automata. Our claim is that tree-driven
automata can be far more compact than linear automata. The first justifica-
tion relies on the characteristic of our target application: configurable products
are often structured into independent sub-components the existence of which
depends on the values given to some of the variables of the upper component.
Such products can be understood as composite CSPs [8]. The linear order on
the variables required by Vempaty’s automata does not suit the compilation
of such problems: we will show in the following that even a very simple, tree
structured, CSP can lead to an exponential data structure. On the contrary,
tree-driven automata allow to compose a tree of small linear automata, each of
them corresponding to a sub-component (and recursively). Tree driven automata
are a form of "composite" automata, comparable to a compiled for of composite
CSPs. The tree automaton can indeed be syntethised dynamically, each com-
ponent being "mounted" only once its existence has been decided by a choice
of the user. So, tree-driven automata can be far more compact than classical
automata while keeping their good properties, especially a tractable complexity
for the maintenance of global consistency.

The second justification is a theoretical proof of this claim: it can be shown
that there are some structures that necessarily need to an exponential linear
automaton, while they yields a polynomialy-sized tree-driven automaton. We
prove it by showing that tree structured CSPs always admit a polynomialy-sized
tree automata, while some of them necessarily lead to an exponential linear
automata.

Formally, we consider that the size of a CSP is given by the size of its mi-
crostructure (it is true at least if the constraints are given by a list of tuples)
and we denote it by size(II).

A polynomial size representation of a CSP I by an automaton is an automa-
ton the size of which whose size is a polynomial function of size(IT).

52

Property 8. Let II be a tree-structured CSP, and let A be the associated nor-
malized tree-driven automaton constructed as in section 3.4. The size of A is
linear in size(IT)

This is trivial when considering the construction depicted in Section 3.4.

Property 4. There exists tree-structured CSPs which don’t have a polynomial
size representation by a classical (linear) deterministic automaton.

The following class of CSPs supports this property:

Definition 7. Let h,k,d be three positive integers, with k > 2,k < d—1. The
CSP II(h,k,d) = (X,D,C) is defined by:

— the constraint-graph is the complete k-ary tree with height h (see Fig. 4 for
an example with k =3 and h = 2)
Therefore, we have n = |X| = X1, k' = (KM =1)/(k-1) .

— Dy =...=D, =D with |D|=d

— each constraint relation is the relation #

Fig. 4. The constraint graph of IT(h, k,d) where h =2 and k = 3

It can be shown that, whatever the order O chosen for building a deterministic
linear automaton, it leads to an exponential data structure.

53

6 Conclusion

Solving decision support problems that are interactive in essence implies achiev-
ing efficiently some reasoning tasks (for example maintaining global consistency);
as these tasks are highly combinatorial in the general case, a possible approach is
to push the cost into an off-line pre-computation step ; [1] propose to compile the
CSP under the form of a classical automaton. Under this form, the usual reason-
ing has a complexity polynomial in the size of the automaton. It suffers of two
drawbacks: first, the size of the automaton can be very large, and finding a good
order of the variables which minimizes it relies heavily on heuristics; secondly,
the linear structure of the automaton does not really suit the decomposition to
of products into components and sub-components.

In this paper, we have introduced tree-driven automata as a new compilation
target. Tree-automata allow to take better advantage of the structure of the
CSP, need less space (in the case of tree-structured CSPs, space is linear in the
size of the microstructure), are more suited to the adjunction and removing of
subcomponents, and keep polynomial complexity for usual reasoning tasks.

In the framework of automated reasoning, compilation methods have been
proposed (see [6], which can be compared with ours (with the slight difference
that they are restricted to boolean variables). Tree driven automata do not cor-
respond exactly to any of these, but they take advantage of the same properties:
decomposability, "Read once" property, order on the variables and determinism.
This suggests to study other classes of representation, e.g. generalized tree driven
automata (which should relax the partial order to a "read once" property) or
multi-valued DNNF.

References

1. J. Amilhastre, H. Fargier, P. Marquis, Consistency restoration and explanations in
dynamic CSPs - Application to configuration. Artificial Intelligence, 135, 199-234,
2002.

2. J. Amilhastre. Représentation par automate de l’ensemble des solutions de problémes
de satisfaction de contraintes. PhD thesis, Université du Languedoc, Montpellier, 1
1999.

3. M. Cadoli and F. M. Donini, A survey on knowledge compilation, AI Communica-
tions, 10, 137-150, 1997.

4. E. Gelle and R. Weigel, ‘Interactive configuration using constraint satisfaction tech-
niques’, in Artificial Intelligence and Manufacturing Research Planning Workshop,
AAAT Technical Report FS-96-03, 37-44, (1996).

5. J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning using
decision diagrams. In Proceedings UATI’99, 279-288, 1999.

6. A. Darwiche, P. Marquis. A perspective on knowledge compilation. In IJCAI
2001,175-182.

7. Sanjay Mittal et Brian Falkenhainer. Dynamic constraint satisfaction problems. In
Proceedings of AAAI-90, pages 25-32, Boston, MA, 1990.

8. Daniel Sabin et Eugene C. Freuder. Composite constraint satisfaction. In Artificial
Intelligence and Manufacturing Research Planning Workshop, pages 153-161, 1996.

54

9. M. Sabin and E. C. Freuder, ‘Detecting and resolving inconsistency in conditional
constraint satisfaction problems’, in Proceedings of the AAAI’99 Workshop on con-
figuration, 90-94, Orlando, Florida, (1999).

10. M. Sabin and E. C. Freuder, ‘Detecting and resolving inconsistency in conditional
constraint satisfaction problems’, in Proceedings of the AAAI’99 Workshop on con-
figuration, 90-94, Orlando, Florida, (1999).

11. D. Sabin and R. Weigel, ‘Product configuration frameworks - a survey’, IEEE
Intelligent Systems and their applications, 42-49, (1998).

12. T. Soininen and E. Gelle, ‘Dynamic constraint satisfaction in configuration’, in
Proceedings of the AAAI’99 Workshop on configuration, 95-100, Orlando, Florida,
(1999).

13. M. Stumptner, ‘An overview of knowledge-based configuration’;, AI Communica-
tions, 111-125, (1997).

14. N. R. Vempaty. Solving constraint satisfaction problems using finite state au-
tomata, in Proceedings of AAAI’92, 453-458, 1992.

15. R. Weigel and Boi Faltings, ‘Compiling constraint satisfaction problems’, Artificial
Intelligence, 115, 257287, (1999).

55

Channel Theory for User-Interactions in
Constraint Satisfaction and Design

Makoto Kikuchi!, Ichiro Nagasaka?, and Mutsunori Banbara3

! Department or Computer and Systems Engineering,
Kobe University, Kobe 657-8501, Japan,
mkikuchi@kobe-u.ac. jp,

WWW home page: http://kurt.scitec.kobe-u.ac.jp/ kikuchi/
2 Faculty of Letters, Kobe University, Kobe 657-8501, Japan,
nagasaka@kobe-u.ac. jp
3 Information Science and Technology Center,

Kobe University, Kobe 657-8501, Japan,
banbara@kobe-u.ac. jp

Abstract. There are two sorts of constraint satisfaction problems. One
is abstract, like solving mathematical equations, and the other is real,
like designing an artifact satisfying requirements. We need to represents
real constraints by abstract ones when we use CSP’s in the real prob-
lems. This is not a easy task, and user-interactions are inevitable in order
to adjust the constraints and to solve the real problem properly. In this
paper, by applying a mathematical theory of information flow by Bar-
wise and Seligman called Channel Theory, we propose a formal model of
user-interactions in constraint satisfaction problems in order to analyze
the phenomena about the interactions in an abstract way, and show an
application of the model to a formal theory of design.

1 Introduction

There are many kinds of constraints satisfaction problems (CSP’s). Solving equa-
tions in mathematics is a typical problem of constraints satisfaction, and most
of famous combinatorial problems, like N-queens, are also considered as CSP’s.
They are abstract problems. Abstract CSP’s have been studied in mathemat-
ics and computer science for a long time, and now we have deep theories and
many useful algorithms about such abstract problems. There are also lots of real
CSP’s in our every day life, especially in engineering (cf. [16]). We design an
artifact, like automobiles and houses, so as to satisfy given requirements. The
requirements are regarded as constraints for the artifacts, and designing can be
regarded as an activity of solving a CSP. In fact, there are many applications
of CSP’s to problems about design. Although abstract CSP’s themselves are
important and interesting topics, we can say that abstract CSP’s are basically
tools for solving real CSP’s.

Unfortunately, applications of theory on abstract CSP’s to real CSP’s are
not easy. There are two major problems. One is the complexity of the real cases.

56

Many combinatorial problems are known to NP-complete, and it may happen
that methods for abstract CSP’s make sense only when the size of the factors
are restricted. So many factors are related to a real CSP, and it is hopeless in
many cases to apply an algorithm which is designed for abstract CSP’s. The
other is the representability of the constraints. We need to formulate the original
and real constraints in an abstract way in order to apply methods for abstract
CSP’s, but this formulation is not straight forward. The most important reason
for the difficulty is that the original constraints are closely related our conscious
or intention, which are hard to handle formally. The original and real constraints
tend to be vague, inconsistent, and wrong, and this is a crucial problem when
we consider design as real CSP’s.

User-interaction is a key notion when we consider these problems. A user
is assumed to have the user-constraints, and they are represented as system-
constraint in an abstract system. In a process of solving the real CSP, system-
constraints are to be modified and revised through user-interactions. Several
models and algorithms for user-interactions have been proposed. For example,
Freuder and O’Sullivan argued in [5] how to add new system-generated tradeoff
constraints to the original preference constraint, and O’Sullivan, Freuder, and
O’Connell discussed in [17], by using the list-then-eliminate algorithm, how to
modify the system-constraints by proposing and asking to evaluate examples to
the user. If we consider a CSP as a problem finding Roughly speaking, a CSP is
a problem of calculating or estimating the image of a function whose inputs are
constraints and whose outputs are solutions which satisfy the input constraint.
The above type of user-interaction can be seen as a composition f o g of two
functions f and ¢: f is the function of an abstract CSP, and g stands for a
translation of real constraints to abstract constraint.

In real problems, the original constraints are sometimes vague and implicit.
Even user-constraints are modified in a process of design: a user does not know
completely what she or he is desiring at the beginning. It is a new phase of user-
interactions, and we cannot consider a translation function from real constraints
to abstract constraints. This phase of user-interactions is hard to deal with, and
it is related to the essence of the problem about creativity in design. We need
new framework in order to discuss this phase of user-interactions.

The purpose of this paper is to propose a mathematical model of interac-
tions between user- and system-constraints by using Channel Theory. Channel
Theory is a mathematical theory of information flow proposed by Barwise and
Seligman [2] in 1990’s. based on philosophical discussions about information flow
by Dretske [4] and Situation Semantics, a formal semantics of natural language
introduced by Barwise and Perry [1] (cf. [3]). The two sorts of constraints inhabit
in different worlds: user-constraints live in the real, and system-constraints be-
long to abstract. In our model, we represents these two worlds as mathematical
structures which are called classifications, and user- and system-constraints are
represented and analyzed in terms of these structures.

We can regard Channel Theory as an extension of formal logic and our ar-
gument is an extension of formulation of CSP in terms of formal logic (cf. [12])

57

to user-interactions. One of the main characteristics of Channel Theory is that
we have two kinds of connection between two classifications (or two kinds of
interpretations between two theories). One is called an infomorphism, and the
other is called a channel. The difference of the two phases of user-interactions
are represented by means of these two kinds of connections.

Our model has a correspondence to a scheme for a mathematical theory about
design proposed by Yoshikawa [20] and Kakuda and Kikuchi [8]. We can say that
these theory of design is an analysis of design from the viewpoint of regarding
design activity as solving a constraint satisfaction problem. Although we have
not reached mathematically interesting discussions in this paper, it is a step to
new connections between analysis of user-interaction in constraint satisfaction,
mathematical study on engineering design, and natural languages semantics.

2 Classical Models of Constraint Satisfaction Problems

We need to formulate CSP’s mathematically in order to argue user-interaction
in CSP’s formally. There are various types of CSP’s, but there is something
common in the problems. Jeavons, Cohen and Person gave the following formal
and uniform definition of CSP’s in [6], which can be seen as a classical model of
CSP’s (cf. [19]).

Definition 1. 1. A constraint satisfaction problem is a triple (V, D,C), where:
(a) V is a set of variables,
(b) D is a domain of values,
(¢) C is a set of constraints {C1,Cy,...,Cq}. Each constraint C; € C is a
pair (s;, R;), where
i. 8; is a tuple of variables of length m;, called the constraint scope,
and
1. R; is any m;-ary relation over D, called the constraint relation.

2. A solution to a constraint satisfaction problem (V, D,C) is a function f from
the set of variables V' to the domain of values D such that for each constraint
(8iy Ri), with s; = (Vi;,Vig,...,v;,), the tuple {f(vi,), f(Viy),--, f(vi,.)) is
a member of R;.

For any sets V and D, let D be the set of all functions from V to D. We
remark that f € DV can be denoted by (f(v1), f(va),..., f(v.)) € D" when
V ={v1,v9,...,0.}.

Ezxample 1. Let V = {v1,v2} and D = R (the set of real numbers). Consider a
CSP which consists of the following three constraints:

flzvf—FUS:Q, (1)
f2 U1 = Vg, (2)
f3 v > 0. (3)

58

These constraints are represented by

Ci = <{’U1,1)2}, {(a,b) eR?: a2 + b = 2}>, (4)
Cy = ({v1, v}, {(a,b) € R? : a = b}), (5)
C3={{n},{aeR:a>0}) (6)

Let C = {Cy,C5,C3}. Then, the unique solution to a constraint satisfaction
problem (V, D,C) is (1,1) € R2.

