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Abstract—Wireless Sensor Networks in volatile environments
may suffer damage, and connectivity must be restored. The
repairing agent must discover surviving nodes and damage to
the physical and radio environment as it moves around the
sensor field to execute the repair. We compare two approaches,
one which re-generates a full plan whenever it discovers new
knowledge, and a second which attempts to minimise the required
number of new radio nodes. We apply each approach with two
different heuristics, one which attempts to minimise the cost of
new radio nodes, and one which aims to minimise the travel
distance. We conduct extensive simulation-based experiments,
varying key parameters, including the level of damage suffered,
and comparing directly with the published state-of-the-art. We
quantify the relative performance of the different algorithms in
achieving their objectives, and also measure the execution times
to assess the impact on being able to make autonomous decisions
in reasonable time.

I. INTRODUCTION

Many applications for wireless sensor networks will be in
settings where network damage can be expected to occur, due
to factors such as changes in the physical environment, node
failures, vandalism, and power-source depletion. Damaged
networks must be repaired, to re-establish connectivity for
important data streams. The repairing agent (e.g. a robot or
a pedestrian) must move through the sensor field, establishing
the extent of the damage to the network and to the physical
environment, and deploying new sensors or relays. The main
goal of the agent is to minimise the cost of the repair, where
the main cost factor may be the number of new nodes or the
time taken to complete the repair, depending on circumstances.

We assume the agent starts with knowledge of the radio and
physical environments before the damage occurred, obtained
from earlier site surveys and network data. After damage, the
agent is only aware of the sensor nodes (and the corresponding
radio links) still connected to its current location. It must plan
a deployment of nodes to restore connectivity for designated
data streams, and a route through the environment to place
those nodes. Each plan is a set of locations to be visited,
and a detailed motion plan for reaching the first location.
Since both subproblems (connectivity and multi-point path) are
computationally hard, we use heuristic algorithms to generate
the plans, with two different heuristics: prioritising the number
of new nodes, and prioritising the path length. However, while
executing the plan, the agent will encounter blocked paths and

broken radio links, but also surviving components of the old
network, and as it discovers new knowledge, it must revise its
plans to complete the repair. We consider two approaches for
revising the plans. The first conducts full replanning whenever
it discovers new knowledge that changes the cost of the plan,
or which renders the plan infeasible. The second attempts to
repair the plan, by searching for a new motion plan to reach
its current location target, and reverting to full replanning only
after large changes.

We evaluate the approaches in simulation on randomly gen-
erated problems, where we vary the density of the connectivity
problem and the level of damage sustained. We demonstrate
that the full replanning approach produces better quality
solutions, but has significantly higher runtime as damage and
density increase. However, when we factor in the expected
total time to execute the plan, full replanning becomes com-
petitive. For slower moving agents, the reduction in path length
with the path heuristic outweighs the increased runtime, while
for faster agents, the repair actions are more significant, and
the node heuristic with full replanning becomes more efficient
at higher damage levels. The results illustrate the trade-offs
between minimising node cost and minimising the speed of
the repair, where the choice of approach will be dependent on
the application.

In the remainder of the paper, we discuss some related
work, and introduce the problem formulation, followed by the
agent’s abilities and knowledge structures. We then describe
our heuristic approaches with the replanning strategies. We
describe the experiments and results, and finish with conclu-
sions.

