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This paper presents a novel mathematical programming approach to the single-machine

capacitated lot-sizing and scheduling problem with sequence-dependent setup times

and setup costs. The approach is partly based on the earlier work of Haase and Kimms

[2000. Lot sizing and scheduling with sequence-dependent setup costs and times and

efficient rescheduling opportunities. International Journal of Production Economics

66(2), 159–169] which determines during pre-processing all item sequences that can

appear in given time periods in optimal solutions. We introduce a new mixed-integer

programming model in which binary variables indicate whether individual items are

produced in a period, and parameters for this program are generated by a heuristic

procedure in order to establish a tight formulation. Our model allows us to solve in

reasonable time instances where the product of the number of items and number of

time periods is at most 60–70. Compared to known optimal solution methods, it solves

significantly larger problems, often with orders of magnitude speedup.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

This paper considers the lot-sizing and scheduling
problem involving production of multiple items on a
single finite capacity machine with sequence-dependent
setup costs and setup times. In this problem, the decision
maker must decide which items to produce in which
periods, and must specify the exact production sequence
and production quantities to satisfy deterministic dy-
namic demand over multiple periods that span a planning
horizon, in order to minimise the sum of setup and
inventory holding costs. The consideration of capacity
limitations, significant sequence-dependent setup costs
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and non-zero setup times exacerbates the inherent
difficulty in solving lot-sizing and scheduling problems
and restricts the problem size that can be tackled in
reasonable time. Ignoring these features when planning
production aggravates costs and reduces productivity,
particularly in process industries such as chemicals, drugs
and pharmaceuticals, pulp and paper, food and beverage,
textiles, or ceramics. Other examples include discrete
manufacturing in industries such as aerospace, defense
and automotive. All such manufacturers could benefit
significantly from progress in this research area.

Recent work by Haase and Kimms (2000) proposes an
exact optimisation approach to the problem. Their
approach is based upon a mixed-integer programming
(MIP) formulation. They start by generating all possible
efficient sequences of items, and then use binary variables
in the MIP to denote whether a sequence is selected for a
given time period. However, the applicability of their
approach is limited to either a small number of items or a
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A. Kovács et al. / Int. J. Production Economics 118 (2009) 282–291 283
short planning horizon. In this paper, we present an
alternative model, which also uses pre-generated efficient
sequences, but employs binary variables to indicate
whether or not an item is produced in a given period.
This yields smaller models, but makes it harder to express
constraints on the setup costs. A naive formulation of
these constraints gives loose LP relaxations, and hence an
inefficient model. We then develop a heuristic algorithm
which generates much tighter constraints.

We show experimentally that the proposed MIP model
outperforms all previously known optimisation ap-
proaches to the capacitated lot-sizing and scheduling
problem (CLSP) with sequence-dependent setups. It gives
up to two orders of magnitude speedup in solution time
over the Haase and Kimms model, and can solve larger
instances. We also show that the efficient sequences can
be generated more effectively, and that the same under-
lying model can be applied to a number of variants of the
problem with similar time performance. The practical
implications of these are significant.

The paper is organised as follows. In Section 2 we
define the CLSP with sequence-dependent setups. Section
3 summarises previous work on this problem. In Section 4,
we present an efficient dynamic program (DP) for
generating the set of item sequences that might be applied
in time periods in optimal solutions. Afterwards, we define
a new MIP formulation of the problem (Section 5), and
evaluate its performance on a set of randomly generated
problem instances (Section 6). Finally, conclusions are
drawn and directions of future research are outlined.
2. Problem definition

The capacitated lot-sizing and scheduling problem with

sequence-dependent setup times and costs (CLSPSD) involves
NI different items able to be manufactured on a single
machine over a series of NT time periods. In each time
period t, we must decide how many units xi

t of each item i

to produce. Since we have a single machine available, the
production of different items within a time period must be
sequenced. However, switching from item i to j requires a
setup, which occupies Ti;j units of the capacity in the given
time period, and incurs Ci;j cost. Producing one lot of item i

employs the machine for pixi
t time, which is thus

proportional to the lot size. The sum of all setup and
production times within a time period cannot exceed the
available capacity Ct in that period. The demand di

t for each
item and time period is fully known in advance, and must
be met exactly, either from production in that period or
from excess produced in previous periods. The cost of a
solution is composed of the sequence-dependent setup
costs and the inventory holding costs hi per excess unit of
item i at the end of every time period.

The objective is to choose the production quantities
and production sequences for each time period to meet
the demand while minimising the total cost. The follow-
ing assumptions are made.
(i)
 The cost of switching from item i to j can be
computed as Ci;j

¼ qi þ rTi;j, where qi is the direct
setup cost of switching to item i, and r is the time-

proportional setup coefficient.

(ii)
 Setup times satisfy the triangle inequality, i.e.,

Ti;jpTi;k
þ Tk;j. Due to the previous assumption, the

triangle inequality holds also for the setup costs.