Any constraint can be represented by a subset of DV. Assume that (V, D,C)
is a CSP (in the sense of the above definition). For each constraint C; = (s;, R;)
with s; = (v;,,viy,-..,v;,), we define a subset B; of DV by B; = {f € DV :
(f(viy), f(viy), ..., f(v;,)) € R;}. That is, B; is the set of solutions to a CSP
(V, D,{C;}) with only one constraint C;. Then, f € D" is a solution to (V, D,C)
if and only if f € By N By N---N By. Conversely, assume that we have a triple
(V, D, B) such that V and D are sets, and B = {By, Bs, ..., B,} where B; C DV
forall i =1,2,...,q. For each i = 1,2,...,q, define C; as a pair C; = (V| B;).
Let C = {C1,Cy,...,C,4}. Then, (V,D,C) is a CSP and f € DY is a solution to
(V.D,C) if and only if f € By N By N---N By. That is to say, we can represent
a constraint C; by a subset B; of DV, and any subset B; of DV can be seen
as a constraint. Therefore, the following definition of CSP’s is essentially (or
mathematically) equivalent to the above one. (It is also a variation of a formal
definition of CSP’s by Lassez and McAloon [12].)

Definition 2. 1. A constraint satisfaction problem is a triple (V, D, B), where:
(a) V is a set of variables,
(b) D is a domain of values,
(c) B is a subset of DV, whose elements are called constraints.

2. A solution to a constraint satisfaction problem (V,D,B) is an element of
BiNByN---NB,.

Example 2. Let (V, D,C) be a CSP in Example 1. The subsets By, By, B3 of DV
which correspond to C7, Cy, C3 respectively are

By = {(a,b) € R? : a® + b = 2}, (7)
By = {(a,b) € R? : a = b}, (8)
By = {(a,b) € R*:a >0} (9)

Then, (V,D,B) is a CSP in the sense of this definition for B = {B;, By, B3},
and Bl n B2 n B3 = {(1, 1)}

This definition has two problems. One is that a constraint B; does not have
information to which variables the constraint is related. In the former definition,
C; is a pair of (s;, R;), and s; denote the information to which variable the
constraint is related. This information is important when we make an actual
constraint solver. This problem can be resolved partially by defining the related
variable from B;. For any constraint B; in the latter definition of CSP, we define a

59

subset s; of V = {v1,va,...,0.} by s, = {v; €V : ¥(a1,...,a;-1,0i41,-..,0) €
D=Y(b,¢) € D*((a1,...,b,...,a,) € B; & (ai,...,¢,...,a,) € B;)} This set
s; represents the information about D,’s related variable. (Strictly speaking,
the information should be represented by a subset of DV containing s;) The
other one is that, in our definition, a solution is obtained immediately after
describing a constraint satisfaction problem and we do not need to solve the
problem anytime. This is a problem in common with the former definition, and
it is caused by defining a constraint by a subset of DY (or a relation on D). But
this problem does not matter in our case. We are not interested in how to solve
a CSP, but we are interested in how to obtain a suitable set of constraints.

3 Constraint-Revisions and User-Interactions

In this section, we shall review some phenomena of revisions of constraints via
user-interactions in CSP’s. These phenomena will be formalized and analyzed
mathematically in Section 6.

Let Sol(P) be the set of all solutions to a constraint satisfaction problem
P. In our definition, we can classify three kinds of problems on Sol(P): under
constrained, over constrained, and inappropriateness. (There is a similar analysis
of problems on design specifications in a framework of a general theory of design
by Yoshikawa in [20].)

1. Under-constrained — When we do not have constraints sufficiently, Sol(P)
becomes to big. This phenomena itself is not a problematic, but Sol(P)
tends to be inappropriate.

2. Qwer-constrained — When we have too many constraints, Sol(P) becomes
to small, or empty in the worst case. This case may have a side effects of
increasing of computational complexity in solving the problem.

3. Inappropriateness — This is the problem that an element of Sol(P) is different
from what a user desired really. This may happen in engineering design
problems in the real world in many case.

In any case, we have to add or eliminate constraints, or we have to replace a part
of the constraints. We do not have any criteria for this operation in the problem
P, so user-interactions become inevitable.

Pu and Faltings [14] classified modifications of constraints through user-
interactions into three types: Preferences (specifying explicit preference of value
or tuples within an individual constraints), Hidden Constraints (specifying con-
straints unknown), and Tradeoffs (specifying the relative importance of the con-
straints). Preferences and Hidden Constraints corresponds to Under Constrained
in our classification, and Tradeoffs corresponds to Over-constrained or Inappro-
priateness. These modifications through user-interactions can be seen as revisions
of the set B in a constraint satisfaction problem P = (V, D, B): adding, eliminat-
ing, and replacing elements of B. Preferences is replacing a constraint B € BB by
a stronger one B’ C B which consists of preferred elements. Hidden Constraints

60

is adding a new constraints to B, and Tradeoffs is replacing a constraint B € B
by a new one B’ C DV

We remark that the constraints in B in a constraint satisfaction problem
(V, D, B) is system-constraints, in the sense of the previous section. We need to
know what is the user-constraint in the real world when we try to revise the set of
system-constraints. We assume that user-constraints can be represented in terms
of another constraint satisfaction problem (V’, D’ B’). We can consider four
kinds of conditions about these two sorts of CSP’s by standing on a viewpoint
which is slightly different from the above classification.

1. Self-consistency — User- and system-constraints must be small enough to
have a solution.

2. Self-completeness — User- and system-constraints must be big enough to
specify a solution.

3. Inter-consistency — System-constraints must be small enough to consistent
with user-constraints.

4. Inter-completeness — System-constraints must be big enough to represent
sufficiently user-constraints.

Under-constrained situations contravene self- and/or inter-completeness. Be-
ing Over-constrained violates self- and/or inter-consistency. Inappropriateness
is related to inter-consistency and inter-completeness. self-consistency and com-
pleteness can be analyzed naturally by using the classical definitions of CSP’s.
In order to elicit the phenomena of inter-consistency and completeness, we shall
reformulate CSP’s within a framework of Channel Theory, and discuss the re-
lationships between user- and system-constraints in terms of information flow
between the real and the abstract worlds.

4 Channels and Information Flow

Channel Theory is a mathematical theory of information flow developed by Bar-
wise and Seligman [2], which is based on philosophical discussions about informa-
tion flow by Dretske [4] and Situation Semantics, a formal semantics of natural
language proposed by Barwise and Perry [1]. The notions of in this section in-
cluding classification, theory, local logic, infomorphism, channel are mostly due
to Barwise and Seligman [2], but some of them are different.

Definition 3. A classification is a triple A = (tok(A),typ(A), Ea) where =4
is a binary relation between two sets tok(A) and typ(A). Elements of tok(A)
and typ(A) are called tokens and types of A.

typ(A)
Ea (10)

tok(A)

61

Definition 4. A state space is a triple S = (tok(S),typ(S),stateg) where
state : tok(S) — typ(S) is a map. The event classification of a state space
S is a classification Evt(S) = (tok(S), P(typ(S)), Frvi(s)) where a Fgyi(s) a
iff a € stateg(a) and P(typ(S)) = {A: A C typ(S)} is the power set of typ(S).

A sequent on a set X is a pair (I, A) of subsets of X. (I', A) is a partition of
YifrvA=Yand I'NA=g. Wesay (I",A’) is an extension of (I", A) and
write (I, Ay < (T, A”) when I' C IV and A C A’. (typa(a),typ(A) \ typa(a))
is called the state description of a and denoted by statea(a) for a classification
A and a € tok(A).

We say a € tok(A) realizes a sequent (I', A) on typ(A) if (I, A) < statea(a),
and (I, A) is realizable in A if it is realized by a token of A. We say a satisfies
(I, A) if a does not realize (I, A). It is obvious that a satisfies (&, {«}) if and
only if a Fa « for « € typ(A).

Definition 5. A theory is a pair T = (typ(T),br) where -1 is a set of sequents
on a set typ(T). We denote I' Fp A when (I, A) is an element of Fp. We
say (I, A) is a constraint of T if ' br A. We say a theory T is regular if
and only if T satisfies the following conditions: (Weakening) if I' Fr A and
(I, A) < (I, A"Y then I ¢ A', (Partition) if I' t/7 A then there is a partition
(I'", A"y such that T t/p A'.

I' b7 A means I implies A. More precisely, it means that if all the types in I’
holds, then at least one of the types in A holds. By the conditions of Weakening
and Partition, a theory is a generalization of classical logic.

Let T and T” be theories such that typ(T) = typ(T'). We say T’ is stronger
than T (or T is weaker than T") and write T < T when every constraint of 7' is
also a constraint of T'. We define a theory TNT” and TUT” on typ(T') = typ(T”)
by defining (FTQT’) = (|_T) N (}_T’) and (FTUT’) = (|_T) U ("T/). It is easy to
show that T < T’ if and only if TNT' =T, or TUT’' = T’. For any theory T,
there exists the least regular theory T such that 7' < T”. This T” is called the
reqular closure of T and denoted by Reg(T).

Let A be a classification. For a € tok(A), define a regular theory Th(a) =
(typ(A),Fq) by b= {{I, A) : (I, A) £ statea(a)}. Then, the regular theory
Th(a) = (typ(A),Fa) generated by A is defined by Fa= [, cor(a)(Fa)-

Definition 6. Let T and T be theories. A theory interpretation f: T — 17 is
a map [: typ(T) — typ(T’) such that I' b1 A implies f[I'] Fpo f]A] for every
sequent (I'y A) on typ(T).

Let X and X’ be two sets, and f : ¥ — X’ be a map. For a theory 7" =
(X,Fr) on X', we define a theory T = (¥,br) by I' Fr A if and only if
fIT] Fo fA4], for any sequent (I, A) on X. This T is denoted by f~1(T"). Then,
f~Y(T") is regular if T” is regular, and f is an theory interpretation from f~*(7")
to T'. Conversely, for a theory T' = (X, Fr), we define a theory 7" = (X, Fr/) on
X' by I'" b A if and only if f=[I7] br f71[47], for any sequent (I, A’) on
Y. This T" is denoted by f(T'). We remark that there is no guarantee that f(T")

62

is regular even if T is regular, nor f is a theory interpretation. (There is another
definition of f(7T) in [2] which is complex but has good features.) It is easy to
show that f(f~Y(T")) < T' and T < f~1(f(T)) if T" and T satisfy Weakening,
but equalities does not hold in general.

Definition 7. An infomorpshim f : A & B is a pair f = (f", f7) of maps

I typ(A) — typ(B) and [~ : tok(B) — tok(A) such that f(b) Ea « if and
only if b =g f () for every a € typ(A) and b € tok(B).

typ(A) —— typ(B)

tok(4) «~—— tok(B)

T

5 (11)

)

For any infomorphism f: A & B, " : typ(A) — typ(B) is a theory inter-
pretation from Th(A) to Th(B). Theories can be transmitted by infomorphisms.
For theories T on typ(A) and T” on typ(B), f(T) and f*~*(T") is abbreviated
by f(T) and f~(T").

A part-whole relation is defined by an infomorphism: for any infomorphism
f: A2 B andb € tok(B), f7(b) is a part of b in the sense of f.

Definition 8. A (binary) channel is a set C = {f : A =2 C,g: B 2 C} of
infomorphisms. C' is called the core of the channel C.

c
f/’ \” (12)
A B

We can define n-ary channel as a set of infomorphisms {f; : A = C, ..., f,:
A, =C}.

An infomorpshim f : A &= B can be regarded as a channel by considering
B as a core of the channel. That is, there is a trivial channel {f : A 2 B,idp :
B = B} where idp is the identity infomorphism (an infomophism consists of
the two identity maps) on B. Similarly, an infomorpshim g : B & A can be
regarded as a channel {ida : A & A g : B & A} where ida is the identity
infomorphism on A. A channel is a generalization of an infomorphism.

In situation semantics, the meaning [D] of an expression D is defined as a
pair of situations v and s, where w is the situation of utterance of D and s is the
described situation by D. Channel is a structure for the relationships between
situations for natural language semantics.

Definition 9. A local logic is a triple L = (C,T,N) of a classification C, a
theory T, and a set of normal tokens N such that typ(T) = typ(C), N C tok(C),
and every token in N satisfies every constraint in T.

63

Let C={f: A= C,g: B= C} be achannel and £ = (C,T, N) be a local
logic, and a € tok(A), « € typ(A),b € tok(B) and § € typ(B). An information
a FEa « on A flows to another information b =g § on B if and only if there is a
token ¢ € N such that f7(¢) =a, g7(¢c) = b, and f*(a) Fr ¢°(5). In many cases,
L is chosen as L = (C, Th(C), tok(C)) which is called the local logic generated
by L.

5 Constraint Satisfaction Problems in Channel Theory

Now we shall formulate CSP’s and discuss the relationship between user- and
system-constraints within Channel Theory. These two constraints are repre-
sented on two different classifications: one is about a user, and the other is about
a system. In this section, we firstly give a new definition of CSP’s by using a
notion of classification in Channel Theory, and we formulate mathematically the
four category of self- and inter-consistency, and self- and inter-completeness, and
discuss their characteristics.

Although our new definition of CSP is rather simple, we can translate the
previous and the new definitions each other.

Definition 10. Let A = (tok(A),typ(A),Ea) be a classification.

1. A constraint satisfaction problem on A is a theory T on typ(A).
2. A solution to a constraint satisfaction problem T is a token a € tok(A) such
that a satisfies all the constraints in T.

We note that a constraint satisfaction problem is not assumed to be a regular
theory.