II. RELATED WORK

The problem of network repair is receiving significant
attention in networking research. The ideal scenario would be
to ensure the network is resilient to limited failures without
requiring repair. In [9],[4] the goal is to deploy k-1 redundant
nodes to achieve k-connectivity, for example by placing nodes
at the intersection between the communication range of each
pair of nodes. The number of additional nodes required by
these approaches can be prohibitive. [5] deploys a robot with
unlimited nodes and drops nodes from time to time based
on certain ordering rules. [27] controls the agent’s motion to



explore the environment while dropping nodes while preserv-
ing the connectivity of the network. [16] assumes a mobile
sensor network where nodes can use repel and attract forces to
arrange the topology. These papers focus on topology control
and deployment but do not consider repair/restoration after
damage has occurred. To restore connectivity in damaged net-
works, some proposals use specialised nodes that can change
position to restore connectivity, e.g. [3],[21], [1], [2]. While
attractive, such solutions require significantly more expensive
nodes, and thus may be impractical for many deployments.
Many papers address the repair problem by placing relay
nodes that re-connect partitions in the network, minimising
the number of required nodes. For example, using centralised
solutions, [17] uses a spider web approach while [11] forms a
connectivity chain toward a centre of the network and [20] uses
game theory to reconnect the network. However, these papers
do not consider problems of limited mobility, assuming instead
a free space model. Some papers [23], [25], [19], [18] consider
more realistic terrain which has obstacles. However, they
assume a static problem, in which all terrain and all network
conditions are known in advance. None of them address the
problem of restoring connectivity where exploration must be
carried out during the repair. In [24] introduced the exploration
problem, but without modelling the issues of planning and
repair.

The problem of agent planning is a central topic in artificial
intelligence and robotics. In particular, continual planning, in
which the plan must be modified as knowledge is discovered,
was first proposed in [14]. [6] uses iterative repair techniques
to support a continuous planning process for autonomous
spacecraft control. [7], for temporal planning, interleave de-
cision and execution in a dynamic environment allow plan
repair interleaved with execution. [15] uses a model-free
approach which observes and classifies the actual behavior of
the monitored systems into normal or faulty execution. [12]
dynamically reasons about which goals to pursue in response
to unexpected circumstances. [22] proposes a generic and
reactive scheme for continous planning for complex problems.

III. PROBLEM FORMULATION

For the environment before the damage has occurred, we
assume a rectilinear grid of locations G, in which a subset
Vb ⊆ G of grid squares are candidate locations for wireless
nodes, with each square allowing at most one node, at a
specified position within the square. A connectivity graph,
(Vb, Cb), specifies potential radio links between the nodes. We
assume symmetric links are required for the network operation,
and so we ignore any asymmetric connections. VB ⊆ Vb
is the set of locations with actual nodes. After damage, the
connectivity graph is (Va, Ca), where Va ⊆ Vb and Ca ⊆ Cb.
VA ⊆ VB ∩ Va is the set of locations with surviving nodes.
The set τ ⊆ VB , of terminals, is the set of locations from
which we require sensed data. Iv ⊆ VA is the set of nodes
still successfully transmitting data to our sink, and Ic is the
corresponding set of active links. The repairing agent can move
from any square into one of its 4 rectilinear neighbours, unless

that neighbour is blocked. The set of blocked squares before
damage is Bb, while the set of blocked squares after damage
is Ba, such that Bb ⊆ Ba ⊆ G. The agent can deploy a relay
node or sensor node at any location x it visits if x ∈ Va,
and we will denote by Vn the set of newly added nodes. We
assume the starting location of the agent is at L ∈ Iv .

The repair problem is to follow a path P through the
grid, without visiting any location in Ba, deploying nodes at
locations Vn in the path such that in the graph (VA ∪Vn, Ca),
all elements of τ have a path to a node in Iv . The cost of
a plan can be evaluated as (i) the number of nodes to be
deployed (|Vn|), and (ii) the length of the path P . However,
given the unknown damage, the initial plan is likely to be
either infeasible or inefficient, and so while executing it, the
agent must sense its environment to update its knowledge and
then modify the plan. The agent can probe the accessibility
of its neighbouring squares up to a distance of k, but cannot
probe a square if there is a blocked square inbetween. The
agent is able to test a radio link by listening for transmission
from an active node, up to a distance of R, and can transmit
to the same range. When the agent discovers a new live node,
it will also be told all of that node’s live connected subgraph.
There is no cost for listening for transmissions. The total cost
of the final executed repair can then be measured as (i) the
number of deployed nodes, and (ii) the sum of the movement
costs, the probe costs and the node costs.
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Fig. 1. Example of the network conditions.

