
www.elsevier.com/locate/knosys

Knowledge-Based Systems 20 (2007) 160–169
Managing restaurant tables using constraints

Alfio Vidotto a,*, Kenneth N. Brown a, J. Christopher Beck b

a Cork Constraint Computation Centre, Department of Computer Science, University College Cork, 14 Washington Street West, Cork City, Ireland
b Toronto Intelligent Decision Engineering Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, Canada

Received 11 October 2006; accepted 16 November 2006
Available online 8 December 2006
Abstract

Restaurant table management can have significant impact on both profitability and the customer experience. The core of the issue is a
complex dynamic combinatorial problem. We show how to model the problem as constraint satisfaction, with extensions which generate
flexible seating plans and which maintain stability when changes occur. We describe an implemented system which provides advice to
users in real time. The system is currently being evaluated in a restaurant environment.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Constraints; Changes; Uncertainty; Restaurant management
1. Introduction

Effective table management can be crucial to a restau-
rant’s profitability – inefficient use of tables means that
the restaurant is losing potential custom, but overbooking
means that customers are delayed or feel cramped and
pressured, and so are unlikely to return. In addition, cus-
tomer behaviour is uncertain, and so seating plans should
be flexible or quickly reconfigurable, to avoid delays. The
restaurant manager is faced with a series of questions.
Should a party of two be offered the last four-seater table?
For how long should we keep a favourite table for a regular
customer? Should a party of four be offered a table for 8
p.m.? If no table is available at 7 p.m., what other times
should be offered? When a party takes longer than expect-
ed, can we re-assign all diners who have not yet been seated
to avoid delays? When a party does not appear, can we
re-assign all other diners to gain an extra seating? In Com-
puter Science terms, table management is an online
constrained combinatorial optimisation problem – the
restaurant must manage reservations, and manage unex-
0950-7051/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.knosys.2006.11.002

* Corresponding author. Tel.: +353 21 4904444; fax: +353 21 4255424.
E-mail addresses: av1@student.cs.ucc.ie (A. Vidotto), k.brown@

cs.ucc.ie (K.N. Brown), jcb@mie.utoronto.ca (J.C. Beck).
pected events in real-time, while maximising the use of its
resources.

In this paper, we describe an implemented solution to
the restaurant table management problem which helps
managers to answer the above questions. The solution is
based on constraint programming, and handles both flexi-
bility and stability. The system we describe is currently
being evaluated in a restaurant. The remainder of the paper
is organised as follows. Section 2 presents more details of
the table management problem, and describes one particu-
lar restaurant. Section 3 reviews the necessary elements of
constraint programming. Section 4 presents a basic con-
straint model and search algorithm. Section 5 extends the
model to represent flexibility, and to search for flexible
plans, while Section 6 describes our approach to finding
stable plans. Section 7 presents the user interface for our
implemented system. Finally, Section 8 describes conclu-
sions and future work.
2. Restaurant table management

Eco [1] is a popular medium-size restaurant in Douglas,
Cork City, with a high turnover seven days a week. It was a
pioneer in computer and Internet solutions, first offering
email booking in 2000. The restaurant has 23 tables,

mailto:av1@student.cs.ucc.ie
mailto:k.brown@ cs.ucc.ie
mailto:k.brown@ cs.ucc.ie
mailto:jcb@mie.utoronto.ca

Fig. 1. Layout of the restaurant Eco.

A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169 161
ranging in size from 2 to 8 (Fig. 1). Some of the table
capacities depend on the state of other tables: for example,
tables 2 and 15 can both seat 6, but when one is occupied
by 5 or 6 diners, then the other can seat at most 4. The
tables can also be reconfigured: for example, the 2-seater
tables 21 and 22 can be joined to accommodate 3–5 diners.
The maximum party size that can be seated at a conjoined
table is 30. There are over 100 different possible restaurant
configurations, and thus the restaurant capacity ranges
from 85 to 94. An evening session in the restaurant begins
at 4 p.m., and the last party should be seated by 10:30 p.m.
As a guide, the restaurant aims to have between 190 and
210 covers (individual diners) each evening – fewer than
that, and the tables are not being well utilised; more than
that, and the kitchen will be stretched to provide the food
on time. Table management in Eco, as in most restaurants,
has two distinct phases: booking and floor management.