We shall show that the previous definition and this new definition are inter-
pretable. Let P = (V, D, B) be a CSP in the sense of the second definition such
that B = {Bj, Ba, ..., B;}. We define a classification A = (tok(A), typ(A), =a4)
by tok(A) = DV, typ(A) = {B: B C DV} (the power set of DV), and a |=a B
if and only if @ € B for all a € tok(A) and B € typ(A). We remark that
toka(B) = B for B € typ(A), and B is a subset of typ(A). Define a theory
T = (typ(A),Fr) by (Fr) = {(&,{B;}) : i = 1,2,...,q} Then, T is the cor-
responding CSP on A. Conversely, let T = (typ(A),Fr) be a CSP on A such
that (Fr) = {(I3,4;) : i = 1,2,...,q} Define V.= {v1}, D = tok(A), and
B; = {a € tok(A) : (I, 4;) £ statea(a)} for i = 1,2,...,q. Then, B; can be
regarded as a subset of DV since D is isomorphic to DV, and (V, D, B) is the
corresponding CSP in the sense of Definition 2, where B = {B1, Bs, ..., By}

The following example corresponds to a CSP in Example 1.

Example 3. Let A be a classification such that tok(A) = R?, typ(A) is the set
of equalities and inequalities in v; and ve, and, for every (ai,as,az) € R® and
f € typ(A), (a1,a2,a3) Ea f(v1,v2,vs) if and only if f(ai,as,as) is true. Then,
for equalities f1, f2 and an inequality f5 in Example 1, a theory T' = (typ(A), 1)
where (Fr) = {(&,{fi}) : i = 1,2, 3} is the corresponding CSP on A.

64

The difference between this example and previous examples is that equalities and
inequalities are used for denoting constraints, although subsets of DV (or some
other similar sets) are used for this purpose in the previous examples. Hence the
second problem that solutions of a CSP is trivial in the previous examples has
been dissolved in our definition.

6 User-Interactions in Channel Theory

In this section, we shall formulate and discuss phenomena of user-interactions
in CSP’s which are argued in Section 3.

It is straight forward to define what self-consistency and self-completeness
are. Let T be a CSP on A. Self-consistency means that all the constraints of
T can be realized by a single token in A, and self-completeness says that T is
specifying a token in A.

Definition 11. 1. We say T is self-consistent on A if there is a € tok(A) such
that T < statea (a).

2. We say T is self-complete on A if there is a € tok(A) such that T =
statea (a).

The relation between user- and system-constraints are formulated as a relation
between two classifications. let us assume we have two classifications A and B
on which user- and system-constraints are described as theories T and 7" on
typ(A) and typ(B) respectively.

‘We have mentioned in Section 1 that there are two phases in user-interactions
in CSP’s: one is that system-constraints are images user-constraints, and the
other is that user-constraints are also revised through the interactions. The
first phase of user-interactions, interaction along a map from user-constraints
to system-constraints can be represented by an infomorphism A from A to B.

A ., B (13)

That is, user-interaction is a process of estimation of the map A”. On the contrary,
a channel C = {f: A= C,g: B = C} between A and B corresponds to the
second phase of user-interactions.

c
f/’ AN (14)
A B

By introducing the notion of channel, we can argue inter-consistency and inter-
completeness in terms of theories on the type of the core C of the channel.

Definition 12. 1. We say T" is inter-consistent with T along C if f(T)Ug(T")
is self-consistent on C.
2. We say T' is inter-complete with T along C if f(T) < g(T").

65

Let us consider simple cases of channels, in which we have T in advance and
T’ is defined from T. Assume that C = B and g = idp, and define 77 = f(T).
This is a case that we know how to represents user-constraints abstractly, and
g(T") = f(T). Hence inter-completeness of T’ is satisfied automatically, and
T’ is inter-consistent with T if and only if f(T') is self-consistent. Assume that
C = A and f = ida, and define 77 = ¢g=(T'). This is a more common case
that we can understand system-constraints. In this case, g(7") = g(g~(T))
and f(T) = T. Hence inter-completeness of 77 does not hold in general since
g(g~Y(T)) may weaker than T, but T" is inter-consistent with 7" if and only if T’
is self-consistent. In these two simple cases, T is completely responsible for the
choice of T".

However, we hardly have such simple cases. There are two problems. One is
that we do not have neither f nor g usually. That is, we cannot connect simply the
two classifications A and B for the two worlds of a user and a system. These two
worlds are worlds of the reals and our consciousness. An infomorphism between
A and B represents the relationship between these two worlds, and it is a very
strong assumption that we have such an infomorphism. The other is that we
hardly have T explicitly in many cases. As mentioned earlier, we usually do not
know what we want. T” is a representation of T". It means that we can approach
to T only through 7", and we cannot assume we have T in advance.

In general cases, it is important to consider the core C of a channel C =
{f: A= C,g: B C}, which is different from A and B, and a local logic
L={(C,Tz,N¢) on the core C. T and T’ are unified on C; they are symmetric.
When we have £, we can define T and T’ by f~}(T;) and g~'(1f). In this
case, inter-consistency can be considered as self-consistency of T, on C, and
inter-completeness becomes trivial; what is more important is self-completeness
of T-. And then, the revision of T" and T” can be argued as revision of Tz. T and
T’ are synchronized, and neither of them has a priority. Solutions in A and B
for T and T" are connected by N.. That is, the translation of solutions in two
classification is given by N,. L is the structure discussing the relation between
user- and system-constraints.

From technical point of view, we should consider Reg(T') and Reg(7") instead
of T and T" themselves. It is similar to the fact that in algebraic geometry we
use the ideal I(fy, fo,..., fr) generated by a set of polynomials {f1, fa,..., fr}
instead of using the set {f1, f2,..., fr}: They have the same set of solutions,
but an ideal has mathematically good properties. A regular theory has similar
properties also. Getting Reg(T') from T is a kind of revision of T. When we
consider T' as a set of knowledge about our constraints, this revision is a form
of inference. (See [9] for some arguments on regular closure from the viewpoint
of formulation of non-deductive inferences.)

One of the most important consequence of user-interaction in constraint sat-
isfaction is not changing user-constraints 7' on A and system-constraints 7" on
B, but revisions of A and B. These revisions are acquisitions of new concepts
and objects, and which are essential for analysis of creativity of reasoning and
design.

66

7 User-Interactions in Design

In this section, we argue some theories of design in terms of user-interactions of
constraint satisfaction problems.

Design is one of the essential activities of human beings, and it is a main
theme in engineering. There are many arguments on design in each area of
engineering, but it had not been discussed design in a general form until quite
recently. Around 1970’s, several theories on design was proposed. Paul and Beitz
[13] discussed a general methodologies of design, in which how a overall function
of an artifacts are designed and realized by reducing it to sub-functions. Simon
[15] advocated a new research area of the science of artifacts and defined an
artifact as an interface between its inner and outer environment.

The common basic idea of these theories on design is that design is an activ-
ity of realizing our desire or needs, and the notion of function plays an important
role for describing our desire. Here, the existence of our desire is pre-assumed,
and design is regarded as an activity how to find or create an artifact satisfying
the desire. The desire can be seen as a kind of constraints, hence we can say that
design is (or an aspect of design is) a sort of constraint satisfaction problems.
There are lots of important and interesting studies on design by menas of CSP’s
in 1990’s (cf. [16]). We remark that to define the notion of function is a diffi-
cult philosophical problem, and it is one of the difficulties about understanding
design. (cf. [11])

Yoshikawa’s General Design Theory (GDT) [20] is one of domain indepen-
dent design theory. In GDT, design is investigated axiomatically in terms of the
relationships between the notions of entities (artifacts) and their functions and
attributes within a mathematical framework of topology. In GDT, it is assumed
that we have S be the set of all entities, and functions and attributes of entities
are represented by subsets of S. A specification for design is a set of functions
F, a solution to F is an entity a € S such that (). X. It is clear that this for-
mulation of a specification and its solution is an instance of the classical formal
definitions of constraint satisfaction problems.

It is important that a design solution is assumed to be specified by its at-
tributes in GDT. That is, a design solution a € F is indicated by setting a set
A of attributes. Then, design is formulated as an activity of finding to a set of
A of attributes to a given set F of functions such that [y 4 Y €[\xcr X We
can regard F and A as user- and system-constraints respectively. Hence, we can
see some arguments on user-interactions (in the sense of our arguments) within
GDT although it is not explicitly mentioned in GDT. This viewpoint make the
framework of GDT clear: GDT consists of two parts. One is solving a constraint
satisfaction problem (the relationship between F (or A) and elements of S), and
the other is user-interactions (the relationship between F and A). (We remark
that the former relationship is trivial in GDT by the same reason to the classical
definition of CSP’s: functions and attributes are defined as a set of entities.)

Basically, design is regarded as an activity of evaluation of a function from
specification to a solution in GDT. In this sense, GDT obeys the classical view of
user-interaction such that an interaction is a process of calculation or estimation

67

of a function. A notion of a metamodel was introduced in GDT (cf. [18]), which is
a structure for connecting functions and attributes. A metamodel was a way-stop
between two spaces in the early stage of GDT, but it becomes a notion which
corresponds to a channel in Channel Theory in the later stage. Introducing the
notion of metamodel can be considered as a step from the classical view of user-
interactions to a new one.

Kakuda reformulated the philosophy of GDT by using Channel Theory (cf.
[8]), and named his theory Abstract Design Theory (ADT). The basic idea of
ADT is that design is an activity which makes information flow between the
world of our conscious and the real world. The basic scheme of ADT is similar
to GDT, although the existence of the set S is not assumed (the assumption may
be too strong). The relationship between functions and attributes of artifacts has
been replaced by the relationship between desire and behavior of artifacts (cf.
[7]). The difference is not big mathematically, but the new locution in ADT
seems to be more familiar to the arguments on user-interactions in CSP’s.

Interaction is now widely believed as an important notion in engineering.
Kikuchi et al. [10] gave a mathematical model of interactions between human and
environments through artifacts by using Channel Theory. Modeling interactions
is a key step to understanding interactions.

8 Conclusions

We firstly analyze problems and conditions about user-interactions in constraint
satisfaction, and we gave a mathematical definition of constraint satisfaction
problems within the framework of Channel Theory, a mathematical theory of
information flow. Then, user-interaction in constraint satisfaction is formulated
as a relationship (or information flow) between two classifications, and we gave
also a formulation of the conditions about user-interactions. At last, we discuss
the relationship between our mathematical model of user-interactions and several
mathematical theory of design.

Acknowledgments

This research is partly supported by Grant-in-Aid for Scientific Research of
Japan Society for the Promotion of Science 14350210, 15700038, 15700132.

References

1. Barwise, J. and Perry, J., “Situation and Attitude”, CSLI Publications, Stanford,
1999. (Originally published by MIT Press, Cambridge, 1983.)

2. Barwise, J. and Seligman, J., “Information Flow: The Logic of Distributed Sys-
tems”, Cambridge University Press, Cambridge, 1997.

3. Devlin, K., “Logic and Information”, Cambridge University Press, Cambridge,
1991.

68

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

Dretske, F.I., “Knowledge and the Flow of Information”, MIT Press, Cam-
bridge,1981; CLSI Publications, Stanford,1999.

Freuder, E.C. and O’Sullivan, B., “Generating Tradeoffs for Constraint-Based Con-
figuration”, Proceedings of Tth International Conference on Principles and Practice
of Constraint Programming, 2001, 590-594.

Jeavons, P., Cohen, D. and Person, J., “Constraints and Universal Algebra”, An-
nals of Mathematics and Artificial Intelligence, 24, 1998, 51-67.

Kakuda, Y., “On the Direction of Flow of Information —Information Paths, Agents,
Information Channels—", Proceedings of International Workshop of Emergent Syn-
thesis '02, 2002, pp.83—-88.

Kakuda, Y. and Kikuchi, M., “Abstract Design Theory”, The Annals of the Japan
Association for Philosophy of Science, Vol. 10, No. 3, 2001, 109-125.

Kikuchi, M. and Nagasaka, 1., “On the Three Forms of Non-Deductive Inferences:
Induction, Abduction, and Design”, Proceedings of the 21st IASTED International
Conference on Applied Informatics, 2003, 357-362.

Kikuchi, M. Nagasaka, 1., Toyoda, S. and Kitamura, S., “A Mathematical Model of
Interactions in Artifact Environments”, to appear in Proceedings of SICE Annual
Conference ’03, 2003.

Kikuchi, M. and Nagasaka, I, “Situation Theoretic Analysis of Functions for a
Formal Theory of Design”, to appear in Proceedings of International Conference
of Engineering Design '03, 2003.

Lassez, J.-L. and McAloon, K., “A Constraint Sequent Calculus”, Constraint Logic
Programming: Selected Research, F. Benhamou and A. Colmerauer (eds.), MIT
Press, 1993, 33-43.

Pahl, G. and Beitz, W., “Engineering Design - A Systematic Approach (2nd ed.)”,
Springer-Verlag, London, 1996.

Pu, P. and Faltings, B., “Effective Interaction Principles for User-Involved Con-
straint Problem Solving”, 2nd International Workshop on User-Interaction in Con-
straint Satisfaction, the 8th International Conference on Principles and Practice
of Constraint Programming, 2002.

Simon, H.A., “The Sciences of Artificial (3rd ed.)”, MIT Press, Cambridge, 1996.
O’Sullivan, B., “Constraint Aided Conceptual Design”, Engineering Research Se-
ries 9, Professional Engineering Publishing, London, 2001.

O’Sullivan, B., Freuder, E.C. and O’Connell, S., “Interactive Constraint Acquisi-
tion”, 1st Workshop on User-Interaction in Constraint Satisfaction, the 7th Inter-
national Conference on Principles and Practice of Constraint Programming, 2001.
Tomiyama, T., Kiriyama, T., Takeda, H., Xue, D. and Yoshikawa, H., “Metamodel:
a key to intelligent CAD systems”, Research in Engineering Design, 1, 1981, 19-34.
Tsang, E., “Foundations of Constraint Satisfaction”, Academic Press, London,
1993.

Yoshikawa, H., “General Design Theory and a CAD system”, Man-Machine Com-
munication in CAD/CAM, Sata T. and Warman E. (eds.), North-Holland, Ams-
terdam, 1981, pp.35-58.