IV. REPRESENTING THE AGENT

The agent has full knowledge of the environment before
damage, obtained from earlier site surveys and network data,
but must build its knowledge of what remains after damage
as it executes its repair, and so it must distinguish between
objects that are known to be active, those that are known to
be damaged, and those that have not been verified.

The agent classifies grid locations for radio nodes into
four classes: Na, locations known to have an active radio;
Nf , locations known to be feasible for placing a radio; Ni,
locations known to be infeasible for placing radios; and Nu,
locations whose condition is otherwise unknown. Initially,
Na = Iv , Nf = Iv , Ni = G− Vb, and Nu = Vb − Iv .

Pairs of locations are classified for radio links as follows:
Ef , links known to be feasible for radio communication; Ei,
links known to be impossible for radio communication; and
Eu, links whose condition is otherwise unknown. Initially,
Ef = Ic, Ei = {{x, y} : {x, y} /∈ Cb}, and Eu = Cb − Ic.



Locations are classified for accessibility as follows: Sf ,
locations known to be accessible; Sb, locations known to
be blocked; and Su, locations whose condition is otherwise
unknown. Initially, Sf = L (the initial location of the agent),
Sb = Bb, and Su = (G−Bb)− {L}.

The world states consist of the post-damage conditions VA,
Vn, Ca, and Ba, and a single instance of the predicate at(x),
the location of the agent. As the agent executes a plan, it
will update its knowledge, and should ensure that Nf ⊆ Va,
Na ⊆ VA ∪ Vn, Ef ⊆ Ca, and Sf ⊆ G−Ba.

The agent has five possible actions, described below as rules
with pre conditions and add and delete lists (if non empty),
for use in the post-damage environment. We also include
procedures for updating knowledge after each successful firing
of an action.

1) MOVE(u,v): move from square u to square v;
PRE: at(u) ∧ neighbour(u,v) ∧ v /∈ Ba;
ADD: at(v); DEL: at(u);

2) LISTEN(u): listen for radio signals at u;
PRE: at(u);
PROC:
(µ, ε)←listen(); //listen() reports live nodes and links
Na ← Na ∪ µ; //remember reported nodes
Nf ← Nf ∪ µ;
Nu ← Nu − µ;
Ef ← Ef ∪ ε; //remember reported links
Eu ← Eu − ε;
if ((x ∈ Na||x = u) & &y ∈ Na &&{x, y} /∈ Nf )
then Ei ← Ei ∪ {{x, y}}; //deduce blocked links

3) DROP(u): drop a node at u;
PRE: at(u);
ADD: if (u ∈ Va) then Vn ← {u};
PROC: Na ← Na ∪ {u};

4) PROBE(u,v): probe square v from u;
PRE: at(u);
PROC: if (p(u,v)==T) // T if v in range and free
then Sf ← Sf ∪ {v};Su ← Su − {v};
else if (p(u,v)==F) // F if v in range but blocked
then Sb ← Sb ∪ {v};Su ← Su − {v};
//p(u,v) reports ? if v not in range

5) INSPECT(u): check if u can take a radio node;
PRE: at(u);
PROC: if (insp(u)==T) // T if u ∈ Va
then Nf ← Nf ∪ {u};Nu ← Nu − {u};
else Ni ← Ni ∪ {u};Nu ← Nu − {u};

For the simple world state of Figure 1, the initial
knowledge structures are: Na = {4}, Nf = {4}, Ni =
{1, 2, 5, 6, 8}, Nu = {3, 7, 9}, Ef = {}, Ei = {. . .}, Eu =
{{3, 4}, {3, 9}, {4, 7}, {4, 9}, {7, 9}}, Sf = {4}, Si = {2},
and Su = {1, 3, 5, 6, 7, 8, 9}. The following sequence of
actions will reconnect location 9: LISTEN(4); PROBE(4,7),
with Sf ← {4, 7}; MOVE(4,7); LISTEN(7), with Nf =
Na ← {4, 9} and Ef ← {{4, 7}, {7, 9}}; INSPECT(7), with
Nf ← {4, 7, 9}; DROP(7), with Na ← {4, 7, 9}.