(iii)
 The setup states are carried over from one time

period to the next. It is allowed to switch from one
item to another in idle periods (i.e., when no
production occurs), but it incurs the same setup cost
as if the item was produced.
(iv)
 Setups are performed within one time period. This
also implies that a problem instance is feasible only if
Ti;jpCt holds for all relevant pairs of items i and j and
time period t.
In the micro-level representation of the solutions of
CLSPSD, several items can be produced in each time
period on the same machine, sequentially one after the
other. Note that since setup times and costs are sequence-
dependent, the sequence of item production in a period
affects both feasibility and cost, and is a crucial issue for
generating optimal solutions. Choosing a sequence of
items s ¼ ðik1

; ik2
; . . . ; ikn

Þ for production in time period t

means that the machine is set up to produce item s½1� ¼
ik1

at the beginning of t; after producing a certain amount
of s½1�, a changeover from s½1� to s½2� occurs, and this
continues until the end of time period t. At that point, the
machine will be set up to produce item s½ns� ¼ ikn

, where
ns denotes the number items in sequence s. Since setup
states are carried over, the sequence applied in time
period t þ 1 has to begin with item s½ns�.

Note that applying sequence s in t does not imply that
a positive amount of items s½1� or s½ns� are actually
produced in period t. It might happen that item s½1� was
produced in period t � 1, but switching from s½1� to s½2�
takes place in t, or analogously, the machine is set up to
item s½ns� so that period t þ 1 can start immediately with
production. Hence, for the sake of simplicity, when saying
an item is produced in a time period, we allow the
production of zero quantities as well. At the same time,
since the triangle inequality holds for the setup times,
producing an empty lot of item s½k� for k ¼ 2; . . . ;n� 1
would lead to sub-optimality.

The micro-structure of a time period is illustrated in
Fig. 1. Observe that the overall capacity required in time
period t can be divided into two components. First, the
capacity spent for setups, the amount of which depends
only on the sequence applied, but not on the actual lot
sizes. In contrast, the capacity required for production is
proportional to the amounts of each item produced. The
sum of these two components must not exceed the
capacity available in the given time period.

3. Previous work on CLSPSD

Capacitated lot-sizing problems and their different
variants are widely studied in the literature of operations
research. A review of various lot-sizing and scheduling
models, including small-bucket, large-bucket, and con-
tinuous time formulations is presented in Drexl and
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Fig. 1. A possible micro-structure of period t if sequence ði1 ; i2 ; i3 ; i4Þ is

applied.

1 Apparently, many papers in the sequence-dependent lot-sizing

literature ignore this phenomenon, see e.g., Gupta and Magnusson

(2005) and Haase and Kimms (2000).
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Kimms (1997). Another survey by Belvaux and Wolsey
(2001) discusses modelling options for setups and other
practical requirements in small-bucket as well as large-
bucket representations. The authors also propose valid
inequalities for the efficient MIP formulation of these
problem variants. Karimi et al. (2003) present a classifica-
tion scheme for capacitated lot-sizing problems and give
references to different exact and heuristic solution
approaches. The strong NP-hardness of the multi-item
CLSP has been proven by Chen and Thizy (1990).

The literature of CLSP with sequence-dependent setup
times and setup costs is considerably scarcer. A local
search approach combined with dual re-optimisation for
CLSPSD has been proposed by Meyr (2000). This approach
was extended to the case of parallel machines by the same
author in Meyr (2002). Exact optimisation approaches to
CLSPSD have been suggested by Gupta and Magnusson
(2005) and Haase and Kimms (2000), both using MIP
techniques. Gupta and Magnusson define an MIP that
makes not only the lot-sizing, but also all sequencing
decisions within time periods on the fly. Although this
approach makes it possible to relax assumption (i) about
the relation of setup times and costs, it allows us to find
optimal solutions for very small instances only, e.g., with
three items and three time periods. For larger problems, a
heuristic procedure is proposed in the same paper.

Below, we discuss in detail the approach proposed by
Haase and Kimms (2000), but use a slightly different
terminology. The authors analysed the item sequences
that can occur in given time periods in an optimal solution
of a CLSPSD, and introduced an MIP to choose one such
sequence for each time period. They pointed out that item
sequences can be classified into scenarios. A scenario a ¼
hif ; il; Ii is identified by the first and last items if and il, and
the set I of all items produced in the time period. Now, for
each scenario a, there exists a sequencing sa of the item
set I with sa½1� ¼ if , sa½nsa � ¼ il that minimises the setup
time incurred by the sequence, i.e.,

Tsa ¼
Xnsa�1

k¼1

Tsa ½k�;sa ½kþ1�.