69

CSPs at Work — Relevance of Interaction
Modules to Deploy Applications *

Amedeo Cesta, Gabriella Cortellessa, Angelo Oddi and Nicola Policella

Planning & Scheduling Team
Institute for Cognitive Science and Technology
Viale K. Marx 15, I-00137 Rome, Italy
{cestalcorte|oddilpolicella}@ip.rm.cnr.it
http://pst.ip.rm.cnr.it

Abstract. This paper describes an innovative application of AI technol-
ogy in the area of space mission planning. A system called MEXAR has
been developed to synthesize spacecraft operational commands for the
memory dumping problem of the ESA mission called MARS EXPRESS.
The approach implemented in MEXAR is centered on constraint satisfac-
tion techniques enhanced with flexible user interaction modalities. This
paper describes the effort in developing a complete application that mod-
els and solves a problem, and also offers functionalities to help users in
interacting with different aspects of the problem. An elaborate interac-
tive environment has been designed and integrated into the system, that
helps mission planners to analyze the current problem and take schedul-
ing decisions as result of an interactive process enhanced by different
and sophisticated facilities. The paper surveys the design principles un-
derlying the whole project and shows the leading role of the interactive
environment in the development of end-to-end applications.

1 Introduction

MaRS EXPRESS is a space probe launched by the European Space Agency (ESA)
on June 2, 2003 that will be orbiting around Mars starting from the beginning of
2004 for two years. Like all space missions, this program generates challenging
problems for the AI planning and scheduling community. Mission planning is
a term that defines a complex set of activities aimed at deciding the “day by
day” tasks on a spacecraft and at figuring out if spacecraft safety is maintained
and mission goals are met on a continuous base. Supporting a complete mission
planning problem is a quite challenging goal involving several sub-activities.
One of such sub-activities, the dumping of the on-board memories to the ground
station is the topic of a study which the authors have conducted for MARS
EXPRESS.

A space system continuously produces a large amount of data which derives
from the activities of its payloads (e.g. on-board scientific programs) and from

* This work describes results obtained in the framework of a research study conducted
for the European Space Agency (ESA-ESOC) under contract No.14709/00/D/IM.

70

on-board device monitoring and verification tasks (the so called housekeeping
data). All these data, usually referred to as telemetry, are to be transferred to
Earth during downlink connections. MARS EXPRESS is endowed with a single
pointing system, thus during regular operations, it will either point to Mars and
perform payload operations or point to Earth and transmit data through the
downlink channel. As a consequence on-board data are first stored on the Solid
State Mass Memory (SSMM) then transferred to Earth during temporal visi-
bility windows. In Fig. 1 a sketchy view of the components on MARS EXPRESS
that are relevant for this problem is presented. An effective management of on-
board memory and a good policy for downlinking its data are very important
for a successful operation of the spacecraft. The authors’ study has addressed
the problem of automatically generating downlink commands for on-board mem-
ory dumping. They have formalized the problem as the MEX-MDP (the MARS
ExPRESS Memory Dumping Problem), defined a set of algorithms solving this
problem, and implemented an interactive system, called MEXAR, which allows
human planners to continuously model new MEX-MDP instances, solve them,
and inspect a number of the solution’s features.

The approach described herein is centered on the formalization of the prob-
lem as a CSP (Constraint Satisfaction Problem) and on integrating a basic CSP
representation with a module endowed with multi-strategy solvers and a second
module devoted to interaction with human users. This paper gives an overview
of this experience and in particular aims at demonstrating the leading role of
an effective interactive environment in the development of complete applications
containing Al technology. The module responsible for the interaction with the
user should guarantee a friendly and comprehensible representation of the prob-
lem, the problem solving process and the solutions provided, especially in those
cases in which the automated system is devoted to support a user in solving
complex problem. It should allow a user to verify the correctness of the results,
the possibility to express her own preferences and give her a supporting envi-
ronment with different problem solving abilities, while preserving her decisional
authority.

The reminder of the paper is organized as follows. Section 2 describes how the
MEX-MDP has been formalized, Section 3 introduces a general view of the CSP
software architecture, Sections 4-5 describe the components of the architecture
responsible for the modeling and the solution of the problem, whereas Section
6 shows in detail the interactive facilities designed with the aim of inserting the
human planner in the loop. Some comments end the paper.

2 The Mars Express Memory Dumping Problem

The basic ontology to describe the MEX-MDP domain focuses on two classes
of objects: resources and activities. Resources represent subsystems able to give
services, and activities model tasks to be executed on such resources. In addition,
a set of comstraints refines the relationships between the two types of objects.
Three types of resources are modeled:

71

SSMM Packet Stores

Priority Scheme

,,, ™
DMS /
- o ™
vel TFG Real-Time m

vCo \TM

Fig. 1. On-board telemetry flow. The different telemetry (TM) data produced on board
are stored on the on-board memory (SSMM) subdivided into packet stores. Memory
stores are then downloaded in different dumps that transfer data to the ground.

STORE

—

— Packet Stores. The on-board memory is subdivided into a set of separated
packet stores pk; which cannot exchange data among each other. Each one
has a fixed capacity ¢; and can be assigned a priority value to model different
relevance of their data content. Each packet store, which can be seen as
a fixed size file, is managed cyclically: when it is full the older data are
overwritten. Within a packet store, data are segmented in data packets.

— On-Board Payloads. An on-board payload can be considered as a finite state
machine in which each state has a different behavior in generating observa-
tion data (i.e., in each possible state the payload has a different generation
data rate).

— Communication Channels. These resources are characterized by a set of sep-
arated communication windows identifying intervals of time for downlink.
Each temporal window has a constant data rate.

Activities describe how resources are used. Each activity a; has an associated
execution time interval, which is identified by its start-time s(a;) and end-time
e(a;). Each activity is characterized by a particular set of resource requirements
and constraints. MEX-MDP includes three types of activities:

— Payload Operations. A payload operation por; corresponds to a scientific ob-
servation. Each por; generates a certain amount of data which is decomposed
into different store operations according to the MARS EXPRESS operational
modalities, and distributed over the set of available packet stores.

— Continuous Data Streams. The particular case of the continuous data stream
operations cds; is such that s(cds;) = 0 and e(cds;) = +oo (where +oo is
internally represented as a finite temporal horizon). This activity represents
a continuous generation of data with a fixed average data rate (it is used
to model housekeeping). Indeed we represent a cds as a periodic sequence
of store operations. In particular, given cds with a flat rate r, we define a

72

period T¢gs, such that, for each instant of time ¢; = j-Tegs (j =1,2,...) an
activity st;; stores an amount of data equal to r - Tqs.

— Memory Dumps. A memory dump operation md; transfers a set of data from
a packet store to a transfer device (Transfer Frame Generator, the TFG of
Fig. 1). Those activities represent the transmission of the data through the
communication channel.

Given a set of memory store operations from both the scientific observations
POR = {pory,pors,...,por,} and the housekeeping CDS = {cdsy, cdsa, ..., cdsy}
a solution is a set of dumping operations S = {md;, mds,...,mds} such that
the following constraints are satisfied:

— The whole set of on board data are “available” on ground within a temporal
horizon H = [0, H].

— Each dump operation starts after the generation of the corresponding data.
For each packet store, the data are moved through the communication chan-
nel according to a FIFO policy.

— Each dump md; has an assigned time window w; = (r;, s;,€;), such that
the dumping rate is r; and the constraint s; < s(md;) < e(md;) < e; holds.
Dump operations cannot reciprocally overlap.

— For each packet store pk; and for each instant ¢ within the considered tem-
poral horizon, the amount of stored data has to be below or equal to its
capacity ¢; (no overwriting is allowed).

The solutions should satisfy a quality measure. According to requirements from
ESA personnel a high quality plan delivers all the stored data as soon as possible
according to a definite policy or objective function. To build an effective objective
function for this problem the key factor is:

— the turnover time of a payload operation por;: tt(por;) = del(por;) — e(por;),
where del(por;) is the delivery time of por; and e(por;) is the end time of
the payload operation on board;

An objective function which considers this item is the mean a-weighted turnover
time MTT, of a solution S:

MTT.(S) = % > a tt(pory) (1)

Given an instance of a MEX-MDP, an optimal solution with respect to a weight
a is a solution S which minimizes the objective function MTT,(S). The weight
«a can be used to take into account two additional factors: the data priority
and the generated data volume. In this paper, we use the Mean Turnover Time
(MTT) with ; =1, i =1..n. 1.

! For a more detailed description of the problem see [6] where it is also shown how
the optimization problem for MEX-MDP is NP-hard

73

3 A Software Architecture for a CSP Representation

In our previous work we have developed a software framework for constraint-
based scheduling called O-OscAR [3]. This framework has spawned a prelimi-
nary prototype of MEXAR which has been used to deepen our comprehension
of different aspects of the problem. A new CSP approach to the problem was
then synthesized and an optimized version of MEXAR was developed in Java
and delivered to the ESA. It is worth noting that MEXAR was developed using
O-0OsCAR’s same architectural approach, even if specific subcomponents were
re-implemented. The general architecture we are referring to is composed of four
modules which, as shown in Fig. 2, implement a complete CSP approach to
problem solving;:

Real World

Constraint-Based
Domain Modeling

| S

[Constraint

Data-Base
Problem
Solving

Fig. 2. Components of a CSP architecture

Constraint-Based Domain Modeling. This module models the real domain,
captures the dynamic rules according to which the domain evolves and es-
tablishes a representation of the problem.

Constraint Data Base. The key part of a CSP architecture is the Constraint
Data Base (CDB), a module all the others rely on. It provides data structures
for representing the domain, the problem, the solution and its management
as a set of constraints.

Problem Solving. This module is responsible for implementing the solution
algorithms. In a planning and scheduling domain, we are not necessarily
concerned with optimization problems, and approximations of the optimum
solution are also acceptable. A solutions is often the result of an iterative
process: an initial schedule is found, problems are identified, constraints are
relaxed and changes are made on the solution. The Problem Solver captures
this iterative process endowing the user with multiple algorithms he or she
can choose among.

74

User Interaction. This module directly interacts with the user, and allows
him or her to take part in the process of finding a solution by providing
advanced problem solving functionalities. Along with the information which
is fed back to the user, the interactive components deliver variable levels of
control which range from strategy selection to iterative solution optimization.

This is a general and abstract picture of the approach to the problem. Indeed
this structure underscores the different aspects involved in a complete approach
and significantly impacted the subdivision of work during system development.
It is worth noting that the first two modules are strictly interconnected, and will
be described together in the following Section. They are separated in the figure
to remark the existence of a basic “core” data structure, the constraint-data
base, which is responsible for the integration of the other three functionalities.

4 A Constraint-Based Model for MEX-MDP

A CSP instance involves a set of variables X = {z1,22,...,2,} in which each
element has its own domain D;, and their possible combinations are defined by
a set of constraints C = {C1,Cs,...,Cp} st. C; € Dy x Dy X +-+ X Do A
solution consists of assigning to each variable one of its possible values s.t. all
the constraints are satisfied. A CSP representation of a problem should focus
on its important features. In the case of MEX-MDP, we selected the following
characteristics: (1) the temporal horizon H = [0, H], (2) the store operations
that are characterized by their start time ¢ and their amount of data d, (3) the
temporal windows in which no communication may occur, (4) the finite capacity
¢ of each memory bank, (5) the FIFO behavior of the memory banks.

Considering the first three items we split the temporal horizon H in different
contiguous temporal windows according to significant events: store operations
and change of transmission rate. The idea is to create a new window for each
significant event on the timeline. This partitioning allows us to consider a tem-
poral interval w; in which store operations do not happen (except for its upper
bound) and the data rate is constant. Furthermore, the packet stores’ behavior
allows us to perform an important simplification. In fact, it is possible to con-
sider both the data in input and those in output to/from the memory as flows
of data, neglecting the information about which operations those data refer to
(such information can be rebuilt with a straightforward post-processing step).
Thus, the decision variables are defined according to the set of windows w; and
to the different packet stores. In particular we consider as decision variables 6;;,
the amount of data dumped from the packet store pk; within the window w;.
According to the partition in separate windows we introduce also: (a) d;;, the
amount of data stored in pk; at t;, (b) l;;, the available capacity of pk; at t,,
(c) b;, the maximal dumping capacity within the window wj;. All these items
represent the input of the problem.

A fundamental constraint captures the fact that for each window w; the
difference between the amount of generated data and the amount of dumped

75

data cannot exceed l;;, the maximal imposed level in the window (overwriting).
Additionally, the dumped data cannot exceed the generated data (overdumping).
We define the following inequalities as conservative constraints.

J J

S di =Y b <1

k=0 k=1 . :

i1 ; i=1...n,7=0...m (2)
dik—z%c >0

k=0 k=1

A second class of constraints considers the dumping capacity imposed by the
communication channel. The following inequalities, called downlink constraints,
state that for each window w; it is not possible to dump more data than the
available capacity b;.

0<> 6;<b; j=1...m (3)
i=1

The formalization of the problem as a CSP allows for the synthesis of propagation
rules which examine the existing search state to find implied commitments.
Though, in general, it is not possible to remove all inconsistent values through
propagation rules, they considerably speed up the solving procedures. In MEX-
MDP two basic results allows the generation of propagation rules on the basis of
the conservative and downlink constraints. In [6] a detailed description of these
propagation rules is shown.

5 Problem Solving

A detailed description of the problem solving techniques is given in [6] where
also experimental evaluations are given, here we summarize the main results.
To solve a MEX-MDP represented as described in the previous section we have
developed a two-stage approach:

Data Dump Level. We first figure out an assignment for the set of decision
variables d;; such that the constraints from MEX-MDP, see (2) and (3), are
satisfied.

Packetization Level. The second stage is a constructive step: starting from
the solution of the CSP derived at the first stage, the single data dumps
within each of the windows w; are synthesized (that is, each d;; of the pre-
vious phase is translated into a set of dump activities).

