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ABSTRACT
Considering that smartphones are tightly-coupled with their
users, the interaction between smartphones and wireless sen-
sor networks will play a very important role in pervasive
computing for improving our daily life. Instead of using
smartphones to access the services provided by various wire-
less sensor networks, we focus on using smartphones to col-
lect data from sensor nodes opportunistically. In this paper,
through analyzing the dataset from Mobile Data Challenge
by Nokia, we validated the feasibility of opportunistic data
collection and identified several important characteristics of
smartphone users’ mobility, such as the strong spatial and
temporal localities that should be considered when designing
the related protocols and algorithms.

Categories and Subject Descriptors
C.2.1 [Computer Systems Organization]: Computer-
Comm. Networks—Network Architecture and Design

General Terms
Design, Performance, Human Factors

Keywords
Human Mobility, Wireless Sensor Network, Data Collection

1. INTRODUCTION
As wireless sensor networks mature, we expect to see many

long-term and large-scale deployments for various applica-
tions, such as environmental monitoring, domestic utility
meter reading, urban monitoring, etc. For example, millions
of water meters will be installed across Republic of Ireland
in the near future and many air quality monitoring systems
will be deployed in large cities of Europe to satisfy EU regu-
lations. Considering that the increasingly ubiquitous smart-
phones are tightly-coupled with their users, the interaction
between smartphones and wireless sensor networks will play
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a very important role in future pervasive computing. For in-
stance, a smartphone can get various information (tempera-
ture, air quality, etc.) from sensor nodes around its user and
assist in making informed decisions. Here, it is normally as-
sumed that smartphones and sensor nodes can communicate
through some low power radios, such as Bluetooth and Zig-
Bee1. In this paper, instead of the above classical paradigm,
we focus on letting smartphones provide a service to wireless
sensor networks, i.e., using smartphones to collect data from
sensor nodes opportunistically.

Due to the limited computing capability and storage size
of sensor nodes, these nodes normally send their data to an
application server through some dedicated static sink nodes
with the aim of further processing [2]. However, due to
environmental constraints and/or cost issues, sensor nodes
tend to be deployed sparsely and these networks tend to be
partitioned. Consequently, deploying large numbers of static
sink nodes for collecting sensor data from these sensor nodes
would incur prohibitive costs in terms of deployment, main-
tenance, and data back-haul. The cost of equipping each
sensor node with cellular network interface is even higher.

Figure 1: Data Collection through Smartphones

As illustrated in Figure 1, it has been proposed to use
smartphones carried by people in their daily life to collect
sensor data opportunistically [15][16][17][18]. Under this sce-
nario, smartphones will gather data from sensor nodes au-
tomatically and accidentally (without any user intervention
or route change). To participate in opportunistic data col-
lection, a smartphone user just needs to run a background
application on the phone, and many users could be moti-
vated with a very low reward. For instance, the owners of
wireless sensor networks could reward these users by allow-
ing them to access the current sensor readings (temperature,
humidity, etc.). In case that the sensor readings are not

1In Mobile World Congress 2012, TazTag released the
first smartphone with both ZigBee and NFC interfaces
(http://www.taztag.com/).



needed by smartphone users or the sensor readings cannot
be publicized due to confidential and privacy reasons, these
users could be rewarded by a small amount of virtual/real
money through cellular network system. More discussion
about the incentive, security, and privacy issues arising in
opportunistic data collection through smartphones can be
found in [18]. Consequently, the cost of data collection can
be reduced through exploiting the uncontrolled mobility of
smartphone users.
Apart from reducing the cost significantly, opportunistic

data collection through smartphones also has the benefits
of adopting mobile sinks, such as the increased network re-
liability through removing the dependency on static sink
nodes and the extended network lifetime through removing
hot-spots near the static sink nodes [13][14]. Although data
delivery latency could be long in opportunistic data collec-
tion, there are many promising wireless sensor network ap-
plications which are delay-tolerant. For example, analysis
of environmental monitoring data is rarely urgent and me-
ter readings for billing purposes can be delayed by weeks.
Hence, it is worthwhile to study how to improve the perfor-
mance of opportunistic data collection, especially for wire-
less sensor networks in which sensor nodes are duty-cycled
aggressively for longevity.
Considering that the main point of opportunistic data col-

lection is to exploit the uncontrolled mobility of smartphone
users, it becomes necessary to analyze their mobility traces
for answering the following important questions.

1. In opportunistic data collection, is the smartphone’s
overhead (energy consumption, etc.) low enough to
motivate user participation?

