
Knowledge-Based Systems 22 (2009) 529–534
Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys
Wireless LAN load balancing with genetic algorithms

Ted Scully *, Kenneth N. Brown
Centre for Telecommunications Value-chain Research, Cork Constraint Computation Centre, Department of Computer Science, University College Cork, Ireland

a r t i c l e i n f o
Article history:
Available online 9 January 2009

Keywords:
Optimization
Genetic algorithms
Micro-genetic algorithms
WLANs
0950-7051/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.knosys.2008.10.008

* Corresponding author. Tel.: +353 87 6391184.
E-mail addresses: Ted.Scully@lit.ie (T. Scully), K.Br
a b s t r a c t

In recent years IEEE 802.11 wireless local area networks (WLANs) have become increasingly popular.
Consequently, there has also been a surge in the number of end-users. The IEEE 802.11 standards do
not provide any mechanism for load distribution and as a result user quality of service (QoS) degrades
significantly in congested networks where large numbers of users tend to congregate in the same area.
The objective of this paper is to provide load balancing techniques that optimise network throughput
in areas of user congestion, thereby improving user QoS. Specifically, we develop micro-genetic and stan-
dard genetic algorithm approaches for the WLAN load balancing problem, and we analyse their strengths
and weaknesses. We also compare the performance of these algorithms with schemes currently in use in
IEEE 802.11 WLANs. The results demonstrate that the proposed genetic algorithms give a significant
improvement in performance over current techniques. We also show that this improvement is achieved
without penalising any class of user.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The uptake in popularity of IEEE 802.11 wireless local area net-
works (WLANs) in recent years has been remarkable. WLANs are
now the most popular technology used to provide broadband ac-
cess to IP networks such as extended home networks and internet
access in public locations [17]. The proliferation of WLANs has re-
sulted in an ever-increasing number of end-users with heteroge-
neous quality of service (QoS) requirements. In addition these
users tend to congregate in certain areas of the network for various
reasons such as availability of favourable network connectivity,
proximity to power outlets and coffee shops [1]. Such behaviour
leads to congestion at particular areas within the network. Such
congestion creates an unbalanced load in the network and reduces
overall network throughput.

A WLAN typically provides a number of Access Points (APs) that
provide service to users in a particular geographical area. Users se-
lect access points based on the strongest received signal strength
indicator (RSSI) [17]. Thus although a congested area may be of-
fered service by several APs, if the users are clustered together,
they will tend to be connected to the same AP. The more users that
are connected to a single AP, the less bandwidth they will receive.
For example, in the simple scenario depicted in Fig. 1, all users are
connected to AP B because it has the strongest signal strength for
each user. The resulting system imbalance can be easily rectified
ll rights reserved.
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if users 1 and 3 migrate to AP A and users 5 and 6 migrate to AP
C. For the sake of illustration, we assume that the users depicted
in Fig. 1 have homogeneous demands.

The objective of this paper is to provide efficient algorithms for
solving the WLAN load balancing problem: distribute users
amongst a set of APs to maximise the average bandwidth per user.
Therefore, the algorithms will assign each user to an AP as opposed
to each user making that choice independently. Since users con-
nect to and disconnect from the network in real time, we are also
interested in efficiency with which the algorithms deliver effective
solutions.

We propose two genetic-based load balancing algorithms. The
first is a standard genetic algorithm (GA), which we refer to as
MacroGA, while the second is a micro-genetic algorithm, which
we refer to as MicroGA. In the context of the WLAN load balancing
problem, GAs are attractive as candidate solutions because of their
ability to discover good solutions rapidly in difficult high dimen-
sional problems. We evaluate, via simulations, the performance
of the GAs and demonstrate that they provide significant enhance-
ments over the standard RSSI approach and other popular load bal-
ancing mechanisms. Further, we demonstrate that they do not
achieve this by penalising any obvious class of user. The rest of this
paper is structured as follows. Section 2 discusses background
knowledge and motivates the use of genetic algorithms as poten-
tial solutions. Section 3 provides a problem description. Section 4
presents the implementation details of MicroGA and MacroGA. Sec-
tion 5 empirically analyses the performance of the proposed solu-
tions. Finally, conclusions are drawn and future areas of research
are identified in Section 6.
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Fig. 1. A basic IEEE WLAN configuration.
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2. Motivation and background knowledge