This sequence sa is called the efficient sequence

corresponding to scenario a. Note that it follows from
assumption (i) that the same sa also minimises the setup
cost. The authors have shown that the application of a
sequence that is not efficient for the given scenario in a
solution leads to sub-optimality. Consequently, the set of
all item sequences that can be applied in optimal
solutions consists of the above defined efficient se-
quences. If there are several efficient sequences for a
scenario, then one can be chosen arbitrarily. The number
of scenarios—and therefore, of efficient sequences as
well—is

NS ¼ NIðNI � 1Þ2NI�2
þ NI2

NI�1,

where the first and second parts stand for the number of
scenarios with icj and i � j, respectively. Note that NS

grows exponentially with NI. Unless some special in-
ference can be performed on the demands or costs, any
efficient sequence can take part in an optimal solution:
consider an instance with two time periods, an initial
setup state of if , and demands such that di

140 iff i 2 I and
dil

2 ¼ C2=pil . Now, it is easy to see that if holding costs are
high, then scenario hif ; il; Ii, and its corresponding efficient
sequence must be applied in the first time period in the
optimal solution of the instance. The same example
illustrates that scenarios with il � if might appear in
optimal solutions.1 Idle periods can be represented by a
scenario of the form hi; i; figi with zero production.

Haase and Kimms (2000) argue that each efficient
sequence can be determined by solving a travelling

salesman problem (TSP) corresponding to the scenario,
where the setup time of the sequence equals the value of
the optimal TSP solution. Although solving NS separate
TSP instances can be time consuming, in an industrial
application this pre-processing step has to be carried out
only when the products of the factory or the setup times
change.

Having generated all efficient sequences, Haase and
Kimms (2000) define an MIP containing binary variables
vst to indicate whether sequence s is applied for produc-
tion in time period t. Consequently, we call this MIP a
sequence-related formulation. Other variables, xi

t standing
for the amount of item i produced in period t and si

t

denoting the stock of item i at the end of period t, and the
constraints are as in the classical MIP representation of
CLSP (Drexl and Kimms, 1997). Hence, this MIP can be
described using OðNSNTÞ binary variables, OðNINTÞ real
variables, and OðNINTÞ inequalities. The authors report
that this MIP is capable of solving instances with up to
three items and 15 time periods, or 10 items and three
periods.

4. A DP for computing efficient sequences

In this section, we show that the set of all efficient
sequences can be generated by a quick DP, without solving
a separate TSP for each of the NS scenarios. A similar
algorithm was originally proposed by Bellman (1962) for
solving individual TSP instances.

The DP is based on the observation that if s ¼
ði1; i2; . . . ; in�1; inÞ is an efficient sequence for scenario
a ¼ hi1; in; fi1; . . . ; ingi, then the shorter sequence s0 ¼
ði1; i2; . . . ; in�1Þ is an efficient sequence for the scenario
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Fig. 2. A dynamic program for computing efficient sequences.
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a0 ¼ hi1; in�1; fi1; . . . ; in�1gi. From this, it follows that the
efficient sequence for scenario a can be constructed from
one of the efficient sequences for scenarios
hi1; ik; fi1; . . . ; in�1gi; ik 2 fi2; . . . ; in�1g, by appending item in.

The DP presented in Fig. 2 exploits this consequence. It
constructs optimal TSP solutions for all the scenarios in
increasing order of the number of items contained. For
each non-trivial scenario a, it computes Y, the set of
candidate sequences that—by appending one item—can
become an efficient sequence for a, and chooses the one
with minimal setup time. The time complexity of the
algorithm is OðNSNIÞ.
5. An efficient MIP model for CLSPSD

The drawback of the sequence-related MIP representa-
tion of CLSPSD presented in Section 3 is that the number
of binary variables grows exponentially with the number
of items, which leads to poor scaling. Below we define an
item-related representation with only OðNINTÞ binary
variables, yi

t deciding if item i is produced in period t,
and zi

t indicating if item i is produced last in period t. Note
that these variables unambiguously identify the sequence
applied in each time period t: it is the efficient sequence
corresponding to scenario hif ; il; Ii, where I ¼ fi j yi

t ¼ 1g, if
is the unique item with zif

t�1 ¼ 1 and il with zil
t ¼ 1.

While most constraints of CLSPSD can be expressed
using variables and inequalities of the classical MIP model
of lot-sizing (Drexl and Kimms, 1997) (see also Section
5.2), the capacity constraint and the objective function
requires a different treatment: the sequence-dependent
setup times and costs have to be considered in them. For
this purpose, we introduce real variables ut to denote the
setup time incurred in time period t. The setup cost that
occurs in period t can be expressed from ut using the
linear expression introduced in assumption (i).

Now, the setup time ut has to be related to the
sequence applied in period t. Since sequences are not
explicitly modelled in the MIP, this can be done by means
of linear inequalities on variables yi

t , zi
t�1, and zi

t . They will
take the form

utXL̄ȳt þ M̄z̄t�1 þ N̄z̄t þ K ,
where L̄, M̄, N̄, and K are constants to be defined
later. These inequalities provide lower bounds on ut .
The set of inequalities is sound if, no matter which
efficient sequence s is chosen for a period t, the
strongest lower bound among all these inequalities on ut

is exactly Ts.
We will define one such inequality for each sequence s,

and call it the s-inequality. The value of its r.h.s.—with the
substitution of the variables according to an arbitrary
sequence s0—is the s0-substitution of this inequality.
Finally, if the s0-substitution of a s-inequality is smaller
than, equal to, or larger than Ts0 , then we call this
inequality non-constraining, constraining, or over-constrain-

ing on s0, respectively.
Now, a sufficient condition for the soundness of the set