2. For each encounter, does a smartphone stay in the
communication range of a sensor node long enough for
collecting data opportunistically?

3. Could smartphone users access a sensor node frequently
enough to support a variety of applications?

4. How does the smartphone users’ mobility distribute in
time and space? How do these distributions influence
the design and operation of the related protocols and
algorithms?

Based on the dataset from Mobile Data Challenge by
Nokia [8], the mobility traces of 37 smartphone users are
studied in this paper for answering these questions. This pa-
per is organized as follows. The analysis methodology is first
introduced in Section 2. We also describe how the dataset
is trimmed. The results of analysis are then presented and
discussed in Section 3. Finally, Section 4 discusses related
works and Section 5 concludes this paper with several key
findings, such as the feasibility of opportunistic data collec-
tion through smartphones and the strong spatial and tempo-
ral localities that should be considered when designing the
related protocols and algorithms.

2. DATA PREPARATION
In this paper, the mobility of smartphone users is studied

through analyzing the dataset from Mobile Data Challenge
by Nokia. Although a lot of information had been collected
for each smartphone user, we are mainly interested in the
GPS readings recorded when a user was moving around out-
side. More specifically, we only use the following information

of a GPS reading, <time, latitude and longitude, speed>, i.e.,
the time, the location, and the movement speed when this
GPS reading was logged.

For opportunistic data collection, we hope to know how
the encounters between smartphones and sensor nodes dis-
tribute in both space and time. Hence, the area visited by
smartphone users is divided into cells2 with a size of 0.001
(Latitude) * 0.001 (Longitude). Approximately, a cell is a
rectangle with a size of 185m * 126m and it matches well
with the outdoor communication range of the current sen-
sor node platform [12]. The duration of the challenge is also
divided into slots in the unit of hour, day, or week based
on the analysis to be carried out. The distributions of GPS
readings in time and space are then calculated and analyzed.

Before carrying out analysis, the dataset is first trimmed.
We have removed a few GPS readings that are far away
from the Lake Geneva region so that the number of cells
to be considered can be reduced significantly. For reducing
the number of time slots to be considered, the GPS read-
ings which were logged when most of users had quit the
challenge are also removed. The GPS readings, which have
been truncated for user anonymity, are also removed since
we cannot associate such a reading to a specific cell. Con-
sequently, 893,920 GPS readings from 37 smartphone users
are used in our analysis3. The latitude range is [46.1, 46.8],
the longitude range is [6.4, 7.4], there are totally 700,000
cells, and the whole area is referred as the Lake Geneva Re-
gion. Sometimes, we only analyze the cells of the Lausanne
Urban Area (one major city of the Lake Geneva Region), in
which the latitude range is [46.50 46.55], the longitude range
is [6.54, 6.66], and there are 6,000 cells. As for the duration,
it is from 05/09/2009 to 07/01/2011 and the time span is 70
weeks. Considering that smartphone users may not partic-
ipate during the whole period, based on the timestamps in
their GPS readings, Figure 2 plots the periods that these 37
users participate the Data Collection Campaign by Nokia.
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Figure 2: The participation of 37 smartphone users

3. RESULTS OF ANALYSIS

3.1 Percentage of Movement Time
Considering that a sensor node is normally duty-cycled,

a smartphone should always keep its radio on so that they
can discover each other in a timely manner [16]. Hence,
the energy consumed by a smartphone’s radio becomes a

2Note that a cell here is just a small area and it is totally
different from the cell in cellular networks.
3In the dataset distributed to us, there are totally 1,553,154
GPS readings from 38 smartphone users. 491,566 GPS read-
ings are purged because they have been truncated for user
anonymity. Since only GPS readings in a few sensitive lo-
cations are truncated, these purged data may not affect the
analysis results in this paper. However, it is highly desirable
to get and study all of the original GPS readings.