In the booking phase, the booker must negotiate start
times with customers to ensure that customers’ require-
ments are satisfied, while maintaining a flexible table
assignment that maximises the chances of being able to seat
the desired number of covers. Typically, the booker will
allocate specific tables to each booking request, and these
rarely change; when a request cannot be accommodated
on the current booking sheet, either the customer must
be persuaded to accept another time, or the request must
be declined. It is possible, however, that a reallocation of
diners to tables would allow the new request to be accept-
ed. In some cases, in order to maintain a balanced plan, a
restaurant will decline a booking, or suggest a different
time, even if a table is available. In addition, the booker
must estimate the expected duration of the meal, based
on the characteristics of the booking (including time, day
of the week, and party size).

In floor management, the objectives are different. The
evening starts with a partially completed booking sheet.
The customers have been given definite times, and the
aim is now to seat the customers with minimum delay, to
modify the seating plan when changes happen, and to
accept or decline ‘‘walk-ins’’ – customers arriving at the
restaurant without a booking. The main challenge is that
individual customers are unpredictable – they may arrive
late, they may not arrive at all, they may take longer or
shorter than expected, they may change the size of their
party, and they may arrive believing a booking has been
made when none has been recorded. The floor manager
must make instant decisions, balancing current customer
satisfaction with expectations for the rest of the evening.

The initial problem is to construct an interactive soft-
ware tool, which assists restaurant staff in both the booking
and floor management phases. As a research problem, our
goal is to evaluate whether constraint programming tech-
niques can provide support for the dynamic and uncertain
aspects of the problem. If the research prototype is success-
ful, a new tool will be developed, and incorporated into
customer relationship management software.

3. Constraint programming

A Constraint satisfaction problem (CSP) is defined by a
set of decision variables, {X1,X2, . . . ,Xn}, with correspond-
ing domains of values {D1,D2, . . .,Dn}, and a set of con-
straints, {C1,C2, . . . ,Cm}. Each constraint is defined by a
scope, i.e. a subset of the variables, and a relation which
defines the allowed tuples of values for the scope. A state
is an assignment of values to some or all of the variables,
{Xi = vi, Xj = vj, . . .}. A solution to a CSP is a complete
and consistent assignment, i.e. an assignment of values to
all of the variables, {X1 = v1, X2 = v2, . . ., Xn = vn}, that
satisfies all the constraints. The standard methods for solv-
ing CSPs are based on backtracking search interleaved with
constraint propagation. An introduction to constraint pro-
gramming can be found in [2], while [3] surveys recent
research.

For search, the order in which variables and values are
tried has to be specified as part of the search algorithm,
and has a significant effect on the size of the search tree.
The standard variable ordering heuristic chooses the

162 A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169
variable with the smallest current domain, or the smallest
ratio of domain size to the number of constraints acting
on the variable. For an instance of a CSP, a single run with
a single ordering heuristic can get trapped in the wrong
area of the search tree. To avoid this, randomised restarts
have been proposed [4] – for a single heuristic, if no result
has been found by a given time limit, the search is started
again. Tie breaking and value ordering are done randomly,
and so each restart explores a different path. Similarly,
algorithm portfolios [5] interleave a set of randomised algo-
rithms. In [6] search robustness is enhanced by combining
multiple variable and value ordering heuristics with time-
bounded restarts.

In constraint propagation, the domains of unassigned
variables are reduced by removing values which cannot
appear in any solution that extends the current state. For
example, if we have the constraint X < Y, and X and Y’s
domains are {2,3,4,5} and {1, 2,3,4}, respectively, then
the values 4 and 5 can be removed from X’s domain, and
1 and 2 from Y’s domain, since none of those values could
possibly satisfy the constraint. Reducing the domains
reduces the size of sub-tree that has to be explored. A large
part of the success of constraint programming tools is due
to efficient domain filtering algorithms for specialised con-
straints; e.g. [7].