of s-inequalities can be stated as follows. Firstly, for each
sequence s, the s-inequality has to be constraining
on s. Secondly, all other inequalities must not be over-
constraining on s. The standard mathematical program-
ming method for specifying such a set of inequalities is
the use of so-called big-M constraints (Williams, 1999).
The big-M formulation of the s-inequality for a given s
takes the form

utXTs �
X
i2s
ð1� yi

tÞL
i
s þ

X
ies

yi
tL

i
s

� ð1� zs½1�t�1ÞM
s½1�
s þ

X
ias½1�

zi
t�1Li

s

� ð1� zs½ns �t ÞNs½ns �
s þ

X
ias½ns �

zi
tM

i
s,

where Li
s, Mi

s, and Ni
s are sufficiently large coefficients.

This can be rewritten as

utXTs þ
X

i

ðyi
tL

i
s þ zi

t�1Mi
s þ zi

tN
i
sÞ

�
X
i2s

Li
s þMs½1�

s þ Ns½ns �
s

 !
.

It is easy to see from the original form of the inequality
that if variables are substituted according to sequence s,
then all addends on the r.h.s. except for Ts are zero, for an
arbitrary choice of coefficients Li

s, Mi
s, and Ni

s. Therefore,
the s-inequality is constraining on s. Also note that the
coefficients can be selected in a way that the inequality is
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not over-constraining for any other sequence, e.g., with

Li
s ¼

1 if i 2 s;

0 otherwise;

(
Mi

s ¼
1 if i ¼ s½1�;

0 otherwise;

(

Ni
s ¼

1 if i ¼ s½ns�;

0 otherwise:

(

However, this choice of coefficients would lead to
extremely weak LP relaxations. Next, we will show how
to generate coefficients for tighter relaxations, and hence
more efficient MIPs.

5.1. Computing coefficients for the setup time inequalities

Note that the challenge of computing appropriate
coefficients for the setup time inequalities is analogous
to the problem of lifting (Marchand et al., 2002):
coefficients are sought for inequalities of known form so
as to gain tight LP relaxations. Hence, we take an approach
similar to that used in sequential lifting. We assign initial
values to Li

s, Mi
s, and Ni

s, and then set the coefficients one
by one to their extreme value permitted by the non-over-
constraining condition. We begin by defining the follow-
ing sets of sequence pairs:

Li:¼fhs;s0i j i 2 s ^ ies0 ^ 8jai : ðj 2 s3j 2 s0Þ
^ s½1� ¼ s0½1� ^ s½ns� ¼ s0½ns0 �g,

Mi;j:¼fhs;s0i j 8k : ðk 2 s3k 2 s0Þ
^ s½1� ¼ i ^ s0½1� ¼ j ^ s½ns� ¼ s½ns�g,

Ni;j:¼fhs;s0i j 8k : ðk 2 s3k 2 s0Þ
^ s½1� ¼ s0½1� ^ s½ns� ¼ i ^ s0½ns0 � ¼ jg.

Broadly speaking, Li is the set of all pairs of efficient
sequences s and s0 that only differ in that item i is a
member of s, but not of s0. Similarly, members of Mi;j

differ only in their first item, while those of Ni;j in their
last item. Then, let Li

max be the largest difference between
the setup times of the two members of a sequence pair in
Li, and similarly:

Li
max:¼ max

hs;s0 i2Li
Ts � Ts0 ,

Li
min:¼ min

hs;s0 i2Li
Ts � Ts0 ,

Mi;j
min:¼ min

hs;s0 i2Mi;j
Ts � Ts0 ,

Ni;j
min:¼ min

hs;s0i2Ni;j
Ts � Ts0 .

Now, the following inequality holds for each pair of
sequences s and s0:

Ts0XTs �
X

i2s^ies0
Li

max þ
X

ies^i2s0
Li

min þMs0 ½1�;s½1�
min þ Ls

0 ½ns0 �;s½ns �
min .

By introducing variables yi
t and zi

t to characterise
sequence s0, we receive that the following inequality
holds independently of the sequence s0 applied in
time period t:

utXTs �
X
i2s
ð1� yi

tÞL
i
max þ

X
ies

yi
tL

i
min þ

X
ias½1�

zi
t�1Mi;s½1�

min

þ
X

ias½ns �
zi

tL
i;s½ns �
min .

Therefore, by choosing the coefficients of the s-inequal-
ity in the following way, the inequality will not be over-
constraining on any sequences:

Li
s ¼

Li
max if i 2 s;

Li
min otherwise;

(

Mi
s ¼

0 if ji ¼ s½1�;
Mi;s½1�

min otherwise;

(

Ni
s ¼

0 if i ¼ s½ns�;
Ni;s½ns �

min otherwise:

(

A further tightening of the LP relaxations requires

decreasing the coefficients Li
s where i 2 s, Ms½1�

s , and

Ns½ns �
s , and increasing coefficients Li

s where ies, Mi
s where

ias½1�, and Ni
s where ias½ns�. Note that while the

coefficients in one s-inequality are interconnected by
the non-over-constraining condition, coefficients belong-
ing to different sequences can be considered indepen-
dently.