GAs are population-based meta-heuristic optimization algo-
rithms based on an analogy to biological evolution and have been
successfully applied to a broad range of real-world NP-Hard prob-
lems such as scheduling [13] and data-mining [11]. Standard GAs
generate a relatively large population of candidate solutions (there
may be several hundred) and iteratively evolve these solutions
over time. In contrast, a micro-GA algorithm has a small population
size that is periodically reinitialized. The idea of utilising a small
population GA was first proposed by Goldberg [9]. He evolved
the population using normal genetic operators until it reached a
nominal convergence, that is until each individual in the popula-
tion had the same or similar genotype. When convergence oc-
curred, the fittest individual from the population was copied into
a new empty population; the remaining places in the population
were filled by randomly generated individuals. The first compari-
son between standard GAs and micro GAs was performed by Krish-
nakumar [12]. A micro GA similar to that proposed by Goldberg [9]
was proposed and compared with a standard GA. The result dem-
onstrated that the micro GA actually outperformed the standard
GA on a number of problem sets. Subsequently, many other
researchers have developed applications of micro-GAs ranging
from multi-objective optimization [6] to constraint satisfaction
problems [7]. However, to the best of our knowledge, the current
paper is the first attempt to apply a micro-GA or even a standard
GA to the WLAN load balancing problem.

As previously mentioned the ability of GAs to rapidly discover
good solutions in difficult high dimensional problems make them
attractive as potential solutions to the load balancing problem,
which is an NP-hard problem [3]. Unlike many other local search
algorithms, GAs are intrinsically parallel, which allows them to
simultaneously explore different areas of the solution space. This
enables GAs to quickly identify good solutions and exploit syner-
gies between solutions. It is this ability to quickly produce good re-
sults that makes GAs an attractive prospect from a network
operators perspective, where calculating the optimal user/AP con-
figuration is often a time critical operation. This is particularly evi-
dent in dynamic networks that exhibit a high degree of user
mobility, which causes the optimal user/AP configuration to rap-
idly change over time. In an effort to satisfy end-user QoS require-
ments in such an environment, operators sacrifice solution
optimality in favour of the more practical option of obtaining good
solutions quickly.

Previous work on the WLAN load balancing problem can be sub-
divided into three categories: (i) user-controlled, (ii) network-cen-
tric and (iii) cell breathing. The user-controlled approach to load
balancing allows the end-user the autonomy to choose the AP to
which it wishes to connect. As mentioned in Section 1 the current
default method of association is RSSI. Some vendors have ad-
dressed the limitations of RSSI by incorporating load balancing fea-
tures into network drivers and firmware for APs and wireless cards
[5]. Each AP broadcasts the number of users which it currently
serves to all users within its signal range. A user within range of
several APs will subsequently connect to the AP with the least
number of users. This technique is commonly referred to as least
loaded first (LLF). We use LLF as one of the benchmark algorithms
against which we evaluate the proposed algorithms.

A number of other user-controlled techniques have been pro-
posed in literature that aim to improve load balancing in WLANs.
Typically, these techniques consist of a (weighted) function that
incorporates multiple metrics such as the RSSI, LLF and other mea-
sures of link quality [8,15]. The distributed nature of user-con-
trolled techniques make them attractive from a load balancing
perspective. There is no single point of failure. However, user-con-
trolled techniques are limited in that each user views the connec-
tion problem from its own perspective. Consequently, an optimal
network configuration cannot be guaranteed. This assertion is sup-
ported by the empirical results in Section 5.