V. APPROACH

There are two possible approaches for the agents. The first
is conservative, and plans only with verified knowledge. The
action representation must be extended to include explicit
knowledge gathering, and would require uncertainty handling
to determine the best action to take in each world state. In
the second approach, the agent assumes that some elements
of the unknown sets are available, and then replans when
errors are discovered, and is the approach taken in this paper.
We assume, until we discover otherwise, that all squares that
were not blocked before damage remain unblocked and that
all feasible radio links remain feasible, but that all previously
existing radio nodes that are not reporting after damage have
been lost. That means the agent will plan using grid squares
in Sf ∪ Su, feasible radio locations Nf ∪ Nu, feasible radio
links Ef ∪ Eu, and live radio nodes Na. When executing
a plan, the agent will insert LISTEN actions at each step,
will PROBE immediately before trying to move to a new
square, and will INSPECT immediately before dropping a
node. When it discovers knowledge that renders its current
plan infeasible or changes its cost significantly, it will update
its plan and continue. A plan for the agent will be represented
on two levels. At the higher level, we have an unordered set
of locations that we intend to visit to drop a node. At the
lower level, we have selected one of these locations, and we
have a detailed path plan for moving there. Local repair will
consist of generating a new path plan to the same selected
location. Full re-planning will consist of generating a new set
of locations at which to drop nodes, as well as a path plan to
a newly selected node.

Note that the underlying problems, even when there is no
damage, are computationally hard. The task of finding in a
graph a minimal set of nodes which connect a terminal set
is the minimal Steiner tree in graphs problem, and is NP-
hard ([8]). Given a set of nodes in a mobility graph, the task
of finding a minimal path through the graph that visits each
selected node reduces to the TSP on a metric closure graph,
built by finding all-pairs shortest paths for the selected nodes.
Therefore, we consider heuristic approaches for generating the
full plans.

A. Strategy 1: prioritising node cost

The aim of this strategy is to find a small set of nodes
to reconnect all terminals, and then to find a short path to
visit them. We first construct a directed weighted connectivity
graph. Each candidate location (Nf ∪ Nu) is a vertex, with
connected components merged into supernodes. Each potential
link is represented by two directed edges. An edge connecting
a live node to a candidate location will have cost 1, while an
edge in the other direction has cost 0. The agent then finds a
Steiner node set N connecting all terminals using Steiner-MST
on that directed weighted connectivity graph. The weights
ensure that the heuristic prefers to bring existing live nodes
into the tree rather than new candidate nodes. We use D* Lite
to compute the cheapest mobility path [10] and then select the



Steiner node with the shortest path (the nearest Steiner node)
to our current location.

Algorithm 1: Node Priority Heuristic

find D, the directed weighted connectivity graph;
find N , the Steiner nodes in D;
find P , the cheapest path to the nearest node in N ;
return (N,P );

New knowledge that would change the estimated cost of
the plan or render it infeasible are: (i) a blocked square on the
path to the selected location, (ii) an expected radio link is not
possible, (iii) a location is not suitable for dropping a node,
or (iv) the existence of a surviving connected sub-network.
Full replanning, however, is expensive, since we may have
to recompute the directed weighted connectivity graph, and
then re-run the Steiner MST heuristic. In particular, limited
changes of type (iv) for a small surviving component, are
unlikely to affect the cost significantly. Therefore, as well as
full replanning, we also consider local repair, in which for
case (iv) we use D* Lite to continue searching for the current
target, until we discover α new surviving nodes, which triggers
full replanning. Change of type (i) does not affect the node
cost, therefore we do not need to recompute the Steiner nodes
either in full replanning or local repair when we discover
blocked squares, unless we have established that the node is
not reachable. In all cases, options (ii) and (iii) trigger full
replanning.