In Fig. 3, we sketch a procedure that follows the above
scheme, and by iterating over sequences s and items i,
computes the extreme values of the coefficients Li

s
allowed by the non-over-constraining condition. Note
that this procedure can turn a given s-inequality into
one constraining for several sequences s0as as well.
Hence, for these sequences s0, the s0-inequality becomes
redundant, and can be omitted from the MIP. Although
this might result in slightly looser LP relaxations, it leads
to lower solution times by decreasing the size of the MIP.
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Such sequences s0 are therefore added to the set O, and
ignored during the tightening procedure as well. The
algorithm can be implemented to run in OðN2

S Þ time.
Coefficients Mi

s and Ni
s can be tightened in a similar way.

5.2. The mixed-integer program

After all the above considerations, we are ready to
present our MIP model for CLSPSD:

For parameters

di
t the demand for item i at the end of time period t

Ct the capacity available in time period t

hi the holding cost for one unit of item i, from one
period to the next

pi the capacity required to produce one unit of item
i

qi the direct cost of setting up the machine for item
i

r the time-proportional setup cost coefficient
Ts the total setup time incurred by sequence s
Li
s;M

i
s;N

i
s setup coefficients (see Section 5.1)

and decision variables

xi
t the amount of item i produced in period t; xi

tX0
yi

t the produced variable, yi
t ¼ 1 if item i is produced

in period t; yi
t 2 f0;1g

zi
t the produced-last variable, zi

t ¼ 1 if item i is
produced last in period t (and also first in period
t þ 1); zi

t 2 f0;1g
wi

t the setup variable, wi
t ¼ 1 if a setup to item i

occurs in period t; wi
tX0, its integrality is

implied
si

t the stock of item i held at the end of period t;
si

tX0
ut the total setup time incurred in time period t;

utX0

MinimiseX
t;i

hisi
t þ
X

t

rut þ
X

t;i

qiwi
t (1)

subject to

8i; t; si
t�1 þ xi

t � di
t ¼ si

t , (2)

8i; t; Cty
i
tXpixi

t , (3)

8t; ut þ
X

i

pixi
tpCt , (4)

8t;
X

i

zi
t ¼ 1, (5)

8i; t; zi
tpyi

t , (6)

8i; t; zi
t�1pyi

t , (7)

8i; t; wi
tXyi

t � zi
t�1, (8)

8i; i0ai; t; wi
tXzi

t þ yi0

t � 1, (9)
8t;seO; utXTs þ
X

i

ðyi
tL

i
s þ zi

t�1Mi
s þ zi

tN
i
sÞ

�
X
i2s

Li
s þMs½1�

s þ Ns½ns �
s

 !
, (10)

8i; t; si
t�1Xdi

tð1� yi
tÞ, (11)

8i; i0; t; utXðy
i
t þ yi0

t � 1Þ minðTi;i0 ; Ti0 ;i
Þ. (12)

The objective (1) is to minimise the sum of the holding
cost and the direct and time-proportional setup costs.
Equality (2) ensures inventory balance, where si

0 specify
the initial inventory levels. Inequality (3) states that an
item can be produced only if the machine is set up for it.
Inequality (4) describes the capacity constraint. Constraint
(5) ensures that the machine is set up for exactly one item
at the ends of time periods; the initial setup state is
denoted by z0.

Inequalities (6)–(9) describe the logical relations
between variables y, z, and w. Namely, (6) and (7) state
that if item i is produced first (zi

t�1) or last (zi
t), then it is

produced (yi
t). Inequality (8) ensures that if item i is

produced (yi
t), but not first (zi

t�1), then a setup is
performed (wi

t). (9) states that a setup is required also if
item i is produced last (zi

t), but other items are produced,
too. The setup time constraints (10) relate the setup time
ut to the scenario applied in time period t, as explained in
the previous section. Note that only non-redundant setup
time inequalities, i.e., those for seO have to be added to
the MIP.

Lines (11) and (12) are valid inequalities. Namely,
inequality (11) states that if item i is not produced in time
period t, then the demand at the end of this period has to
be satisfied from stock (see Belvaux and Wolsey, 2001).
Constraint (12) gives a lower bound on the setup time
incurred if at least two items are produced within the
same time period. All in all, our MIP uses 2NINT binary
and 3NINT þ NT real decision variables, and OðNSNTÞ

constraints.

5.3. Variants of the problem

The proposed approach to modelling sequence-depen-
dent setups is applicable to many different variants of the
CLSP addressed in the literature. Below, we discuss in
detail the presence of backlogs and the zero-switch
property.