Network-centric load balancing searches for the set of user/AP
connections that optimises some measure of network performance
(typically network throughput). This category of load balancing al-
lows for complete control of user assignment and so it can realis-
tically pursue an optimal solution. A number of network-centric
algorithms have been proposed in the literature [3,4,16]. Each of
these techniques demonstrated significant improvements over
the standard RSSI approach. However, they are computationally
heavy and unlike the anytime genetic algorithms these approaches
are not applicable to the time critical network environments ad-
dressed in this paper. The algorithms proposed in this paper fall
into the network-centric load balancing category. The application
of evolutionary techniques to the WLAN load balancing problem
has not yet been investigated.

Finally, cell breathing techniques modify the dimensions of an
AP cell to control user/AP association. An AP can change the power
at which it broadcasts its signal, thus increasing or decreasing the
number of users that may select it. It is an interesting and worth-
while approach to load balancing that has received significant re-
search attention over the last few years [2,10]. Unlike many user-
controlled and network-centric load balancing techniques, cell
breathing does not require clients to possess appropriate wireless
cards. Client side software does not need to be modified and users
can continue to utilise the standard RSSI approach. The drawback
of cell breathing is that it does not provide the level of fine-grained
control that is offered by network-centric algorithms. For example,
an AP cannot exclude a user at distance d from the AP without also
excluding all users that are at a distance of d or greater from the AP.
3. Problem description

We consider a problem environment consisting of an ordered
sequence of m access points A ¼ ha1; a2; . . . ; ami and n users
U ¼ hu1;u2; . . . ;uni. Each AP transmits an omni-directional signal
with a maximum transmission range of 150 m. The APs are ar-
ranged in a grid and are separated by a uniform distance of
100 m. A number of factors affect the bit rate that a user ui receives
from an AP at . One of the primary factors is the distance between ui

and at . The further ui’s distance from ai, the smaller its achievable
bit rate. We assume that the maximum bit rate of a user within
50 m of the AP is 11 Mbps and we refer to this area as zone1. A user
between 50 and 80 m is in zone2 and can obtain a maximum of
5.5 Mbps. Users located between 80 and 120 m of the AP are in



Fig. 2. A example phenotype and its corresponding genotype for a WLAN user/AP
configuration.
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zone3 and can offer a maximum bit rate of 2 Mbps. Finally, zone4 is
between 120 and 150 m and a user located in this zone can obtain
a maximum bit rate of 1 Mbps from the AP. These figures are com-
monly adopted in literature [3].

The final bit rate received by ui is also influenced by the type of
service it requires. For example, end-users running streaming
media, voice or data applications all require different levels of band-
width. Therefore, we incorporate heterogeneous QoS requirements
into our problem description by defining different categories of
users. We describe the category of a user ui 2 U by a weight wui

, that
specifies its service requirement. The weight is used to determine
the bit rate allocation bui

that user ui is allowed to receive compared
to the other users within the same zone. For example, a user ui 2 U
is entitled to have a bandwidth bui

¼ wui
=wuk

of any other user
uk 2 U that occupies the same zone and is connected to the same
AP. This technique of categorising users was also used in Bejerano
et al. [3].

The following describes the mechanism used to distribute bit
rates amongst users connected to an AP. The initial step is to assign
an available bit rate to each of the zones. Initially, we identify the
number of connected users in each zone. We refer to a zone with
one or more connected users as an active zone. The maximum
bit rate of the AP, which was set to 10 Mbps, is divided amongst
the active zones so that each zone receives an available bit rate
that is proportional to the zones maximum bit rate. For example,
consider a problem with two active zones: zone1 and zone2, which
have a maximum bit rate of 11 and 5.5 Mbps, respectively. Given
that the bit rate of the AP is 10 Mbps, zone1 and zone2 would be
allotted 6.6 and 3.3 Mbps, respectively.