(a) Lake Geneva Region (b) Lausanne Urban Area

Figure 3: Spatial distributions of GPS readings

serious concern. To reduce this overhead, it has been pro-
posed to let a smartphone detect its user’s activity through
accelerometer and turn its radio on only when its user is
moving around.
In the dataset, a GPS reading is recorded every 10 sec-

onds only when a user is moving around outside. Hence,
if the interval between two consecutive GPS readings is too
long (>300s), we assume that the user is static and the radio
can be turned off during that interval4. We then calculate
the percentage of movement time for each smartphone user.
Figure 4(a) plots the cumulative distribution function of the
percentage of movement time across 37 users. It indicates
that smartphone users are static and the radio for oppor-
tunistic data collection can be turned off most of the time.
Hence, the overhead of opportunistic data collection in terms
of energy consumption could be low for a smartphone, thus
encouraging user participation.
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Figure 4: CDFs for Movement Time and Speed

3.2 Movement Speed
Since a sensor node is normally duty-cycled, a smartphone

still needs to take time to discover a sensor node even when
they are in close proximity. Furthermore, a smartphone and
a sensor node normally belong to different authorities, and
authentication must be carried out before collecting data.
Hence, for opportunistic data collection, it is desired that
a smartphone could stay in the communication range of a
sensor node for a period that is sufficient for discovery, au-
thentication, and data collection.
To check this issue, the cumulative distribution function of

the movement speed in these smartphone users’ GPS read-
ings is plotted in Figure 4(b). This plot indicates that the
movement speed is quite low (<10m/s) in many cases. Con-
sidering that the outdoor communication range of a sensor

4Note that GPS readings could be absent due to many rea-
sons. Here, we assume the dominant reason is that a smart-
phone user stops to move.

node is around 100m, a lot of data could be collected dur-
ing the encounter between a smartphone and a sensor node.
With the assumptions that ZigBee radio is used (the data
rate is 250Kbps) and the duration for data collection is 10
seconds, 312K bytes can be collected per visit. Considering
that the size of a sensor reading is normally small, thousands
of sensor readings can be collected per visit.

Figure 4(b) also indicates that the movement speed can
be high with non-negligible probability, even when only the
Lausanne Urban Area is considered. This fact justifies our
sensor node-initiated probing mechanism for timely discov-
ery between smartphone and sensor node [16].

3.3 Spatial Analysis

3.3.1 Spatial Distribution
In the following analysis, we first calculate the number of

GPS readings in each cell. We then plot the spatial distri-
bution of GPS readings among all cells of the Lake Geneva
Region in Figure 3(a). The spatial distribution among cells
of the Lausanne Urban Area is also plotted in Figure 3(b).

Figure 3(a) shows that the mobility traces of just 37 smart-
phone users still could cover a large area. Figure 3(b) indi-
cates that the cells in an urban area are visited frequently
even when there are only 37 smartphone users. Our analysis
shows that 19% of cells in the Lausanne Urban Area are vis-
ited at least once per week and 2.466% of cells are visited at
least once per day. Hence, we can expect that opportunis-
tic data collection through smartphones can support many
applications, especially when sensor nodes are deployed in
urban areas where we live in most of the time.

3.3.2 Spatial Locality
Figure 3(a) and 3(b) also indicate that a strong spatial

locality exists in these distributions of GPS readings and
different cells are visited by smartphone users with different
frequencies. Through checking the map, we find that Figure
3(a) clearly illustrates that most of these GPS readings are
within the towns alongside the A9 motorway of Switzerland.
Figure 3(b) indicates that even in the urban area, there are
still some cells that have never been visited. There are also
some hot cells that are visited much more frequently than
other cold cells. To study the spatial locality quantitatively,
we have calculated the relative standard deviation of the
distribution of GPS readings in the Lausanne Urban Area
and it is as high as 5.23. Hence, a strong spatial locality is
identified and sensor data should flow among sensor nodes
to exploit this spatial locality [17].



To study the feasibility of exploiting spatial locality, for
the Lausanne Urban Area, a cell is marked as a hot cell if it is
visited at least once per day. We then calculate the distance
between a cold cell and its nearest hot cell. The cumulative
distribution function of these distances is plotted in Figure
5(a) and this plot shows that for 63.5% cold cells, the dis-
tance is less than ten cells. The distance could be reduced if
the mobility traces of more users are considered. However,
considering that human mobility is normally constrained by
roads and streets, cold cells should continue to exist. Hence,
sensor data should be exchanged among sensor nodes for ex-
ploiting spatial locality and the data could reach a hot cell
through a few hops.
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Figure 5: CDFs of the distance among cells

We have also calculated the distance between a hot cell
and its nearest hot cell. The result in Figure 5(b) shows that
for most of hot cells, one of its direct neighbors is also a hot

cell. Hence, opportunistic data collection through smart-
phones is robust to the failure of sensor nodes in a hot cell.
It also indicates that the neighboring hot cells tend to be vis-
ited sequentially and this characteristic should be exploited
if the duty cycle of sensor nodes isn’t too low.