Similarly to the case of the classical CLSP model
without setup times (Belvaux and Wolsey, 2001), model-
ling backlogs requires the introduction of real decision
variables bi

tX0 to denote the backlog of item i at the end
of time period t, and parameters gi for the backlogging
cost of item i. Furthermore, the original objective function
(1) has to be modified to (1a), the inventory balance
constraint (2) to (2a), and valid inequality (11) has to be
replaced by (11a).X

t;i

hisi
t þ
X

t

rut þ
X

t;i

qiwi
t þ
X

t;i

gibi
t (1a)

8i; t; si
t�1 � bi

t�1 þ xi
t � di

t ¼ si
t � bi

t (2a)
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Table 1
Experimental results for 3–6 items

NI NT Solved (%) Time (s)

IR SR IR IR� SR

3 4 100 100 0.00 (0.00) 0.00

6 100 100 0.00 (0.00) 0.00

8 100 100 0.00 (0.00) 0.00

10 100 100 0.06 (0.06) 0.00

12 100 100 0.72 (0.72) 0.22

14 100 100 2.39 (2.39) 1.56

16 100 100 7.56 (7.56) 7.83

18 100 100 23.83 (23.83) 26.67

20 100 100 55.06 (55.06) 95.28

4 4 100 100 0.00 (0.00) 0.00

6 100 100 0.06 (0.06) 0.00

8 100 100 0.94 (0.94) 0.83

10 100 100 2.44 (2.44) 6.72

12 100 100 13.44 (13.44) 48.33

14 100 100 50.06 (50.06) 355.56

16 94 83 330.76 (341.87) 2103.00

18 89 50 1241.38 (653.89) 2884.44

20 89 33 2067.94 (364.17) 3135.83

5 4 100 100 0.00 (0.00) 0.00

6 100 100 0.94 (0.94) 2.00

8 100 100 5.33 (5.33) 20.72

10 100 100 30.39 (30.39) 400.56

12 100 56 292.11 (115.10) 1478.20

14 89 17 1352.88 (9.00) 224.00

16 67 6 2593.50 (2.00) 366.00

18 33 6 2286.83 (8.00) 762.00

20 33 0 770.17 –

6 4 100 100 0.39 (0.39) 5.00

6 100 100 4.33 (4.33) 77.39

8 100 72 22.56 (22.62) 1237.69

10 100 6 391.17 (546.00) 4881.00

12 83 0 1523.13 –

14 39 0 2479.14 –

16 28 0 1016.00 –

18 22 0 547.75 –

20 18 0 2353.33 –

Column Solved shows the percentage of instances solved to optimality,

while Time displays the average solution times for the proposed

item-related (IR) and the previous sequence-related (SR) formulation.

Dash ‘–’ means that none of the instances with the given size could be

solved in 2 h.
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8i; t; si
t�1 þ bi

tXdi
tð1� yi

tÞ (11a)

The problem variant where solutions must satisfy the
zero-switch property was considered in order to enable a
fair comparison to the MIP proposed by Haase and Kimms
(2000). This property states that a new lot of a given item
can only be scheduled when the inventory of that item is
empty. This can be expressed by constraint (13), where Z is
a big number, e.g., Z ¼maxi

P
t di

t . While the zero-switch
property holds for optimal solutions of many uncapaci-
tated lot-sizing problems, it can obviously lead to sub-
optimality in capacitated problems like the CLSPSD:

8i; tX2; si
t�1pZð1� yi

t þ zi
t�1Þ. (13)

6. Experimental results

We ran experiments on a set of randomly generated
problem instances in order to compare the performance of
the MIP presented above to the best previously published
optimisation approach. Experimental results achieved on
several variants of the problem, i.e., with and without the
zero-switch property, and with backlogging allowed are
also presented below.

6.1. Comparison to Haase and Kimms (2000)

In order to provide a fair basis for the comparison
to the MIP proposed by Haase and Kimms (2000),
we generated problems in a similar fashion, used the
same assumptions, and looked for solutions that
satisfy the zero-switch property (see inequality (13)).
However, we allowed sequences with identical first and
last items, since otherwise ignoring this possibility as in
Haase and Kimms (2000) may produce sub-optimal
solutions.

A total of 1296 problem instances were generated
systematically, by varying the number of items NI

between 3 and 10, choosing the number of time periods
NT from f4;6;8; . . . ;20g, the time-proportional setup cost
coefficient R from f50;100;200;300; 400;500g, and the
capacity utilisation U ¼

P
t Ct=

P
t;i pidi

t from f0:4;0:6;0:8g.
For each combination of the above parameters, one
instance was created by choosing the demand di

t from
½0;100�, the holding cost hi from ½2;10�, and the direct
setup cost Qi from ½100;500� with uniform random
distribution. Initial inventories were empty. Without loss
of generality, the resource requirements pi and also the
initial setup state could be set to 1.

In order to obtain setup times that satisfy the
triangle inequality, we generated for each item a point
in the cube ½0;10�3 with uniform distribution, and chose
Ti;j to be the rounded distance of the two points
corresponding to items i and j. Finally, capacities Ct were
set according to Ct ¼

P
i di

t=U. Note that this formula
ensures that a given portion determined by U of the
overall capacity has to be spent on production, while it
ignores setup times. Hence, the feasibility of the problem
instances could not be guaranteed: one of the 1296
instances turned out to be infeasible, and was excluded
from further experiments.
The algorithms for the two steps of the pre-processing
(generating the sequences and determining the coeffi-
cients) were implemented in Cþþ. The MIPs were
encoded in CPLEX 10.0, and solved using its default
solution strategy on a 2.0 GHz Pentium IV computer with
1 GB of RAM. A time limit of 2 h was imposed for each MIP.
Since pre-processing took less than 4 s even for the 10
items problem instances (and less than 1 s for smaller
instances), pre-processing time was omitted. In order to
save running time, we excluded instances with a given
combination of NI and NT if none of the instances with
smaller NI and NT could be solved by the same MIP.