Dynamic problems are problems that change as the solu-
tion is being executed – for example, in scheduling, a
machine may break down, or a scheduled action may be
delayed due to the late arrival of supplies. Dynamic CSPs
[8] model changes to problems. The aim may be to mini-
mise the effort to find new solutions, or to minimise the dis-
tance between successive solutions. Attention has recently
turned to problems where we have some model of what
the changes might be. Both [9] and [10] reason about the
probability of future events: [9] searches and propagates
constraints over a tree of possible futures; [10] samples pos-
Variables: {P1, P2, P3, P4, P5}
Domains: D1={T1, T2, T3, T4}, D2={T2, T4}, D3={T2,
Constraints:

C1 . alldifferent([P1,P2,P3])
C2 . alldifferent([P3,P4,P5])
C3 . (P2==T2) => (P1 ≠ T3, P3 ≠ T3)
C4 . (P3 ≠ T3) || (P2 ≠ T4)
C5 . 3 + (P2==T2) ≤

≤
≤

 4
C6 . P1.size + P2.size + P3.size 12
C7 . P3.size + P4.size + P5.size 12
C8 . P4 < P5

Fig. 3. CSP model for th

Party Size Start End Ta
P1 2 0 2
P2 4 0 2
P3 3 1 3
P4 2 2 4
P5 2 2 4

Fig. 2. Problem instantiation at time 0 (le
sible futures, and then selects an action which minimises
regret over the samples. [11] searches for optimally stable
solutions. They start with the original solution and itera-
tively check whether reassigning one variable, two vari-
ables, etc., is sufficient to solve the new problem. [12]
proposes special stability constraints. Some approaches
aim to prevent instability by providing robust solutions.
In [13] flexible solutions to scheduling problems are
achieved by adding slack to activity durations. Super solu-
tions [14] are solutions that guarantee a limited number of
repairs in case of changes.

4. Modelling the static table management problem

As discussed in Section 2, the restaurant problem is
inherently dynamic, but we can view it a sequence of static
problems, each linked by a set of changes. In this section,
we describe our representation of the static problem as a
CSP, and discuss our algorithm for solving it.

We model table management as a scheduling problem,
viewing tables as resources, and parties as tasks. Each party
has a fixed start and end time, and a size. Each party must
then be allocated to a table (or set of tables), such that the
table is large enough for the party, and such that no two
parties that overlap in time are allocated to the same table.
Each party must be seated without interruption on the
table. The problem is to determine whether or not a set
of parties can be seated, and to provide a feasible seating
plan if there is one. Despite having fixed start and end
times, the underlying scheduling problem is NP-complete
[15]. Fig. 2 shows a problem instance with five parties (left)
and a possible allocation (right), where tables T2 and T3

have been joined for the first two time slots.
To represent this as a CSP, we model the parties as deci-

sion variables, and the tables as the values to be assigned.
The detailed constraint model is generated automatically
T3, T4}, D4={T1, T2, T3, T4}, D5={T1, T2, T3, T4}

e problem of Fig. 2.

ble[size] 0 1 2 3
T1[2] P1 P4
T2[3] P5
T3[3]

P2

T4[4] P3

ft); and a possible seating plan (right).

A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169 163
from a template and from details of the restaurant. Fig. 3
shows the resulting model for the simple problem of
Fig. 2. The variables P1, P2, P3, P4, and P5 can take values
from the domains D1, D2, D3, D4, and D5 respectively.
Since T3 can be joined onto T2 to give a capacity of 6, T2

appears in D2. Constraints C1 and C2 ensure that any par-
ties overlapping in time use different tables. C3 ensures that
if the extra capacity of T2 is required, then T3 cannot be
assigned simultaneously (P2 is the only party that could
require the increased capacity). C4 is an extra constraint
that ensures that T3 and T4 cannot both be fully occupied
at the same time (which could only happen if they are
assigned P3 and P2 respectively). C5 ensures that in timeslot
1, the number of usable tables is not less than the number
of parties, where the number of usable tables is decrement-
ed each time two tables are joined. C6 and C7 similarly
ensure that the number of seats is not less than the number
of diners. For this example, C5, C6 and C7 are always true,
but are shown here for illustration. Finally, C8 breaks a
symmetry in the problem, and ensures that an ordering is
forced between pairs of equivalent parties.

Restaurant table management is a real-time problem –
neither the booker nor the floor manager can wait for an
exhaustive search before replying to a customer. There-
fore, we impose a time limit on each search, and if no seat-
ing plan is found within that limit, we report no solution.
Even with the time limit, though, solvers can give widely
varying results depending on the particular search heuristic
used. Initial tests showed that search based on a single
heuristic may solve some instances quickly, but can be
too slow on others, exceeding the time limit. Different heu-
ristics tried over the same set of instances showed different
partitions between hard and easy instances. However,
there were very few instances that none of the heuristics
could solve.