MEXAR is endowed with a multi-strategy solver implemented on the basic black-
board represented by the Constraint Data Base. In particular, we have two algo-
rithms, a greedy and a randomized algorithm, which compute new solutions for a
MEX-MDP. A third, tabu search algorithm is used to look for local optimizations

76

on a current solution obtained by the first two approaches. The Greedy Algo-
rithm simply consists in assigning a value to each decision variable according
to a heuristic. The variables are selected considering the windows in increasing
temporal order. Two different solving priority rules are implemented: (a) CFF
(Closest to Fill First) selects the packet store with the highest percentage of
data volume. (b) HPF (Highest Priority First) selects the packet store with the
highest priority. In case a subset of packet stores has the same priority, the
packet store with the smallest store as outcome data is chosen. The Random-
ized Algorithm implements a basic random search [5] that turns out to be quite
effective in this domain. This method iteratively performs a random sampling
of the search space until some termination criteria is met. In our approach we
select the variable in a random way, then the maximal possible value is assigned,
considering: (1) the data contained in the packet store, (2) the amount of data
already planned for dumping and (3) the dump capacity of the window. Both
greedy and randomized algorithms are aided by the propagation rules. As usual
in CSP, they allow to avoid inconsistent allocation and to speed up the search.
The Tabu Search implements an instance of this well-known local search proce-
dure for this domain. A specialized move tries to improve the objective function
MTT;(S) performing exchanges on data quantities between pairs of windows
w;. The current tabu is very basic, and further studies are under way to refine
its effectiveness.

6 Designing a User Interaction for MEXAR

The idea we have pursued in the development of a support tool for the MEX-MbDP
is to endow a human planner with an advanced and helpful tool able to support
and enhance his/her solving capabilities. Such a support tool should enable the
user to more easily inspect a problem, analyze its features and find satisfactory
solutions through step by step procedures, while guaranteeing continuous control
over the problem solving process. It should indeed guarantee an easy interaction
protocol, providing friendly representations of the problem, the solutions and all
the entities of the domain, while hiding the underlying complexity so that the
user can concentrate on higher level decision tasks. Figure 3 shows how these
ideas have been actually implemented in MEXAR. A user is part of the real world
and MEXAR endows him or her with an additional “lens” to analyze the world
through the tool. To obtain this the CSP solving system —represented by the
right box— is coupled with an Interaction Module —left box.

Different levels of interaction. The MEXAR Interaction Module has been
designed subdividing the interaction capabilities in two layers. This is to provide
different levels of participation in the solving process. A first layer allows the
user to get acquainted with the problem and its features, optionally compiling
an initial solution. Once the human planner has a deeper knowledge of the
problem, he/she can access the second interaction layer trying to contribute with
his/her expertise and judgment to the problem solving. This mechanism makes

77

Interaction Module

i Greedy()
“ Automated RandomAlg()

Solver Tabu()

T 1
Constraint O\o’:’/o/‘o

Data-Base

T

Real World m

Fig. 3. The “human in the loop” schema

it possible to choose between two modes of operation: to completely entrust the
system with the task of finding a solution or to participate more interactively in
the problem solving process.

The different facilities are grouped together in two different graphic environ-
ments, the Problem Analyzer and the Solution Explorer shown in Fig. 4, where
additional squares and text have been inserted to underscore the meaning of
subparts of the layouts. The following subsections give further details on the
interaction functionalities.

6.1 The Problem Analyzer

The Problem Analyzer contains two groups of functionalities, one for problem
editing and refining and a second for problem solving. The interaction layout is
based on the idea of “transparency” of all the different components of the rep-
resentation of an MEX-MDP. This transparency follows what we call the “glass
box principle”: it enables the user to visually control the temporal behavior of
the domain variables that are modeled. Figure 4(a) shows the basic idea used
for visualizing a MEX-MDP problem and its solution. MEXAR provides differ-
ent representations of the problem features allowing a user to choose which one
focusing on. In particular a textual representation of the problem (left box in
Figure 4(a)) provides a description very close to the one the human mission plan-
ner is used to deal with. It provides the PORs list in textual form, specifying
all the related information. This representation is nevertheless linked and syn-
chronized to an alternative one based on a graphic representation of the input
activities (PORs) of the problem and representing their distribution on the pay-
loads timelines (right box). For each payload a different timeline is shown where
each POR is represented by a colored rectangle labeled with a natural number
and starting from its start time; the used capacity of the packet-stores is also

78

Problem Static Features Domain Model Timelines Solution Features

(& oo 2

Solution Tree
i

€
L

I
&

@

i

=

2]

)
£

(a) Problem Analyzer (b) Solution Explorer

Fig. 4. User interaction in MEXAR

provided, that contains a graphic view of the temporal function representing the
volume of stored data and the packet store capacity. The first representation of
the problem presents information in more details and is very close to the files an
tables the mission planner is used to manage, while the graphic representation
is more compact and provide a more intuitive and high level vision. In designing
these two different representations we tried to provide the user with the possi-
bility to personalize the interaction by choosing her own interaction modality
and express her preferences.

Analyzing the solution MEXAR is endowed with a number of interactive
functionalities to inspect single aspects of the solution. Such services have been
build to help understanding better an amount of information that is compacted
to guarantee intuitiveness of the representation. We are talking about ability of
zooming, temporal synchronization, etc. There are two different way of repre-
senting a solution. The first one is the graphic representation over the downlink
channel which provides a general and qualitative vision of the dump activities,
the second one is a more detailed representation that is a solution table.

The solution table is a data structure that reconstructs all the details con-
cerning the solution of the current problem. It presents information in more
details and is very close to the files an tables the mission planner is used to
manage, while the graphic representation is more compact and provide a more
intuitive and high level vision. An example is shown in Figure 5(a). Using the
table is possible to check for example (a) how the data from a single POR are
segmented in different dump operations, (b) how the data return time has been
generated, etc. In general it could be also possible to directly generate the dump
commands from the lines of the table. In fact the whole table can be saved as a
separate file and manipulated by different programs. We have additionally used

79

the table to validate the results produced by the problem solver using different
algorithms. It is also possible to go further in the integration of this window with
the visual features of the PA layout. Another feature of the Problem Analyzer is
the possibility to evaluate a solution according to some metrics. This possibility
allows the user to estimate easily the quality of a solution with rispect to some
choosen parameters. In fact, a graphic evaluation has been added to obtain an
immediate level of evaluation on the current solution. When calling the com-
mand from the menu a dialogue window allows to choose one or more evaluation
functions (e.g. Turnover Time, Data Weighted Turnover Time, etc).

e

@

il

=

]

)
-

| e o] i [R T = o e

(a) showing tabular data on the so- (b) showing evaluation parameters
lution

Fig. 5. Macro tools for analyzing the solution

Figure 5(b) shows an example. The x axis represents the PORs according to
their increasing ID number, while the y axis represent the turn-over time .

Refining a problem incrementally. The current release of MEXAR integrates
functionalities of problem refinement. The broad idea is to suggest a modality of
work in which the tool is inserted in a continuous loop with the user that uses it
to test different alternatives. Figure 3 suggests an hypothetical “Solve-Inspect-
Revise” cycle in which the MEXAR tool and the user are integrated. After the
solution of the current problem, the user reasons on the obtained result and can
modify the problem behind, save the changes and start a new solution cycle.
The pursued idea allows the user to decide changes to the current problem
by, for example, deleting some activities (e.g., if it is not necessary or has a lower
priority and the problem is over constrained). The automated tool, built on top
of a CSP representation, dynamically updates the changes. In the real situa-
tions, in fact, a certain degree of negotiation must be guaranteed. Both the CSP
representation and the interactive approach to the problem solving promotes a

80

certain level of negotiation, often necessary in space missions. Before showing
examples of use of this service, it is worth noting that we have currently imple-
mented such a functionality starting from a basic problem and working on it by
deleting activities. This functionality can be easily extended allowing incremen-
tal modifications in any direction (allowing also addition of activities) because
this is fully supported by the background CSP representation. An example of
problem refinement is shown in Figure 6.

NIAIARNTAI I AT AT

[FEas)

(a) before (b) after

Fig. 6. Exploring different problem formulations

The human observes the available scenario in 6(a) for a given problem. He goes
through the POR table and, according to his expertise, follows a criteria to
remove some of the activities from the problem deselecting them. Then these
choices are transferred on the graphical representation of the problem and the
user can see if the changes have been effective on the packet stores, and can
also directly ask for a solution of the same problem. Two different modalities for
saving such a new problem are provided: (a) it is possible to save the problem
including the deleted activities, so that later on they can be reinserted; (b) or
it is possible to define a completely new problem composed only by the selected
activities. The idea is one of allowing a trial-and-error refinement of a problem
that can be useful when deciding what POR activities actually plan for executed
plan.

The choice of the user in very important but the tool is acting as an intelli-
gent blackboard that shows updated information. This schema can be furtherly
enriched and represents a potential line for future developments.

6.2 The Solution Explorer

Once the human planner has a deeper knowledge of the problem and all the
aspects involved in, she can start a deeper level of interaction with the system

81

trying to contribute with her expertise and judgment to the problem solving.
In this way it is possible to choose either if completely entrust the system with
the task of finding a solution or to participate more interactively in the problem
solving process. As we said before the Problem Solver allows a user to apply
different solving methods to the same problem (greedy solver, randomized algo-
rithm, local search, each with different possible tuning parameters). In addition
specific functionalities allow the user to save different solutions for the same
problem and to guide a search for improvements of the current best result ap-
plying different optimization algorithms. The idea behind the Solution Explorer
(see Fig. 4(b)) is that an expert user could try to participate more deeply in the
problem solving process. A user might generate an initial solution, save it, try
to improve it by local search, save the results, try to improve it by local search
with different tuning parameters and so on. This procedure can be repeated
for different starting points, resulting in the generation of different paths in the
search space.

The Solution Explorer is essentially built on top of a repository of solutions.
It contains three panes: (a) a table containing a distinct saved solution on each
line and the information on how it has been generated (with greedy, randomized
algorithm or tabu search) and the average evaluation parameters for that solution
(left box in Fig. 4(b)); (b) a representation of the set of solution trees that are
generated for that problem. This is to show the relation among solutions and to
keep the user under control of the names of the generated solutions and their
starting points (right box in Fig. 4(b)); a graphic window where it is possible
to evaluate and compare multiple solutions among them according to different
parameters (in the bottom of Fig. 4(b)). Looking at the solutions tree and using
both the evaluation capability and his or her own experience the user can visit
the different saved solution series both to create new ones and, to choose the one
which is most fit for execution.

The current interface still does not completely abstract away the technicality
of the algorithms from users. Further work is needed to fill the gap between the
reasoning abilities of the user and the automated solver. Nevertheless, a step
has been made to fill this gap by giving the user a supporting environment with
different problem solving abilities while preserving the user’s decisional authority.

7 The System at Work

MEXAR has been delivered to ESA-ESOC in May 2002 and is currently available
to mission planners. Users’ reactions have been quite positive. We highlight in
particular a real interest in the idea of using an automated tool that performs
boring and repetitive task on their behalf which preserves the user’s control on
the flow of actions and the possibility to choose the final solution supported by
the potentialities of the automated tool. In addition, the users’ interest in the use
of intelligent techniques for shortening the time needed to solve complex mission
tasks is quite interesting. MEXAR’s functionalities for solution revision suggest a
modality of work with a loop (user, automated support), which is currently under

82

further investigation. In particular, the Solution Explorer provides a concept
of human guided search (see also different approaches like [2]), which can be
potentially very useful in all those applications where the combinatorics of the
problems at hand are very high and the integration of competencies could be
of great help in the search for a solution. Additionally, we are considering the
addition of explanation functionalities to the system in order to increase users
awareness of the problem solving cycle.

8 Conclusions

This paper has introduced MEXAR, a complete software system grounded on Al
techniques that solves a quite relevant sub-problem in space mission planning.
The paper is focused on describing the general principles that are underlying
the architectural development of MEXAR, on technical work we have done on
the CSP representation of the basic problem and on the interactive services that
allow to develop an end-to-end solution for the human mission planners.

The flexibility of the CSP representation has turned out to be very useful.
The declarative problem representation has allowed to realize different solvers
but also to integrate effective interaction modalities. It is worth emphasizing
the key role of the interactive environment in the development of end-to-end
application. In fact, in the system development process, an equal subdivision
of the working effort between problem solving and user interaction has been
needed.

This second module turned out to be of great importance in space applica-
tions dedicated to mission ground segments where the experience of the users
should be taken constantly into account and integrated in the solving process.
In this area the synthesis of mixed-initiative problem solvers is playing an in-
creasingly important role in deployed applications (see [1] for another example).

Acknowledgements

This work could not have been possible without the support at ESA-ESOC of
both the project officer Fabienne Delhaise and the MARS EXPRESS mission plan-
ners Michel Denis, Pattam Jayaraman, Alan Moorhouse and Erhard Rabenau.

References

[1] M. Ai-Chang, J. Bresina, L. Charest, A. Jonsson, J. Hsu, B. Kanefsky, P. Maldague,
P. Morris, K. Rajan, and J. Yglesias. MAPGEN: Mixed Initiative Planning and
Scheduling for the Mars 03 MER Mission. In Proceedings Seventh Int. Symposium
on Artificial Intelligence, Robotics and Automation in Space (i-Sairas-03), Nara,
Japan, May, 2001.

[2] D. Anderson, E. Anderson, N.B. Lesh, J.W. Marks, B. Mirtich, D. Ratajczack, and
K. Ryall. Human-Guided Simple Search. In Proceedings of the National Conference
on Artificial Intelligence (AAAI 2000), 2000.

83

8]

(4]

A. Cesta, G. Cortellessa, A. Oddi, N. Policella, and A. Susi. A Constraint-Based
Architecture for Flexible Support to Activity Scheduling. In Proceedings of Italian
Conference of Artificial Intelligence, AI*IA 01, 2001.