The available bit rate that is assigned to each zone must now be
divided amongst the users that populate the zone. The bit rate re-
ceived by a user depends on the user’s weight and the weight and
number of other users within the zone. Consider the scenario
where 3 Mbps is the available bit rate in a zone populated by the
users, ui, with wui

¼ 2 and uj, with wuj
¼ 4. The user ui will receive

a bit rate of 1 Mbps and uj will receive a bit rate of 2 Mbps.
To incorporate congestion into our problem model we ran-

domly locate users based on their polar coordinates generated uni-
formly at random (a user’s distance from the centre of the AP grid
and the polar angle are uniformly distributed between (0,150) and
ð0; 2pÞ, respectively). Hence, user density at the centre of the AP
grid is higher than it is near the periphery. Again this is in keeping
with previous work [3,4].

The objective of the GAs proposed in this paper is to assign each
user ui to an AP at so that the sum of all user bit rates is maximised.
4. Genetic load balancing algorithms

Section 4.1 presents the implementation details of MicroGA,
while Section 4.2 describes MacroGA.

4.1. The MicroGA algorithm

The problem of representation in GAs can be described as deter-
mining a mapping from the phenotypes to the corresponding geno-
types. In MicroGA and MacroGA a phenotype is a set of user/AP
connections, such that each user is connected to a single AP. We
map a given phenotype to an integer based genotype. We represent
a genotype as an ordered sequence of n integers hag1; ag2; . . . ; agni
such that 8i 2 1; . . . ;n, agi 2 A and represents the AP to which user
ui is assigned. An example of the representation used is depicted
in Fig. 2, which shows a phenotype and its corresponding genotype.

The MicroGA algorithm presented in this paper is based on the
micro-GA described by Krishnakumar [12]. The initial stage of
the algorithm involves the random generation of a micro-popula-
tion of 5 individuals. We denote the population for generation
number x as px. An individual is constructed by randomly assigning
each user to an AP within the user’s range. Given the user/AP con-
nection defined by an individual, fitness assignment involves cal-
culating the sum of all individual user bit rates. The process of
determining the bit rate for each user, based on their AP connec-
tion, is described in Section 3. Other fair scheduling algorithms
have been proposed in Ni et al. and Buddhikot et al. [3,14]. MicroGA
employs a form of elitist strategy; upon completion of the fitness
assignment phase the fittest individual is copied to pxþ1, the popu-
lation for the next generation.

GAs have a tendency to converge toward a single solution. The
smaller the population size the quicker the algorithm will converge.
Therefore, ensuring population diversity in a micro-genetic algo-
rithm is crucially important. Micro-genetic algorithms achieve
diversity by reinitializing the population if it is deemed to have con-
verged. While there are a number of possible methods of checking
for convergence, MicroGA monitors the gradual improvement in
overall fitness over multiple generations. Convergence occurs if a
number of generations expire without any improvement in fitness
value. That is, if the fittest individual in generation x has the same
fitness level as the fitness individual in generation xþ a. If the pop-
ulation does converge MicroGA randomly generates four individuals
and inserts them into the population pxþ1. The algorithm subse-
quently commences the next generational loop. However, if the
algorithm has not converged, normal execution continues.

The next stage of the MicroGA algorithm involves the selection
of four parent individuals for the mating pool. This is achieved
through binary tournament selection of the population px. That
is, two parents are picked randomly from px and the fitter of the
two is copied into the mating pool. The subsequent phase of the
algorithm is crossover. Two parent individuals are randomly se-
lected from the mating pool. The crossover operator iterates
through each gene in the parents’ genotypes. If the probability of
crossover is true, the gene at index i of one parent is copied to in-
dex i of the second parent and vice versa. This method of crossover
was chosen because experimental evaluation showed that it con-
sistently outperformed the standard n-point crossover for various
values of n. The resulting individuals are copied into the population
pxþ1. Mutation was not performed on the population because reini-
tialization adds enough diversity to the population. Also the inclu-
sion of a mutation operator did not demonstrate any improvement
in performance in the experimental evaluation.
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Fig. 3. Performance of all algorithms for a WLAN populated by 50 users.
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4.2. The MacroGA algorithm