Therefore, we devised a restart approach with multiple
different ordering heuristics, and an increasing time limit
for each set of restarts. This multi-heuristic algorithm
(MH) was described in [6], where we demonstrated the ben-
efit, in terms of efficiency and robustness, of the approach.
The pseudocode for the algorithm is shown below.

while Solve(heuristic(i),limit) == false
limit = Increase(i,limit)

if i == n then i = 1

else i = i + 1
Solve(.,.) takes heuristic i (composed of a variable and a
value ordering), and applies standard search up to a time
limit. If it finds a solution, or proves there is no solution,
it returns true; otherwise it hits the time limit and returns
false. Increase(.,.) is the time limit function and takes the
form Increase (i, limit) = limit*10 if i = n; limit otherwise.
MH thus tries each ordering in turn for a limited time,
restarting the search after each one, and gradually increas-
ing the time limit if no result was found. This is similar to
the way iterative deepening [16] explores each branch to a
certain depth, and then increases the depth limit, and is
similar to randomised restarts, except we use different
ordering heuristics. In total, we have 11 different variable
ordering heuristics, including versions of min-size-domain
and lexicographic, and including orders based on increas-
ing and decreasing party size and start time. We have 3 dif-
ferent value orderings (increasing table size, decreasing
table size, and lexicographic), giving a total of 33 different
heuristic combinations.

Using this model configuration we are able to solve the
static problem efficiently. Instances representing a full
booking sheet of 200 covers can be solved in less than
0.5 s on average (examples will be shown in Section 7).
Note that the real problems are typically smaller than this,
either because we build the plan incrementally, or when we
react to changes, some diners have already started and can-
not be moved.

5. Flexibility and optimisation

The previous section described a satisfaction problem:
i.e. it does not consider optimisation, but simply returns
the first allocation it finds, or reports failure. However,
there are likely to be many possible seating plans, and some
will be significantly better than others in terms of efficient
use of the tables, and thus in their ability to accept future
bookings. In this section we describe a measure to estimate
the quality of a solution, and an algorithm which uses that
measure to search for seating plans of increasing quality.

Ultimately, seating plans should be assessed by the final
number of covers achieved. Therefore, whether we are in
the booking phase or in the floor management phase, we
should maintain a seating plan aimed at maximising the
covers. Thus after each change, we should be searching for:

argmaxseating plan½current coversþ expected future covers�
ð1Þ

As the number of current covers is known and constant, we
focus on the expected future covers. We do not have well-
founded distributions of the new requests we can expect,
and so our measure of expected covers must be an approx-
imation. Thus we introduce a heuristic measure, flexibility,
and search for:

argmaxseating plan½flexibility� ð2Þ

The flexibility measure is based on the number of usable
start times for future requests. Let TB be the number of ta-
bles, and T be the time horizon discretised in 15-min units.
We superimpose a grid G of size TB · T over the seating
plan. For each grid square (table, time-unit) in G that cor-
responds to an unoccupied slot we compute the number of
time units available before the table becomes occupied
again. Squares with numbers less then a standard dinner
duration d are ignored, as they do not represent usable
start times. We then compute flexibility as follows:

flexibility ¼ Rtb2TB;tu2T ððG½tb; tu�P dÞ � sizeðtbÞÞ ð3Þ

0 1 2 3 4 5 6 7 8
T1[2] 1 4 3 2 1
T2[2] 1

P1[3]
4 3 2 1

T3[3] 8 7 6 5 4 3 2 1

 (i)

0 1 2 3 4 5 6 7 8
T1[2] 8 7 6 5 4 3 2 1
T2[2] 8 7 6 5 4 3 2 1
T3[3] 1 P1[3] 4 3 2 1

 (ii)

Fig. 4. Flexibility maps for two possible allocations.

164 A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169
The term (G[tb, tu] P d) takes value 1 when the pair (tb, tu)
represents a usable start time, and 0 otherwise, while
size(tb) is the size of table (tb).

As an illustration, consider Fig. 4, which shows a restau-
rant with 3 tables: T1 and T2 have capacity 2, T3 has capac-
ity 3, and T1 and T2 can be joined to give a capacity of 4.
The evening is divided into 8 time units. Party P1 (size 3,
start 1, end 4) has two possible allocations, shown in (i)
and (ii). The remaining grid cells show the number of time
units available. If we assume the standard dinner duration
is d = 3, then we count only squares with value at least 3,
and we obtain: flexibility (i) = (2 · 2) + (2 · 2) + (3 · 6) =
26, and flexibility (ii) = (2 · 6) + (2 · 6) + (3 · 2) = 30,
and thus plan (ii) would be preferred. Note that the values
for T3 are given a higher weight, since it can seat more
customers.