3.3.3 Seasonal Changes
To exploit the spatial locality for opportunistic data col-

lection, a hot cell should continue to be a hot cell for a long
time so that sensor data won’t chase the moving hot cells
and consume too much energy to arrive at a hot cell and
be collected by a smartphone in that cell. Hence, for each
week, we calculate the number of GPS readings for each cell
and these numbers have been plotted into a 3-D figure. Sev-
eral animations are then produced based on these figures to
demonstrate the changes of the spatial distribution with the
elapse of the time. These animations are available at the
official webpage of the Mobile Data Challenge by Nokia [1].
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Figure 6: The invariability of hot cells

To study the seasonal changes of hot cells quantitatively,
for each week, a cell in the Lausanne Urban Area is first
marked as a hot cell if it is visited at least once per day.
We then plot the percent of hot cells that continue to be hot

cells with the elapse of time. Figure 6 shows that 34% of
hot cells are still hot cells after two weeks. Hence, spatial
locality could be exploited in opportunistic data collection.
However, it also indicates that seasonal changes do exist

and sensor nodes must learn and exploit the spatial locality
online.

3.4 Temporal Analysis
To carry out temporal analysis, the whole duration is di-

vided into time slots of one-hour length. The number of GPS
readings in each time slot is then counted and this temporal
distribution is plotted in Figure 7.
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Figure 7: Temporal Distribution

3.4.1 Period Analysis
To check whether repeated patterns exist in smartphone

users’ mobility, autocorrelations of the above time series are
calculated with different time lags and the results are plot-
ted in Figure 8. This plot indicates that the mobility of
smartphone users does have a repeated pattern whose epoch
length is 24 hours.
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Figure 8: Autocorrelations with different time lags

However, the diurnal pattern isn’t obvious since there is no
negative autocorrelation with a 12-hours lag. As illustrated
in Figure 2(b) and Figure 7, one potential reason is that the
number of active users and the number of GPS readings are
reduced significantly in the late phase of the Data Collection
Campaign by Nokia. Hence, period analysis is carried out
again for the data between 15th and the 35th weeks (2520-
5880 hours) during which the number of active users and
the number of GPS readings are stable. The corresponding
results of period analysis are then plotted in Figure 9, which
demonstrates the existence of the diurnal pattern clearly.
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Figure 9: Autocorrelations (15th – 35th weeks)

Furthermore, both Figure 8 and 9 don’t show the common
weekly pattern. When the time lag is one week (7*24=168
hours), the autocorrelation is only slightly higher than other
time lags. This issue will be discussed later when we carry
out per-cell analysis.



3.4.2 Temporal Locality
In opportunistic data collection, if there are rush hours

in which the level of mobility is much higher, a sensor node
can discover smartphones mainly during rush hours so that
it can upload the same amount of data with much less energy
consumption [15]. Hence, we will check the existence of rush
hours, i.e., temporal locality, in the mobility of smartphone
users. Considering that the mobility of smartphone users
has a strong diurnal pattern, the distribution of all GPS
readings among 24 hours of a day is then calculated and
plotted in Figure 10. This plot indicates that rush hours do
exist in the morning (8am) and evening (4–6pm).
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If an hour continues to be a rush hour for a long period,
a sensor node can learn and exploit the temporal locality
easily. To study this issue quantitatively, for each day, an
hour is marked as a rush hour if its number of GPS readings
is one time more than the average across 24 hours. This
large threshold is used to avoid that too many hours are
marked as rush hours. Figure 11 then plots the percent of
rush hours that continue to be rush hours with the elapse of
time. It shows that 56% of rush hours are still rush hours
even after 20 days. Hence, temporal locality should and
could be exploited. However, Figure 11 also indicates that
rush hours stop to be rush hours after a long period, seasonal
changes do exist, and a sensor node should learn and exploit
rush hours autonomously.
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3.4.3 Per-cell Analysis
We notice that in Figure 10, the number of GPS readings

in a rush hour isn’t much higher than the average. The pos-
sible reason is that the rush hours of various cells are differ-
ent. They will cancel each other since we study the temporal
locality for the whole area. To validate this conjecture, we
carried out the following per-cell temporal analysis.
For two cells that are visited frequently, their distributions

of GPS readings among 24 hours of a day are calculated and
plotted in Figure 12(a). This plot clearly validates the above
conjecture since the two cells have different rush hours.
In the above period analysis, we also notice that the com-

mon weekly pattern doesn’t exist in both Figure 8 and Fig-
ure 9. This issue might be caused by the same reason, i.e.,
the period analysis is carried out for the whole area. Hence,
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Figure 12: Per-cell temporal analysis

for the above two cells, their distributions of GPS readings
among 7 days of a week are also plotted in Figure 12(b). This
plot shows that cell 1 is visited more frequently in weekdays
and cell 2 is visited more frequently in weekends. Hence,
weekly pattern may exist for some cells. However, due to
the small numbers of GPS readings per cell, per-cell period
analysis doesn’t produce any meaningful results and these
results aren’t reported here.