Much of the functionality included in MicroGA is replicated in
the MacroGA algorithm. Therefore, to avoid repetition the follow-
ing description provides a brief overview of the MacroGA genetic
algorithm. Through each generational loop the population will
first undergo fitness assignment. The MacroGA utilises the same
mechanism of fitness assignment as the MicroGA algorithm. The
fittest individual in the current population is copied to the pop-
ulation for the next generational loop. Binary tournament selec-
tion is used to populate the mating pool with parents. The
recombination phase consists of the two stages. The first is cross-
over as described for MicroGA; the second is mutation. While
convergence in the MacroGA algorithm occurs at a slower rate
than in the MicroGA it is still necessary to ensure some sort of
diversity. The mutation operator in MacroGA performs this func-
tion. It picks each individual in turn and iterates through their
constituent genes. If the probability of mutation is true then
the gene at index i is replaced by a random gene. The gene at in-
dex i represents the AP to which user i is attached. Mutation
picks another random AP within signal range of the user and as-
signs it to index i.
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5. Empirical evaluation

The objective of the empirical evaluation is to investigate the
performance of MicroGA and MacroGA compared to other common
load balancing techniques and also to perform a comparative
analysis of the proposed algorithms. Section 5.1 presents the exper-
imental methodology. Section 5.2 presents the network throughput
achieved by each algorithm over time while Section 5.3 analyses
the distribution of bandwidth amongst users by the proposed
algorithms.

5.1. Experimental methodology

To evaluate the MicroGA and MacroGA algorithms, we compare
their performance with that of three other popular mechanisms:
RSSI, LLF and HLB (hybrid load balancing). HLB combines the RSSI
and LLF techniques. It connects each user to the least-loaded AP
within the user’s signal range, and in the event of a tie, it connects
the user to the AP with the highest signal strength.

The experimental evaluation considers a network populated by
20 APs, which are arranged in a 5 by 4 grid where the distance be-
tween adjacent APs is set to 100 m. The parameters for the two GAs
were selected during an initial evaluation period. The MicroGA con-
vergence parameter a has a value of 5 and its crossover probability
is 50%. The population size of MacroGA is 200. Its crossover and
mutation probability are 50% and 0.5%, respectively.

The three results presented in Section 5.2 analyse the load bal-
ancing capability of all algorithms for the following scenarios: (i) a
relatively lightly loaded network of 50 users, (ii) a moderately
loaded network of 100 users and (iii) a heavily loaded network of
250 users. Each experimental result presented in this section is de-
rived from the average of 30 independent experimental runs,
where a single run executes each algorithm for a fixed period of
time on the same network/customer configuration.

5.2. Network throughput results

The initial result obtained from running the algorithms in a net-
work populated by 50 users is depicted in Fig. 3. Each algorithm
was allowed to run for a total of 10 s and every 0.1 s it reported
its best result. LLF exhibits the poorest performance, while the
two GAs significantly outperform all other approaches.
On average MacroGA has achieved a network throughput that
constitutes an improvement of: (i) 36% over LLF, (ii) 33% over RSSI,
(iii) 20% over HLB and (iv) 4% over MicroGA. Therefore, for these
settings it represents a very significant upgrade in performance.
It is interesting to note that MicroGA outperforms MacroGA for
the first 2 s. After this point MacroGA is dominant. The MicroGA
has a small population size and can evolve it very quickly. There-
fore, it can produce good results very quickly. In contrast, the Mac-
roGA has a very large population, which evolves at a much slower
rate.