A. Cesta, A. Oddi, G. Cortellessa, and N. Policella. Automating the Generation
of Spacecraft Downlink Operations in MARS EXPRESS: Analysis, Algorithms and
an Interactive Solution Aid. Technical Report MEXAR-TR~02-10 (Project Final
Report), ISTC-CNR [PST], Italian National Research Council, July 2002.

S. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

A. Oddi, N. Policella, A. Cesta, and G. Cortellessa. Generating High Quality
Schedules for Spacecraft Memory Downlink Problem. In Principles and Practice
of Constraint Programming, 9" International Conference, CP 2003, Lecture Notes
in Computer Science. Springer, 2003.

84

User-Involved Tradeoff Analysis in Configuration Tasks

Pearl Pu, Boi Faltings, and Pratyush Kumar

Swiss Federal Institute of Technology
'"Human Computer Interaction Group
*Artificial Intelligence Laboratory
CH-1015 Lausanne, Switzerland
{pearl.pu, pratyush.kumar, boi.faltings} @epfl.ch

Abstract. We describe configuration systems using constraint problem solving
formalisms where feasible products are computed by constraint problem solvers. A
feasible product is a configuration of constituent components that violates none of the
configuration constraints and meets users’ preferences as much as possible. To help users
find desirable products, a system must possess and understand users’ preference model as
well as value functions. A constraint-based multi-attribute optimization problem (MOP)
assigns utility functions to the set of feasible configurable products so that optimal ones
stand out. Due to the incompleteness and uncertainties of user’s preference models,
optimal solutions are difficult to compute in practical settings if systems do not constantly
interact with users and refine user’s preference models. While building four user-involved
MOPs, we have accumulated a set of interaction principles that optimize user and system
collaboration while computing optimal solutions. In particular, we will concentrate here
on our approaches and solutions to address tradeoff tasks in interactive MOPS.

1 Introduction

To perform complex tasks, such as searching the web for suitable products or
services, planning a trip, or scheduling resources, people increasingly rely on
computerized configuration systems to find outcomes that best satisfy their needs and
preferences. However, preferences and desires get into conflicts and choosing the best
product is a decision problem, or more specifically a tradeoff problem. Many
automated decision support systems cannot satisfactorily help users make tradeoffs
without a fully specified value function. On the other hand, a fully specified value
function for all decision outcomes is difficult to establish for the following reasons:

e Users’ preference models are incomplete. Therefore, it is hard to state value
functions for preferences that do not exist.

e Users’ beliefs about desirability are ephemeral and uncertain. As we studied our
users in choosing vacation packages, we observed that they often start with a high
value function on low-cost deals. However, as they discovered features that they
found more important to them than price, they would change the initial value
function.

85

Therefore, non-classical cases of tradeoff analysis are a fundamental problem of
growing importance, especially if humans are becoming increasingly involved in the
decision process. We investigate how to give maximum information support to users
and enable them to make a happy choice. We are therefore concerned with the
following questions:

* What are the types of non-classical tradeoffs tasks (task analysis and taxonomy)?

e What information do users need when they perform these tradeoff tasks (need
assessments)?

¢ How to design interfaces that optimally present and explain this information to
users?

¢ When there is too much information to present, how to structure the information?

We have built four user-involved configuration systems. During this process, we
have found some answers to the above-mentioned questions. We have identified and
accumulated a set of interaction principles that aim at augmenting and optimizing user
and system collaboration while computing desirable outcomes and making tradeoffs.
We have tested them with formative user studies throughout the implementation
cycles.

2 Related Works

Previous work in the area of user preference elicitation and tradeoff analysis in a
configuration tasks have generally followed two main approaches, based on the
classical and modern decision theory. The classical theory deals with the idea of
formulating a perfect model of users’ preference utility function. Given a perfect
utility function, the classical theory can accurately predict final configuration of a
configurable item. Classical decision theory [Keeney] treats tradeoff problems under
the assumption that a machine is able to help a human to externalize a value structure
and use it to evaluate decision outcomes. A popular method to elicit such value
function is to ask users to choose a set of outcomes and infer the model from their
choices. This process can be lengthy and cognitively demanding.

Behavioral decision theory (Payne et al 1993, Carenini and Poole 2002), on the
other hand, is very concerned with decision makers’ behavior. Many years of studies
have pointed out the adaptive and constructive nature of human decision making.
Although individuals clearly aim at maximizing the accuracy of their decisions; they
are often willing to tradeoff accuracy to reduce cognitive effort. The following key
properties of a decision maker’s behavior are fundamental validations to our
hypotheses: 1) stating preferences is a process rather than a one-time enumeration of
preferences that do not change over time; 2) user involved preference construction is
likely to be more effective than using default or implicit models if a user is to
understand and accept the solution outcomes (Carenini and Poole 2002); and finally
3) decision makers, when facing an unfamiliar task, are quite opportunistic in
choosing their strategies by reassessing metagoals, and are likely to benefit from a

86

flexibility to choose between fundamental and means objectives (see also Keeney
1992).

Current research in the field has widely established the fact that consumer decision
behavior is largely adaptive in nature. A consumer, in most scenarios, does not have a
perfect formulation of his utility function, and it is during the decision process that
hidden preferences come up to the fore front. These hidden preferences affect the
decision process, as a result the decision maker in a sense adapts himself to the
decision making process. The decision task and decision environment have a
considerable effect on the adaptive decision making process.

Several decision support systems have taken a similar approach, such as FindMe
(Burke et al 1997), ATA (Linden et al 1997), and Apt Decision (Shearin and
Lieberman 2001). All of them are concerned with decision support for the search of
multi-attribute products. FindMe promotes assisted browsing, relying domain
knowledge in the process, and aims at reducing complexities in the multitude of
product dimensions and data sources for users. Tradeoff analyses and tweaking (vs.
example critiquing) are two main components from their system that are similar to
ours. However, we investigate a precise concept for the minimal critiquing context in
which tradeoff can effectively happen, while their tradeoff component is mainly used
for explanation, and tweaking for adjusting values. Apt Decision uses learning
techniques to synthesize a user’s preference model by observing their critique of
apartment features. Its main objective is profiling and predicting what a user wants in
apartment searches. Adaptive decision making in AptDecision uses examples to elicit
hidden preferences of users regarding apartments. User profiling is done through the
process of example critiquing. Users decide features important to them by browsing
through the examples to discover new features of interest and revising their
preference model subsequently.

Linden et al (1997) described a preference elicitation method using travel planning
as its example domain. Initially only few user preferences need to be expressed. The
ATA system (automated travel assistant) uses a constraint solver to obtain several
optimal solutions. Five of them are shown to the user, three optimal ones in addition
to two extreme solutions (least expensive and shortest flying time). User preferences
are modeled as soft constraints in the CSP formalism. A candidate critiquing agent
(CCA), similar to our example critiquing, constantly observes user’s modification to
the expressed preference, and refines the elicited model in order to improve solution
accuracy.

We have developed similar techniques for a range of applications rather than the
travel domain alone, such as conceptual design, COMIND (Pu and Lalanne 1996,
2000, 2002), resource scheduling, ICARUS (Pu and Melissargos 1997), travel
planning, SmartClient Travel (Pu & Faltings 2000, Torrens et al 2002), and vacation
package finder, VacationPlanner (Jurca and Pu 2001). ATA displays only five
solutions, which is not diverse enough to guarantee the inclusion of the most optimal
solutions, especially when the current user deviates from the standard one (see
Faltings, Torrens and Pu, the same issue). Furthermore, by not showing near optimal
solutions, users are discouraged from opportunistic and creative discovery of
outcomes. Using compact visualization methods, we are able to effectively display up
to thirty solutions in SmartClient Travel, and more in other systems. Finally, we are
more concerned with interaction design principles that can guide users to state hidden

87

preferences, revise ill-defined ones, and focus on fundamental objectives. This is only
possible by investigating user issues in a number of application domains.

Several recent works use constraint satisfaction techniques to automate the process
of decision making. They also employ an interactive style to elicit preferences.
Freuder et al (2000) introduced Exemplification CSPs by using an interactive version
of the MAC algorithm to elicit user’s value assignments to network parameters.
O’Sullivan et al (2001) described machine learning techniques to help users formulate
new constraints. The process involves asking users to provide acceptable solutions
(positive examples) from which the system attempts to generalize the constraints
exemplified. Freuder and O’Sullivan proposed to model tradeoffs as additional
constraints in CSP-based configuration systems. The main goal of their work is to
propose appropriate tradeoffs automatically. The conclusion is that arc-consistency
based tradeoff proposals are sufficient for finding optimal tradeoffs. The assumption
is, however, that users have strong preferences. That is, the issues of discovering
hidden preferences and treating uncertainties in users’ beliefs of their desires are
ignored for the moment. The idea of system assisted tradeoffs can be made even more
powerful with concept of hidden preference elicitation. Users often are not aware of
all the attributes of the configuration problem that they are solving, and when these
attributes are revealed to them in a step by step process, they formulate new
preferences and change their existing preferences to reflect the new information. In
ways, our work and theirs can be considered as two parts of the same system. The
work described here allows users to perform tradeoff while discovering their hidden
preferences and value functions. According to business negotiation theories [Pruitt
1981, Unit 1999 and Luo et al 2003], this process must be done extensively before the
actual negotiation itself. Likewise in tradeoff, exploration and discovery are important
before tradeoff itself. On the other hand, if a user repeatedly performs similar tradeoff
tasks, we can use the techniques suggested by Freuder and O’Sullivan to automate
this process. When the user finds a generalization not acceptable, then a negative
example can be inferred to refine the version space of the constraint being acquired.
Thus, we hypothesize that even thought it is easier to assist a user already having
strong preferences [Freuder and O’Sullivan], the process of hidden preference
elicitation should make the task as simple for naive users, who have relatively less
formulated preferences.

Bowen (2001) provides a formal notion of interactive CSP, motivated by the
introduction of additional constraints so that only a single solution is generated. A
specialization CSP is a set of these constraints. We can see adding hidden constraints
as a form of specialization CSP. We intend to incorporate these approaches and
extend our category of principles. However, we must first validate them with user
studies as we did with our own approaches.

3 Defining Configuration Tasks Using CSP

We use constraint problem solving (CSP formulation) techniques as an underlying
reasoning engine for our decision support systems. This is largely due to the natural
modeling of multiple attribute products and solution search within the CSP
framework. A constraint satisfaction problem (CSP), which underlies the decision

88

generation process, is characterized by a set of n variables Xj,..., X, that can take
values in associated discrete domains D,,..,D,, and a set of m constraints C1,..,Cm,
which we assume to be either unary (one variable) or binary (two variables), and
which define the tuple that are allowed for the variable or pair of variables. Besides
integrity constraints that can never be violated, a CSP may also include soft
constraints. These are functions that map any potential value assignment into a
numerical value that indicates the preference that this value or value combination
carries. Solving a constraint satisfaction problem means finding one, several or all
combinations of complete value assignments such that all integrity constraints are
satisfied. When soft constraints are present, it also involves finding optimally
preferred assignments.

We are concerned with a definition of attributes, criteria, preferences, and
constraints from the user/system interaction point of view. A feature or component
attribute is the aspect of a product (or solution) for which users would like to express
preferences. A component attribute is a physical aspect of a product (e.g., the screen
size of a PC), while a feature attribute is an abstract concept for a product such as the
assimilability of a product (easy, hard). Optimization criteria are those attributes used
for the evaluation of decision alternatives, and can be a function. For example, the
total flying time of a trip is the sum of all of the flying segments plus the transfer time
at intermediate airports. We can then state a criterion for the trip. For example, it
should not take longer than x number of hours.

A preference is a statement about a desired condition on an attribute or a criterion.

For example, “I would like to leave Geneva after 10am” is a user preference. Most
user preferences are stated, although some can be inferred, such as those used in
collaborative filtering. User’s preferences can be also inferred from demographical
analysis, default logic, and case-based reasoning (Ha and Haddawy 1998). For
example, knowing that a traveler is booking a business trip, we can infer that his most
important criterion is to be at destination on time. In this paper, we focus on user
stated preferences only.
A constraint is a statement about a condition whose violation will lead to user’s task
failure. Being in Hamburg at 2pm for a business meeting is a constraint if that
meeting cannot be pushed back. If the user fails to find a flight to satisfy that
constraint, he will not be able to achieve his main objective. In most of our systems,
user constraints are modeled as hard preference to achieve a uniform treatment of
constraints and preferences. Besides user specified constraints, our system also deals
with integrity constraints, those conditions that must be satisfied in the configuration
process. For example, integrity constraints would state that there must be at least 30
minutes for changing flights within Europe, and 60 minutes for international ones.
Integrity constraints are part of domain knowledge, and are elicited from domain
experts during the construction of the system.

All of these variables are uniformly known as decision parameters, since they effect
how users make decisions. We distinguish incomplete (or hidden) decision parameters
from ill-specified ones. Ill-specified parameters give rise to conflicting solutions,
assuming that attributes are not independent. An ill-specified parameter can emerge
when users are too concerned with means objectives rather than fundamental
objectives (Keeney 1992). For example, a user immediately restricting himself to the
choice of minivans will not be able to explore station wagon possibilities. If his

89

fundamental objective is to have enough baggage space for his family, then the
minivan preference is an ill-specified one.

4 Taxonomy of Tradeoff Tasks

Before presenting the taxonomy for tradeoff tasks (TOT), we describe some results
from interviewing users and studying how they perform tradeoff tasks in conceptual
design, select vacation packages and plan a trip. This process, called task analysis,
must precede the design and implementation of any interactive system. Task analysis
also includes needs assessment, which analyze users’ information needs and
functional requirements. The result of task analysis is a task model describing the
structure and component breakdowns of the tasks being studied.

We participated in a product design course on conceptual design and design tradeoffs.
We interviewed and worked with professors who taught conceptual design, as well as
practicing designs of mechanical systems. A number of students from that course then
became involved in the interface design of a conceptual design system, COMIND.
Such participatory design is a way to bring functional and information requirements
directly to the interaction design.