B. Strategy 2: prioritising mobility cost

This strategy aims to find a set of locations which can be
visited by a short path, and for which nodes would reconnect
the terminals. We first build a weighted connectivity graph,
augmenting each link in Ef ∪Eu with the cost of the cheapest
mobility path between the two locations. Again, we use D*
Lite to compute the cheapest mobility path, since we expect
to have to compute these paths many times as we discover
blocked locations. In the weighted connectivity graph, we
then search for a low-cost Steiner tree using the Steiner-
MST heuristic ([26]) to find a set of nodes which connects
all unconnected terminals to the network. We then select the
closest node to our current location, using D* Lite.

Algorithm 2: Path Priority Heuristic

find W , the weighted connectivity graph, using D* Lite;
find N , the Steiner nodes in W , using Steiner-MST;
find P , the cheapest path to the nearest node in N ;
return (N,P );

Again, when we discover knowledge that changes the cost of
the plan, we revise the plan. We consider the same triggers for
full replanning and local repair as above, except that change
of type (i) would change the path cost. Therefore, in this
case of (i) the full replanning will restart the plan with new

knowledge while the local repair uses D* Lite to continue
searching for the current target, until the expected total path
length exceeds the original path length by β steps, which
triggers full replanning. The overall approach, applicable to
both heuristic approaches and to both full replanning and local
repair, is shown in Figure 2.
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Fig. 2. Flow chart for the agent planning.

C. The DORMS approach

As a comparison, we adapt the DORMS approach [11]
which was designed to tackle a similar problem. DORMS tries
to re-connect network partitions to a central point and then
perturbs the solution to reduce the number of additional nodes
needed. However, DORMS assumes free space for mobility,
and so the mobility paths are simply straight lines. In our
adaptation, we select a location which is closest to the centre
of the area. We use D* Lite to find the shortest path from
each terminal to that centre location in the connectivity graph.
Then for each pair of adjacent terminals, we find a graph which
contains all nodes and edges in the current map which are in
the smallest area bounded by the two connectivity paths to the
centre. Then we find a steiner minimal tree in that graph which
spans the two terminals and the centre location. After finding
all steiner minimal trees for all pair of adjacent terminals, each
terminal is now part of two separate trees formed with its
neighbours, and the algorithm chooses the trees which require
the fewest additional nodes. We then select the closest steiner
node to our current location, using D* Lite. As before, when
the agent discovers new information that would change the
cost, it recomputes, and continues from its current location.

VI. EXPERIMENTS

We evaluate our algorithms empirically on randomly gen-
erated maps, to compare the quality of their solutions for the
two different measures, and to compare their runtimes. We
assume a pre-damage grid map consisting of n × n squares
representing a 300m× 300m area. We randomly select c grid
squares to be candidate locations, assigning a random location
within the square, and g squares to be blocked. For each pair of
candidate locations separated by less than 60 metres1, we allow
a potential radio link with probability 0.85. For the map after

1Chosen to lie well within the maximum range of the popular TmoteSky
sensor node [13]



Algorithm 3: Adaptive DORMS Algorithm
Result: N : node plan; P : path plan.
while there are unconnected terminals do

centre = Find Centre Location();
for each t ∈ τ do

pt =
Shortest Connectivity Path(t, centre,GC);

for each t ∈ τ do
ta = Find adjacent terminal(t);
G′ = bounded graph(pt, pta, centre,GC);
Tt = SteinerM inimalT ree(t, ta, centre);

while any t ∈ τ is not in L do
T = Find Smallest tree for t();
Add T into L;

find P , the cheapest path to the nearest node in N ;