The second result, depicted in Fig. 4, compares algorithm per-
formance in a moderately loaded network of 100 users. Again the
GAs significantly outperform all other techniques with the MacroG-
A dominant after a few seconds. In contrast to the previous exper-
iment LLF performs better than RSSI. This can be attributed to the
fact that LLF is better at distributing the load across APs. As the
number of users increase the ability to distribute users amongst
APs become critically important. On the other hand RSSI suffers be-
cause users connect to the AP with the strongest signal and in an
area of user congestion this will result in a large concentration of
users all connected to the same AP. The MacroGA algorithm outper-
forms: (i) RSSI by 31%, (ii) LLF by 30%, (iii) HLB by 18% and MicroGA
by 2%. It is interesting to observe that an increase in user numbers
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improved the performance of MicroGA relative to MacroGA. This in-
crease leads to a heavier computational load for both of the GAs.
However, having such a large population, MacroGA is more se-
verely affected. For example, notice that as user numbers increase,
MacroGA takes progressively longer to produce an initial result.
Consequently, MicroGA becomes more competitive relative to
MacroGA.

The genetic algorithms are dominant yet again in Fig. 5, which
shows the results obtained for a congested network with 250
users. Also the patterns observed in Fig. 4 are even more pro-
nounced in Fig. 5. The MicroGA outperforms MacroGA for, on aver-
age, the first 8 s. The results also show that the LLF approach
significantly outperforms the RSSI approach. Therefore, from the
above experiments we can conclude that the proposed genetic load
balancing algorithms do represent a very significant improvement
over techniques currently used in IEEE 802.11 WLAN networks.
Our comparative analysis of the GAs reveal that MacroGA has a
clear advantage over MicroGA as it provides better results for smal-
ler numbers of users and its performance is equal with that of Mic-
roGA for large user numbers. However, in a time-critical setting,
MicroGA has a significant advantage since it outperformed the
MacroGA in the early stages of each run. In fact as user numbers
increased this advantage became even more pronounced, to the
point where it outperformed the MacroGA algorithm for over 8 s
in a congested WLAN network of 250 users.

5.3. Bandwidth distribution results

This section investigates the distribution of user bandwidth by
the proposed algorithms. The objective of the analysis is to check
that the GAs do not achieve a high network throughput (as demon-
strated in Section 5.2) by increasing the bandwidth of certain cat-
egories of users while severely restricting the bandwidth of other
categories of users. For example it may reduce the bandwidth of
users that already have low bandwidth in order to increase higher
end-users. In this section we compare the distribution of band-
width amongst users by the proposed algorithms with that of the
RSSI, LLF and HLB techniques. As in the previous section this eval-
uation was carried out for population settings of 50, 100 and 250 to
simulate varying degrees of network congestion. Due to space lim-
itations we only present the results for a WLAN with 50 users.
However, in the context of bandwidth distribution the results ob-
tained for a WLAN with 100 or even 250 users is consistent with
that of 50 users.
The distribution of user bandwidth by all algorithms is depicted
in Fig. 6. The Y-axis represents the per-user bandwidth and the X-
axis represents the bandwidth sorted in increasing order. The user
locations are different at each run, and therefore the bandwidth of
the user with the same x index actually indicates the average band-
width of the x-lowest bandwidth user in each experimental run.
Notice that the distribution of bandwidth by the proposed genetic
algorithms represents a improvement over RSSI, LLF and HLB and
thus the ith ranked user in terms of bandwidth under either GA re-
ceives more bandwidth than the ith ranked user under the other
approaches, for all ranks. For the users with a lower bandwidth in-
dex the HLB technique is competitive with the genetic algorithms.
However, the HLB’s performance degrades and is significantly out-
performed by the genetic algorithms for users with a medium to
high bandwidth index. Although this is a favourable result for
the GAs, it should not be interpreted as meaning that the GAs guar-
antee an improvement in performance for all users in each exper-
imental run. There may still be a significant percentage of users
who experience a loss in bandwidth when using the GA. This of
course may not be revealed in Fig. 6 if the percentage increase in
performance experienced is much greater than the percentage
decrease.