For the travel planning domain, we interviewed students, staff, and secretaries at
various times in order to establish a task model. In addition, we surveyed 10
commercial on-line flight reservation systems (Jurca 2000). The task model only
differs slightly from the one obtained in the conceptual design domain. We will,
however, combine them into one reference model.

4.1 Tradeoff Task taxonomy
From the task analysis, we have identified five types of tradeoff tasks:

1. Tradeoff when desires are in conflict (value tradeoff) — users have specified a set of
preference values which cannot be satisfied at the same time. Tradeoff, that is the
revision of certain preference values, is necessary to obtain feasible configurations.

2. Tradeoff when users are uncertain about value functions (utility tradeoff) — while
doing tradeoff and especially when users can visualize the set of decision
outcomes, they change the importance attached to a certain criteria. In vacation
planning especially, user will often relax the price preference in order to keep
vacation options in exotic places. This is a form of the first type of tradeoff except
users are manipulating the value function rather than the individual assigned
values. That is, if a user is repeatedly relaxing the price preference, we may be able
to infer that his preference for destination is stronger than that for price. Modeling
value functions is very close to modeling users. We must do this with extreme care
in order to keep users in control.

3. Tradeoff when a decision maker is undecided (outcome tradeoff) — users are
ambivalent about outcomes of a decision process. In this case, we observed that
users are likely to elicit additional preferences so that some outcomes stand out
more.

90

4. Tradeoff at the constraint level (constraint tradeoff) — when one or a set of
constraints give rise to zero solutions or very few solutions, diagnosing the
problem at the value assignment level is inefficient. Rather, relaxing the constraints
or introduce additional values will help. Which constraints to relax, or whether to
relax constraints or introduce values, are some of the tradeoff tasks a user faces.

5. Tradeoff between model accuracy and decision effort (accuracy vs. effort tradeoff)
— users often prefer accepting a decision outcome and deal with the consequences,
rather than improving the preference model with great effort (see Luce 1998).
While we do not deal with emotional aspect of decision making and decision
justifiability, we must respect users’ cognitive ceiling and design our interactive
tradeoff systems respectively.

Accuracy and effort tradeoff depicts how much patience a user has to be engaged in
doing the task, and serves as cognitive limit to all the other tradeoff tasks. Value
tradeoffs are local adjustment of values. When the number of tradeoff value exceeds a
threshold (unknown parameter), users can no longer keep track of the value
dependencies. They will adopt the strategies of doing tradeoffs at the solution level.
Revising value functions while users are searching products requires learning users’
preferences from his behavior. This can be seen as a super class of tradeoff activities
from the value tradeoff. Constraint tradeoff is a special case and will not be treated
here.

5 Preference Revision — Value Tradeoff

Not only preferences change, preferences should change if we believe that we are
adaptive decision makers. Value tradeoff requires revising the original stated
preferences for one or more tradeoff variables in order to find feasible compromises.
Consider someone looking for a vacation package in Mexico in December. He prefers
to explore wildlife in Mexico rather than sun bathing on the beaches. His budget is
around $1000. He has not considered kayaking so far. Table 1 shows several packages
in the catalog, which match the destination Mexico. Taking into account the
preferences on budget and vacation features, there is definitely a tradeoff to make:
pay almost 10 times more and spend twice as much time to explore wildlife for one
vacation package, or pay less and stay at the beach. Alternatively, the user can choose
the kayaking package which matches neither the budget nor the feature. But in order
to find these deals, the user cannot prematurely state the budget preference.

Table 1. Different vacation packages for Mexico in December

Vacation in Mexico in 3 days 6 days | 7 days
December, prefer wildlife | $142 - $332 | $2590 | $1290
beach wildlife | kayaking

91

5.1 Exploring Search Spaces by Value Tradeoff

Suppose a configuration system elicits users’ preferences in a particular order. If these
preferences will eventually lead to conflicts, the discovery of this conflict depends on
the order. In the vacation example, if the price is set to $2000 in the beginning, the
wildlife deal will not be shown. In other words, the user is never informed of the
possibility in which by paying a bit more, he is able to get his dream vacation. To
overcome this problem, we have used the dynamic query technique (Shneiderman)
and implemented an exploratory tool that enables users to discover his needs and
preferences by informing him of all relevant decisions.

Fig. 1 is an interface of VacationPlanner (Jurca and Pu 2001). All attributes of a
vacation package (destination, date, max price, max duration, youngest accepted age,
and etc.) are displayed on the left-side panel. Users express preferences on these
attributes by clicking on the desired check boxes or moving sliders into the right
positions. The system will display the packages matching selected preferences. When
a user states $2000 preference on price, for example, he sees immediately that the
wildlife deal is no longer available because that feature is no longer selectable (grayed
out). At this point, he can decide whether wildlife is a more fundamental objective, or

his budget.
B s E
Clear criteria All | Compare | W.'d. #

3000 12 (] Thereares corr ing to your pr
2500 1
2000
1500 7
1000
500 3

acationType Mexico,3 days,142 §

[[] Beach&Sea

[[] waterActivities L

lAccomodation B

[Hotel [pension Mexico,T days,1280 §

[[] camping

\Find packages containing ALL

the seiected criteria

iActivities

[l sailing [_| rafting [biking

[scuba [l kayaking [cuttural

[surfing [widiie [tennis

[boating [hiking [fishing |

Wmenities

[1pool [=]

|Ja\/aApple|WmdDw

Fig. 1. Putting a low price for a vacation in Mexico will exclude the possibility of exploring wildlife
(change the screen shot)

5.2 Partial Satisfaction and Example Critiquing

Displaying the whole set of flight combinations between two is often impossible, and
is also not desirable. Making tradeoffs in this case is intertwined with the search

92

process. That is, rather than making a tradeoff with current solutions, the user would
post a preference in order to see near-by solutions for tradeoff purposes. Suppose |
only see the beach and kayaking deals and I would like to find a vacation to explore
wildlife. I click on beach to choose another alternative: wildlife. Even though the
solution with wildlife violates my earlier budget preference, it is still desirable for the
system to show that package. Again, by doing so, the system informs the user of an
important decision. Highlighting the fact that the price preference has been violated is
even more informative for our decision makers as shown in Table 2.

Table 2. Combining search with tradeoffs

destination | duration price feature
Mexico = 3days =~ | $332 = | beach v
Mexico 6 days $2590 Wildlife

We have implemented this tradeoff feature in SmartClient- and Isy-Travel, our
configuration system for travel planning. Users can freely pose preferences, some of
them being inconsistent. A partial satisfaction CSP algorithm based on soft
constraints [Torrens et al] is used to compute near-best solutions where preferences
over certain attributes have been violated. An explanation mechanism is used to
highlight dependent attributes and their respective assigned values. Users can choose
to keep the proposed solution, or retract inconsistent preferences.

In Figure 2, a user has stated a preference on both departure and arrival time for
segment 1. He usually prefers to fly out of Geneva after 8:00 am, but for this trip he
has to be at Hamburg before 11 am. The flight shown in red (the highlighted lines)
violates the first preference, but satisfies the second. The violated attributed has been
highlighted. Another solution (not highlighted) shows that leaving after 8:00 am will
get him to Hamburg after 12 am. At this point, he must decide whether he will leave
earlier, or he pushes back the meeting time.

93

& Isy-travel o []
Itinerary Selection Reservation
Map rences Overview

== Put in basket
Segment: [GYA-HAM] [HAM- G Total price (USD): 616~ = (Business flight] 616 -

From Geneva Ma Frankfut To Hamburg ~ From Hamburg To Genewa
12 oet TEmin stop 12 0et 12 out 1z 0ct

i
0845 03050020 1020 1730 1a10 N ,
LH 3763 LH 20 LH 6474

Segment 1:departure time should be after 05:00 and armival time should be befors 11:00
Segment 2:

Java Appiet Window

Fig. 2. Conflict values can be revised via tradeoff analysis show decision context

5.3 Quantitative and Non-linear Functions

Some tradeoff functions are highly quantitative. If the aspect ratio is almost constant,
then the underlying tradeoff function is predictable, such as the case of using one
dollar to buy 3 donuts, and 3 dollars to buy 9 donuts. When one dollar buys 3 donuts,
but three dollars buy 12 donuts, it is harder to predict how many dollars it would take
to buy 15 donuts, or how many donuts one would get by spending 5 dollars. Such
scenarios require means to forward and backward propagate value changes for the
dependent variables in tradeoff scenarios, so as to facilitate decision task.

In the case of travel planning, the departure time and arrival time of a segment (a
trip consists of multi-segments if it involves one or more intermediate airports) are
almost linear. In this case, the tradeoff analysis can be supported via a visual interface
called the parallel coordinates, as shown in Figure 3. If a user desires a late departure,
a late arrival is expected. If a user wants to arrive before a certain time, the parallel
coordinates show the feasible departure times (back propagation). By setting ranges
on the range sliders (vertical bars), a user can learn about tradeoff value dependencies
and then make informed decisions.

94

M. SmartClient ravel planning system Hi=E
Define guery | Flights ‘ Qvervigw ‘ Preferences | Selected flights ‘
t Dep airport Dep date Deptime Int sirport Int sirport At fime Arr date Arr airport Fri
s |
{ L000 QNDNE L Nona 000
CLgan 500 F'Zur\c ' 500 [22 0et
cigeo Francizco r‘
| M N J000 |
o fFK) [A Geneva
1500 F
Angeles Atlama ,
gan L2000 Atlanta '-m-nm =123 0ct
(84C) Joge (8JC) . Gincinnal
incinnai (cve)
= (CYG) — -
K 2
Reftesh guery =»>
Departure Artival
Carrier Number Aircraft Airport Date Time Airport Date Time Stops Price
Swissair 933 Geneva 13 Oct 14:30 Zurich 130ct 1515 0 MAD‘
Swigsalr 108 Zuich 13 0ct) 16:20) San Francigen | 13 0ct 1810 0
Bwissair 109 Ban Francisco 22 Oct 21:20) Zurich 230t 17:20 0
Swissair 940 Zurich 23 0ct 18:10] Geneva 230ct 168:55 0
Keep
|SmanC\ient fravel planning system
E|Unswgned Java AppletWindow

Fig. 3. Value tradeoff in parallel coordinates
For value tradeoff, we propose the following interaction principles:

. Use exploratory tools to help users discover their preferences. Following studies
from decision behavior theories, users want to discover their preferences, rather
than being modeled as a system. Exploratory tool is the key to building
configuration systems that box the products, not the user.

. Combine search with tradeoff. While searching for similar solutions of a
configuration, users like to post preferences in the solutions themselves. When
preferences are in conflict, partial satisfaction can effectively inform users of
meaningful tradeoff problems.

. Visual feedback: Since some preference values do not have an obvious relationship
with decision outcomes, an immediate feedback of results is important and allows
users to correctly access how to proceed with the incremental process of decision
making.

5.4 Tradeoff Context and Minimal Context

In most cases, it is effective to use an entire example solution as a critiquing context,
because it accommodates all attributes and it is easy to implement. There are two
situations for which showing an entire solution is not ideal: 1) when a solution
contains too much detail to show, and 2) attributes influencing decision objectives are
not explicit in the example solution. For the first situation, business trips for example
may well contain more than the usual outbound and inbound segments. Flying from
Geneva to San Francisco with a visit to Denver for a couple of days is a three-

95

segment trip. In the second situation, choosing a PC feature, such as advanced rather
than (rudimentary, basic, high volume), entails to a certain configuration of PC
components. When displaying a solution to users, the feature attributes do not
become explicit in the example solutions.

We define the dependent attribute cluster to be a set of dependent attributes whose
values influence each other in the decision process. Such a cluster is the minimal
critiquing context. If a decision problem entails a number of such clusters, we should
allow users to critique them one at a time for an effective management of display
complexity and cognitive load. As an example, we can have several critiquing
contexts in the travel domain:

¢ cabin class, price
¢ departure time, arrival time, airline, intermediate airport for the outbound
¢ departure time, arrival time, airline, intermediate airport for the inbound

This is because the choice of cabin class influences price and vice-versa. Departure
time, on the other hand, influences the arrival time, the choice of airlines, and the
intermediate airport (if they are available). Given a CSP based decision system, it is
possible to detect such clusters either by examining the network structure, inferring
these cluster structure from solutions (not trivial), or performing domain knowledge
engineering.

In practice however, attributes tend to be related in a complex dependency
structure. In the above example, airline can be an attribute in the first group as well if
we assume that airlines offer very different fares. If they are strictly modeled as
dependent, then the three clusters will join and the minimal critiquing context
becomes again the entire solution, thus possibly too complex for the multi-segment
trips. A possible solution is to perform conditional preference elicitation i.e. after a
user has stated a preference on airline, other attributes become independent and form
clusters (see conditional preferences in Boutilier et al 1997). However, this forces
users to state preferences in a particular order.

1. Show minimal context: If attributes form smaller dependent clusters, it is more
optimal to use each cluster as the minimal critiquing context. This reduces the
cognitive and display complexities for users.

2. Show feature attributes in critiquing context: If preferences were elicited on
feature attributes, then the critiquing context should be enlarged to accommodate
them as well.

6 Solution Tradeoffs — Eliciting Additional Preferences

Many decision problems involve selecting a single outcome (a vacation package, a
trip, a spouse), although other decision problems can afford several choices (a range
of values, a set of values). When several criteria compete to argue for the desirability
of a single solution, a decision maker is unable to choose. This ambivalence causes
many decision makers to seek additional preferences to justify their final choices,

96

although another equally known strategy is to discover additional constraints to
eliminate choices.