damage, we randomly select a of the candidate locations to
be live nodes, and select t candidate locations to be terminals
(the locations for which we require sensor data). We randomly
pick an additional b% of the total squares to be blocked due
to obstacles, and remove r% of the radio links. For this paper,
we ensure the problems are feasible - i.e. that there is a set
of reachable locations for which nodes would reconnect all
terminals. In each case, the algorithms only probe a square
that the agent intends to move into. For the local repair, the
cost threshold is α = 4, and the live node threshold is β = 3
for all experiments. In all experiments, we set a = 15 live
nodes and the results are the average of 50 runs at each data
point. We study the effects of different numbers of candidate
locations and different levels of damage.

First, we consider the effect of varying the number of
candidate locations for nodes. We fix the size of the grid at
45×45, vary c, the number of candidates, from 50 to 150, and
fix the number of terminals, t, to 5 and the damage level to
(b = 10%, r = 10%), thus creating problems with increasing
connectivity graph density. The results are shown in Figure 3
and Table I.

The repair methods incur approximately 13% extra node
cost, for both path priority and node priority heuristics. The
path priority approach is suprisingly close in node costs to the
node priority approach, and full replanning for path priority
results in a lower node cost than node priority with local repair.
For mobility costs, the local repair method is worse than the
full replanning method for path priority. Both methods for
path priority are better than the methods for node priority. As
the graphs become more dense, there is little impact on node
costs, but the path costs drop. This appears to be because
the increased density does not lower the transmission range,
and so similar length multi-hop radio paths will be required,
and thus a similar number of nodes, but there will be more
choice in where to place them, and so the path costs can be
reduced. The DORMS-AD approach is consistently poorer on
both measures, with up to 50% higher costs compared to the
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best heuristic in each case.

50 100 150
dorms-AD 0.202 0.991 10.922
path-replan 0.267 3.345 41.541
path-repair 0.116 0.863 9.935
node-replan 0.186 1.741 24.504
node-repair 0.107 0.897 12.578

TABLE I
RUNTIME (SEC) VS NUMBER OF CANDIDATE LOCATIONS.

Since the application requires real-time repair, the runtime
of the different methods is important, and results are shown
in I. The local repair methods in both approaches are faster
than the full replanning methods. The path approach is slower
than the node approach respectively. In the node priority
approach, the full replanning takes closer to 100% more time
to complete, compared to the local repair, while in the path
priority approach, the full replanning takes approximately
100% to 400% more time to complete, compared to the local
repair. Further, for all methods, we see a significant impact
from the increased density of the candidate locations, with
approximately an order of magnitude increase for each addi-
tional 50 nodes. DORMS is competitive on runtime, becoming
the second fastest algorithm for the most dense problems.

Second, we vary the number of terminals, from 5 to 15,
and fix the number of candidate locations, c, to 100 and the
damage level to (b = 10%, r = 10%). The results are shown



in Figure 4 and Table II. As expected, all the costs increase
with the increasing number of terminals to be connected.
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5 10 15
dorms-AD 0.917 1.73 2.985
path-replan 3.473 5.985 10.313
path-repair 0.853 1.410 2.206
node-replan 1.727 2.938 4.263
node-repair 0.832 1.411 2.251

TABLE II
RUNTIME (SEC) VS NUMBER OF TERMINALS.

We now vary the damage level from (10%, 10%) to
(30%, 30%), fixing the grid at 45 × 45, candidate locations
at 100 and number of terminals at 5, creating problems in
which the agent is expected to revise its plans more often.
The results are shown in Figure 5 and Table III.

10%,10% 20%,20% 30%,30%
dorms-AD 0.889 1.055 1.607
path-replan 3.404 5.142 8.602
path-repair 0.885 0.916 1.127
node-replan 1.708 2.061 2.431
node-repair 0.928 1.016 1.249

TABLE III
RUNTIME (SEC) VS DAMAGE LEVELS.