Therefore, we also analysed the percentage of users that experi-
enced an increase and decrease in performance for each experi-
mental run. These figures were then averaged over all 30
experimental runs. Again for reasons of space we confine our anal-
ysis to a comparison between MicroGA and RSSI, LLF and HLB. The
MicroGA results are comparable with those of MacroGA. The RSSI
comparison showed that 57% of users experienced an average in-
crease in bandwidth of 270% when using MicroGA over RSSI. Also,
40% of users experienced an average bandwidth decrease of 45%.
The remaining 3% retained exactly the same bandwidth. A total
of 54% of users experienced an average increase in bandwidth of
473% when using MicroGA instead of LLF; 36% of users experienced
an average decrease of 54%. The bandwidth of the remaining 10%
was unchanged. When HLB is contrasted with MicroGA it reveals
that 46% of users experienced an average increase in bandwidth
of 372%, while 43% of users experience an average decrease in
bandwidth of 56%. The remaining 11% had the same bandwidth.
The results reinforce the view that HLB is the best of the standard
strategies. However, MicroGA still outperforms HLB and the aver-
age bandwidth increase experienced by a user opting for MicroGA
is vastly superior to the average decrease.

We were also interested in identifying patterns of behaviour by
the MicroGA. For example, were there patterns in the way the Mic-
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roGA treated particular weighted users? Did it reward users of a
certain weight more than others? Was there a pattern evident in
the way that MicroGA distributed users of a certain weight amongst
APs? We performed a comprehensive analysis of the experimen-
tal data. We looked for patterns and correlations based on user
bandwidth, user weight and user locations. In terms of user loca-
tions we looked at user distance to connected AP, as well as ratios
such as distance to nearest AP relative to distance to second near-
est AP.

We were able to educe two main patterns from the experimen-
tal data. The first, which was expected, is that MicroGA consistently
pushes users from the populated APs at the centre of the AP grid to
the less utilised peripheral APs. For example, we found that in envi-
ronments consisting of 50 users the RSSI technique utilised an
average of 9 APs, while the MicroGA utilised an average of 19
APs. We found that there was no bias in this distribution of users
by MicroGA; that is, it did not tend to push users of a certain weight
out to the periphery more than others.

The other pattern identified was in relation to the percentage of
weighted users that could expect to receive an increase in band-
width if the WLAN operator used MicroGA instead of RSSI. While
an operator who switches to using the MicroGA would see the
majority of users receive an increase in bandwidth, we also found
that the percentage of users that experience an increase varied
depending on the user’s weight. A larger percentage of low
weighted users receive an increase in bandwidth compared to high
weighted users. For example, we found that a larger percentage of
users with weight 2 would receive an increase in bandwidth com-
pared with users of weight 3. This was consistent across all
weights. However, this pattern did not occur when MicroGA was
contrasted with LLF or HLB.
6. Conclusions

The objective of this paper is to provide load balancing tech-
niques that improve network throughput and consequently pro-
vide customers with a better QoS. Towards that end we proposed
two genetic load balancing algorithms called MicroGA and MacroG-
A. Empirical evaluation demonstrated that both algorithms outper-
form the current WLAN techniques in terms of total network
throughput and distribution of user bandwidth. We show that on
average a user can expect to receive an increase in bandwidth if
it uses one of the proposed GAs. The GA performance improvement
is achieved without penalising any particular category of user. A
comparative analysis of the GAs reveals that MicroGA is more
applicable to a time-critical load balancing scenario. In future, we
aim to investigate the performance of the proposed algorithms
when supplemented with greedy initialisation strategies.
Acknowledgement

This work is funded by Science Foundation Ireland under Grant
No. 03/CE3/1405 as part of the Centre for Telecommunications Va-
lue-chain Research (CTVR).

References

[1] A. Balachandran, G.M. Voelker, P. Bahl, P.V. Rangan, Characterizing user
behavior and network performance in a public wireless lan, SIGMETRICS
Performance Evaluation Review 30 (1) (2002) 195–205.