Consider the case of selecting apartments whose current features include their size
and their price. Figure 4 shows the available apartments and how they rank in the
tradeoff space. Suppose users are unable to decide among the apartments lying on the
Pareto curve (those nodes labeled black). Upon examining the apartments, a user
discovered that one apartment is especially close to public transportation, which saves
20-30 minutes of commute for him every day. Even though it is rather small, he takes
this apartment because it is cheaper than the biggest apartment and saves time. This
example shows that discovering additional preferences will help a user choose good
candidates in tradeoffs.

large
A

\ | Closest to metro |

cheas

Fig. 4. Apartments in the tradeoff space on price and size, where three of them are Pareto optimal solutions.

In traditional decision theories, the notion of Pareto optimality is very important. A
Pareto optimal solution is superior to all other solutions in at least in one criteria
dimension. The solution set is divided into Pareto optimal solutions and dominated
ones. Most researchers advocate displaying only Pareto optimal solutions. However,
the above example shows that via exploration and discovery, a new criterion can push
dominated solutions to the Pareto surface. The key for interface design is therefore to
show solution details as well as how solutions present themselves in the tradeoff
space. This maximizes the exploration and discovery needed to help the undecided
decision makers.

We now show several implementations of tradeoff spaces in 2D, 3D,
multidimensional and discrete cases. We will then discuss their effectiveness.
Figure 5 is a 2D tradeoff space for selecting flights where the x-axis is the total flying
time and y-axis the overall preference satisfaction score (the higher the score the
better a solution). These axes can be changed to other values, such as the total cost,
and the departure and arrival times of the flights. Consider a user who wants to leave
at 8am from Geneva airport. The only flights available from search leave either at
6:20am or 12am. Even though 6:20am is closer to 8am, getting there would require

97

driving since trains do not operate yet that early. Since parking a car is really costly
for a two-week vacation, this user may choose the 12am flight.

CITI e |
I s |

Fig. 5. 2D Tradeoff space for selecting flights; x-axis is the total flying time and y-axis the general
preference satisfaction score.

i xD-view i _loi x|
File View Data Help
© Bk = sty] &
Fs
price
power
peogeoti 04
autonomy
reliability Description
Woiture de ville
guarantee
I wiight 0.43
volume price 017
consumption power0.19
) autonomy 0.77
L2 reliahility 0.02
safe guarantee 0.83
volume 0.51
consumption 0.79
life 0.82
safe 045
v

Fig. 6. 3D tradeoff space for a car configurator

Figure 6 shows a three dimensional tradeoff space. All of the criteria for tradeoff are
displayed on the left panel. A user can select any three and view the results in the
display. This 3D visualization supports rotation, navigation, and zooming. Although it
is fun to use the 3D viewer, the advanced features such as navigation may frustrate a
novice user. It is also more difficult to compare solutions when they are too close to
together.

98

Fig. 7. Multidimensional tradeoff spaces

When the number of simultaneous tradeoff variables exceeds two, we implemented an
interface as shown in Figure 7. The user task is to select a solution so that pieces of
land are assigned for building different structures. During evaluation, four criteria are
being considered: the total view score, the total cost, the noise levels, and the score
for measuring how close residential buildings are to schools. We reformulated the
optimization problem so that we are always maximizing. That explains the ! sign
before some variables. It denotes the negation of that variable. So maximizing
Itotalcost is minimizing the total cost.

The y-axis represents the total scalar value a solution obtains. On the x-axis, we lay
down all the individual criteria. These bottom bars act as “weights” and they attract
solutions that score very high in the features that they represent. It is obvious that
rearranging the bottom bars will give different displays of the solutions and the
ambiguities that exist. However, a user can always consult the slider bars below the
tradeoff space for detail. Conversely, changing the values of these bars, a user will see
matching solutions in the tradeoff space. This interface overcomes the limitation of
not displaying all tradeoff variables and their values in a single overview. It gives a
notion of how solutions perform on individual accounts, as well as their details if
ambiguities exist. It is fun to explore. Even though we still have to carry out more
refined user studies to demonstrate its discovery capabilities, our informal user studies
show that users found this interface very effective and have allowed them to discover
many solutions that were evaluated as inferior by the initial standards that they had
set. In the figure, the selected node is actually chosen by our test user as the best
solution, even though it does not perform well in the absolute score (y-axis), on noise,
or school distance features.

The interaction principles in this section on solution tradeoffs can be summarized as
follows:

o Show examples to provoke interaction: Most users are not aware of or cannot
articulate preferences. Solving ambivalent tradeoff problems requires discovering

99

and weighing these newly discovered features of certain solutions. An exploratory
tool must provide examples as well as the tradeoff spaces.

e Do not systematically eliminate dominated solutions: allow ambivalent users to
explore solutions nearby the “optimal” ones. Very often, surprises can be found to
explain a tradeoff decision.

8 User studies: Combining Decision Behavior Research with User
Requirement Analysis and Formative Usability Studies

Some existing findings from consumer behavior research and behavioral decision
theory allowed us to avoid costly experiments to understand users’ behaviors when
they face decision tasks. However, we still analyzed usability issues by surveying
existing commercial systems, such as the survey on travel planning (Jurca 2000). We
also used online decision systems such as Personalogic in our user requirement
studies. The characteristics, both in terms of shortcomings and strengths, were
integrated into the design of Isy-travel and VacationPlanner. Earlier decision support
systems were built from analysis done on commercial resource allocation systems
employed in the airline industry. COMIND was based on extensive interviews with
conceptual designers. The design principles reported here are therefore a result of
consumer behavior literature, user requirement analyses, and most importantly testing
of these principles in systems that we have built.

Formative user studies were also performed for all of the systems described here. It’s
a process involving writing scripts for each usage scenario, identifying potential users,
conducting usability testing, analyzing results, and proposing design changes. The
systems all went through several phases of change as a result of formative user
studies.

For the future, we intend to conduct several comparative user studies on rather
focused claims. For example, we believe that users select different outcomes under
two different conditions: under the condition that they will view only solutions and
under the condition that they tradeoff on values without ever seeing an example until
the end. We can then further establish interaction principles that address these two
conditions.

9 Conclusion

We have pointed out the importance of tradeoff tasks in CSP-based configuration
systems. Via tasks analysis, we established taxonomy of various tradeoff tasks. We
then focused our discussion on designing, implementing and testing a set of
interaction principles that maximizes user and machine’s collaboration in finding
“optimal” solutions. A recurring theme in these principles is to provide tools to help
users model themselves, rather than devising algorithms to model them. Through
exploration, we turn the preference model incompleteness and user belief uncertainty
to advantages, which is decision discovery. Through exploration, users discover
knowledge of the configuration space and make better and more informed decisions.

100

References

1.

10.
11.

12.

14.

15.

17.

18.

J. F. Allen, L. K. Schubert, G. M. Ferguson, P. A. Heeman, C. H. Hwang, T. Kato, M. N.
Light, N. G. Martin, B. W. Miller, M. Poesio, and D. R. Traum. The TRAINS project: A
case study in building a conversational planning agent. TRAINS Technical Note 94-3,
University of Rochester, Department of Computer Science, September 1994.

C. Boutilier, R. Brafman, C. Geib, and D. Poole. A Constraint-Based Approach to
Preference Elicitation and Decision Making. In AAAI Spring Symposium on Qualitative
Decision Theory, Stanford, 1997.

Bowen, J. The (Minimal) Specialization CSP: A basis for Generalized Interactive
Constraint Processing, in Proceedings of Workshop on User-Interaction in Constraint
Processing at CP-2001. 2001.

R. Burke, K. Hammond, and B. Young. The findme approach to assisted browsing. In
IEEE Expert, volume 12(4), pages 32--40, 1997.

Carenini G. and Poole D. Constructed Preferences and Value-focused Thinking:
Implications for Al research on Preference Elicitation. AAAI-02 Workshop
on Preferences in Al and CP: symbolic approaches - Edmonton, Canada, 2002.

J. Doyle and R. Thomason. Background to qualitative decision theory. Al magazine,
20(2), summer 1999.

Freuder E, Likitvivatanovong C and Wallace R. 4 case Study in FExplanation and
Implication, in Proceedings of CP-2000 Workshop on Analysis and Visualization of
Constraint Programs and Solvers, 2000.

E.C. Freuder and B. O’Sullivan. Generating Tradeoffs for Interactive Constraint-Based
Configuration.

D. Pruitt. Negotiation Behavior. Academic Press, 1981.

I. Unt. Negotiation Without a loser. Copenhagen Business School, 1999.

Jurca, A. and Pu, P. Algorithms for Online Vacation Planning. Technical Report, Swiss
Federal Institute of Technology, Lausanne. p. 1-12, 2001.

Jurca, A. Survey of Online Travel Planning Systems. Technical Report, Swiss Federal
Institute of Technology, Lausanne, 2000.

Keeney, R. and Raiffa, H., Decision with multiple objectives: Preferences and value
tradeoffs. 1976: Cambridge University Press.

Keeney, R., Value-Focused Thinking: A Path to Creative Decision Making. 1992: Harvard
University Press.

V. Ha and P. Haddawy. Problem-focused incremental elicitation of multiattribute utility
models, in Proceedings of the Thirteenth Conference on Uncertainty in Artificial
Intelligence, pages 215--222, August 1997.

Ha, V. and Haddawy, P. Toward Case-Based Preference Elicitation: Similarity Measures
on Preference Structures, in Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, 1998.

Horvitz, E., Principles of mixed-initiative user interfaces, in Proceedings of The ACM
SIGCHI Conference on Human Factors in Computing Systems, ACM Press, p. 159-166,
1999.

Inselberg, A. and Dimsdale, B. Parallel Coordinates: a Tool for Visualizing
Multidimensional Geometry, in Proceedings of IEEE Visualization '90, IEEE Computer
Society, p. 361-378, 1990.

Lalanne, D. Computer Aided Creativity and Multi-criteria optimization in Design. Ph.D.
thesis, the Swiss Institute of Technology (EPFL), Lausanne, 1998.

101

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

G. Linden, S. Hanks, and N. Lesh. Interactive assessment of user preference models: The
automated travel assistant. In Proceedings of User Modeling '97, 1997.

Mackay, W.E., Holm, E., and Horn, S.B., Who's in Control? Exploring human-agent
interaction in the McPie Interactive Theater project, in Proceedings of The ACM SIGCHI
Conference on Human Factors in Computing Systems. 2001.

Payne, J.W., Bettman, J.R., and Johnson, E.J., The Adaptive Decision Maker. Cambridge
University Press, 1993.

Pu, P. and Faltings, B. Personalized Navigation of Heterogeneous Product Spaces using
SmartClient, in Proceedings of the International Conference on Intelligent User Interfaces,
ACM Press, 2002.

Pu, P. and Faltings, B. Enriching Buyers' experiences: the SmartClient Approach, in
Proceedings of The ACM SIGCHI Conference on Human Factors in Computing Systems,
2000.

Pu, P. and Lalanne, D. Human and Machine Collaboration in Creative Design, in
Proceedings of the European Conference of Artificial Intelligence, 1996.

Pu, P. and Lalanne, D. Interactive Problem Solving via Algorithm Visualization, in
Proceedings of the IEEE Information Visualization Symposium, IEEE Press, 2000.

Pu, P. and Lalanne, D. Design Visual Thinking Tools for Mixed Initiative Systems, in
Proceedings of the International Conference on Intelligent User Interfaces, ACM Press,
2002.

Pu, P. and Melissargos, G. Visualizing Resource Allocation Tasks. IEEE Computer
Graphics and Applications, 1997. 17(4).

O'Sullivan, B., Freuder, E., and O'Connell, S. Interactive Constraint Acquisition, in
Proceedings of Workshop on User-Interaction in Constraint Processing at the CP-2001,
2001.

Shearin, S. and Lieberman, H. Intelligent Profiling by Example. in Proceedings of the
Conference on Intelligent User Interfaces, ACM Press, 2001.

Johnson, B. and Shneiderman, B. Tree-Maps: A Space-Filling Approach to the
Visualization of Hierarchical Information Structures, in Visualization '91, p. 284-291,
1991.

Torrens, M., Faltings, B., and Pu, P., SmartClients: Constraint Satisfaction as a Paradigm
for Scaleable Intelligent Information Systems. International Journal of Constraints, 2002.
7: p. 49-69.

102

103

	page01: 1
	page11: 2
	page21: 3
	page31: 4
	page41: 5
	page51: 6
	page61: 7
	page71: 8
	page81: 9
	page91: 10
	page101: 11
	page111: 12
	page121: 13
	page131: 14
	page141: 15
	page151: 16
	page161: 17
	page171: 18
	page181: 19
	page191: 20
	page201: 21
	page211: 22
	page221: 23
	page231: 24
	page241: 25
	page251: 26
	page261: 27
	page271: 28
	page281: 29
	page291: 30
	page301: 31
	page311: 32
	page321: 33
	page331: 34
	page341: 35
	page351: 36
	page361: 37
	page371: 38
	page381: 39
	page391: 40
	page401: 41
	page411: 42
	page421: 43
	page431: 44
	page441: 45
	page451: 46
	page461: 47
	page471: 48
	page481: 49
	page491: 50
	page501: 51
	page511: 52
	page521: 53
	page531: 54
	page541: 55
	page551: 56
	page561: 57
	page571: 58
	page581: 59
	page591: 60
	page601: 61
	page611: 62
	page621: 63
	page631: 64
	page641: 65
	page651: 66
	page661: 67
	page671: 68
	page681: 69
	page691: 70
	page701: 71
	page711: 72
	page721: 73
	page731: 74
	page741: 75
	page751: 76
	page761: 77
	page771: 78
	page781: 79
	page791: 80
	page801: 81
	page811: 82
	page821: 83
	page831: 84
	page841: 85
	page851: 86
	page861: 87
	page871: 88
	page881: 89
	page891: 90
	page901: 91
	page911: 92
	page921: 93
	page931: 94
	page941: 95
	page951: 96
	page961: 97
	page971: 98
	page981: 99
	page991: 100
	page1001: 101
	page1011: 102
	page1021: 103