For each problem instance, we then perform a branch-
and-bound search, optimising for flexibility. Inside the
search, we again apply the multi-heuristic approach. The
benefit resulting from applying this optimisation criterion
is illustrated in Section 7 (Figs. 9, 10 and 12).

6. Minimising disruption

The constraint satisfaction and optimisation models
described above do not consider the number of table real-
locations from one plan to the next – their aim is to find
any (improving) plan. During the floor management phase,
however, too many changes causes confusion in the restau-
rant, making it difficult for staff to understand and evaluate
each new solution. In particular, frequent changes in the
table configurations will annoy both staff and customers.
Therefore, the table management system should, when pos-
sible, try to maintain the stability of the plan, and should
prefer new plans with few changes.

Therefore we extend the previous models, so that when
changes occur, we search for new solutions in two phases:
first, we search in the neighbourhood of the previous solu-
tion, placing a limit on the number of changes allowed; sec-
ond, if no acceptable plan is found in the first phase, we
allow all allocations to float, and we search for any new
solution. The pseudocode is shown below.

solution = original

discrepancy = 0
while ((timer < timeout_1) & & (discrepancy <
discrepancyMax))

if Solver.solve(CSP,MH,timeout_1,original,
discrepancy) == true
solution = getSolution()

return solution

else discrepancy += 1

if Solver.solve(CSP,MH,timeout_2,original,
any) == true

solution = getSolution()

return solution

The number of allowed changes from the original solu-
tion is represented by the variable discrepancy. The initial
discrepancy limit is set to 0: i.e. we first check to see if
the new event can be integrated into the original solution
without any further changes. If not, the discrepancy limit
is incremented until either a solution is found, or the limit
reaches discrepancyMax. In the latter case, a final search is
carried out for a new solution with no limit on the number
of changes. The solve procedure is extended to include the
discrepancy limit, which is posted as a constraint on the
solution. A similar procedure is applied when searching
for flexible solutions, which allows the user to trade-off sta-
bility for flexibility. Section 7 (Fig. 12) will illustrate how
this is performed.

7. The integrated table management adviser

The models and algorithms described in the previous
three sections have been implemented using Ilog Solver
6.0. Access to the models is provided by a graphical user
interface, which also presents other relevant information
regarding the state of the restaurant or booking sheet,
and allows the user (booker or floor manager) to control
the table allocation process, switching between manual
operation, basic solving, optimising for flexibility, or main-
taining stability.

A screen shot of the interface is shown in Fig. 5, display-
ing one possible seating plan on one evening in May 2006.
The list on the left side displays in alphabetical order the
parties (with time, name and table) which are allocated
on the plan. New booking requests are processed by editing
a form, and selecting time, party size, and expected dura-
tion. The user has the option to specify or forbid a table
for the new party; otherwise the system will use any suit-
able table.

Fig. 6 represents the seating plan accommodating the
new request (Keane). It also shows the total covers, the
covers partitioned in 3 periods, the total parties, the num-
ber of parties seated at oversized tables, and the number of
changes from the previous plan. Note that O’Grady at
5:30, Buckley at 6:00, O’Driscoll at 7:00 and Counihan at
9:30 are all seated at conjoined tables.

By default, the system does not allocate parties of 2 into
four-seater or larger tables, but the user can override this
and specify a preference for a more comfortable table. In

Fig. 5. User interface, displaying a seating plan and a new booking request.

Fig. 6. Seating plan with the new request accommodated into table 4.

A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169 165
Fig. 7, party Keane has been moved to table 11, which is
for 5 people. The operation required 3 changes from the
previous table allocation.

During booking, availability requests are common – e.g.
‘‘when can you seat a party of 4?’’ The user can process
such requests using the same booking form, by selecting
‘‘not specified’’ in the ‘‘Time’’ box. Fig. 8 shows the answer
provided by the system for a request for 4 people, for the
set of parties illustrated in Fig. 7. The message also groups
the available times by the available duration. This is an
important information, since the booker may be able to sell
the table for one hour at 7 o’clock if the customer is only
asking for a quick main course. The procedure that checks
the availability is again based on the MH algorithm.