The results are presented in Tables 1 and 2. Each row of
the tables contains accumulated results for the 18
instances with the same number of items (NI) and number
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Table 2
Experimental results for 7–10 items

NI NT Solved (%) Time (s)

IR SR IR IR� SR

7 4 100 94 2.00 (2.06) 192.71

6 100 17 20.11 (15.33) 1563.33

8 100 0 196.06 –

10 89 0 1582.31 –

12 33 0 372.33 –

14 28 0 752.20 –

16 11 0 167.50 –

18 11 0 579.00 –

20 11 0 202.50 –

8 4 100 61 7.33 (8.18) 901.27

6 100 0 62.72 –

8 100 0 1299.00 –

10 61 0 2598.36 –

12 17 0 591.33 –

14 17 0 2552.67 –

16 17 0 1806.00 –

9 4 100 11 19.56 (22.50) 1392.00

6 100 0 272.89 –

8 83 0 1525.40 –

10 33 0 2071.50 –

12 17 0 1580.67 –

14 17 0 417.33 –

10 4 100 0 67.17 –

6 100 0 1179.83 –

8 39 0 1486.57 –

10 30 0 671.33 –

Column Solved shows the percentage of instances solved to optimality,

while Time displays the average solution times for the proposed item-

related (IR) and the previous sequence-related (SR) formulation.

Dash ‘–’ means that none of the instances with the given size could be

solved in 2 h.
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of time periods (NT). The second group of columns, under
the heading Solved (%), contains the percentage of
instances that could be solved to optimality within the
allotted time using the two MIPs. IR stands for the MIP
proposed above using item-related binary variables, while
SR for the MIP of Haase and Kimms (2000) using sequence-

related variables. Finally, average solution times in
seconds follow on the instances solved by IR and SR,
respectively. Column IR� contains in parenthesis the
average solution times by IR on the instances that could
be solved by both of the MIPs. Note that all the instances
solved by SR could actually be solved by IR, too.

The figures show that—except for the small instances
that can be solved in a matter of seconds by either
MIP—the proposed item-related representation outper-
forms the sequence-related representation both in terms
of the number of instances solved to optimality and search
time. It solved all the problem instances with NINTp60,
hence it extended the applicability of exact optimisation
methods to instances of industrially relevant size. The
advantage of using a more compact formulation with
exponentially less binary variables manifested itself
especially for large number of items, where IR solved
problems in a matter of minutes that were intractable for
previous approaches.

The new MIP gave up to 2 orders of magnitude
speedup also on instances that were solvable to opti-
mality by both approaches. At the same time, there
were 51 instances, all of them with NIp5, whose solu-
tion took longer with IR than with SR. This difference
exceeded 10 s in six cases, and 1 min in two cases. Where
optimal solutions could not be found, the reason of the
failure was either a timeout (typically for SR on five items
or less, and IR) or memory overflow (SR on six items
or more).
6.2. Results on variants of the problem

We randomly selected 100 problem instances that
were solvable in the previous round of experiments to
measure the effect of the zero-switch property on the
solution process. For 80 of these instances, the optimal
solution of the original CLSPSD respected the zero-switch
property. For the remaining 20 instances, forcing this
property deteriorated the solutions by at most 1.18%. Most
often, adding or removing the zero-switch property did
not affect the solution time significantly. For 47 instances,
the difference in solution time was less than 1 s; of the
remaining 52 instances, 29 were solved more quickly
without the property, and 24 with the property. In only
five instances was the difference in solution speed greater
than 50%. Hence, we suggest that the zero-switch
property should not be enforced in this MIP model of
CLSPSD, because it runs a risk of losing optimality without
reducing the computational complexity. Note also that
these results are representative for the case when the
demand values di

t are generated using uniform distribu-
tion. For different demand profiles, e.g., in case of
occasional large demands, the zero-switch property can
easily render a problem instance infeasible, or can lead to
serious sub-optimality.

In order to measure how the introduction of back-
logging affects the complexity of the problem, we created
a smaller set of 252 problem instances using the same
problem generator. However, capacity utilisation U was
now picked from f0:7;0:9g, and the time-proportional
setup cost coefficient r from f50;200;500g. For each
instance, backlogging costs gi were randomised from
½50;200� with uniform distribution.