[2] Y. Bejerano, S.J. Han, Cell breathing techniques for load balancing in wireless
lans, in: INFOCOM 2006, 25th IEEE International Conference on Computer
Communications, 2006, pp. 1–13.

[3] Y. Bejerano, S.J. Han, L.E. Li, Fairness and load balancing in wireless lans using
association control, in: MobiCom’04: Proceedings of the 10th Annual
International Conference on Mobile Computing and Networking, ACM, New
York, USA, 2004, pp. 315–329.

[3] M. Buddhikot, G. Chandranmenon, S. Han, Y.W. Lee, S. Miller, L. Salgarelli,
Integration of 802.11 and third-generation wireless data networks, in: IEEE
INFOCOM, 2003.

[4] J.K. Chen, T.S. Rappaport, G. de Veciana, Iterative water-filling for load-
balancing in wireless lan or microcellular networks, in: Vehicular Technology
Conference, 2006, pp. 117–121.

[5] Cisco Systems Inc. Data Sheet for Cisco Aironet 1200 Series, 2004.
[6] C.A.C. Coello, G.T. Pulido, A micro-genetic algorithm for multiobjective

optimization, in: EMO’01: Proceedings of the First International Conference
on Evolutionary Multi-Criterion Optimization, Springer-Verlag, London, UK,
2001, pp. 126–140.

[7] G. Dozier, J. Bowen, D. Bahler, Solving small and large scale constraint
satisfaction problems using a heuristic-based microgenetic algorithm, in:
Proceedings of the First IEEE Conference on Evolutionary Computing, 1994, pp.
306–311.

[8] Y. Fukuda, T. Abe, Y. Oie, Decentralized access point selection architecture for
wireless lans, in: Wireless Telecommunications Symposium, 2004, pp. 137–
145.

[9] D.E. Goldberg, Sizing populations for serial and parallel genetic algorithms, in:
Proceedings of the Third International Conference on Genetic Algorithms, 1989,
pp. 70–79.

[10] M.T. Hajiaghayi, S.V. Mirrokni, A. Saberi, Cell breathing in wireless lans:
algorithms and evaluation, IEEE Transactions on Mobile Computing 6 (2)
(2007) 164–178.

[11] Janaki Gopalan, Reda Alhajj, Ken Barker, Discovering accurate and interesting
classification rules using genetic algorithm, in: International Conference on
Data Mining, 2006, pp. 389–395.

[12] K. Krishnakumar, Micro-genetic algorithms for stationary and non-stationary
function optimization, Intelligent Control and Adaptive Systems 1196 (1990)
289–296.

[13] D. Levine, Application of a hybrid genetic algorithm to airline crew scheduling,
Computer Operations Research 23 (6) (1996) 547–558.

[14] Q. Ni, L. Romdhani, T. Turletti, I. Aad, Qos issues and enhancements for ieee
802.11 wireless lan, Technical Report INRIA, 2002.

[15] I. Papanikos, M. Logothetis, A study on dynamic load balance for ieee 802.11b
wireless lan, in: 8th International Conference on Advances in Communication
Control, 2001.

[16] H. Velayos, V. Aleo, G. Karlsson, Load balancing in overlapping wireless lan
cells, in: IEEE International Conference on Communications, vol. 7, 2004, pp.
3833–3836.

[17] E. Villegas, R.V. Ferr, J.P. Aspas, Load balancing in wireless lans using 802.11k
mechanisms, in: IEEE Symposium on Computers and Communications, 2006,
pp. 844–850.


	Wireless LAN load balancing with genetic algorithms
	Introduction
	Motivation and background knowledge
	Problem description
	Genetic load balancing algorithms
	The MicroGA algorithm
	The MacroGA algorithm

	Empirical evaluation
	Experimental methodology
	Network throughput results
	Bandwidth distribution results

	Conclusions
	Acknowledgement
	References