The node costs rise as it requires more nodes to compensate
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for heavier damage. The repair methods incur approximately
20% extra node cost, for both path priority and node priority
heuristics. For the mobility costs, the node priority heuristics
now produce path plans that are competitive with path priority
local repair, and within 10% of path priority with full replan-
ning. The full replanning for path priority remains the best for
all cases. The mobility costs are rising as the damage increases
- the number of candidate locations decreases, and there are
more obstacles blocking the route - and the lack of knowledge
of the true mobility problem counteracts the benefits of the
path priority approach. For runtime, the difference is clear,
and the path priority with full replanning requires the longest
runtime, due to the repeated requirement to recompute the
metric closure graph.

We note that the representation of the physical area may
have an impact on the results - large grid squares may obscure
details of the obstacles and thus available paths, but are easier
for computation. To assess the impact of this, we vary the
granularity of the grid. First, we generate a problem for a
300mx300m area with a 45x45 grid (square size 6.66m),
100 candidate locations, 5 terminals, and damage level (20%,
20%). We then fix the physical locations for candidates,
terminals, blocked squares, we also fix the radio links before
and after damage for those candidate locations. We model
the area into finer grids of 100x100, 150x150, 200x200 and
300x300 with the square size of 3m, 2m, 1.5m and 1m
respectively. The results are shown in Figure 6, where we



know plot mobility cost as the path distance. As expected,
the number of required nodes show only minor variation. In
this experiment, the mobility costs by number of moves (from
square to square) obviously increases with the finer grids.
However, we are interested of the distance travelled by the
agent when we reduce the size of the grid square. The mobility
costs w.r.t distance travelled are significantly reduced as the
grid granularity increases. This is because we are able to find
paths between obstacles which would have been blocked with
the larger squares. The runtimes IV increase for all algorithms
as the finer grids mean more options to explore. The node
priority approach appears to be most heavily impacted by the
increase granularity. We notice the runtime of local repair for
path priority is longer than that of full replanning. We believe
this phenomenon is because the local repair keeps the current
plan unless it discovers significant changes, and conservatively
keeping the same target even when the environment is changed
will force the agent to always looks for different paths to same
targets and this might get worse due to damage.
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Fig. 6. varying the granularity of the mobility grid

Finally, the mobility costs are associated only with the
distance travelled. For the application, one of the most im-
portant objectives is the time required to complete the repair.
Elements of the process that contribute to the total time include
movement along the path, probing, placing each node, and
also the time to plan and replan during execution. We assume
that it takes the agent 30s to position a new node. We then
consider two scenarios, one representing a small robot which

45x45 100x100 150x150 200x200 300x300
dorms-AD 1.116 1.864 8.076 25.297 140.144
path-replan 5.157 6.147 8.327 21.775 97.639
path-repair 0.890 1.728 6.540 19.560 101.346
node-replan 1.872 4.335 15.505 46.725 247.647
node-repair 0.999 2.380 9.544 26.594 156.865

TABLE IV
RUNTIME (SEC) VS GRID GRANULARITY LEVELS.

moves at 0.1ms−1, and the second representing a larger vehicle
moving over rough terrain at 4ms−1. For the 45 × 45 grid
in the 300m × 300m area, the individual squares are of size
6.66m × 6.66m. The results are shown in Tables V and VI
and Figure 7.