The results of the experiments are presented in Table 3,
showing the percentage of instances that could be solved
to optimality and the average solution times for given
combinations of NI and NT. Columns IR refer to the basic
MIP without backlogging, while IRb stands for the back-
logging case. Contrary to our expectations, the perfor-
mance difference between the two model variants was not
statistically significant: only 3.1% more instances were
solved without, than with backlogging. Rather surpris-
ingly, the overall average solution time was 24.5% lower
with backlogging than without it. However, this series of
experiments illustrates that the proposed approach adapts
well to different variants and extensions of the basic lot-
sizing model.
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Table 3
Experimental results without and with backlogging

NI NT Solved (%) Time (s)

IR IRb IR IRb

3 4 100 100 0.00 0.00

6 100 100 0.00 0.00

8 100 100 0.00 0.00

10 100 100 0.06 0.33

12 100 100 0.72 1.17

14 100 100 2.39 3.83

16 100 100 7.56 6.83

4 4 100 100 0.00 0.00

6 100 100 0.06 0.17

8 100 100 0.94 1.00

10 100 100 2.44 6.83

12 100 100 13.44 22.50

14 100 100 50.06 48.33

16 94 100 330.76 910.33

5 4 100 100 0.00 0.00

6 100 100 0.94 1.50

8 100 100 5.33 5.00

10 100 100 30.39 34.83

12 100 100 292.11 468.50

14 89 67 1352.88 412.25

16 67 50 2593.50 334.00

6 4 100 100 0.39 0.50

6 100 100 4.33 4.33

8 100 100 22.56 42.67

10 100 100 391.17 315.17

12 83 50 1523.13 1265.67

14 39 33 2479.14 2461.50

16 28 33 1016.00 618.50

7 4 100 100 2.00 2.00

6 100 100 20.11 12.33

8 100 100 196.06 282.33

10 89 67 1582.31 1302.50

12 33 50 372.33 1785.00

14 28 33 752.20 1709.00

16 11 0 167.50 –

8 4 100 100 7.33 8.33

6 100 100 62.72 75.33

8 100 100 1299.00 787.83

10 61 33 2598.36 94.00

12 17 33 591.33 2749.50

14 17 33 2552.67 1054.00

16 17 0 1806.00 –

Percentage of instance solved to optimality (in column Solved) and

average solution times (Time) without (IR) and with (IRb) backlogging.

Dash ‘–’ means that none of the instances with the given size could be

solved in 2 h.
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7. Conclusions and future work

This paper addressed the capacitated lot-sizing and
scheduling problem with sequence-dependent setup
times and costs (CLSPSD). We showed that the complexity
of this large-bucket lot-sizing problem originates from the
series of implicit sequencing problems that have to be
solved for the items produced in each time period. We
presented an efficient algorithm for determining during
pre-processing all item sequences that could appear in an
optimal solution. We introduced a novel MIP formulation
of CLSPSD that relies on a compact representation of those
sequences by using item-related binary variables. To
ensure the MIP is correct, we added constraints which
bound from below the setup costs for each time period,
based on the efficient sequences, and we presented a
heuristic algorithm for generating coefficients of these
constraints which give tight LP relaxations. Given these
new constraints and the compact model, the proposed
MIP outperforms all previously known optimisation
approaches: it solves problems with orders of magnitude
speedup, and can solve instances of industrially relevant
size.

As one may expect, the stochastic variant of this
problem is much more complex, but has still attracted
attention in the literature due to its importance from both
theoretical and practical points of view (see Kämpf and
Köchel, 2006). Our future work will focus on extending
these results to the stochastic version of the same
problem, where demands are described by (not necessa-
rily independent) random variables with known prob-
ability density functions. Departing from the MIP
proposed in this paper, we defined a stochastic program
in the Stochastic OPL Language (Tarim et al., 2006).
Currently, we are experimenting with solving this sto-
chastic program for instances with different sizes and
characteristics, using different scenario reduction techni-
ques. Our aim is to extend the applicability of this
approach to realistic problem sizes.
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A. Kovács et al. / Int. J. Production Economics 118 (2009) 282–291 291
Karimi, B., Fatemi Ghomi, S.M.T., Wilson, J.M., 2003. The capacitated lot-sizing
problem: A review of models and algorithms. Omega 31, 365–378.

Marchand, H., Martin, A., Weismantel, R., Wolsey, L., 2002. Cutting planes
in integer and mixed integer programming. Discrete Applied
Mathematics 123 (1–3), 397–446.

Meyr, H., 2000. Simultaneous lotsizing and scheduling by combining
local search with dual reoptimization. European Journal of Opera-
tional Research 120, 311–326.
Meyr, H., 2002. Simultaneous lotsizing and scheduling on
parallel machines. European Journal of Operational Research 139,
277–292.

Tarim, S.A., Manandhar, S., Walsh, T., 2006. Stochastic constraint
programming: A scenario-based approach. Constraints 11, 53–80.

Williams, H.P., 1999. Model Building in Mathematical Programming,
fourth ed. Wiley, New York.


	An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups
	Introduction
	Problem definition
	Previous work on CLSPSD
	A DP for computing efficient sequences
	An efficient MIP model for CLSPSD
	Computing coefficients for the setup time inequalities
	The mixed-integer program
	Variants of the problem

	Experimental results
	Comparison to Haase and Kimms (2000)
	Results on variants of the problem

	Conclusions and future work
	Acknowledgements
	References