In summary, the results of per-cell analysis indicate that
there are no common repeated pattern and temporal locality
across all cells and a sensor node must autonomously learn
and exploit the temporal distribution of its own location.

4. RELATED WORK

4.1 Mobile Data Collection
In [5][9][11][13][14][19], the use of mobile nodes has been

proposed to move around in the deployed area and collect
data from sensor nodes. Depending on the applications,
their mobility can be either controlled or not, and these mo-
bile nodes may collect data from sensor nodes within the
range of one or multiple hops. In [10], the use of mobile
phones had also been proposed to collect data from static
sensor nodes purposely or opportunistically. However, none
of them had studied the scenario when the uncontrolled mo-
bility of the public is considered.

In [15][16][17][18], we have carried out research on op-
portunistic data collection through smartphones, and sev-
eral protocols have been designed for efficient data collec-
tion through exploiting the temporal and spatial locality of
human mobility. The findings in this paper validate the as-
sumptions used by us in a more appropriate spatial granular-
ity and provide more directions to improve the performance
of opportunistic data collection through smartphones.

4.2 Human Mobility Analysis
Based on the history that users visit two Wi-Fi access

points (one is deployed in a residence building and the other
is deployed in an academic building), human mobility has
been studied in [6]. It is confirmed that rush hours, i.e.,
temporal locality, does exist in human mobility. As for sea-
sonal changes of rush hours, the existence depends on the
locations of access points.

The mobility datasets of phone users have also been stud-
ied by the research community [3][4][7], and it has been
pointed out that their mobility follows some repeated pat-
terns and demonstrates strong temporal and spatial locali-
ties. However, in these datasets, only the current base sta-
tion is recorded when a phone user communicates through
a cellular network (call, short message, etc.). Hence, the
phone user’s location accuracy is as coarse as several kilo-
meters or even tens of kilometers due to the large communi-



cation range of a base station. Although the mobility anal-
ysis based on these datasets is valuable for urban planning,
the location accuracy is too coarse for opportunistic data
collection since the communication range of a sensor node is
normally less than 100m [12].
We believe that our study based on the dataset from Mo-

bile Data Challenge by Nokia is extremely valuable to op-
portunistic data collection through smartphones. It is the
mobility traces of smartphone users that are analyzed in this
paper and the location accuracy of GPS readings could be
tens of meters, that should be enough for opportunistic data
collection.

5. CONCLUSIONS
For the purpose of opportunistic data collection through

smartphones, the smartphone users’ mobility traces from
Mobile Data Challenge by Nokia are analyzed in this paper
and our findings are summarized below.

1. Opportunistic data collection through smartphones should
be a very promising solution. The overhead on smart-
phone in terms of energy consumption can be very low
and the mobility of smartphone users could provide
a performance level that is sufficient for many wire-
less sensor network applications, especially when sen-
sor nodes are deployed in urban areas.

2. The mobility of smartphone users follows some repeated
patterns (diurnal, etc.) and the distributions in time
and space have strong localities. When designing the
related protocols and algorithms, these localities should
be considered and exploited. For instance, a sensor
node should try to discover smartphones mainly dur-
ing rush hours [15], and sensor data should also be
exchanged among sensor nodes for exploiting the spa-
tial locality of smartphone users’ mobility [17]. Due to
the existence of seasonal changes, sensor nodes should
learn and exploit these localities autonomously.

In this paper, the used dataset only includes the mobility
traces of 37 smartphone users. Some planned analysis (per-
cell period analysis, etc.) cannot produce any meaningful re-
sults since there is insufficient data. In the case that a larger
dataset becomes available, we will carry out this analysis to
get more extensive results. Based on the above findings, we
will refine our protocols proposed for opportunistic data col-
lection through smartphones [15][16][17]. With the dataset
from Mobile Data Challenge by Nokia, these proposals will
also be re-evaluated through trace-based simulations.
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