Fig. 9 (top) shows a reallocation of the plan in Fig. 7
that accommodates a new party Meane at 9:00 in table 8.
Note that in this case the number of changes necessary to
find a new plan is higher, i.e. the system performed a more
complex operation. Fig. 9 (bottom) represents a first step in
a search for a more flexible allocation. The new plan has
been obtained pressing the ‘‘Improve’’ button (Fig. 5).
Note that there has been only one change from the
previous plan, with party Crowley (3 people at 6:00) moved
from table 6 (6-seater) to table 9 (4-seater). The increase in
the flexibility estimate is 16 (8 time units · 2 table
size saved), which may allow an extra 2-h dinner (8 time
units) for 2 people. The run time to obtain the change is
0.16 s.

The user can repeat the improvement process to find
more flexible seating plans. Fig. 10 (top) shows the plan
obtained after four iterations, and (bottom) the plan
obtained unlocking party Keane from table 11 (and after
three more iterations).

In both phases, we can observe the effect of our flexibil-
ity measure, which by increasing the number of usable start
times makes better use of tables, and reduces the unusable

Fig. 7. New seating plan after imposing a preference for party Keane.

Fig. 8. Message showing the availability for 4 people on the sheet of Fig. 7.

166 A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169
zones (empty squares) in between parties. The increase in
the flexibility estimate over Fig. 9 (top) is 68 and 96 for
Fig. 10 (top) and (bottom). This can be regarded as 3
and 5.5 times the (2 h · 2 people) improvement obtained
from the first step of Fig. 9-bottom. The run time from
Fig. 9 (bottom) to 10 (top) was 8.1 s, and from 10 (top)
to (bottom) was 1.01 s.

Fig. 11 shows an instant during the floor management
phase. The current time is represented by the vertical line
at 5.30 p.m. Party Keane (table 4) was due to finish, but
is going to be late, creating a conflict with the next party
Fennell. In this case, the user can edit Keane, extending
the duration from 1.30 h to 1.45 h, and ask the system to
search for a reallocation that avoids the conflict.

Fig. 12 (top) represents a first reallocation, while on the
bottom we see a seating plan after four improvement iter-
ations. We can again observe the benefit of the improve-
ment, with fewer unusable zones, and more possibilities
to seat extra parties. The four iterations have improved
the flexibility estimate by steps of 4, 5, 4, and 26, for a total
of 39, or �2.5 (2 h · 2 people) dinners. The number of
changes from the initial allocation was 2, 1, 3, and 36;
the last iteration gave a large improvement but required a
large change in the seating plan.

By default, the timeout for each improvement step is set
to 10 s, partitioned in 7 s for search with limited discrepan-
cy and 3 s for unlimited (or global) search. These limits are
configurable by the user.
The research prototype software discussed above is cur-
rently being evaluated in the restaurant. The main aim of
the evaluation is to determine whether constraint-based
methods could support a practical restaurant management
tool. Specifically, the evaluation will check that the
software:

(i) models the restaurant adequately;
(ii) provides acceptable seating plans in reasonable

time;
(iii) can join and separate tables correctly;
(iv) proposes flexible seating plans in reasonable time;
(v) reports quickly whether or not a booking request can

be accepted, and recommends sensible alternative
times for a booking;

(vi) provides useful advice when a seating plan has to be
reconfigured.

If the evaluation is positive (and first indications are
promising), then we will investigate commercial
development.

8. Conclusions and future work

In this paper we presented a constraint-based solution
for enhancing restaurant table management. We intro-
duced the table management problem, describing the main
issues concerning booking and floor management. We

Fig. 9. Adding party Meane (top), first flexibility improvement (bottom).

Fig. 10. Improvement after several steps, with Keane fixed (top), unfixed (bottom).

A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169 167

Fig. 12. Reallocation after a late finish (top), improvement after four iterations (bottom).

Fig. 11. An instant during floor management, with a late finish (Keane, T4).

168 A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169
presented a basic constraint model, which can be used to
solve the underlying static problem. We then described
two enhancements, which (i) optimise a flexibility measure,
and (ii) search for similar plans after a change occurs. The
flexibility measure is based on a weighted count of the pos-
sible start times for new bookings, and is intended to allow
more efficient use of resources. The search for similar solu-
tions minimises the number of changes to the seating plan,
and is intended to simplify floor management. We have
described the integrated system, which allows a user to con-
trol table allocation, while receiving advice from the under-
lying models. The system has been implemented, and is
currently undergoing trials in Eco restaurant.