(a) varying number of candidate locations

50 100 150
dorms-AD 10165.135 10995.857 10899.655
path-replan 8578.667 8511.878 8019.941
path-repair 8923.116 8926.930 8572.335
node-replan 9357.120 9222.874 8987.971
node-repair 9177.040 9146.163 8953.244

(b) varying number of terminals

5 10 15
dorms-AD 10995.784 16610.796 19284.185
path-replan 8512.006 13226.919 14899.113
path-repair 8926.919 14054.944 15605.873
node-replan 9222.860 14220.271 16729.129
node-repair 9146.099 14219.411 16771.184

(c) varying damage levels

10%,10% 20%,20% 30%,30%
dorms-AD 10986.755 13826.722 20026.007
path-replan 8511.937 10720.676 15661.069
path-repair 8926.952 11381.427 17081.394
node-replan 9222.842 11730.484 17348.764
node-repair 9146.195 12503.394 18277.449

TABLE V
TOTAL RESTORING TIME (SEC) WITH SPEED V=0.1MS−1

For the slow moving agent (Table V), the path priority
approach is faster, since the extra runtime is recovered by
shorter paths for the agent. In all cases, path priority with
full replanning is the fastest algorithm, despite having almost
an order of magnitude higher runtime. DORMS is consistently
slower. For the fast agent (Table VI), the path priority with full
replanning is unable to compensate for the longer runtime and
extra nodes in some cases. Node priority becomes the fastest
algorithm. As the movement speed of the agent increases, the
time taken to place the nodes becomes more significant, and
the node priority approaches benefit from their lower node
costs and faster runtime.

Figure 7 shows the results for the granularity of the mobility
grids. Surprisingly, in almost all cases, full replanning is faster
than or competitive with local repair, even in the high damage
cases. With the slow moving agent, the total restoring time for
all methods almost consistently reduces with the finer grids,



(a) varying number of candidate locations

50 100 150
dorms-AD 585.435 666.057 692.055
path-replan 486.167 492.178 524.141
path-repair 518.616 539.330 553.935
node-replan 471.620 462.174 487.271
node-repair 502.140 505.063 511.044

(b) varying number of terminals

5 10 15
dorms-AD 665.984 1004.296 1234.985
path-replan 492.306 749.519 948.813
path-repair 539.319 836.544 997.773
node-replan 462.160 756.171 947.129
node-repair 504.999 795.611 986.584

(c) varying damage levels

10%,10% 20%,20% 30%,30%
dorms-AD 656.955 735.722 919.907
path-replan 492.237 557.926 694.169
path-repair 539.352 606.594 753.394
node-replan 462.142 545.067 690.564
node-repair 505.095 630.060 778.149

TABLE VI
TOTAL RESTORING TIME (SEC) WITH SPEED V=4MS−1
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Fig. 7. Total restoring time with different mobility grids

and the path-replan always remains the fastest. For the fast
moving the agent, the restoration time starts to drop with finer
grids, but then starts to rise again. This is because the time
taken to place nodes is more significant, and so the shorter

path length cannot compensate for the increased runtime. We
note that for the 300x300 grid, there is no benefit in restoration
time over the 45x45 grid, although the total distance travelled
will be reduced.

The experiments quantify the trade-off between the costs
of using additional nodes and the total restoring time, and
thus offer guidance to network repair operators in selecting a
specific strategy. In all cases, the node-replan heuristic always
offers the lowest node costs and this algorithm would be
a good choice for applications where cost dominates, for
example where nodes may be expensive. In other situations
the time to restore the network may be a greater consideration,
in which case the path-replan is most suitable.

VII. CONCLUSION

We have proposed a solution for the problem of connectivity
repair for damaged wireless sensor networks, in which the
repairing agent must discover the damage autonomously. We
consider heuristic approaches, and compare the use of full
replanning when damage is discovered to local repair of the
immediate path plan. The full replanning approach produces
better quality plans, but at the cost of sometimes significantly
higher runtime, particularly where the connectivity graphs are
dense or the damage is extensive. We also assess the total time
to repair, and we demonstrate that the full replanning can be
more efficient, particularly when the agent is slow moving, or
where it can reduce the high costs of repair actions.

For future work, we are developing local greedy heuristics,
to further explore the tradeoff between cost and repair time.
We will also consider distributed algorithms, allowing collab-
oration between multiple agents and sensor nodes. Finally, we
aim to tackle the situation where the network may suffer from
ongoing damage during the repair process.
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