Future work will focus on improving the flexibility mea-
sure, to take into account the expected distribution of
demand. Monday evenings, for example, show a noticeably
different pattern of dining from Friday evenings, and thus
the system should tailor its advice accordingly. Our first
approach will be to include weights in the flexibility mea-
sure, increasing the importance of availability at specific
times. Should the current evaluation trial prove positive,
we expect to begin a development phase. This will include

A. Vidotto et al. / Knowledge-Based Systems 20 (2007) 160–169 169
redeveloping the constraint models to ensure they are suit-
able for the operating environment, and redeveloping the
user-interface, based on the feedback from the evaluation.

Acknowledgements

This work is funded by Enterprise Ireland under grant
number SC/2003/0081. We are grateful for the problem
description, data and advice given by the Eco restaurant
in Douglas, Cork. The user interface was developed by
James Lupton, and supported by the Science Foundation
Ireland Overhead Investment Plan, 2005–2006. Finally,
we are grateful for the external liaison assistance of James
Little at Cork Constraint Computation Centre.

References

[1] <www.eco.ie/>.
[2] R. Dechter, Constraint Processing, Morgan Kaufman, 2003.
[3] F. Rossi, P. Van Beek, T. Walsh, Eds., Handbook of Constraint

Programming, Elsevier, 2006.
[4] C.P. Gomes, D.B. Shmoys, Approximations and randomization to

boost CSP techniques, Annals of Operations Research 130 (2004)
117–141.

[5] C.P. Gomes, B. Selman, Algorithm portfolios, Artificial Intelligence
126 (1–2) (2001) 43–62.

[6] A. Vidotto, K.N. Brown, J.C. Beck, Robust constraint solving using
multiple heuristics, in: Proc. of the Sixteenth Irish Conference on
Artificial Intelligence & Cognitive Science (AICS’05), 2005,
203–212.

[7] J.C. Régin, A filtering algorithm for constraints of difference in CSPs,
in: Proc. AAAI-94, 1994, 362–367.

[8] G. Verfaillie, T. Schiex, Solution Reuse in Dynamic Con-
straint Satisfaction Problems, in: Proc. AAAI-94, 1994, 307–
312.

[9] D.W. Fowler, K.N. Brown, Branching constraint satisfaction prob-
lems and Markov Decision Problems compared, Annals of Opera-
tions Research 118 (1–4) (2003) 85–100.

[10] R. Bent, P. Van Hentenryck, Regrets only! Online stochastic
optimization under time constraints, in: Proc. AAAI-04 (2004).

[11] Y. Ran, N. Roos, J. Van Den Herik, Approaches to find a near-
minimal change solution for dynamic CSPs, CPAIOR’02, in: Proc. of
the 4th International Workshop on Integration of AI and OR
techniques in Constraint Programming for Combinatorial Optimisa-
tion Problems, 2002, 373–387.

[12] A. Petcu, B. Faltings, Optimal solution stability in continuous-time
optimization, DCR-05, in: Proc. of the 6th International Workshop
on Distributed Constraint Reasoning, 2005, 207–221.

[13] A.J. Davenport, C. Gefflot, J.C. Beck, Slack-based techniques for
robust schedules, in: Proc. of the Sixth European Conference on
Planning (ECP-01), 2001.

[14] E. Hebrard, B. Hnich, T. Walsh, Robust solutions for
constraint satisfaction and optimization, in: Proc. of the
Sixteenth European Conference on Artificial Intelligence ECAI-
04, 2004.

[15] E.M. Arkin, E.B. Silverberg, Scheduling jobs with fixed start and end
times, Discrete Applied Mathematics 18 (1987) 1–8.

[16] R.E. Korf, Depth-first iterative deepening: an optimal admissible tree
search, Artificial Intelligence 27 (1985) 97–109.

http://www.eco.ie

	Managing restaurant tables using constraints
	Introduction
	Restaurant table management
	Constraint programming
	Modelling the static table management problem
	Flexibility and optimisation
	Minimising disruption
	The integrated table management adviser
	Conclusions and future work
	Acknowledgements
	References

